351
|
Leonard JV. Recent advances in amino acid and organic acid metabolism. J Inherit Metab Dis 2007; 30:134-8. [PMID: 17237988 DOI: 10.1007/s10545-006-0524-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2006] [Revised: 11/27/2006] [Accepted: 12/14/2006] [Indexed: 11/28/2022]
Abstract
This paper focuses on the three areas in this field in which there have been advances in amino acid and organic acid metabolism. These are the description of glutamine synthetase deficiency, the elucidation of the mechanism of pyridoxine-dependent convulsions, and a hypothesis to explain the neurological complications of some organic acidaemias.
Collapse
Affiliation(s)
- J V Leonard
- Biochemistry, Endocrinology and Metabolism Unit, Institute of Child Health, University College London, London, UK.
| |
Collapse
|
352
|
Rankin PM, Harrison S, Chong WK, Boyd S, Aylett SE. Pyridoxine-dependent seizures: a family phenotype that leads to severe cognitive deficits, regardless of treatment regime. Dev Med Child Neurol 2007; 49:300-5. [PMID: 17376142 DOI: 10.1111/j.1469-8749.2007.00300.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The neuropsychological and clinical histories of three male siblings affected by pyridoxine-dependent seizures with known homozygous antiquitin mutations are presented. Neuropsychological evaluation is reported from when the siblings were 11, 9, and 7 years of age. Two of the siblings had received early pyridoxine treatment (antenatal, 2-4 wks into pregnancy) and one had received late treatment (2mo postnatal). However, there was no differential effect on cognitive outcome, with all three siblings having moderate to severe learning disability. Unlike previously reported cases that received early postnatal treatment, none of the siblings had relatively preserved non-verbal cognitive skills. Equally, their intellectual performance over time did not increase above the 1st centile despite high maintenance doses of vitamin B6 (range 16-26 mg/kg/d), and mild sensory neuropathy was reported on nerve conduction studies. The findings in these siblings challenge assumptions that early and high dose pyridoxine treatment can benefit cognition in this population and suggest routine electromyography monitoring may be beneficial.
Collapse
Affiliation(s)
- Peter M Rankin
- Developmental Cognitive Neuroscience Unit, Institute of Child Health, University College London, UK.
| | | | | | | | | |
Collapse
|
353
|
Marchitti SA, Deitrich RA, Vasiliou V. Neurotoxicity and metabolism of the catecholamine-derived 3,4-dihydroxyphenylacetaldehyde and 3,4-dihydroxyphenylglycolaldehyde: the role of aldehyde dehydrogenase. Pharmacol Rev 2007; 59:125-50. [PMID: 17379813 DOI: 10.1124/pr.59.2.1] [Citation(s) in RCA: 207] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Aldehydes are highly reactive molecules formed during the biotransformation of numerous endogenous and exogenous compounds, including biogenic amines. 3,4-Dihydroxyphenylacetaldehyde is the aldehyde metabolite of dopamine, and 3,4-dihydroxyphenylglycolaldehyde is the aldehyde metabolite of both norepinephrine and epinephrine. There is an increasing body of evidence suggesting that these compounds are neurotoxic, and it has been recently hypothesized that neurodegenerative disorders may be associated with increased levels of these biogenic aldehydes. Aldehyde dehydrogenases are a group of NAD(P)+ -dependent enzymes that catalyze the oxidation of aldehydes, such as those derived from catecholamines, to their corresponding carboxylic acids. To date, 19 aldehyde dehydrogenase genes have been identified in the human genome. Mutations in these genes and subsequent inborn errors in aldehyde metabolism are the molecular basis of several diseases, including Sjögren-Larsson syndrome, type II hyperprolinemia, gamma-hydroxybutyric aciduria, and pyridoxine-dependent seizures, most of which are characterized by neurological abnormalities. Several pharmaceutical agents and environmental toxins are also known to disrupt or inhibit aldehyde dehydrogenase function. It is, therefore, possible to speculate that reduced detoxification of 3,4-dihydroxyphenylacetaldehyde and 3,4-dihydroxyphenylglycolaldehyde from impaired or deficient aldehyde dehydrogenase function may be a contributing factor in the suggested neurotoxicity of these compounds. This article presents a comprehensive review of what is currently known of both the neurotoxicity and respective metabolism pathways of 3,4-dihydroxyphenylacetaldehyde and 3,4-dihydroxyphenylglycolaldehyde with an emphasis on the role that aldehyde dehydrogenase enzymes play in the detoxification of these two aldehydes.
