351
|
Begg CB, Ostrovnaya I, Geyer FC, Papanastasiou AD, Ng CKY, Sakr R, Bernstein JL, Burke KA, King TA, Piscuoglio S, Mauguen A, Orlow I, Weigelt B, Seshan VE, Morrow M, Reis-Filho JS. Contralateral breast cancers: Independent cancers or metastases? Int J Cancer 2018; 142:347-356. [PMID: 28921573 PMCID: PMC5749409 DOI: 10.1002/ijc.31051] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 08/24/2017] [Accepted: 08/30/2017] [Indexed: 12/24/2022]
Abstract
A cancer in the contralateral breast in a woman with a previous or synchronous breast cancer is typically considered to be an independent primary tumor. Emerging evidence suggests that in a small subset of these cases the second tumor represents a metastasis. We sought to investigate the issue using massively parallel sequencing targeting 254 genes recurrently mutated in breast cancer. We examined the tumor archives at Memorial Sloan Kettering Cancer Center for the period 1995-2006 to identify cases of contralateral breast cancer where surgery for both tumors was performed at the Center. We report results from 49 patients successfully analyzed by a targeted massively parallel sequencing assay. Somatic mutations and copy number alterations were defined by state-of-the-art algorithms. Clonal relatedness was evaluated by statistical tests specifically designed for this purpose. We found evidence that the tumors in contralateral breasts were clonally related in three cases (6%) on the basis of matching mutations at codons where somatic mutations are rare. Clinical data and the presence of similar patterns of gene copy number alterations were consistent with metastasis for all three cases. In three additional cases, there was a solitary matching mutation at a common PIK3CA locus. The results suggest that a subset of contralateral breast cancers represent metastases rather than independent primary tumors. Massively parallel sequencing analysis can provide important evidence to clarify the diagnosis. However, given the inter-tumor mutational heterogeneity in breast cancer, sufficiently large gene panels need to be employed to define clonality convincingly in all cases.
Collapse
Affiliation(s)
- Colin B Begg
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Irina Ostrovnaya
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Felipe C Geyer
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Anastasios D Papanastasiou
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Metaxa Cancer Hospital/University of Patras, Patras, Greece
| | - Charlotte KY Ng
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Institute of Pathology, University Hospital Basel, Switzerland
| | - Rita Sakr
- Breast Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Jonine L Bernstein
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Kathleen A Burke
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- IBM Watson Health, Cambridge, MA USA
| | - Tari A King
- Dana-Farber Cancer Institute/Brigham and Women’s Hospital, Boston, MA USA
| | - Salvatore Piscuoglio
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Institute of Pathology, University Hospital Basel, Switzerland
| | - Audrey Mauguen
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Irene Orlow
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Britta Weigelt
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Venkatraman E Seshan
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Monica Morrow
- Breast Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Jorge S Reis-Filho
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| |
Collapse
|
352
|
Conditional knockout of N-Myc and STAT interactor disrupts normal mammary development and enhances metastatic ability of mammary tumors. Oncogene 2018; 37:1610-1623. [PMID: 29326438 PMCID: PMC5921859 DOI: 10.1038/s41388-017-0037-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 09/26/2017] [Accepted: 10/23/2017] [Indexed: 02/07/2023]
Abstract
The process of organ development requires a delicate balance between cellular plasticity and differentiation. This balance is disrupted in cancer initiation and progression. N-Myc and STAT interactor (NMI: human or Nmi: murine) has emerged as a relevant player in the etiology of breast cancer. However, a fundamental understanding of its relevance to normal mammary biology is lacking. To gain insight into its normal function in mammary gland, we generated a mammary-specific Nmi knockout mouse model. We observed that Nmi protein expression is induced in mammary epithelium at the onset of pregnancy, in luminal cells and persists throughout lactation. Nmi knockout results in a precocious alveolar phenotype. These alveoli exhibit an extensive presence of nuclear β-catenin and enhanced Wnt/β-catenin signaling. The Nmi knockout pubertal ductal tree shows enhanced invasion of the mammary fatpad and increased terminal end bud numbers. Tumors from Nmi null mammary epithelium show a significant enrichment of poorly differentiated cells with elevated stem/progenitor markers, active Wnt/β-catenin signaling, highly invasive morphology as well as, increased number of distant metastases. Our study demonstrates that Nmi has a distinct role in the differentiation process of mammary luminal epithelial cell compartment and developmental aberrations resulting from Nmi absence contribute to metastasis and demonstrates that aberration in normal developmental program can lead to metastatic disease, highlighting the contribution and importance of luminal progenitor cells in driving metastatic disease.
Collapse
|
353
|
Abstract
In this paper, I continue the study of the mathematical models presented in [J. C. Larsen, Models of cancer growth, J. Appl. Math. Comput. 53(1–2) (2015) 613–645] and [J. C. Larsen, The bistability theorem in a model of metastatic cancer, to appear in Appl. Math.]. I shall prove the bistability theorem for the ODE model from [Larsen, 2015]. It is a mass action kinetic system in the variables [Formula: see text] cancer, GF growth factor and GI growth inhibitor. This theorem says that for some values of the parameters, there exist two positive singular points [Formula: see text], [Formula: see text] of the vector field. Here [Formula: see text] and [Formula: see text] is stable and [Formula: see text] is unstable, see Sec. 2. There is also a discrete model in [Larsen, 2015], it is a linear map ([Formula: see text]) on three-dimensional Euclidean vector space with variables [Formula: see text] where these variables have the same meaning as in the ODE model above. In [Larsen, 2015], I showed that one can sometimes find affine vector fields on three-dimensional Euclidean vector space whose time one map is [Formula: see text]. I shall also show this in the present paper in a more general setting than in [Larsen, 2015]. This enables me to find an expression for the rate of change of cancer growth on the coordinate hyperplane [Formula: see text] in Euclidean vector space. I also present an ODE model of cancer metastasis with variables [Formula: see text] where [Formula: see text] is primary cancer and [Formula: see text] is metastatic cancer and GF, GI are growth factors and growth inhibitors, respectively.
Collapse
|
354
|
Pillai SG, Li S, Siddappa CM, Ellis MJ, Watson MA, Aft R. Identifying biomarkers of breast cancer micrometastatic disease in bone marrow using a patient-derived xenograft mouse model. Breast Cancer Res 2018; 20:2. [PMID: 29291741 PMCID: PMC5748947 DOI: 10.1186/s13058-017-0927-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Accepted: 12/12/2017] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Disseminated tumor cells (DTCs) found in the bone marrow (BM) of patients with breast cancer portend a poor prognosis and are thought to be intermediaries in the metastatic process. To assess the clinical relevance of a mouse model for identifying possible prognostic and predictive biomarkers of these cells, we have employed patient-derived xenografts (PDX) for propagating and molecularly profiling human DTCs. METHODS Previously developed mouse xenografts from five breast cancer patients were further passaged by implantation into NOD/SCID mouse mammary fat pads. BM was collected from long bones at early, serial passages and analyzed for human-specific gene expression by qRT-PCR as a surrogate biomarker for the detection of DTCs. Microarray-based gene expression analyses were performed to compare expression profiles between primary xenografts, solid metastasis, and populations of BM DTCs. Differential patterns of gene expression were then compared to previously generated microarray data from primary human BM aspirates from patients with breast cancer and healthy volunteers. RESULTS Human-specific gene expression of SNAI1, GSC, FOXC2, KRT19, and STAM2, presumably originating from DTCs, was detected in the BM of all xenograft mice that also developed metastatic tumors. Human-specific gene expression was undetectable in the BM of those xenograft lines with no evidence of distant metastases and in non-transplanted control mice. Comparative gene expression analysis of BM DTCs versus the primary tumor of one mouse line identified multiple gene transcripts associated with epithelial-mesenchymal transition, aggressive clinical phenotype, and metastatic disease development. Sixteen of the PDX BM associated genes also demonstrated a statistically significant difference in expression in the BM of healthy volunteers versus the BM of breast cancer patients with distant metastatic disease. CONCLUSION Unique and reproducible patterns of differential gene expression can be identified that presumably originate from BM DTCs in mouse PDX lines. Several of these identified genes are also detected in the BM of patients with breast cancer who develop early metastases, which suggests that they may be clinically relevant biomarkers. The PDX model may also provide a clinically relevant system for analyzing and targeting these intermediaries of metastases.
Collapse
Affiliation(s)
- Sreeraj G. Pillai
- Department of Surgery, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, MO 63110 USA
| | - Shunqiang Li
- Department of Internal Medicine, Division of Medical Oncology, Washington University School of Medicine, St. Louis, MO USA
| | - Chidananda M. Siddappa
- Department of Surgery, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, MO 63110 USA
| | - Matthew J Ellis
- Baylor College of Medicine, Lester and Sue Smith Breast Center, Houston, TX USA
| | - Mark A. Watson
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO USA
- Siteman Cancer Center at the Washington University School of Medicine, St. Louis, MO USA
| | - Rebecca Aft
- Department of Surgery, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, MO 63110 USA
- Siteman Cancer Center at the Washington University School of Medicine, St. Louis, MO USA
- John Cochran Veterans Administration Hospital, St. Louis, MO USA
| |
Collapse
|
355
|
Linde N, Casanova-Acebes M, Sosa MS, Mortha A, Rahman A, Farias E, Harper K, Tardio E, Reyes Torres I, Jones J, Condeelis J, Merad M, Aguirre-Ghiso JA. Macrophages orchestrate breast cancer early dissemination and metastasis. Nat Commun 2018; 9:21. [PMID: 29295986 PMCID: PMC5750231 DOI: 10.1038/s41467-017-02481-5] [Citation(s) in RCA: 304] [Impact Index Per Article: 43.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Accepted: 12/04/2017] [Indexed: 02/07/2023] Open
Abstract
Cancer cell dissemination during very early stages of breast cancer proceeds through poorly understood mechanisms. Here we show, in a mouse model of HER2+ breast cancer, that a previously described sub-population of early-evolved cancer cells requires macrophages for early dissemination. Depletion of macrophages specifically during pre-malignant stages reduces early dissemination and also results in reduced metastatic burden at end stages of cancer progression. Mechanistically, we show that, in pre-malignant lesions, CCL2 produced by cancer cells and myeloid cells attracts CD206+/Tie2+ macrophages and induces Wnt-1 upregulation that in turn downregulates E-cadherin junctions in the HER2+ early cancer cells. We also observe macrophage-containing tumor microenvironments of metastasis structures in the pre-malignant lesions that can operate as portals for intravasation. These data support a causal role for macrophages in early dissemination that affects long-term metastasis development much later in cancer progression. A pilot analysis on human specimens revealed intra-epithelial macrophages and loss of E-cadherin junctions in ductal carcinoma in situ, supporting a potential clinical relevance.
