351
|
Chatterjee G, Jimenez-Sainz J, Presti T, Nguyen T, Jensen RB. Distinct binding of BRCA2 BRC repeats to RAD51 generates differential DNA damage sensitivity. Nucleic Acids Res 2016; 44:5256-70. [PMID: 27084934 PMCID: PMC4914107 DOI: 10.1093/nar/gkw242] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Accepted: 03/29/2016] [Indexed: 01/01/2023] Open
Abstract
BRCA2 is a multi-faceted protein critical for the proper regulation of homology-directed repair of DNA double-strand breaks. Elucidating the mechanistic features of BRCA2 is crucial for understanding homologous recombination and how patient-derived mutations impact future cancer risk. Eight centrally located BRC repeats in BRCA2 mediate binding and regulation of RAD51 on resected DNA substrates. Herein, we dissect the biochemical and cellular features of the BRC repeats tethered to the DNA binding domain of BRCA2. To understand how the BRC repeats and isolated domains of BRCA2 contribute to RAD51 binding, we analyzed both the biochemical and cellular properties of these proteins. In contrast to the individual BRC repeat units, we find that the BRC5-8 region potentiates RAD51-mediated DNA strand pairing and provides complementation functions exceeding those of BRC repeats 1-4. Furthermore, BRC5-8 can efficiently repair nuclease-induced DNA double-strand breaks and accelerate the assembly of RAD51 repair complexes upon DNA damage. These findings highlight the importance of the BRC5-8 domain in stabilizing the RAD51 filament and promoting homology-directed repair under conditions of cellular DNA damage.
Collapse
Affiliation(s)
- Gouri Chatterjee
- Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Judit Jimenez-Sainz
- Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Thomas Presti
- Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Tiffany Nguyen
- Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Ryan B Jensen
- Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, CT 06520, USA
| |
Collapse
|
352
|
Customizing the genome as therapy for the β-hemoglobinopathies. Blood 2016; 127:2536-45. [PMID: 27053533 DOI: 10.1182/blood-2016-01-678128] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Accepted: 02/12/2016] [Indexed: 12/11/2022] Open
Abstract
Despite nearly complete understanding of the genetics of the β-hemoglobinopathies for several decades, definitive treatment options have lagged behind. Recent developments in technologies for facile manipulation of the genome (zinc finger nucleases, transcription activator-like effector nucleases, or clustered regularly interspaced short palindromic repeats-based nucleases) raise prospects for their clinical application. The use of genome-editing technologies in autologous CD34(+) hematopoietic stem and progenitor cells represents a promising therapeutic avenue for the β-globin disorders. Genetic correction strategies relying on the homology-directed repair pathway may repair genetic defects, whereas genetic disruption strategies relying on the nonhomologous end joining pathway may induce compensatory fetal hemoglobin expression. Harnessing the power of genome editing may usher in a second-generation form of gene therapy for the β-globin disorders.
Collapse
|
353
|
A genome editing primer for the hematologist. Blood 2016; 127:2525-35. [PMID: 27053532 DOI: 10.1182/blood-2016-01-678151] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Accepted: 02/19/2016] [Indexed: 12/13/2022] Open
Abstract
Gene editing enables the site-specific modification of the genome. These technologies have rapidly advanced such that they have entered common use in experimental hematology to investigate genetic function. In addition, genome editing is becoming increasingly plausible as a treatment modality to rectify genetic blood disorders and improve cellular therapies. Genome modification typically ensues from site-specific double-strand breaks and may result in a myriad of outcomes. Even single-strand nicks and targeted biochemical modifications that do not permanently alter the DNA sequence (epigenome editing) may be powerful instruments. In this review, we examine the various technologies, describe their advantages and shortcomings for engendering useful genetic alterations, and consider future prospects for genome editing to impact hematology.
Collapse
|
354
|
Abstract
Pathway choice is a critical event in the repair of DNA double-strand breaks. In a recent paper published in Nature, Orthwein et al. define a mechanism by which homologous recombination is controlled in G1 cells to favor non-homologous end joining.