Collapse
Affiliation(s)
- Satori A Marchitti
- Molecular Toxicology and Environmental Health Sciences Program, Department of Pharmaceutical Sciences, School of Pharmacy, University of Colorado Health Sciences Center, Denver, CO 80262, USA
| | | | | |
Collapse
|
354
|
Marchitti SA, Orlicky DJ, Vasiliou V. Expression and initial characterization of human ALDH3B1. Biochem Biophys Res Commun 2007; 356:792-8. [PMID: 17382292 PMCID: PMC1899873 DOI: 10.1016/j.bbrc.2007.03.046] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2007] [Accepted: 03/09/2007] [Indexed: 02/04/2023]
Abstract
Aldehyde dehydrogenases (ALDHs) are critical enzymes in the metabolism of endogenous and exogenous aldehydes. The human genome contains 19 putatively functional ALDH genes; ALDH3B1 belongs to the ALDH3 family. While recent studies have linked the ALDH3B1 locus to schizophrenia, nothing was known, until now, about the properties and significance of the ALDH3B1 protein. The aim of this study was to characterize the ALDH3B1 protein. Human ALDH3B1 was baculovirus-expressed and found to be catalytically active towards medium- and long-chain aliphatic aldehydes and the aromatic aldehyde benzaldehyde. Western blot analyses indicate that ALDH3B1 is highly expressed in kidney and liver and moderately expressed in various brain regions. ALDH3B1-transfected HEK293 cells were significantly protected against cytotoxicity induced by the lipid peroxidation product octanal when compared to vector-transfected cells. This study shows for the first time the functionality, expression and protective role of ALDH3B1 and indicates a potential physiological role of ALDH3B1 against oxidative stress.
Collapse
Affiliation(s)
- Satori A. Marchitti
- Molecular Toxicology & Environmental Health Sciences Program, Department of Pharmaceutical Sciences, University of Colorado Health Sciences Center, Denver, CO, USA
| | - David J. Orlicky
- Department of Pathology, University of Colorado Health Sciences Center at Fitzsimmons, Aurora, CO, USA
| | - Vasilis Vasiliou
- Molecular Toxicology & Environmental Health Sciences Program, Department of Pharmaceutical Sciences, University of Colorado Health Sciences Center, Denver, CO, USA
- * Corresponding author: Vasilis Vasiliou, Address: University of Colorado Health Sciences Center, 4200 East Ninth Avenue, C238, Denver, Colorado 80262, Phone: 303-315-6153, Fax: 303-315-0274,
| |
Collapse
|
355
|
Plecko B, Paul K, Paschke E, Stoeckler-Ipsiroglu S, Struys E, Jakobs C, Hartmann H, Luecke T, di Capua M, Korenke C, Hikel C, Reutershahn E, Freilinger M, Baumeister F, Bosch F, Erwa W. Biochemical and molecular characterization of 18 patients with pyridoxine-dependent epilepsy and mutations of the antiquitin (ALDH7A1) gene. Hum Mutat 2007; 28:19-26. [PMID: 17068770 DOI: 10.1002/humu.20433] [Citation(s) in RCA: 127] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Patients with pyridoxine dependent epilepsy (PDE) present with early-onset seizures resistant to common anticonvulsants. According to the benefit of pyridoxine (vitamin