Collapse
Affiliation(s)
- Nina Linde
- Division of Hematology and Oncology, Department of Medicine, Tisch Cancer Institute, Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.,Department of Otolaryngology, Tisch Cancer Institute, Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.,Merck KGaA, Frankfurter Str. 250, Postcode: A025/301, Darmstadt, 64293, Germany
| | - Maria Casanova-Acebes
- Department of Oncological Sciences, The Immunology Institute, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Maria Soledad Sosa
- Division of Hematology and Oncology, Department of Medicine, Tisch Cancer Institute, Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.,Department of Otolaryngology, Tisch Cancer Institute, Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.,Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Arthur Mortha
- Department of Oncological Sciences, The Immunology Institute, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.,Department of Immunology, University of Toronto, Toronto, ON, M5S 1A8, USA
| | - Adeeb Rahman
- Human Immune Monitoring Core, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Eduardo Farias
- Division of Hematology and Oncology, Department of Medicine, Tisch Cancer Institute, Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.,Department of Otolaryngology, Tisch Cancer Institute, Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Kathryn Harper
- Division of Hematology and Oncology, Department of Medicine, Tisch Cancer Institute, Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.,Department of Otolaryngology, Tisch Cancer Institute, Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Ethan Tardio
- Division of Hematology and Oncology, Department of Medicine, Tisch Cancer Institute, Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.,Department of Otolaryngology, Tisch Cancer Institute, Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Ivan Reyes Torres
- Department of Oncological Sciences, The Immunology Institute, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Joan Jones
- Department of Anatomy and Structural Biology, Integrated Imaging Program, Gruss Lipper Biophotonics Center, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY, 10461, USA
| | - John Condeelis
- Department of Anatomy and Structural Biology, Integrated Imaging Program, Gruss Lipper Biophotonics Center, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY, 10461, USA
| | - Miriam Merad
- Department of Oncological Sciences, The Immunology Institute, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.,Human Immune Monitoring Core, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Julio A Aguirre-Ghiso
- Division of Hematology and Oncology, Department of Medicine, Tisch Cancer Institute, Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA. .,Department of Otolaryngology, Tisch Cancer Institute, Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
| |
Collapse
|
356
|
Carlini MJ, Shrivastava N, Sosa MS. Epigenetic and Pluripotency Aspects of Disseminated Cancer Cells During Minimal Residual Disease. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1100:1-18. [DOI: 10.1007/978-3-319-97746-1_1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
357
|
Minimal Residual Disease in Head and Neck Cancer and Esophageal Cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1100:55-82. [DOI: 10.1007/978-3-319-97746-1_4] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
358
|
Ortega MA, Poirion O, Zhu X, Huang S, Wolfgruber TK, Sebra R, Garmire LX. Using single-cell multiple omics approaches to resolve tumor heterogeneity. Clin Transl Med 2017; 6:46. [PMID: 29285690 PMCID: PMC5746494 DOI: 10.1186/s40169-017-0177-y] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Accepted: 12/06/2017] [Indexed: 12/31/2022] Open
Abstract
It has become increasingly clear that both normal and cancer tissues are composed of heterogeneous populations. Genetic variation can be attributed to the downstream effects of inherited mutations, environmental factors, or inaccurately resolved errors in transcription and replication. When lesions occur in regions that confer a proliferative advantage, it can support clonal expansion, subclonal variation, and neoplastic progression. In this manner, the complex heterogeneous microenvironment of a tumour promotes the likelihood of angiogenesis and metastasis. Recent advances in next-generation sequencing and computational biology have utilized single-cell applications to build deep profiles of individual cells that are otherwise masked in bulk profiling. In addition, the development of new techniques for combining single-cell multi-omic strategies is providing a more precise understanding of factors contributing to cellular identity, function, and growth. Continuing advancements in single-cell technology and computational deconvolution of data will be critical for reconstructing patient specific intra-tumour features and developing more personalized cancer treatments.
Collapse
Affiliation(s)
- Michael A. Ortega
- Cancer Epidemiology Program, University of Hawaii Cancer Center, Honolulu, HI USA
| | - Olivier Poirion
- Cancer Epidemiology Program, University of Hawaii Cancer Center, Honolulu, HI USA
| | - Xun Zhu
- Cancer Epidemiology Program, University of Hawaii Cancer Center, Honolulu, HI USA
- Department of Molecular Biosciences and Bioengineering, Honolulu, HI USA
| | - Sijia Huang
- Cancer Epidemiology Program, University of Hawaii Cancer Center, Honolulu, HI USA
- Department of Molecular Biosciences and Bioengineering, Honolulu, HI USA
| | - Thomas K. Wolfgruber
- Cancer Epidemiology Program, University of Hawaii Cancer Center, Honolulu, HI USA
| | - Robert Sebra
- Icahn Institute and Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY USA
| | - Lana X. Garmire
- Cancer Epidemiology Program, University of Hawaii Cancer Center, Honolulu, HI USA
- Department of Molecular Biosciences and Bioengineering, Honolulu, HI USA
| |
Collapse
|
359
|
Widschwendter M, Evans I, Jones A, Ghazali S, Reisel D, Ryan A, Gentry-Maharaj A, Zikan M, Cibula D, Eichner J, Alunni-Fabbroni M, Koch J, Janni WJ, Paprotka T, Wittenberger T, Menon U, Wahl B, Rack B, Lempiäinen H. Methylation patterns in serum DNA for early identification of disseminated breast cancer. Genome Med 2017; 9:115. [PMID: 29268762 PMCID: PMC5740791 DOI: 10.1186/s13073-017-0499-9] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Accepted: 11/22/2017] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND Monitoring treatment and early detection of fatal breast cancer (BC) remains a major unmet need. Aberrant circulating DNA methylation (DNAme) patterns are likely to provide a highly specific cancer signal. We hypothesized that cell-free DNAme markers could indicate disseminated breast cancer, even in the presence of substantial quantities of background DNA. METHODS We used reduced representation bisulfite sequencing (RRBS) of 31 tissues and established serum assays based on ultra-high coverage bisulfite sequencing in two independent prospective serum sets (n = 110). The clinical use of one specific region, EFC#93, was validated in 419 patients (in both pre- and post-adjuvant chemotherapy samples) from SUCCESS (Simultaneous Study of Gemcitabine-Docetaxel Combination adjuvant treatment, as well as Extended Bisphosphonate and Surveillance-Trial) and 925 women (pre-diagnosis) from the UKCTOCS (UK Collaborative Trial of Ovarian Cancer Screening) population cohort, with overall survival and occurrence of incident breast cancer (which will or will not lead to death), respectively, as primary endpoints. RESULTS A total of 18 BC specific DNAme patterns were discovered in tissue, of which the top six were further tested in serum. The best candidate, EFC#93, was validated for clinical use. EFC#93 was an independent poor prognostic marker in pre-chemotherapy samples (hazard ratio [HR] for death = 7.689) and superior to circulating tumor cells (CTCs) (HR for death = 5.681). More than 70% of patients with both CTCs and EFC#93 serum DNAme positivity in their pre-chemotherapy samples relapsed within five years. EFC#93-positive disseminated disease in post-chemotherapy samples seems to respond to anti-hormonal treatment. The presence of EFC#93 serum DNAme identified 42.9% and 25% of women who were diagnosed with a fatal BC within 3-6 and 6-12 months of sample donation, respectively, with a specificity of 88%. The sensitivity with respect to detecting fatal BC was ~ 4-fold higher compared to non-fatal BC. CONCLUSIONS Detection of EFC#93 serum DNAme patterns offers a new tool for early diagnosis and management of disseminated breast cancers. Clinical trials are required to assess whether EFC#93-positive women in the absence of radiological detectable breast cancers will benefit from anti-hormonal treatment before the breast lesions become clinically apparent.
Collapse
Affiliation(s)
- Martin Widschwendter
- Department of Women's Cancer, UCL Elizabeth Garrett Anderson Institute for Women's Health, University College London, Medical School Building, 74 Huntley Street, London, WC1E 6AU, UK.
| | - Iona Evans
- Department of Women's Cancer, UCL Elizabeth Garrett Anderson Institute for Women's Health, University College London, Medical School Building, 74 Huntley Street, London, WC1E 6AU, UK
| | - Allison Jones
- Department of Women's Cancer, UCL Elizabeth Garrett Anderson Institute for Women's Health, University College London, Medical School Building, 74 Huntley Street, London, WC1E 6AU, UK
| | - Shohreh Ghazali
- Department of Women's Cancer, UCL Elizabeth Garrett Anderson Institute for Women's Health, University College London, Medical School Building, 74 Huntley Street, London, WC1E 6AU, UK
| | - Daniel Reisel
- Department of Women's Cancer, UCL Elizabeth Garrett Anderson Institute for Women's Health, University College London, Medical School Building, 74 Huntley Street, London, WC1E 6AU, UK
| | - Andy Ryan
- Department of Women's Cancer, UCL Elizabeth Garrett Anderson Institute for Women's Health, University College London, Medical School Building, 74 Huntley Street, London, WC1E 6AU, UK
| | - Aleksandra Gentry-Maharaj
- Department of Women's Cancer, UCL Elizabeth Garrett Anderson Institute for Women's Health, University College London, Medical School Building, 74 Huntley Street, London, WC1E 6AU, UK
| | - Michal Zikan
- Gynaecologic Oncology Center, Department of Obstetrics & Gynaecology, First Faculty of Medicine & General University Hospital, Charles University Prague, Prague, Czech Republic
| | - David Cibula
- Gynaecologic Oncology Center, Department of Obstetrics & Gynaecology, First Faculty of Medicine & General University Hospital, Charles University Prague, Prague, Czech Republic
| | | | - Marianna Alunni-Fabbroni
- Department of Gynaecology and Obstetrics, Klinikum Innenstadt, Ludwig-Maximilians Universitaet Muenchen, Maistrasse 11, 80337, Munich, Germany
| | - Julian Koch
- Department of Gynaecology and Obstetrics, Klinikum Innenstadt, Ludwig-Maximilians Universitaet Muenchen, Maistrasse 11, 80337, Munich, Germany
| | - Wolfgang J Janni
- Department of Gynaecology and Obstetrics, University Hospital Ulm, Prittwitzstrasse 43, 89075, Ulm, Germany
| | - Tobias Paprotka
- GATC Biotech AG, Jakob-Stadler-Platz 7, 78467, Konstanz, Germany
| | | | - Usha Menon
- Department of Women's Cancer, UCL Elizabeth Garrett Anderson Institute for Women's Health, University College London, Medical School Building, 74 Huntley Street, London, WC1E 6AU, UK
| | - Benjamin Wahl
- GATC Biotech AG, Jakob-Stadler-Platz 7, 78467, Konstanz, Germany
- Boehringer Ingelheim Pharma, GmbH & Co. KG, Target Discovery Research, Biberach, Germany
| | - Brigitte Rack
- Department of Gynaecology and Obstetrics, Klinikum Innenstadt, Ludwig-Maximilians Universitaet Muenchen, Maistrasse 11, 80337, Munich, Germany
- Department of Gynaecology and Obstetrics, University Hospital Ulm, Prittwitzstrasse 43, 89075, Ulm, Germany
| | | |
Collapse
|
360
|
Abstract
Metastases are responsible for most cancer-related deaths. The kinetics of tumor relapse is highly heterogeneous, ranging from recurrences shortly after diagnosis to years or even decades after the initial treatment. This subclinical period is known as tumor dormancy, in which residual disease remains in an undetectable state before finally appearing as an overtly proliferative metastasis. Despite recent advances in our understanding of the molecular mechanisms leading to tumor dormancy, it is still a poorly understood phase of cancer progression, which limits opportunities for the design of successful therapeutic interventions. The influence of the tumor microenvironment at the metastatic site and anti-metastatic immune responses have been shown to play a crucial role in the onset and maintenance of metastatic dormancy. However, there is still a significant gap in our understanding of how dormant cells remain viable in a quiescent state for long periods of time. Here, we review the latest experimental evidence shedding light on the biological processes that enable dormant tumor cells to endure the multiple stresses encountered at the metastatic site.
Collapse
Affiliation(s)
- Laura Vera-Ramirez
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Kent W Hunter
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| |
Collapse
|
361
|
Abstract
This corrects the article DOI: 10.1038/nature20609.
Collapse
|
362
|
Mikheev AM, Mikheeva SA, Tokita M, Severs LJ, Rostomily RC. Twist1 mediated regulation of glioma tumorigenicity is dependent on mode of mouse neural progenitor transformation. Oncotarget 2017; 8:107716-107729. [PMID: 29296200 PMCID: PMC5746102 DOI: 10.18632/oncotarget.22593] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Accepted: 11/05/2017] [Indexed: 02/07/2023] Open
Abstract
Twist1 is a master regulator of epithelial mesenchymal transition and carcinoma metastasis. Twist1 has also been associated with increased malignancy of human glioma. However, the impact of inhibiting Twist1 on tumorigenicity has not been characterized in glioma models in the context of different oncogenic transformation paradigms. Here we used an orthotopic mouse glioma model of transplanted transformed neural progenitor cells (NPCs) to demonstrate the effects of Twist1 loss of function on tumorigenicity. Decreased tumorigenicity was observed after shRNA mediated Twist knockdown in HPV E6/7 Ha-RasV12 transformed NPCs and Cre mediated Twist1 deletion in Twist1 fl/fl NPCs transformed by p53 knockdown and Ha-RasV12 expression. By contrast, Twist1 deletion had no effect on tumorigenicity of NPCs transformed by co-expression of Akt and Ha-RasV12. We demonstrated a dramatic off-target effect of Twist1 deletion with constitutive Cre expression, which was completely reversed when Twist1 deletion was achieved by transient administration of recombinant Cre protein. Together these findings demonstrate that the function of Twist1 in these models is highly dependent on specific oncogenic contexts of NPC transformation. Therefore, the driver mutational context in which Twist1 functions may need to be taken into account when evaluating mechanisms of action and developing therapeutic approaches to target Twist1 in human gliomas.