Collapse
Affiliation(s)
- Kasper Fugger
- The Francis Crick Institute, Clare Hall Laboratories, South Mimms EN6 3LD, UK
| | - Stephen C West
- The Francis Crick Institute, Clare Hall Laboratories, South Mimms EN6 3LD, UK
| |
Collapse
|
355
|
Mosadeghi R, Reichermeier KM, Winkler M, Schreiber A, Reitsma JM, Zhang Y, Stengel F, Cao J, Kim M, Sweredoski MJ, Hess S, Leitner A, Aebersold R, Peter M, Deshaies RJ, Enchev RI. Structural and kinetic analysis of the COP9-Signalosome activation and the cullin-RING ubiquitin ligase deneddylation cycle. eLife 2016; 5. [PMID: 27031283 PMCID: PMC4878873 DOI: 10.7554/elife.12102] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Accepted: 03/30/2016] [Indexed: 01/01/2023] Open
Abstract
The COP9-Signalosome (CSN) regulates cullin–RING ubiquitin ligase (CRL) activity and assembly by cleaving Nedd8 from cullins. Free CSN is autoinhibited, and it remains unclear how it becomes activated. We combine structural and kinetic analyses to identify mechanisms that contribute to CSN activation and Nedd8 deconjugation. Both CSN and neddylated substrate undergo large conformational changes upon binding, with important roles played by the N-terminal domains of Csn2 and Csn4 and the RING domain of Rbx1 in enabling formation of a high affinity, fully active complex. The RING domain is crucial for deneddylation, and works in part through conformational changes involving insert-2 of Csn6. Nedd8 deconjugation and re-engagement of the active site zinc by the autoinhibitory Csn5 glutamate-104 diminish affinity for Cul1/Rbx1 by ~100-fold, resulting in its rapid ejection from the active site. Together, these mechanisms enable a dynamic deneddylation-disassembly cycle that promotes rapid remodeling of the cellular CRL network. DOI:http://dx.doi.org/10.7554/eLife.12102.001 Just like you might clear out the old food in your refrigerator to make room for new groceries, cells constantly break down existing proteins to provide space for new ones. The enzymes that generally carry out the first step of this breakdown process are called ubiquitin ligases and human cells make hundreds of different ones. These ubiquitin ligases are not always active and a large group of them can be switched off by a group of proteins known as the COP9-Signalosome (or CSN for short). To achieve this, CSN recognizes and cuts off a structure called Nedd8 from these ubiquitin ligases. However, CSN itself remains inactive until it finds and binds to ubiquitin ligases that have Nedd8 attached. Mosadeghi et al. have now used biophysical techniques to study how purified CSN binds to ubiquitin ligases, removes Nedd8 and then releases the inactivated enzymes. The experiments provided a clearer picture of what the CSN looks like when it binds its targets and revealed which parts of the proteins are involved in the interaction. Furthermore, the data showed that, immediately after Nedd8 is removed from the ubiquitin ligase, CSN quickly switches back into an “off” position that allows it to release the now inactive ubiquitin ligase. This helps to explain how CSN can remove Nedd8 from many ubiquitin ligase molecules in a short period of time. Mosadeghi et al. also confirmed these findings in human cells with various versions of CSN that have different levels of activity. A future challenge is to understand exactly how the newly revealed mechanisms actually play out in cells. Also, some components of CSN are present in abnormally large amounts in cancer cells and therefore this knowledge may eventually lead to new ideas about how to treat cancer. DOI:http://dx.doi.org/10.7554/eLife.12102.002
Collapse
Affiliation(s)
- Ruzbeh Mosadeghi
- Keck School of Medicine, University of Southern California, Los Angeles, United States.,Combined MD/PhD Program, California Institute of Technology, Pasadena, United States.,Division of Biology and Biological Engineering, California Instittute of Technology, Pasadena, United States
| | - Kurt M Reichermeier
- Division of Biology and Biological Engineering, California Instittute of Technology, Pasadena, United States
| | - Martin Winkler
- Department of Biology, Institute of Biochemistry, Swiss Federal Institute of Technology, Zurich, Switzerland
| | - Anne Schreiber
- Department of Biology, Institute of Biochemistry, Swiss Federal Institute of Technology, Zurich, Switzerland
| | - Justin M Reitsma
- Division of Biology and Biological Engineering, California Instittute of Technology, Pasadena, United States