B(6)) and recurrence of seizures on pyridoxine withdrawal, patients so far have been classified as having definite, probable, or possible PDE. Recently, PDE has been shown to be caused by a defect of alpha-amino adipic semialdehyde (AASA) dehydrogenase (antiquitin) in the cerebral lysine degradation pathway. The accumulating compound piperideine-6-carboxylic acid (P6C) was shown to inactivate pyridoxalphosphate (PLP) by a Knoevenagel condensation. Pipecolic acid (PA) and AASA are markedly elevated in urine, plasma, and cerebrospinal fluid (CSF) and thus can be used as biomarkers of the disease. We have investigated 18 patients with neonatal seizure onset, who have been classified as having definite (11), probable (four), or possible (three) PDE. All patients had elevated PA and AASA in plasma (and urine) while on treatment with individual dosages of pyridoxine. Within this cohort, molecular analysis identified 10 novel mutations (six missense mutations, one nonsense mutation, two splice site mutations) within highly conserved regions of the antiquitin gene. Seven mutations were located in exonic sequences and two in introns 7 and 17. Furthermore, a novel deletion of exon 7 was identified. Two of the 36 alleles investigated require further investigation. A known mutation (p.Glu399Gln) was found with marked prevalence, accounting for 12 out of 36 alleles (33%) within our cohort. Pyridoxine withdrawal is no longer needed to establish the diagnosis of "definite" PDE. Administration of pyridoxine in PDE may not only correct secondary PLP deficiency, but may also lead to a reduction of AASA (and P6C) as presumably toxic compounds.
Collapse
Affiliation(s)
- Barbara Plecko
- Department of Pediatrics, Medical University Graz, Graz, Austria.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
356
|
Hoffmann GF, Schmitt B, Windfuhr M, Wagner N, Strehl H, Bagci S, Franz AR, Mills PB, Clayton PT, Baumgartner MR, Steinmann B, Bast T, Wolf NI, Zschocke J. Pyridoxal 5'-phosphate may be curative in early-onset epileptic encephalopathy. J Inherit Metab Dis 2007; 30:96-9. [PMID: 17216302 DOI: 10.1007/s10545-006-0508-4] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2006] [Revised: 12/04/2006] [Accepted: 12/05/2006] [Indexed: 10/23/2022]
Abstract
Neonatal epileptic encephalopathy can be caused by inborn errors of metabolism. These conditions are often unresponsive to treatment with conventional antiepileptic drugs. Six children with pyridox(am)ine-5'-phosphate oxidase (PNPO) deficiency presented with neonatal epileptic encephalopathy. Two were treated with pyridoxal 5'-phosphate (PLP) within the first month of life and showed normal development or moderate psychomotor retardation thereafter. Four children with late or no treatment died or showed severe mental handicap. All of the children showed atypical biochemical findings. Prompt treatment with PLP in all neonates and infants with epileptic encephalopathy should become mandatory, permitting normal development in at least some of those affected with PNPO deficiency.