Collapse
Affiliation(s)
- Andrei M. Mikheev
- Department of Neurological Surgery, Houston Methodist Hospital and Research Institute, Houston, Texas, USA
- Department of Neurological Surgery and Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, Washington, USA
| | - Svetlana A. Mikheeva
- Department of Neurological Surgery, Houston Methodist Hospital and Research Institute, Houston, Texas, USA
- Department of Neurological Surgery and Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, Washington, USA
| | - Mari Tokita
- Division of Medical Genetics, University of Washington, Seattle, Washington, USA
| | - Liza J. Severs
- Department of Physiology and Biophysics, University of Washington, Seattle, Washington, USA
| | - Robert C. Rostomily
- Department of Neurological Surgery, Houston Methodist Hospital and Research Institute, Houston, Texas, USA
- Department of Neurological Surgery and Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, Washington, USA
| |
Collapse
|
363
|
Liu Q, Zhang H, Jiang X, Qian C, Liu Z, Luo D. Factors involved in cancer metastasis: a better understanding to "seed and soil" hypothesis. Mol Cancer 2017; 16:176. [PMID: 29197379 PMCID: PMC5712107 DOI: 10.1186/s12943-017-0742-4] [Citation(s) in RCA: 200] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 11/07/2017] [Indexed: 02/07/2023] Open
Abstract
Metastasis has intrigued researchers for more than 100 years. Despite the development of technologies and therapeutic strategies, metastasis is still the major cause of cancer-related death until today. The famous "seed and soil" hypothesis is widely cited and accepted, and it still provides significant instructions in cancer research until today. To our knowledge, there are few reviews that comprehensively and correlatively focus on both the seed and soil factors involved in cancer metastasis; moreover, despite the fact that increasingly underlying mechanisms and concepts have been defined recently, previous perspectives are appealing but may be limited. Hence, we reviewed factors involved in cancer metastasis, including both seed and soil factors. By integrating new concepts with the classic hypothesis, we aim to provide a comprehensive understanding of the "seed and soil" hypothesis and to conceptualize the framework for understanding factors involved in cancer metastasis. Based on a dynamic overview of this field, we also discuss potential implications for future research and clinical therapeutic strategies.
Collapse
Affiliation(s)
- Qiang Liu
- First Clinical Medical College, School of Medicine, Nanchang University, Nanchang, People's Republic of China
| | - Hongfei Zhang
- Queen Mary School, School of Medicine, Nanchang University, Nanchang, People's Republic of China
| | - Xiaoli Jiang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Nanchang University, Bayi Road, No.461, 330006, Nanchang, People's Republic of China
| | - Caiyun Qian
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Nanchang University, Bayi Road, No.461, 330006, Nanchang, People's Republic of China
| | - Zhuoqi Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Nanchang University, Bayi Road, No.461, 330006, Nanchang, People's Republic of China.
| | - Daya Luo
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Nanchang University, Bayi Road, No.461, 330006, Nanchang, People's Republic of China.
- Jiangxi Province Key Laboratory of Tumor Pathogens and Molecular Pathology, Nanchang University, Nanchang, Bayi Road, No.461, 330006, Nanchang, People's Republic of China.
| |
Collapse
|
364
|
Wan Makhtar WR, Browne G, Karountzos A, Stevens C, Alghamdi Y, Bottrill AR, Mistry S, Smith E, Bushel M, Pringle JH, Sayan AE, Tulchinsky E. Short stretches of rare codons regulate translation of the transcription factor ZEB2 in cancer cells. Oncogene 2017; 36:6640-6648. [PMID: 28783176 PMCID: PMC5681250 DOI: 10.1038/onc.2017.273] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Revised: 05/16/2017] [Accepted: 07/03/2017] [Indexed: 01/14/2023]
Abstract
Two proteins comprising the ZEB family of zinc finger transcription factors, ZEB1 and ZEB2, execute EMT programs in embryonic development and cancer. By studying regulation of their expression, we describe a novel mechanism that limits ZEB2 protein synthesis. A protein motif located at the border of the SMAD-binding domain of ZEB2 protein induces ribosomal pausing and compromises protein synthesis. The function of this protein motif is dependent on stretches of rare codons, Leu(UUA)-Gly(GGU)-Val(GUA). Incorporation of these triplets in the homologous region of ZEB1 does not affect protein translation. Our data suggest that rare codons have a regulatory role only if they are present within appropriate protein structures. We speculate that pools of transfer RNA available for protein translation impact on the configuration of epithelial mesenchymal transition pathways in tumor cells.
Collapse
Affiliation(s)
- W R Wan Makhtar
- Department of Cancer Studies, University of Leicester, Leicester, UK
- MRC Toxicology Unit, Leicester, UK
| | - G Browne
- Department of Cancer Studies, University of Leicester, Leicester, UK
| | - A Karountzos
- Department of Cancer Studies, University of Leicester, Leicester, UK
| | - C Stevens
- Department of Cancer Studies, University of Leicester, Leicester, UK
| | - Y Alghamdi
- Department of Cancer Studies, University of Leicester, Leicester, UK
| | - A R Bottrill
- Protein and Nucleic Acid Chemistry Laboratory (PNACL), University of Leicester, Leicester, UK
| | - S Mistry
- Protein and Nucleic Acid Chemistry Laboratory (PNACL), University of Leicester, Leicester, UK
| | - E Smith
- MRC Toxicology Unit, Leicester, UK
| | - M Bushel
- MRC Toxicology Unit, Leicester, UK
| | - J H Pringle
- Department of Cancer Studies, University of Leicester, Leicester, UK
| | - A E Sayan
- Cancer Sciences Division, University of Southampton, Southampton, UK
| | - E Tulchinsky
- Department of Cancer Studies, University of Leicester, Leicester, UK
| |
Collapse
|
365
|
Progress and challenges of sequencing and analyzing circulating tumor cells. Cell Biol Toxicol 2017; 34:405-415. [PMID: 29168077 PMCID: PMC6132989 DOI: 10.1007/s10565-017-9418-5] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2017] [Accepted: 10/29/2017] [Indexed: 01/09/2023]
Abstract
Circulating tumor cells (CTCs) slough off primary tumor tissues and are swept away by the circulatory system. These CTCs can remain in circulation or colonize new sites, forming metastatic clones in distant organs. Recently, CTC analyses have been successfully used as effective clinical tools to monitor tumor progression and prognosis. With advances in next-generation sequencing (NGS) and single-cell sequencing (SCS) technologies, scientists can obtain the complete genome of a CTC and compare it with corresponding primary and metastatic tumors. CTC sequencing has been successfully applied to monitor genomic variations in metastatic and recurrent tumors, infer tumor evolution during treatment, and examine gene expression as well as the mechanism of the epithelial-mesenchymal transition. However, compared with cancer biopsy sequencing and circulating tumor DNA sequencing, the sequencing of CTC genomes and transcriptomes is more complex and technically difficult. Challenges include enriching pure tumor cells from a background of white blood cells, isolating and collecting cells without damaging or losing DNA and RNA, obtaining unbiased and even whole-genome and transcriptome amplification material, and accurately analyzing CTC sequencing data. Here, we review and summarize recent studies using NGS on CTCs. We mainly focus on CTC genome and transcriptome sequencing and the biological and potential clinical applications of these methodologies. Finally, we discuss challenges and future perspectives of CTC sequencing.
Collapse
|
366
|
Abstract
The identity of the cells responsible for initiating and promoting metastasis has been historically elusive. Consequently, this has hampered our ability to develop specific anti-metastatic treatments, resulting in the majority of metastatic cancers remaining clinically untreatable. Furthermore, advances in genome sequencing indicate that the acquisition of metastatic competency does not seem to involve the accumulation of de novo mutations, making it difficult to understand why some tumours become metastatic while others do not. We have recently identified metastatic-initiating cells, and described how they specifically rely on fatty acid uptake and lipid metabolism to promote metastasis. This intriguing finding indicates that external influences, such as those derived from our diet, exert a strong influence on tumour progression, and that such dietary factors could be therapeutically modulated if understood. In this News and Thoughts, I will comment on recent findings regarding how and why lipid metabolism modulates the behaviour of metastatic cells, and how this knowledge can be harnessed to devise new and specific anti-metastatic therapies.
Collapse
Affiliation(s)
- Salvador Aznar Benitah
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain.,Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain
| |
Collapse
|
367
|
Stefania DD, Vergara D. The Many-Faced Program of Epithelial-Mesenchymal Transition: A System Biology-Based View. Front Oncol 2017; 7:274. [PMID: 29181337 PMCID: PMC5694026 DOI: 10.3389/fonc.2017.00274] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Accepted: 10/31/2017] [Indexed: 12/16/2022] Open
Abstract
System biology uses a range of experimental and statistical methods to dissect complex processes that results from alterations in biological models. Given the complexity of the epithelial–mesenchymal transition (EMT) program, system biology represents a promising approach to understanding its fine molecular regulation by the interpretation of high-throughput datasets. Herein, we review recent contributions of system biology applied to the field of EMT physiology and illustrate the importance of these approaches to model biological networks that are perturbed during the transition. Together, these results allowed the definition of an EMT signature across different tumor types, the identification of dysregulated processes and new modules of regulation, making possible to reveal the EMT molecular visage underneath.
Collapse
Affiliation(s)
- De Domenico Stefania
- Biotecgen, Department of Biological and Environmental Sciences and Technologies, Lecce, Italy.,Institute of Sciences of Food Production, National Research Council, Lecce, Italy
| | - Daniele Vergara
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Lecce, Italy
| |
Collapse
|
368
|
Song C, Piva M, Sun L, Hong A, Moriceau G, Kong X, Zhang H, Lomeli S, Qian J, Yu CC, Damoiseaux R, Kelley MC, Dahlman KB, Scumpia PO, Sosman JA, Johnson DB, Ribas A, Hugo W, Lo RS. Recurrent Tumor Cell-Intrinsic and -Extrinsic Alterations during MAPKi-Induced Melanoma Regression and Early Adaptation. Cancer Discov 2017; 7:1248-1265. [PMID: 28864476 PMCID: PMC6668729 DOI: 10.1158/2159-8290.cd-17-0401] [Citation(s) in RCA: 116] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Revised: 08/22/2017] [Accepted: 08/28/2017] [Indexed: 01/19/2023]
Abstract
Treatment of advanced BRAFV600-mutant melanoma using a BRAF inhibitor or its combination with a MEK inhibitor typically elicits partial responses. We compared the transcriptomes of patient-derived tumors regressing on MAPK inhibitor (MAPKi) therapy against MAPKi-induced temporal transcriptomic states in human melanoma cell lines or murine melanoma in immune-competent mice. Despite heterogeneous dynamics of clinical tumor regression, residual tumors displayed highly recurrent transcriptomic alterations and enriched processes, which were also observed in MAPKi-selected cell lines (implying tumor cell-intrinsic reprogramming) or in bulk mouse tumors (and the CD45-negative or CD45-positive fractions, implying tumor cell-intrinsic or stromal/immune alterations, respectively). Tumor cell-intrinsic reprogramming attenuated MAPK dependency, while enhancing mesenchymal, angiogenic, and IFN-inflammatory features and growth/survival dependence on multi-RTKs and PD-L2. In the immune compartment, PD-L2 upregulation in CD11c+ immunocytes drove the loss of T-cell inflammation and promoted BRAFi resistance. Thus, residual melanoma early on MAPKi therapy already displays potentially exploitable adaptive transcriptomic, epigenomic, immune-regulomic alterations.Significance: Incomplete MAPKi-induced melanoma regression results in transcriptome/methylome-wide reprogramming and MAPK-redundant escape. Although regressing/residual melanoma is highly T cell-inflamed, stromal adaptations, many of which are tumor cell-driven, could suppress/eliminate intratumoral T cells, reversing tumor regression. This catalog of recurrent alterations helps identify adaptations such as PD-L2 operative tumor cell intrinsically and/or extrinsically early on therapy. Cancer Discov; 7(11); 1248-65. ©2017 AACR.See related commentary by Haq, p. 1216This article is highlighted in the In This Issue feature, p. 1201.