| | - Yaru Zhang
- Division of Biology and Biological Engineering, California Instittute of Technology, Pasadena, United States
| | - Florian Stengel
- Department of Biology, Institute of Molecular Systems Biology, Swiss Federal Institute of Technology, Zürich, Switzerland
| | - Junyue Cao
- Division of Biology and Biological Engineering, California Instittute of Technology, Pasadena, United States
| | - Minsoo Kim
- Division of Biology and Biological Engineering, California Instittute of Technology, Pasadena, United States
| | - Michael J Sweredoski
- Proteome Exploration Lab, Beckman Institute, California Institute of Technology, Pasadena, United States
| | - Sonja Hess
- Proteome Exploration Lab, Beckman Institute, California Institute of Technology, Pasadena, United States
| | - Alexander Leitner
- Department of Biology, Institute of Molecular Systems Biology, Swiss Federal Institute of Technology, Zürich, Switzerland
| | - Ruedi Aebersold
- Department of Biology, Institute of Molecular Systems Biology, Swiss Federal Institute of Technology, Zürich, Switzerland.,Faculty of Science, University of Zurich, Zurich, Switzerland
| | - Matthias Peter
- Department of Biology, Institute of Biochemistry, Swiss Federal Institute of Technology, Zurich, Switzerland
| | - Raymond J Deshaies
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, United States.,Howard Hughes Medical Institute, California Institute of Technology, Pasadena, United States
| | - Radoslav I Enchev
- Department of Biology, Institute of Biochemistry, Swiss Federal Institute of Technology, Zurich, Switzerland
| |
Collapse
|
356
|
Gschweitl M, Ulbricht A, Barnes CA, Enchev RI, Stoffel-Studer I, Meyer-Schaller N, Huotari J, Yamauchi Y, Greber UF, Helenius A, Peter M. A SPOPL/Cullin-3 ubiquitin ligase complex regulates endocytic trafficking by targeting EPS15 at endosomes. eLife 2016; 5:e13841. [PMID: 27008177 PMCID: PMC4846373 DOI: 10.7554/elife.13841] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Accepted: 03/23/2016] [Indexed: 01/01/2023] Open
Abstract
Cullin-3 (CUL3)-based ubiquitin ligases regulate endosome maturation and trafficking of endocytic cargo to lysosomes in mammalian cells. Here, we report that these functions depend on SPOPL, a substrate-specific CUL3 adaptor. We find that SPOPL associates with endosomes and is required for both the formation of multivesicular bodies (MVBs) and the endocytic host cell entry of influenza A virus. In SPOPL-depleted cells, endosomes are enlarged and fail to acquire intraluminal vesicles (ILVs). We identify a critical substrate ubiquitinated by CUL3-SPOPL as EPS15, an endocytic adaptor that also associates with the ESCRT-0 complex members HRS and STAM on endosomes. Indeed, EPS15 is ubiquitinated in a SPOPL-dependent manner, and accumulates with HRS in cells lacking SPOPL. Together, our data indicates that a CUL3-SPOPL E3 ubiquitin ligase complex regulates endocytic trafficking and MVB formation by ubiquitinating and degrading EPS15 at endosomes, thereby influencing influenza A virus infection as well as degradation of EGFR and other EPS15 targets. DOI:http://dx.doi.org/10.7554/eLife.13841.001 Individual cells can move material, collectively referred to as cargo, from the outside environment into the cell interior via a process known as endocytosis. The cell then has different routes to transport the packages of cargo, called endocytic vesicles, to specific locations within the cell. Protein-based molecular machines move the cargo and control how it is selected and targeted to different destinations. For example, a molecular machine that contains a protein called CUL3 labels other components of the system with a chemical tag to regulate the route cargo takes in mammalian cells. However, it was not clear how CUL3 can selectively attach the chemical labels. Gschweitl, Ulbricht et al. have now found that another protein called SPOPL provides selectivity for the CUL3-based machine during endocytosis in human cells. The experiments show that SPOPL attaches to endocytic vesicles, and that CUL3 and SPOPL work together to label a specific component of these vesicles called EPS15. The label changes how EPS15 interacts with other proteins. When SPOPL is not present in a cell, EPS15 is unnaturally stable and occupies many of the routes used by endocytic cargos. The cargo directly interacting with EPS15 is then routed on the fast lane to its destination, while other cargo accumulate in a kind of molecular traffic jam. Other proteins like SPOPL are specific for the endocytic system. Exchange of SPOPL with these similar proteins in the CUL3 machine is likely to chemically label a different set of endocytic proteins. Gschweitl, Ulbricht et al.’s next challenge is to identify the selectivity, targeting and coordination of these exchangeable components in the endocytic system. DOI:http://dx.doi.org/10.7554/eLife.13841.002