Collapse
Affiliation(s)
- G F Hoffmann
- Department of General Pediatrics, Ruprecht-Karls-University Heidelberg, Heidelberg, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
357
|
Pearl PL, Gospe SM. Pyridoxal phosphate dependency, a newly recognized treatable catastrophic epileptic encephalopathy. J Inherit Metab Dis 2007; 30:2-4. [PMID: 19165905 DOI: 10.1007/s10545-008-9974-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
358
|
Pearl PL, Hartka TR, Taylor J. Diagnosis and treatment of neurotransmitter disorders. Curr Treat Options Neurol 2006; 8:441-50. [PMID: 17032564 DOI: 10.1007/s11940-006-0033-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The neurotransmitter disorders represent an enigmatic and enlarging group of neurometabolic conditions caused by abnormal neurotransmitter metabolism or transport. A high index of clinical suspicion is important, given the availability of therapeutic strategies. This article covers disorders of monoamine (catecholamine and serotonin) synthesis, glycine catabolism, pyridoxine dependency, and gamma-aminobutyric acid (GABA) metabolism. The technological aspects of appropriate cerebrospinal fluid (CSF) collection, shipment, study, and interpretation merit special consideration. Diagnosis of disorders of monoamines requires analysis of CSF homovanillic acid, 5-hydroxyindoleacetic acid, ortho-methyldopa, BH4, and neopterin. The delineation of new disorders with important therapeutic implications, such as cerebral folate deficiency and PNPO deficiency, serves to highlight the value of measuring CSF neurotransmitter precursors and metabolites. The impressive responsiveness of Segawa fluctuating dystonia to levodopa is a hallmark feature of previously unrecognized neurologic morbidity becoming treatable at any age. Aromatic amino acid decarboxylase and tyrosine hydroxylase deficiency have more severe phenotypes and show variable responsiveness to levodopa. Glycine encephalopathy usually has a poor outcome; benzoate therapy may be helpful in less affected cases. Pyridoxine-dependent seizures are a refractory but treatable group of neonatal and infantile seizures; rare cases require pyridoxal-5-phosphate. Succinic semialdehyde dehydrogenase deficiency is relatively common in comparison to the remainder of this group of disorders. Treatment directed at the metabolic defect with vigabatrin has been disappointing, and multiple therapies are targeted toward specific but protean symptoms. Other disorders of GABA metabolism, as is true of the wide spectrum of neurotransmitter disorders, will require increasing use of CSF analysis for diagnosis, and ultimately, treatment.
Collapse
Affiliation(s)
- Phillip L Pearl
- Department of Neurology, Children’s National Medical Center, Washington, DC 20010, USA.
| | | | | |
Collapse
|
359
|
Chan CB, Tang WK, Cheng CHK, Fong WP. Cloning of the black seabream (Acanthopagrus schlegeli) antiquitin gene and functional characterization of its promoter region. Mol Cell Biochem 2006; 297:151-60. [PMID: 17075685 DOI: 10.1007/s11010-006-9340-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2006] [Accepted: 09/28/2006] [Indexed: 11/28/2022]
Abstract
Antiquitin (ALDH7) is a member of the aldehyde dehydrogenase superfamily. In plants, ALDH7 is inducible upon dehydration and is thus believed to possess an osmoregulatory role. On the other hand, however, its exact physiological function in animals remains elusive. We herein report the isolation of the black seabream (Acanthopagrus schlegeli) antiquitin gene (sbALDH7) and the functional characterization of its promoter region. The 1.6 kb 5'-flanking region of sbALDH7 exhibits an intense promoter activity (30-170 fold of the basal) in five mammalian and fish cell lines of different origins. Progressive 5'-deletion analysis suggests that the core promoter is located within the region -297/+41 whereas a cis-acting repressor of basal transcription is present in the region -878/-297. In silico analysis of this sbALDH7 promoter region does not reveal any osmotic response element. Instead, it contains potential binding sites for cell cycle related cis-elements such as CCAAT displacement protein and cell cycle-dependent element/cell cycle genes homology region.
Collapse
Affiliation(s)
- Chi-Bun Chan
- Department of Biochemistry, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | | | | | | |
Collapse
|
360
|
Steinberg SJ, Dodt G, Raymond GV, Braverman NE, Moser AB, Moser HW. Peroxisome biogenesis disorders. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2006; 1763:1733-48. [PMID: 17055079 DOI: 10.1016/j.bbamcr.2006.09.010] [Citation(s) in RCA: 338] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2006] [Revised: 09/05/2006] [Accepted: 09/06/2006] [Indexed: 01/02/2023]
Abstract
Defects in PEX genes impair peroxisome assembly and multiple metabolic pathways confined to this organelle, thus providing the biochemical and molecular bases of the peroxisome biogenesis disorders (PBD). PBD are divided into two types--Zellweger syndrome spectrum (ZSS) and rhizomelic chondrodysplasia punctata (RCDP). Biochemical studies performed in blood and urine are used to screen for the PBD. DNA testing is possible for all of the disorders, but is more challenging for the ZSS since 12 PEX genes are known to be associated with this spectrum of PBD. In contrast, PBD-RCDP is associated with defects in the PEX7 gene alone. Studies of the cellular and molecular defects in PBD patients have contributed significantly to our understanding of the role of each PEX gene in peroxisome assembly.