Collapse
Affiliation(s)
- Chunying Song
- Division of Dermatology, Department of Medicine, University of California, Los Angeles, California
- David Geffen School of Medicine, University of California, Los Angeles, California
| | - Marco Piva
- Division of Dermatology, Department of Medicine, University of California, Los Angeles, California
- David Geffen School of Medicine, University of California, Los Angeles, California
| | - Lu Sun
- Division of Dermatology, Department of Medicine, University of California, Los Angeles, California
- David Geffen School of Medicine, University of California, Los Angeles, California
| | - Aayoung Hong
- Division of Dermatology, Department of Medicine, University of California, Los Angeles, California
- David Geffen School of Medicine, University of California, Los Angeles, California
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, California
| | - Gatien Moriceau
- Division of Dermatology, Department of Medicine, University of California, Los Angeles, California
- David Geffen School of Medicine, University of California, Los Angeles, California
| | - Xiangju Kong
- Division of Dermatology, Department of Medicine, University of California, Los Angeles, California
- David Geffen School of Medicine, University of California, Los Angeles, California
| | - Hong Zhang
- Division of Dermatology, Department of Medicine, University of California, Los Angeles, California
- David Geffen School of Medicine, University of California, Los Angeles, California
| | - Shirley Lomeli
- Division of Dermatology, Department of Medicine, University of California, Los Angeles, California
- David Geffen School of Medicine, University of California, Los Angeles, California
| | - Jin Qian
- Division of Dermatology, Department of Medicine, University of California, Los Angeles, California
- David Geffen School of Medicine, University of California, Los Angeles, California
| | - Clarissa C Yu
- Division of Dermatology, Department of Medicine, University of California, Los Angeles, California
- David Geffen School of Medicine, University of California, Los Angeles, California
| | - Robert Damoiseaux
- David Geffen School of Medicine, University of California, Los Angeles, California
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, California
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, California
| | - Mark C Kelley
- Department of Surgery, Vanderbilt-Ingram Cancer Center, Nashville, Tennessee
| | - Kimberley B Dahlman
- Department of Cancer Biology, Vanderbilt-Ingram Cancer Center, Nashville, Tennessee
| | - Philip O Scumpia
- Division of Dermatology, Department of Medicine, University of California, Los Angeles, California
| | - Jeffrey A Sosman
- Department of Medicine, Vanderbilt-Ingram Cancer Center, Nashville, Tennessee
| | - Douglas B Johnson
- Department of Medicine, Vanderbilt-Ingram Cancer Center, Nashville, Tennessee
| | - Antoni Ribas
- David Geffen School of Medicine, University of California, Los Angeles, California
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, California
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, California
- Division of Hematology and Oncology, Department of Medicine, University of California, Los Angeles, California
- Division of Surgical Oncology, Department of Surgery, University of California, Los Angeles, California
| | - Willy Hugo
- Division of Dermatology, Department of Medicine, University of California, Los Angeles, California
- David Geffen School of Medicine, University of California, Los Angeles, California
| | - Roger S Lo
- Division of Dermatology, Department of Medicine, University of California, Los Angeles, California.
- David Geffen School of Medicine, University of California, Los Angeles, California
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, California
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, California
| |
Collapse
|
369
|
Otsuki Y, Saya H, Arima Y. Prospects for new lung cancer treatments that target EMT signaling. Dev Dyn 2017; 247:462-472. [PMID: 28960588 DOI: 10.1002/dvdy.24596] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 09/21/2017] [Accepted: 09/21/2017] [Indexed: 12/12/2022] Open
Abstract
Lung cancer is the most common cancer worldwide. Treatment options for lung cancer include surgery, radiation therapy, chemotherapy, molecularly targeted therapy including epidermal growth factor receptor or anaplastic lymphoma kinase inhibitors, and immunotherapy. These treatments can be administered alone or in combination. Despite therapeutic advances, however, lung cancer remains the leading cause of cancer death. Recent studies have indicated that epithelial-mesenchymal transition (EMT) is associated with malignancy in various types of cancer, and activation of EMT signaling in cancer cells is widely considered to contribute to metastasis, recurrence, or therapeutic resistance. In this review, we provide an overview of the role of EMT in the progression of lung cancer. We also discuss the prospects for new therapeutic strategies that target EMT signaling in lung cancer. Developmental Dynamics 247:462-472, 2018. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Yuji Otsuki
- Division of Gene Regulation, Institute for Advanced Medical Research, Keio University School of Medicine, Tokyo, Japan
| | - Hideyuki Saya
- Division of Gene Regulation, Institute for Advanced Medical Research, Keio University School of Medicine, Tokyo, Japan
| | - Yoshimi Arima
- Division of Gene Regulation, Institute for Advanced Medical Research, Keio University School of Medicine, Tokyo, Japan
| |
Collapse
|
370
|
Gan L, Meng J, Xu M, Liu M, Qi Y, Tan C, Wang Y, Zhang P, Weng W, Sheng W, Huang M, Wang Z. Extracellular matrix protein 1 promotes cell metastasis and glucose metabolism by inducing integrin β4/FAK/SOX2/HIF-1α signaling pathway in gastric cancer. Oncogene 2017; 37:744-755. [PMID: 29059156 DOI: 10.1038/onc.2017.363] [Citation(s) in RCA: 97] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Revised: 07/03/2017] [Accepted: 08/25/2017] [Indexed: 12/18/2022]
Abstract
Extracellular matrix protein 1 (ECM1) is related to strong invasiveness and poor prognosis in major malignancies, but the underlying mechanism remains unknown. Here we aimed to elucidate the function of ECM1 on cell metastasis and glucose metabolism in gastric cancer (GC). The level of ECM1 in sera and tissues of patient with GC were positively correlated with tumor invasion and recurrence. Genetic manipulation of ECM1 expression affected cell metastasis and glucose metabolism in GC cell lines. Enhanced ECM1 expression facilitated gene expression levels associated with epithelial-mesenchymal transition (EMT) and glucose metabolism. Interestingly, our results indicated that ECM1 directly interacted with integrin β4 (ITGB4) and activated ITGB4/focal adhesion kinase (FAK)/glycogen synthase kinase 3β signaling pathway, which further induced the expression of transcription factor SOX2. Aberrant expression of SOX2 altered gene expression of EMT factors and glucose metabolism enzymes. Furthermore, SOX2 enhanced hypoxia-inducible factor α (HIF-1α) promoter activity to regulate glucose metabolism. The micro-positron emission tomography/computed tomography imaging of xenograft model showed that ECM1 substantially increased 18F-fluorodeoxyglucose uptake in xenograft tumors. Using in vivo mouse tail vein injection experiments, ECM1 was also found to increase in lung surface metastasis. These findings provide evidence that ECM1 regulates GC cell metastasis and glucose metabolism by inducing ITGB4/FAK/SOX2/HIF-1α signal pathway and have important implications for the development of therapeutic target to prevent tumor metastasis and recurrence.
Collapse
Affiliation(s)
- L Gan
- Cancer Institute, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.,Department of Medical Oncology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - J Meng
- Cancer Institute, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
| | - M Xu
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.,Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, China
| | - M Liu
- Cancer Institute, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Y Qi
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - C Tan
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.,Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Y Wang
- Nanchang Medical College, Nanchang University, Nanchang, China
| | - P Zhang
- Cancer Institute, Fudan University Shanghai Cancer Center, Shanghai, China
| | - W Weng
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.,Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, China
| | - W Sheng
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.,Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, China
| | - M Huang
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Z Wang
- Cancer Institute, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| |
Collapse
|
371
|
Mapping bone marrow niches of disseminated tumor cells. SCIENCE CHINA-LIFE SCIENCES 2017; 60:1125-1132. [PMID: 29027156 DOI: 10.1007/s11427-017-9180-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 09/20/2017] [Indexed: 12/12/2022]
Abstract
Breast cancer cells may disseminate early, before tumor diagnosis. Disseminated tumor cells, or DTCs, reside in the bone marrow, and may persist for years or even decades. Some of these cells may be re-activated to resume aggressive growth, and eventually become overt bone metastases. Recent studies have begun to shed light on this complicated process and revealed multiple steps and intermediate states of colonizing DTCs. However, how cancer-host interactions evolve during this process needs to be further understood. Most of our current knowledge of the bone microenvironment is obtained through studies looking for the hematopoietic stem cell (HSC) niche. Although this long-standing question has not yet been resolved, our search for the HSC niche has resulted in a detailed map of various cell types in the bone marrow. Furthermore, various techniques used to find the HSC niche may also be adapted for finding the cancer cell niche. In this article, we will review the recent progress in both the DTC and HSC areas with a focus on their potential microenvironment niches. We will also discuss how to apply what we have learned from HSC studies to map DTCs in the bone context. We hope to stimulate thoughts and ideas to further elucidate the bone colonization process, and develop potential therapeutic interventions.
Collapse
|
372
|
Wang L, Li Y, Xu J, Zhang A, Wang X, Tang R, Zhang X, Yin H, Liu M, Wang DD, Lin PP, Shen L, Dong J. Quantified postsurgical small cell size CTCs and EpCAM + circulating tumor stem cells with cytogenetic abnormalities in hepatocellular carcinoma patients determine cancer relapse. Cancer Lett 2017; 412:99-107. [PMID: 29031565 DOI: 10.1016/j.canlet.2017.10.004] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Revised: 10/02/2017] [Accepted: 10/06/2017] [Indexed: 12/12/2022]
Abstract
Detection of hepatocellular carcinoma circulating tumor cells performed with conventional strategies, is significantly limited due to inherently heterogeneous and dynamic expression of EpCAM, as well as degradation of cytokeratins during epithelial-to-mesenchymal transition, which inevitably lead to non-negligible false negative detection of such "uncapturable and invisible" CTCs. A novel SE-iFISH strategy, improved for detection of HCC CTCs in this study, was applied to comprehensively detect, in situ phenotypically and karyotypically characterize hepatocellular and cholangiocarcinoma CTCs (CD45-/CD31-) in patients subjected to surgical resection. Clinical significance of diverse subtypes of CTC was systematically investigated. Existence of small cell size CTCs (≤5 μm of WBCs) with cytogenetic abnormality of aneuploid chromosome 8, which constituted majority of the detected CTCs in HCC patients, was demonstrated for the first time. The stemness marker EpCAM+ aneuploid circulating tumor stem cells (CTSCs), and EpCAM- small CTCs with trisomy 8, promote tumor growth. Postsurgical quantity of small triploid CTCs (≥5 cells/6 ml blood), multiploid (≥pentasomy 8) CTSCs or CTM (either one ≥ 1) significantly correlated to HCC patients' poor prognosis, indicating that detection of those specific subtypes of CTCs and CTSCs in post-operative patients help predict neoplasm recurrence.