Collapse
Affiliation(s)
- Michaela Gschweitl
- Institute of Biochemistry, Department of Biology, Eidgenössische Technische Hochschule Zürich, Zurich, Switzerland
| | - Anna Ulbricht
- Institute of Biochemistry, Department of Biology, Eidgenössische Technische Hochschule Zürich, Zurich, Switzerland
| | - Christopher A Barnes
- Institute of Biochemistry, Department of Biology, Eidgenössische Technische Hochschule Zürich, Zurich, Switzerland
| | - Radoslav I Enchev
- Institute of Biochemistry, Department of Biology, Eidgenössische Technische Hochschule Zürich, Zurich, Switzerland
| | - Ingrid Stoffel-Studer
- Institute of Biochemistry, Department of Biology, Eidgenössische Technische Hochschule Zürich, Zurich, Switzerland
| | - Nathalie Meyer-Schaller
- Institute of Biochemistry, Department of Biology, Eidgenössische Technische Hochschule Zürich, Zurich, Switzerland
| | - Jatta Huotari
- Institute of Biochemistry, Department of Biology, Eidgenössische Technische Hochschule Zürich, Zurich, Switzerland
| | - Yohei Yamauchi
- Institute of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
| | - Urs F Greber
- Institute of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
| | - Ari Helenius
- Institute of Biochemistry, Department of Biology, Eidgenössische Technische Hochschule Zürich, Zurich, Switzerland
| | - Matthias Peter
- Institute of Biochemistry, Department of Biology, Eidgenössische Technische Hochschule Zürich, Zurich, Switzerland
| |
Collapse
|
357
|
Current Progress in Therapeutic Gene Editing for Monogenic Diseases. Mol Ther 2016; 24:465-74. [PMID: 26765770 DOI: 10.1038/mt.2016.5] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Accepted: 12/29/2015] [Indexed: 02/06/2023] Open
Abstract
Programmable nucleases allow defined alterations in the genome with ease-of-use, efficiency, and specificity. Their availability has led to accurate and widespread genome engineering, with multiple applications in basic research, biotechnology, and therapy. With regard to human gene therapy, nuclease-based gene editing has facilitated development of a broad range of therapeutic strategies based on both nonhomologous end joining and homology-dependent repair. This review discusses current progress in nuclease-based therapeutic applications for a subset of inherited monogenic diseases including cystic fibrosis, Duchenne muscular dystrophy, diseases of the bone marrow, and hemophilia and highlights associated challenges and future prospects.
Collapse
|
358
|
Tkáč J, Xu G, Adhikary H, Young JTF, Gallo D, Escribano-Díaz C, Krietsch J, Orthwein A, Munro M, Sol W, Al-Hakim A, Lin ZY, Jonkers J, Borst P, Brown GW, Gingras AC, Rottenberg S, Masson JY, Durocher D. HELB Is a Feedback Inhibitor of DNA End Resection. Mol Cell 2016; 61:405-418. [PMID: 26774285 DOI: 10.1016/j.molcel.2015.12.013] [Citation(s) in RCA: 110] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Revised: 11/04/2015] [Accepted: 12/03/2015] [Indexed: 12/13/2022]
Abstract
DNA double-strand break repair by homologous recombination is initiated by the formation of 3' single-stranded DNA (ssDNA) overhangs by a process termed end resection. Although much focus has been given to the decision to initiate resection, little is known of the mechanisms that regulate the ongoing formation of ssDNA tails. Here we report that DNA helicase B (HELB) underpins a feedback inhibition mechanism that curtails resection. HELB is recruited to ssDNA by interacting with RPA and uses its 5'-3' ssDNA translocase activity to inhibit EXO1 and BLM-DNA2, the nucleases catalyzing resection. HELB acts independently of 53BP1 and is exported from the nucleus as cells approach S phase, concomitant with the upregulation of resection. Consistent with its role as a resection antagonist, loss of HELB results in PARP inhibitor resistance in BRCA1-deficient tumor cells. We conclude that mammalian DNA end resection triggers its own inhibition via the recruitment of HELB.