Collapse
Affiliation(s)
- Steven J Steinberg
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | | | | | | | | | | |
Collapse
|
361
|
Abstract
Vitamin B6 is an important vitamin for normal brain function. The metabolism of dietary vitamin B6 to its active cofactor pyridoxal 5´-phosphate is described. The mechanism of action of pyridoxal 5´-phosphate is described, as are some important functions in the brain. The clinical features and biochemistry of three inborn errors of metabolism affecting brain pyridoxal 5´-phosphate concentrations are described, each of which cause early-onset epilepsy of variable severity. These are pyridoxine phosphate oxidase deficiency, hyperprolinemia Type 2 and pyridoxine-dependent epilepsy caused by antiquitin deficiency. Hypophosphatasia is also discussed briefly, as the epilepsy that can complicate this disorder appears to be due to pyridoxal phosphate deficiency. Lastly, the antiepileptic properties of pyridoxine and pyridoxal phosphate are discussed.
Collapse
Affiliation(s)
- Robert Surtees
- UCL Institute of Child Health, Neurosciences Unit, 30 Guilford Street, London, WC1N 1EH, UK
| | - Philippa Mills
- UCL Institute of Child Health, Biochemistry, Endocrinology & Metabolism Unit, 30 Guilford Street, London, WC1N 1EH, UK
| | - Peter Clayton
- UCL Institute of Child Health, Biochemistry, Endocrinology & Metabolism Units, 30 Guilford Street, London, WC1N 1EH, UK
| |
Collapse
|
362
|
Clayton PT. B6-responsive disorders: a model of vitamin dependency. J Inherit Metab Dis 2006; 29:317-26. [PMID: 16763894 DOI: 10.1007/s10545-005-0243-2] [Citation(s) in RCA: 177] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2005] [Accepted: 02/09/2006] [Indexed: 10/24/2022]
Abstract
Pyridoxal phosphate is the cofactor for over 100 enzyme-catalysed reactions in the body, including many involved in the synthesis or catabolism of neurotransmitters. Inadequate levels of pyridoxal phosphate in the brain cause neurological dysfunction, particularly epilepsy. There are several different mechanisms that lead to an increased requirement for pyridoxine and/or pyridoxal phosphate. These include: (i) inborn errors affecting the pathways of B(6) vitamer metabolism; (ii) inborn errors that lead to accumulation of small molecules that react with pyridoxal phosphate and inactivate it; (iii) drugs that react with pyridoxal phosphate; (iv) coeliac disease, which is thought to lead to malabsorption of B(6) vitamers; (v) renal dialysis, which leads to increased losses of B(6) vitamers from the circulation; (vi) drugs that affect the metabolism of B(6) vitamers; and (vii) inborn errors affecting specific pyridoxal phosphate-dependent enzymes. The last show a very variable degree of pyridoxine responsiveness, from 90% in X-linked sideroblastic anaemia (delta-aminolevulinate synthase deficiency) through 50% in homocystinuria (cystathionine beta-synthase deficiency) to 5% in ornithinaemia with gyrate atrophy (ornithine delta-aminotransferase deficiency). The possible role of pyridoxal phosphate as a chaperone during folding of nascent enzymes is discussed. High-dose pyridoxine or pyridoxal phosphate may have deleterious side-effects (particularly peripheral neuropathy with pyridoxine) and this must be considered in treatment regimes. None the less, in some patients, particularly infants with intractable epilepsy, treatment with pyridoxine or pyridoxal phosphate can be life-saving, and in other infants with inborn errors of metabolism B(6) treatment can be extremely beneficial.
Collapse
Affiliation(s)
- Peter T Clayton
- Biochemistry, Endocrinology and Metabolism, Institute of Child Health, 30 Guilford St, London, WC1N 1 EH, UK.
| |
Collapse
|