Collapse
Affiliation(s)
- Liang Wang
- Department of Hepatobiliary and Pancreas Surgery, Beijing Tsinghua Changgung Hospital (BTCH), School of Clinical Medicine, Tsinghua University, Beijing, China
| | - Yilin Li
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Gastrointestinal Oncology, Peking University Cancer Hospital & Institute, Beijing, China
| | - Jing Xu
- Department of Hepatobiliary and Pancreas Surgery, Beijing Tsinghua Changgung Hospital (BTCH), School of Clinical Medicine, Tsinghua University, Beijing, China
| | - Aiqun Zhang
- Center for Hepatobiliary Diseases, PLA General Hospital, Beijing, China
| | - Xuedong Wang
- Department of Hepatobiliary and Pancreas Surgery, Beijing Tsinghua Changgung Hospital (BTCH), School of Clinical Medicine, Tsinghua University, Beijing, China
| | - Rui Tang
- Department of Hepatobiliary and Pancreas Surgery, Beijing Tsinghua Changgung Hospital (BTCH), School of Clinical Medicine, Tsinghua University, Beijing, China
| | - Xinjing Zhang
- Department of Hepatobiliary and Pancreas Surgery, Beijing Tsinghua Changgung Hospital (BTCH), School of Clinical Medicine, Tsinghua University, Beijing, China
| | - Hongfang Yin
- Department of Pathology, Beijing Tsinghua Changgung Hospital (BTCH), Beijing, China
| | - Manting Liu
- Department of Hepatobiliary and Pancreas Surgery, Beijing Tsinghua Changgung Hospital (BTCH), School of Clinical Medicine, Tsinghua University, Beijing, China
| | | | | | - Lin Shen
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Gastrointestinal Oncology, Peking University Cancer Hospital & Institute, Beijing, China.
| | - Jiahong Dong
- Department of Hepatobiliary and Pancreas Surgery, Beijing Tsinghua Changgung Hospital (BTCH), School of Clinical Medicine, Tsinghua University, Beijing, China.
| |
Collapse
|
373
|
Stella GM, Benvenuti S, Gentile A, Comoglio PM. MET Activation and Physical Dynamics of the Metastatic Process: The Paradigm of Cancers of Unknown Primary Origin. EBioMedicine 2017; 24:34-42. [PMID: 29037604 PMCID: PMC5652293 DOI: 10.1016/j.ebiom.2017.09.025] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 09/05/2017] [Accepted: 09/18/2017] [Indexed: 12/14/2022] Open
Abstract
The molecular and cellular mechanisms which drive metastatic spread are the topic of constant debate and scientific research due to the potential implications for cancer patients' prognosis. In addition to genetics and environmental factors, mechanics of single cells and physical interaction with the surrounding environment play relevant role in defining invasive phenotype. Reconstructing the physical properties of metastatic clones may help to clarify still open issues in disease progression as well as to lead to new diagnostic and therapeutic approaches. In this perspective cancer of unknown primary origin (CUP) identify the ideal model to study physical interactions and forces involved in the metastatic process. We have previously demonstrated that MET oncogene is mutated with unexpected high frequency in CUPs. We here analyze and discuss how the MET activation by somatic mutation may affect physical properties in giving rise to such a highly malignant syndrome, as that defined by CUP.
Collapse
Affiliation(s)
- Giulia M Stella
- Cardiothoracic Dept., Section of Respiratory System Diseases, IRCCS Policlinico San Matteo, Pavia, Italy.
| | - Silvia Benvenuti
- Candiolo Cancer Institute, FPO-IRCCS, Str Prov 142, 10060 Candiolo, Italy
| | - Alessandra Gentile
- Candiolo Cancer Institute, FPO-IRCCS, Str Prov 142, 10060 Candiolo, Italy
| | - Paolo M Comoglio
- Candiolo Cancer Institute, FPO-IRCCS, Str Prov 142, 10060 Candiolo, Italy
| |
Collapse
|
374
|
Tseng CP, Leong KK, Liou MJ, Hsu HL, Lin HC, Chen YA, Lin JD. Circulating epithelial cell counts for monitoring the therapeutic outcome of patients with papillary thyroid carcinoma. Oncotarget 2017; 8:77453-77464. [PMID: 29100400 PMCID: PMC5652792 DOI: 10.18632/oncotarget.20512] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Accepted: 08/08/2017] [Indexed: 12/24/2022] Open
Abstract
Loco-regional recurrence or distant metastasis usually leads to the death of patients with papillary thyroid carcinoma (PTC). Whether or not circulating epithelial cells (CECs) count is a valuable marker in monitoring the therapeutic outcome of PTC was investigated. Patients with PTC (n=129) were treated in our medical center and were categorized into 4 groups with excellent (n=45), biochemical incomplete (n=15), indeterminate (n=37), and structural incomplete (n=32) responses. CECs were enriched from the peripheral blood by the PowerMag negative selection system. Three subtypes of CECs expressing epithelial cell adhesion molecule (EpCAM), thyroid-stimulating hormone receptor (TSHR, a marker for thyroid cells), and podoplanin (PDPN, a marker related to poor prognosis in patients with PTC) were defined by immunofluorescence staining, respectively. The median number of CECs (cells/mL of blood) expressing EpCAM, TSHR, and PDPN was 23 (interquartile range 10-61), 19 (interquartile range 8-50), and 8 (interquartile range 3-22), respectively, for patients enrolled in this study. The number of EpCAM+-CECs, TSHR+-CECs, and PDPN+-CECs was statistically different among patients in different treatment response groups without interference from anti-thyroglobulin antibody (P<0.0001). Patients with structural incomplete response had higher counts for all three CECs subtypes when compared to other patients. EpCAM+-CECs was better in distinguishing patients with excellent response from structural incomplete response among the three subtypes of CECs. The sensitivity and specificity of the assay was 84.4% and 95.6%, respectively, when the cut off value was 39 EpCAM+-CECs/mL. CECs testing can supplement the current standard methods for monitoring the therapeutic outcome of PTC.
Collapse
Affiliation(s)
- Ching-Ping Tseng
- Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taoyuan, Taiwan, ROC
- Graduate Institute of Biomedical Science, College of Medicine, Chang Gung University, Taoyuan, Taiwan, ROC
- Molecular Medicine Research Center, Chang Gung University, Taoyuan, Taiwan, ROC
- Department of Laboratory Medicine, Chang Gung Memorial Hospital, Taoyuan, Taiwan, ROC
| | - Kong-Kit Leong
- Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taoyuan, Taiwan, ROC
| | - Miaw-Jene Liou
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Chang Gung Memorial Hospital, Taoyuan, Taiwan, ROC
| | - Hsueh-Ling Hsu
- Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taoyuan, Taiwan, ROC
| | - Hung-Chih Lin
- Graduate Institute of Biomedical Science, College of Medicine, Chang Gung University, Taoyuan, Taiwan, ROC
| | - Yi-An Chen
- Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taoyuan, Taiwan, ROC
| | - Jen-Der Lin
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Chang Gung Memorial Hospital, Taoyuan, Taiwan, ROC
| |
Collapse
|
375
|
Hao D, Li J, Jia S, Meng Y, Zhang C, Wang L, Di LJ. Integrated Analysis Reveals Tubal- and Ovarian-Originated Serous Ovarian Cancer and Predicts Differential Therapeutic Responses. Clin Cancer Res 2017; 23:7400-7411. [PMID: 28939742 DOI: 10.1158/1078-0432.ccr-17-0638] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2017] [Revised: 07/12/2017] [Accepted: 09/19/2017] [Indexed: 11/16/2022]
Abstract
Purpose: The relative importance of fallopian tube (FT) compared with ovarian surface epithelium (OSE) in the genesis of serous type of ovarian cancer (SOC) is still unsettled. Here, we followed an integrated approach to study the tissue origin of SOC, as well as its association with clinical outcome and response to therapeutic drugs.Experimental Design: A collection of transcriptome data of 80 FTs, 89 OSEs, and 2,668 SOCs was systematically analyzed to determine the characteristic of FT-like and OSE-like tumors. A molecular signature was developed for identifying tissue origin of SOC and then was used to reevaluate the prognostic genes and therapeutic biomarkers of SOC of different tissue origins. IHC staining of tissue array and functional experiments on a panel of ovarian cancer cell lines were used to further validate the key findings.Results: The expression patterns of tissue-specific genes, prognostic genes, and molecular markers all support a dualistic tissue origin of SOC, from either FT or OSE. A molecular signature was established to identify the tissue identity of SOCs. Surprisingly, the signature showed a strong association with overall survival (OSE-like vs. FT-like, HR = 4.16; 95% CI, 2.67-6.48; P < 10-9). The pharmacogenomic approach revealed AXL to be a therapeutic target of the aggressive OSE-derived SOC.Conclusions: SOC has two subtypes originated from either FT or OSE, which show different clinical and pathologic features. Clin Cancer Res; 23(23); 7400-11. ©2017 AACR.
Collapse
Affiliation(s)
- Dapeng Hao
- Cancer Center, Faculty of Health Sciences, University of Macau, Macau, China
| | - Jingjing Li
- Cancer Center, Faculty of Health Sciences, University of Macau, Macau, China
| | - Shanshan Jia
- Cancer Center, Faculty of Health Sciences, University of Macau, Macau, China
| | - Yuan Meng
- Cancer Center, Faculty of Health Sciences, University of Macau, Macau, China
| | - Chao Zhang
- Cancer Center, Faculty of Health Sciences, University of Macau, Macau, China
| | - Li Wang
- Metabolomics Core, Faculty of Health Sciences, University of Macau, Macau, China
| | - Li-Jun Di
- Cancer Center, Faculty of Health Sciences, University of Macau, Macau, China.
| |
Collapse
|
376
|
Liu F, Cheng Z, Li X, Li Y, Zhang H, Li J, Liu F, Xu H, Li F. A Novel Pak1/ATF2/miR-132 Signaling Axis Is Involved in the Hematogenous Metastasis of Gastric Cancer Cells. MOLECULAR THERAPY. NUCLEIC ACIDS 2017; 8:370-382. [PMID: 28918037 PMCID: PMC5537170 DOI: 10.1016/j.omtn.2017.07.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Revised: 07/04/2017] [Accepted: 07/05/2017] [Indexed: 12/21/2022]
Abstract
We, along with others, have shown previously that P21-activated kinase 1 (Pak1) plays a pivotal role in gastric cancer progression and metastasis. However, whether Pak1 controls gastric cancer metastasis by regulating microRNAs (miRNAs) has never been explored. Here, we report a novel mechanism of Pak1 in tumor metastasis. A detailed examination revealed that Pak1 interacts with and phosphorylates the serine 62 residue of ATF2 and then blocks its translocation into the nucleus. We also confirmed that ATF2 binds to the promoter of miR-132 and tightly regulates its transcription, thus explaining the regulatory mechanism of miR-132 by Pak1. miR-132 also significantly reduced cell adhesion, migration, and invasion of gastric cancer cells in vitro and significantly prevented tumor metastasis in vivo. miR-132 specifically inhibited hematogenous metastasis, but not lymph node or implantation metastases. In order to further delineate the effects of the Pak1/ATF2/miR-132 cascade on gastric cancer progression, we identified several targets of miR-132 using a bioinformatics TargetScan algorithm. Notably, miR-132 reduced the expression of CD44 and fibronectin1 (FN1), and such inhibition enabled lymphocytes to home in on gastric cancer cells and induce tumor apoptosis. Taken together, our studies establish a novel cell-signaling pathway and open new possibilities for therapeutic intervention of gastric cancer.