Collapse
MESH Headings
- Animals
- BRCA1 Protein/genetics
- DNA End-Joining Repair
- DNA Helicases/deficiency
- DNA Helicases/genetics
- DNA Helicases/metabolism
- DNA Repair Enzymes/genetics
- DNA Repair Enzymes/metabolism
- Exodeoxyribonucleases/genetics
- Exodeoxyribonucleases/metabolism
- Feedback, Physiological
- Female
- Gene Expression Regulation, Enzymologic
- Gene Expression Regulation, Neoplastic
- HEK293 Cells
- HeLa Cells
- Humans
- Mammary Neoplasms, Experimental/drug therapy
- Mammary Neoplasms, Experimental/enzymology
- Mammary Neoplasms, Experimental/genetics
- Mammary Neoplasms, Experimental/pathology
- Mice
- Mice, 129 Strain
- Mice, Inbred C57BL
- Mice, Knockout
- Phthalazines/pharmacology
- Piperazines/pharmacology
- Poly(ADP-ribose) Polymerase Inhibitors/pharmacology
- RNA Interference
- RecQ Helicases/genetics
- RecQ Helicases/metabolism
- S Phase
- Time Factors
- Transfection
- Tumor Suppressor Proteins/genetics
Collapse
Affiliation(s)
- Ján Tkáč
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, 600 University Avenue, Toronto, ON M5G 1X5, Canada; Department of Molecular Genetics, University of Toronto, ON M5S 1A8, Canada
| | - Guotai Xu
- Division of Molecular Oncology, Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands
| | - Hemanta Adhikary
- Genome Stability Laboratory, CHU de Québec Research Center, HDQ Pavilion, Oncology Axis, 9 McMahon, Québec City, QC G1R 2J6, Canada; Department of Molecular Biology, Medical Biochemistry and Pathology, Laval University, Québec City, QC G1V 0A6, Canada
| | - Jordan T F Young
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, 600 University Avenue, Toronto, ON M5G 1X5, Canada; Department of Molecular Genetics, University of Toronto, ON M5S 1A8, Canada
| | - David Gallo
- Department of Biochemistry and Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, ON M5S 3E1, Canada
| | - Cristina Escribano-Díaz
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, 600 University Avenue, Toronto, ON M5G 1X5, Canada
| | - Jana Krietsch
- Genome Stability Laboratory, CHU de Québec Research Center, HDQ Pavilion, Oncology Axis, 9 McMahon, Québec City, QC G1R 2J6, Canada; Department of Molecular Biology, Medical Biochemistry and Pathology, Laval University, Québec City, QC G1V 0A6, Canada
| | - Alexandre Orthwein
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, 600 University Avenue, Toronto, ON M5G 1X5, Canada
| | - Meagan Munro
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, 600 University Avenue, Toronto, ON M5G 1X5, Canada
| | - Wendy Sol
- Division of Molecular Oncology, Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands
| | - Abdallah Al-Hakim
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, 600 University Avenue, Toronto, ON M5G 1X5, Canada
| | - Zhen-Yuan Lin
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, 600 University Avenue, Toronto, ON M5G 1X5, Canada
| | - Jos Jonkers
- Division of Molecular Pathology, Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands
| | - Piet Borst
- Division of Molecular Oncology, Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands
| | - Grant W Brown
- Department of Biochemistry and Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, ON M5S 3E1, Canada
| | - Anne-Claude Gingras
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, 600 University Avenue, Toronto, ON M5G 1X5, Canada; Department of Molecular Genetics, University of Toronto, ON M5S 1A8, Canada
| | - Sven Rottenberg
- Division of Molecular Oncology, Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands; Institute of Animal Pathology, Vetsuisse Faculty, University of Bern, Laenggasstrasse 122, 3012 Bern, Switzerland
| | - Jean-Yves Masson
- Genome Stability Laboratory, CHU de Québec Research Center, HDQ Pavilion, Oncology Axis, 9 McMahon, Québec City, QC G1R 2J6, Canada; Department of Molecular Biology, Medical Biochemistry and Pathology, Laval University, Québec City, QC G1V 0A6, Canada
| | - Daniel Durocher
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, 600 University Avenue, Toronto, ON M5G 1X5, Canada; Department of Molecular Genetics, University of Toronto, ON M5S 1A8, Canada.
| |
Collapse
|
359
|
|
360
|
|