Collapse
Affiliation(s)
- Funan Liu
- Department of Cell Biology, Key Laboratory of Cell Biology, Ministry of Public Health and Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang 110122, China; Department of Surgical Oncology and General Surgery, The First Affiliated Hospital of China Medical University, Shenyang 110122, China
| | - Zhenguo Cheng
- Department of Cell Biology, Key Laboratory of Cell Biology, Ministry of Public Health and Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang 110122, China
| | - Xiaodong Li
- Department of Cell Biology, Key Laboratory of Cell Biology, Ministry of Public Health and Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang 110122, China
| | - Yanshu Li
- Department of Cell Biology, Key Laboratory of Cell Biology, Ministry of Public Health and Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang 110122, China
| | - Hongyan Zhang
- Department of Cell Biology, Key Laboratory of Cell Biology, Ministry of Public Health and Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang 110122, China
| | - Jiabin Li
- Department of Cell Biology, Key Laboratory of Cell Biology, Ministry of Public Health and Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang 110122, China
| | - Furong Liu
- Department of Cell Biology, Key Laboratory of Cell Biology, Ministry of Public Health and Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang 110122, China
| | - Huimian Xu
- Department of Surgical Oncology and General Surgery, The First Affiliated Hospital of China Medical University, Shenyang 110122, China
| | - Feng Li
- Department of Cell Biology, Key Laboratory of Cell Biology, Ministry of Public Health and Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang 110122, China.
| |
Collapse
|
377
|
Anjanappa M, Hao Y, Simpson ER, Bhat-Nakshatri P, Nelson JB, Tersey SA, Mirmira RG, Cohen-Gadol AA, Saadatzadeh MR, Li L, Fang F, Nephew KP, Miller KD, Liu Y, Nakshatri H. A system for detecting high impact-low frequency mutations in primary tumors and metastases. Oncogene 2017; 37:185-196. [PMID: 28892047 DOI: 10.1038/onc.2017.322] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Revised: 08/01/2017] [Accepted: 08/02/2017] [Indexed: 12/14/2022]
Abstract
Tumor complexity and intratumor heterogeneity contribute to subclonal diversity. Despite advances in next-generation sequencing (NGS) and bioinformatics, detecting rare mutations in primary tumors and metastases contributing to subclonal diversity is a challenge for precision genomics. Here, in order to identify rare mutations, we adapted a recently described epithelial reprograming assay for short-term propagation of epithelial cells from primary and metastatic tumors. Using this approach, we expanded minor clones and obtained epithelial cell-specific DNA/RNA for quantitative NGS analysis. Comparative Ampliseq Comprehensive Cancer Panel sequence analyses were performed on DNA from unprocessed breast tumor and tumor cells propagated from the same tumor. We identified previously uncharacterized mutations present only in the cultured tumor cells, a subset of which has been reported in brain metastatic but not primary breast tumors. In addition, whole-genome sequencing identified mutations enriched in liver metastases of various cancers, including Notch pathway mutations/chromosomal inversions in 5/5 liver metastases, irrespective of cancer types. Mutations/rearrangements in FHIT, involved in purine metabolism, were detected in 4/5 liver metastases, and the same four liver metastases shared mutations in 32 genes, including mutations of different HLA-DR family members affecting OX40 signaling pathway, which could impact the immune response to metastatic cells. Pathway analyses of all mutated genes in liver metastases showed aberrant tumor necrosis factor and transforming growth factor signaling in metastatic cells. Epigenetic regulators including KMT2C/MLL3 and ARID1B, which are mutated in >50% of hepatocellular carcinomas, were also mutated in liver metastases. Thus, irrespective of cancer types, organ-specific metastases may share common genomic aberrations. Since recent studies show independent evolution of primary tumors and metastases and in most cases mutation burden is higher in metastases than primary tumors, the method described here may allow early detection of subclonal somatic alterations associated with metastatic progression and potentially identify therapeutically actionable, metastasis-specific genomic aberrations.
Collapse
Affiliation(s)
- M Anjanappa
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Y Hao
- Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, IN, USA
| | - E R Simpson
- Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, IN, USA
| | - P Bhat-Nakshatri
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
| | - J B Nelson
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - S A Tersey
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - R G Mirmira
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - A A Cohen-Gadol
- Department of Neurosurgery, Indiana University School of Medicine, Indianapolis, IN, USA
| | - M R Saadatzadeh
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - L Li
- Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, IN, USA.,Department of Medical and Molecular Genetics, Indiana University School of Medicine, IN, USA
| | - F Fang
- Medical Science Program, Indiana University, Bloomington, IN, USA
| | - K P Nephew
- Medical Science Program, Indiana University, Bloomington, IN, USA
| | - K D Miller
- Division of Hematology/Oncology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Y Liu
- Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, IN, USA.,Department of Medical and Molecular Genetics, Indiana University School of Medicine, IN, USA
| | - H Nakshatri
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, USA.,Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, USA.,Roudebush VA Medical Center, Indianapolis, IN, USA
| |
Collapse
|
378
|
Entenberg D, Pastoriza JM, Oktay MH, Voiculescu S, Wang Y, Sosa MS, Aguirre-Ghiso J, Condeelis J. Time-lapsed, large-volume, high-resolution intravital imaging for tissue-wide analysis of single cell dynamics. Methods 2017; 128:65-77. [PMID: 28911733 PMCID: PMC5659295 DOI: 10.1016/j.ymeth.2017.07.019] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 06/15/2017] [Accepted: 07/20/2017] [Indexed: 01/06/2023] Open
Abstract
Pathologists rely on microscopy to diagnose disease states in tissues and organs. They utilize both high-resolution, high-magnification images to interpret the staining and morphology of individual cells, as well as low-magnification overviews to give context and location to these cells. Intravital imaging is a powerful technique for studying cells and tissues in their native, live environment and can yield sub-cellular resolution images similar to those used by pathologists. However, technical limitations prevent the straightforward acquisition of low-magnification images during intravital imaging, and they are hence not typically captured. The serial acquisition, mosaicking, and stitching together of many high-resolution, high-magnification fields of view is a technique that overcomes these limitations in fixed and ex vivo tissues. The technique however, has not to date been widely applied to intravital imaging as movements caused by the living animal induce image distortions that are difficult to compensate for computationally. To address this, we have developed techniques for the stabilization of numerous tissues, including extremely compliant tissues, that have traditionally been extremely difficult to image. We present a novel combination of these stabilization techniques with mosaicked and stitched intravital imaging, resulting in a process we call Large-Volume High-Resolution Intravital Imaging (LVHR-IVI). The techniques we present are validated and make large volume intravital imaging accessible to any lab with a multiphoton microscope.
Collapse
Affiliation(s)
- David Entenberg
- Anatomy and Structural Biology, Integrated Imaging Program, Gruss-Lipper Biophotonics Center, Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, United States.
| | - Jessica M Pastoriza
- Department of Surgery, Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, United States
| | - Maja H Oktay
- Anatomy and Structural Biology, Integrated Imaging Program, Gruss-Lipper Biophotonics Center, Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, United States; Department of Pathology, Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, United States
| | - Sonia Voiculescu
- Department of Surgery, Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, United States
| | - Yarong Wang
- Anatomy and Structural Biology, Integrated Imaging Program, Gruss-Lipper Biophotonics Center, Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, United States
| | - Maria Soledad Sosa
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Julio Aguirre-Ghiso
- Division of Hematology and Oncology, Department of Medicine, Department of Otolaryngology, Department of Oncological Sciences, Tisch Cancer Institute, Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - John Condeelis
- Anatomy and Structural Biology, Integrated Imaging Program, Gruss-Lipper Biophotonics Center, Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, United States
| |
Collapse
|
379
|
Gómez-Cuadrado L, Tracey N, Ma R, Qian B, Brunton VG. Mouse models of metastasis: progress and prospects. Dis Model Mech 2017; 10:1061-1074. [PMID: 28883015 PMCID: PMC5611969 DOI: 10.1242/dmm.030403] [Citation(s) in RCA: 205] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Metastasis is the spread of cancer cells from a primary tumor to distant sites within the body to establish secondary tumors. Although this is an inefficient process, the consequences are devastating as metastatic disease accounts for >90% of cancer-related deaths. The formation of metastases is the result of a series of events that allow cancer cells to escape from the primary site, survive in the lymphatic system or blood vessels, extravasate and grow at distant sites. The metastatic capacity of a tumor is determined by genetic and epigenetic changes within the cancer cells as well as contributions from cells in the tumor microenvironment. Mouse models have proven to be an important tool for unraveling the complex interactions involved in the metastatic cascade and delineating its many stages. Here, we critically appraise the strengths and weaknesses of the current mouse models and highlight the recent advances that have been made using these models in our understanding of metastasis. We also discuss the use of these models for testing potential therapies and the challenges associated with the translation of these findings into the provision of new and effective treatments for cancer patients.
Collapse
Affiliation(s)
- Laura Gómez-Cuadrado
- Edinburgh Cancer Research Centre, Institute for Genetics and Molecular Medicine, Edinburgh, EH4 2XR, UK
| | - Natasha Tracey
- Edinburgh Cancer Research Centre, Institute for Genetics and Molecular Medicine, Edinburgh, EH4 2XR, UK
| | - Ruoyu Ma
- MRC Centre for Reproductive Health, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Binzhi Qian
- MRC Centre for Reproductive Health, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK
- Edinburgh Cancer Research UK Centre, Queen's Medical Research Institute, Edinburgh, EH16 4TJ, UK
| | - Valerie G Brunton
- Edinburgh Cancer Research Centre, Institute for Genetics and Molecular Medicine, Edinburgh, EH4 2XR, UK
| |
Collapse
|
380
|
López-Soto A, Gonzalez S, Smyth MJ, Galluzzi L. Control of Metastasis by NK Cells. Cancer Cell 2017; 32:135-154. [PMID: 28810142 DOI: 10.1016/j.ccell.2017.06.009] [Citation(s) in RCA: 514] [Impact Index Per Article: 64.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Revised: 05/21/2017] [Accepted: 06/22/2017] [Indexed: 12/24/2022]
Abstract
The metastatic spread of malignant cells to distant anatomical locations is a prominent cause of cancer-related death. Metastasis is governed by cancer-cell-intrinsic mechanisms that enable neoplastic cells to invade the local microenvironment, reach the circulation, and colonize distant sites, including the so-called epithelial-to-mesenchymal transition. Moreover, metastasis is regulated by microenvironmental and systemic processes, such as immunosurveillance. Here, we outline the cancer-cell-intrinsic and -extrinsic factors that regulate metastasis, discuss the key role of natural killer (NK) cells in the control of metastatic dissemination, and present potential therapeutic approaches to prevent or target metastatic disease by harnessing NK cells.
Collapse
Affiliation(s)
- Alejandro López-Soto
- Departamento de Biología Funcional, Área de Inmunología, Universidad de Oviedo, Instituto Universitario de Oncología del Principado de Asturias (IUOPA), 33006 Oviedo, Asturias, Spain.
| | - Segundo Gonzalez
- Departamento de Biología Funcional, Área de Inmunología, Universidad de Oviedo, Instituto Universitario de Oncología del Principado de Asturias (IUOPA), 33006 Oviedo, Asturias, Spain
| | - Mark J Smyth
- Immunology of Cancer and Infection Laboratory, QIMR Berghofer Medical Research Institute, Herston, QLD 4006, Australia
| | - Lorenzo Galluzzi
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY 10065, USA; Sandra and Edward Meyer Cancer Center, New York, NY 10065, USA; Université Paris Descartes/Paris V, 75006 Paris, France.
| |
Collapse
|
381
|
Nocera NF, Lee MC, Czerniecki BJ. Boosting anti-HER2 CD4 T-helper responses in HER2 expressing ductal carcinoma in situ. Future Oncol 2017; 13:1459-1462. [PMID: 28766964 DOI: 10.2217/fon-2017-0151] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Affiliation(s)
- Nadia F Nocera
- Department of Surgery, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - M Catherine Lee
- Comprehensive Breast Program, H. Lee Moffitt Cancer Center, Tampa, FL, USA
| | - Brian J Czerniecki
- Comprehensive Breast Program, H. Lee Moffitt Cancer Center, Tampa, FL, USA
| |
Collapse
|
382
|
Narod S, Ahmed H, Sopik V. Wherein the authors attempt to minimize the confusion generated by their study "Breast cancer mortality after a diagnosis of ductal carcinoma in situ" by several commentators who disagree with them and a few who don't: a qualitative study. Curr Oncol 2017; 24:e255-e260. [PMID: 28874895 PMCID: PMC5576464 DOI: 10.3747/co.24.3626] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Various parties might wish to measure the impact of a given paper for the purpose of assigning merit to an author or institution [...]
Collapse
Affiliation(s)
- S.A. Narod
- Women’s College Research Institute
- Dalla Lana School of Public Health, University of Toronto; and
| | - H. Ahmed
- Women’s College Research Institute
- Institute of Medical Science, University of Toronto, Toronto; ON
| | - V. Sopik
- Women’s College Research Institute
- Institute of Medical Science, University of Toronto, Toronto; ON
| |
Collapse
|
383
|
Wei H, Yu X, Xue X, Liu H, Wang M, Li Y, Wang X, Ding H. Urotensin II receptor as a potential biomarker for the prognosis of hepatocellular carcinoma patients. Oncol Lett 2017; 14:2749-2756. [PMID: 28927036 PMCID: PMC5588126 DOI: 10.3892/ol.2017.6545] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Accepted: 06/26/2017] [Indexed: 12/18/2022] Open
Abstract
Urotensin II and the associated urotensin II receptor (UTR) are important in the carcinogenesis of hepatocellular carcinoma (HCC). However, the clinical significance of UTR remains to be elucidated. The aim of the present study was to investigate if UTR exhibits the potential to act as a biomarker to predict the prognosis of HCC patients. The effects of UTR on motility and invasion of HCC cells were additionally investigated. UTR expression levels were determined by immunohistochemistry, in 83 HCC patients that previously underwent curative liver resection. The association between UTR levels and clinicopathological data were analyzed. In vitro, the expressions of UTR in QSG-7701, BEL-7402 and MHCC-97H cell lines were determined via western blotting. Small interfering (si)RNA was used to downregulate UTR in BEL-7402 and MHCC-97H cell lines, and the effects of UTR on tumor cell motility were tested by Transwell assay. UTR expression was associated with tumor number, size, histology and tumor node metastasis/Barcelona Clinic Liver Cancer HCC stage. UTR expression levels were additionally associated with recurrence-free and overall survival in HCC patients by Kaplan-Meier curve analysis (P<0.0001). In vitro, UTR expression levels were increased in BEL-7402 and MHCC-97H cell lines, compared with QSG-7701 (P<0.05). siRNA-mediated silencing of the UTR gene significantly inhibited cell motility in BEL-7402 and MHCC-97H cells. The results indicated that UTR may be regarded as a novel biomarker to predict outcomes following radical liver resection and as a potential therapeutic target to inhibit invasion and metastasis of HCC.
Collapse
Affiliation(s)
- Hongtao Wei
- Department of Emergency, Beijing Friendship Hospital, Capital Medical University, Beijing 100069, P.R. China.,Department of Gastroenterology and Hepatology, Beijing Youan Hospital, Capital Medical University, Beijing 100069, P.R. China
| | - Xiaotong Yu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, P.R. China
| | - Xiaowei Xue
- Department of Pathology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing 100730, P.R. China
| | - Hui Liu
- Department of Gastroenterology and Hepatology, Beijing Youan Hospital, Capital Medical University, Beijing 100069, P.R. China
| | - Menglong Wang
- Department of Gastroenterology and Hepatology, Beijing Youan Hospital, Capital Medical University, Beijing 100069, P.R. China
| | - Yingying Li
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, P.R. China
| | - Xuejiang Wang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, P.R. China
| | - Huiguo Ding
- Department of Gastroenterology and Hepatology, Beijing Youan Hospital, Capital Medical University, Beijing 100069, P.R. China
| |
Collapse
|
384
|
Santamaria PG, Moreno‐Bueno G, Portillo F, Cano A. EMT: Present and future in clinical oncology. Mol Oncol 2017; 11:718-738. [PMID: 28590039 PMCID: PMC5496494 DOI: 10.1002/1878-0261.12091] [Citation(s) in RCA: 177] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Revised: 05/31/2017] [Accepted: 06/02/2017] [Indexed: 12/12/2022] Open
Abstract
Epithelial/mesenchymal transition (EMT) has emerged as a key regulator of metastasis by facilitating tumor cell invasion and dissemination to distant organs. Recent evidences support that the reverse mesenchymal/epithelial transition (MET) is required for metastatic outgrowth; moreover, the existence of hybrid epithelial/mesenchymal (E/M) phenotypes is increasingly being reported in different tumor contexts. The accumulated data strongly support that plasticity between epithelial and mesenchymal states underlies the dissemination and metastatic potential of carcinoma cells. However, the translation into the clinics of EMT and epithelial plasticity processes presents enormous challenges and still remains a controversial issue. In this review, we will evaluate current evidences for translational applicability of EMT and depict an overview of the most recent EMT in vivo models, EMT marker analyses in human samples as well as potential EMT therapeutic approaches and ongoing clinical trials. We foresee that standardized analyses of EMT markers in solid and liquid tumor biopsies in addition to innovative tools targeting the E/M states will become promising strategies for future translation to the clinical setting.
Collapse
Affiliation(s)
- Patricia G. Santamaria
- Departamento de BioquímicaInstituto de Investigaciones Biomédicas ‘Alberto Sols’ (CSIC‐UAM)Universidad Autónoma de Madrid (UAM)IdiPAZCIBERONCMadridSpain
| | - Gema Moreno‐Bueno
- Departamento de BioquímicaInstituto de Investigaciones Biomédicas ‘Alberto Sols’ (CSIC‐UAM)Universidad Autónoma de Madrid (UAM)IdiPAZCIBERONCMadridSpain
- Fundación MD Anderson InternationalMadridSpain
| | - Francisco Portillo
- Departamento de BioquímicaInstituto de Investigaciones Biomédicas ‘Alberto Sols’ (CSIC‐UAM)Universidad Autónoma de Madrid (UAM)IdiPAZCIBERONCMadridSpain
| | - Amparo Cano
- Departamento de BioquímicaInstituto de Investigaciones Biomédicas ‘Alberto Sols’ (CSIC‐UAM)Universidad Autónoma de Madrid (UAM)IdiPAZCIBERONCMadridSpain
| |
Collapse
|
385
|
Francart ME, Lambert J, Vanwynsberghe AM, Thompson EW, Bourcy M, Polette M, Gilles C. Epithelial-mesenchymal plasticity and circulating tumor cells: Travel companions to metastases. Dev Dyn 2017; 247:432-450. [PMID: 28407379 DOI: 10.1002/dvdy.24506] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 03/29/2017] [Accepted: 03/29/2017] [Indexed: 12/11/2022] Open
Abstract
Epithelial-mesenchymal transitions (EMTs) associated with metastatic progression may contribute to the generation of hybrid phenotypes capable of plasticity. This cellular plasticity would provide tumor cells with an increased potential to adapt to the different microenvironments encountered during metastatic spread. Understanding how EMT may functionally equip circulating tumor cells (CTCs) with an enhanced competence to survive in the bloodstream and niche in the colonized organs has thus become a major cancer research axis. We summarize here clinical data with CTC endpoints involving EMT. We then review the work functionally linking EMT programs to CTC biology and deciphering molecular EMT-driven mechanisms supporting their metastatic competence. Developmental Dynamics 247:432-450, 2018. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Marie-Emilie Francart
- GIGA-Cancer, Laboratory of Tumor and Development Biology, University of Liège, Liège, Belgium
| | - Justine Lambert
- GIGA-Cancer, Laboratory of Tumor and Development Biology, University of Liège, Liège, Belgium
| | - Aline M Vanwynsberghe
- GIGA-Cancer, Laboratory of Tumor and Development Biology, University of Liège, Liège, Belgium
| | - Erik W Thompson
- Institute of Health and Biomedical Innovation and School of Biomedical Sciences, Queensland University of Technology, and Translational Research Institute Brisbane, and University of Melbourne Department of Surgery, St Vincent's Hospital, Melbourne, Australia
| | - Morgane Bourcy
- GIGA-Cancer, Laboratory of Tumor and Development Biology, University of Liège, Liège, Belgium
| | - Myriam Polette
- Inserm UMR-S 903, University of Reims Champagne-Ardenne, Biopathology Laboratory, CHU of Reims, Reims, France
| | - Christine Gilles
- GIGA-Cancer, Laboratory of Tumor and Development Biology, University of Liège, Liège, Belgium
| |
Collapse
|
386
|
Sciacovelli M, Frezza C. Metabolic reprogramming and epithelial-to-mesenchymal transition in cancer. FEBS J 2017; 284:3132-3144. [PMID: 28444969 DOI: 10.1111/febs.14090] [Citation(s) in RCA: 212] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Revised: 03/23/2017] [Accepted: 04/24/2017] [Indexed: 12/16/2022]
Abstract
Several lines of evidence indicate that during transformation epithelial cancer cells can acquire mesenchymal features via a process called epithelial-to-mesenchymal transition (EMT). This process endows cancer cells with increased invasive and migratory capacity, enabling tumour dissemination and metastasis. EMT is associated with a complex metabolic reprogramming, orchestrated by EMT transcription factors, which support the energy requirements of increased motility and growth in harsh environmental conditions. The discovery that mutations in metabolic genes such as FH, SDH and IDH activate EMT provided further evidence that EMT and metabolism are intertwined. In this review, we discuss the role of EMT in cancer and the underpinning metabolic reprogramming. We also put forward the hypothesis that, by altering chromatin structure and function, metabolic pathways engaged by EMT are necessary for its full activation.
Collapse
Affiliation(s)
- Marco Sciacovelli
- Medical Research Council Cancer Unit, Hutchison/MRC Research Centre, University of Cambridge, UK
| | - Christian Frezza
- Medical Research Council Cancer Unit, Hutchison/MRC Research Centre, University of Cambridge, UK
| |
Collapse
|
387
|
Manjili MH. Tumor Dormancy and Relapse: From a Natural Byproduct of Evolution to a Disease State. Cancer Res 2017; 77:2564-2569. [PMID: 28507050 PMCID: PMC5459601 DOI: 10.1158/0008-5472.can-17-0068] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Revised: 02/22/2017] [Accepted: 03/10/2017] [Indexed: 12/24/2022]
Abstract
Species evolve by mutations and epigenetic changes acting on individuals in a population; tumors evolve by similar mechanisms at a cellular level in a tissue. This article reviews growing evidence about tumor dormancy and suggests that (i) cellular malignancy is a natural byproduct of evolutionary mechanisms, such as gene mutations and epigenetic modifications, which is manifested in the form of tumor dormancy in healthy individuals as well as in cancer survivors; (ii) cancer metastasis could be an early dissemination event that could occur during malignant dormancy even before primary cancer is clinically detectable; and (iii) chronic inflammation is a key factor in awakening dormant malignant cells at the primary site, leading to primary cancer development, and at distant sites, leading to advanced stage diseases. On the basis of this evidence, it is reasonable to propose that we are all cancer survivors rather than cancer-free individuals because of harboring dormant malignant cells in our organs. A better understanding of local and metastatic tumor dormancy could lead to novel cancer therapeutics for the prevention of cancer. Cancer Res; 77(10); 2564-9. ©2017 AACR.
Collapse
Affiliation(s)
- Masoud H Manjili
- Department of Microbiology & Immunology, VCU School of Medicine, Massey Cancer Center, Richmond, Virginia.
| |
Collapse
|
388
|
Elia I, Broekaert D, Christen S, Boon R, Radaelli E, Orth MF, Verfaillie C, Grünewald TGP, Fendt SM. Proline metabolism supports metastasis formation and could be inhibited to selectively target metastasizing cancer cells. Nat Commun 2017; 8:15267. [PMID: 28492237 PMCID: PMC5437289 DOI: 10.1038/ncomms15267] [Citation(s) in RCA: 278] [Impact Index Per Article: 34.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Accepted: 03/14/2017] [Indexed: 12/17/2022] Open
Abstract
Metastases are the leading cause of mortality in patients with cancer. Metastasis formation requires cancer cells to adapt their cellular phenotype. However, how metabolism supports this adaptation of cancer cells is poorly defined. We use 2D versus 3D cultivation to induce a shift in the cellular phenotype of breast cancer cells. We discover that proline catabolism via proline dehydrogenase (Prodh) supports growth of breast cancer cells in 3D culture. Subsequently, we link proline catabolism to in vivo metastasis formation. In particular, we find that PRODH expression and proline catabolism is increased in metastases compared to primary breast cancers of patients and mice. Moreover, inhibiting Prodh is sufficient to impair formation of lung metastases in the orthotopic 4T1 and EMT6.5 mouse models, without adverse effects on healthy tissue and organ function. In conclusion, we discover that Prodh is a potential drug target for inhibiting metastasis formation.
Collapse
Affiliation(s)
- Ilaria Elia
- Laboratory of Cellular Metabolism and Metabolic Regulation, VIB Center for Cancer Biology, VIB, Herestraat 49, Leuven 3000, Belgium
- Laboratory of Cellular Metabolism and Metabolic Regulation, Department of Oncology, KU Leuven and Leuven Cancer Institute (LKI), Herestraat 49, Leuven 3000, Belgium
| | - Dorien Broekaert
- Laboratory of Cellular Metabolism and Metabolic Regulation, VIB Center for Cancer Biology, VIB, Herestraat 49, Leuven 3000, Belgium
- Laboratory of Cellular Metabolism and Metabolic Regulation, Department of Oncology, KU Leuven and Leuven Cancer Institute (LKI), Herestraat 49, Leuven 3000, Belgium
| | - Stefan Christen
- Laboratory of Cellular Metabolism and Metabolic Regulation, VIB Center for Cancer Biology, VIB, Herestraat 49, Leuven 3000, Belgium
- Laboratory of Cellular Metabolism and Metabolic Regulation, Department of Oncology, KU Leuven and Leuven Cancer Institute (LKI), Herestraat 49, Leuven 3000, Belgium
| | - Ruben Boon
- Stem Cell Institute, KU Leuven, Herestraat 49, Leuven 3000, Belgium
| | - Enrico Radaelli
- Center for the Biology of Disease, VIB Leuven and Center for Human Genetics, KU Leuven, Herestraat 49, Leuven 3000, Belgium
| | - Martin F. Orth
- Max-Eder Research Group for Pediatric Sarcoma Biology, Institute of Pathology, LMU Munich, Thalkirchner Strasse 36, Munich 80337, Germany
| | | | - Thomas G. P. Grünewald
- Max-Eder Research Group for Pediatric Sarcoma Biology, Institute of Pathology, LMU Munich, Thalkirchner Strasse 36, Munich 80337, Germany
| | - Sarah-Maria Fendt
- Laboratory of Cellular Metabolism and Metabolic Regulation, VIB Center for Cancer Biology, VIB, Herestraat 49, Leuven 3000, Belgium
- Laboratory of Cellular Metabolism and Metabolic Regulation, Department of Oncology, KU Leuven and Leuven Cancer Institute (LKI), Herestraat 49, Leuven 3000, Belgium
| |
Collapse
|
389
|
Narkhede AA, Shevde LA, Rao SS. Biomimetic strategies to recapitulate organ specific microenvironments for studying breast cancer metastasis. Int J Cancer 2017; 141:1091-1109. [PMID: 28439901 DOI: 10.1002/ijc.30748] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Revised: 03/22/2017] [Accepted: 04/11/2017] [Indexed: 12/14/2022]
Abstract
The progression of breast cancer from the primary tumor setting to the metastatic setting is the critical event defining Stage IV disease, no longer considered curable. The microenvironment at specific organ sites is known to play a key role in influencing the ultimate fate of metastatic cells; yet microenvironmental mediated-molecular mechanisms underlying organ specific metastasis in breast cancer are not well understood. This review discusses biomimetic strategies employed to recapitulate metastatic organ microenvironments, particularly, bone, liver, lung and brain to elucidate the mechanisms dictating metastatic breast cancer cell homing and colonization. These biomimetic strategies include in vitro techniques such as biomaterial-based co-culturing techniques, microfluidics, organ-mimetic chips, bioreactor technologies, and decellularized matrices as well as cutting edge in vivo techniques to better understand the interactions between metastatic breast cancer cells and the stroma at the metastatic site. The advantages and disadvantages of these systems are discussed. In addition, how creation of biomimetic models will impact breast cancer metastasis research and their broad utility is explored.
Collapse
Affiliation(s)
- Akshay A Narkhede
- Department of Chemical and Biological Engineering, The University of Alabama, Tuscaloosa, AL
| | - Lalita A Shevde
- Department of Pathology and Comprehensive Cancer Center, The University of Alabama at Birmingham, Birmingham, AL
| | - Shreyas S Rao
- Department of Chemical and Biological Engineering, The University of Alabama, Tuscaloosa, AL
| |
Collapse
|
390
|
Mechanisms governing metastatic dormancy in breast cancer. Semin Cancer Biol 2017; 44:72-82. [PMID: 28344165 DOI: 10.1016/j.semcancer.2017.03.006] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 03/17/2017] [Accepted: 03/21/2017] [Indexed: 02/07/2023]
Abstract
Breast cancer is a systemic disease characterized by early dissemination of tumor cells to distant organs. In this foreign environment, tumor cells may stay in a dormant state as single cells or as micrometastases for many years before growing out into a macrometastatic lesion. As metastasis is the primary cause for breast cancer-related death, it is important to understand the mechanisms underlying the maintenance of dormancy and dormancy escape to find druggable targets to eradicate metastatic tumor cells. Metastatic dormancy is regulated by complex interactions between tumor cells and the local microenvironment. In addition, cancer-directed immunity and systemic instigation play a crucial role.
Collapse
|
391
|
Perone Y, Fioretti FM. Journal club: epigenetic profiling to classify cancer of unknown primary. Lancet Oncol 2017; 18:e130. [PMID: 28271863 DOI: 10.1016/s1470-2045(17)30107-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Accepted: 01/31/2017] [Indexed: 12/24/2022]
Affiliation(s)
- Ylenia Perone
- Department of Surgery and Cancer, Imperial Centre for Translational and Experimental Medicine, Imperial College London, London W12 0HS, UK.
| | - Flavia Marialucia Fioretti
- Department of Surgery and Cancer, Imperial Centre for Translational and Experimental Medicine, Imperial College London, London W12 0HS, UK
| |
Collapse
|
392
|
Pisarsky L, Dai J, Ghajar CM. Taking inventory of metastasis effectors. Nat Med 2017; 23:275-276. [PMID: 28267712 DOI: 10.1038/nm.4301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Laura Pisarsky
- Public Health Sciences Division's Translational Research Program and the Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Jinxiang Dai
- Public Health Sciences Division's Translational Research Program and the Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Cyrus M Ghajar
- Public Health Sciences Division's Translational Research Program and the Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| |
Collapse
|
393
|
Abstract
Metastases account for the great majority of cancer-associated deaths, yet this complex process remains the least understood aspect of cancer biology. As the body of research concerning metastasis continues to grow at a rapid rate, the biological programs that underlie the dissemination and metastatic outgrowth of cancer cells are beginning to come into view. In this review we summarize the cellular and molecular mechanisms involved in metastasis, with a focus on carcinomas where the most is known, and we highlight the general principles of metastasis that have begun to emerge.
Collapse
Affiliation(s)
- Arthur W Lambert
- Whitehead Institute for Biomedical Research, 9 Cambridge Center, Cambridge, MA 02142, USA
| | - Diwakar R Pattabiraman
- Whitehead Institute for Biomedical Research, 9 Cambridge Center, Cambridge, MA 02142, USA
| | - Robert A Weinberg
- Whitehead Institute for Biomedical Research, 9 Cambridge Center, Cambridge, MA 02142, USA; Department of Biology, Massachusetts Institute of Technology and the MIT Ludwig Center for Molecular Oncology, Cambridge, MA 02142, USA.
| |
Collapse
|
394
|
Alderton GK. Metastasis: Planting metastasis early. Nat Rev Cancer 2017; 17:75. [PMID: 28127045 DOI: 10.1038/nrc.2017.4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
395
|
Li SC, Vu LT, Luo JJ, Zhong JF, Li Z, Dethlefs BA, Loudon WG, Kabeer MH. Tissue Elasticity Bridges Cancer Stem Cells to the Tumor Microenvironment Through microRNAs: Implications for a "Watch-and-Wait" Approach to Cancer. Curr Stem Cell Res Ther 2017; 12:455-470. [PMID: 28270089 PMCID: PMC5587377 DOI: 10.2174/1574888x12666170307105941] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2016] [Revised: 02/01/2017] [Accepted: 03/01/2017] [Indexed: 12/16/2022]
Abstract
BACKGROUND Targeting the tumor microenvironment (TME) through which cancer stem cells (CSCs) crosstalk for cancer initiation and progression, may open new treatments different from those centered on the original hallmarks of cancer genetics thereby implying a new approach for suppression of TME driven activation of CSCs. Cancer is dynamic, heterogeneous, evolving with the TME and can be influenced by tissue-specific elasticity. One of the mediators and modulators of the crosstalk between CSCs and mechanical forces is miRNA, which can be developmentally regulated, in a tissue- and cellspecific manner. OBJECTIVE Here, based on our previous data, we provide a framework through which such gene expression changes in response to external mechanical forces can be understood during cancer progression. Recognizing the ways mechanical forces regulate and affect intracellular signals with applications in cancer stem cell biology. Such TME-targeted pathways shed new light on strategies for attacking cancer stem cells with fewer side effects than traditional gene-based treatments for cancer, requiring a "watchand- wait" approach. We attempt to address both normal brain microenvironment and tumor microenvironment as both works together, intertwining in pathology and physiology - a balance that needs to be maintained for the "watch-and-wait" approach to cancer. CONCLUSION This review connected the subjects of tissue elasticity, tumor microenvironment, epigenetic of miRNAs, and stem-cell biology that are very relevant in cancer research and therapy. It attempts to unify apparently separate entities in a complex biological web, network, and system in a realistic and practical manner, i.e., to bridge basic research with clinical application.
Collapse
Affiliation(s)
- Shengwen Calvin Li
- Neuro-Oncology and Stem Cell Research Laboratory, Center for Neuroscience Research, CHOC Children’s Hospital Research Institute, 1201 West La Veta Ave., Orange, CA 92868, USA
- Department of Neurology, University of California-Irvine School of Medicine, Orange, CA 92697-4292, USA
- Department of Biological Science, California State University, Fullerton, CA 92834, USA
| | - Long T. Vu
- Neuro-Oncology and Stem Cell Research Laboratory, Center for Neuroscience Research, CHOC Children’s Hospital Research Institute, 1201 West La Veta Ave., Orange, CA 92868, USA
- Department of Biological Science, California State University, Fullerton, CA 92834, USA
| | | | - Jiang F. Zhong
- Division of Periodontology, Diagnostic Sciences & Dental Hygiene and Biomedical Sciences, Ostrow School of Dentistry, University of Southern California, Los Angeles, CA 90089, USA
| | - Zhongjun Li
- Division of Periodontology, Diagnostic Sciences & Dental Hygiene and Biomedical Sciences, Ostrow School of Dentistry, University of Southern California, Los Angeles, CA 90089, USA
- Division of Radiation Biology, Department of Blood Transfusion, The Second Affiliated Hospital, Third Military Medical University, Xinqiao Road, Shapingba, Chongqing 400037, China
| | - Brent A Dethlefs
- Neuro-Oncology and Stem Cell Research Laboratory, Center for Neuroscience Research, CHOC Children’s Hospital Research Institute, 1201 West La Veta Ave., Orange, CA 92868, USA
| | - William G. Loudon
- Neuro-Oncology and Stem Cell Research Laboratory, Center for Neuroscience Research, CHOC Children’s Hospital Research Institute, 1201 West La Veta Ave., Orange, CA 92868, USA
- Department of Biological Science, California State University, Fullerton, CA 92834, USA
- Division of Radiation Biology, Department of Blood Transfusion, The Second Affiliated Hospital, Third Military Medical University, Xinqiao Road, Shapingba, Chongqing 400037, China
- Department of Neurological Surgery, Saint Joseph Hospital, Orange, CA 92868, USA
- Department of Neurological Surgery, University of California-Irvine School of Medicine, Orange, CA 92862, USA
| | - Mustafa H. Kabeer
- Neuro-Oncology and Stem Cell Research Laboratory, Center for Neuroscience Research, CHOC Children’s Hospital Research Institute, 1201 West La Veta Ave., Orange, CA 92868, USA
- Department of Pediatric Surgery, CHOC Children’s Hospital, 1201 West La Veta Ave., Orange, CA 92868, USA
- Department of Surgery, University of California-Irvine School of Medicine, 333 City Blvd. West, Suite 700, Orange, CA 92868, USA
| |
Collapse
|
396
|
|