351
|
Furuyama K, Kawaguchi Y, Akiyama H, Horiguchi M, Kodama S, Kuhara T, Hosokawa S, Elbahrawy A, Soeda T, Koizumi M, Masui T, Kawaguchi M, Takaori K, Doi R, Nishi E, Kakinoki R, Deng JM, Behringer RR, Nakamura T, Uemoto S. Continuous cell supply from a Sox9-expressing progenitor zone in adult liver, exocrine pancreas and intestine. Nat Genet 2010; 43:34-41. [PMID: 21113154 DOI: 10.1038/ng.722] [Citation(s) in RCA: 632] [Impact Index Per Article: 45.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2010] [Accepted: 11/03/2010] [Indexed: 02/06/2023]
Abstract
The liver and exocrine pancreas share a common structure, with functioning units (hepatic plates and pancreatic acini) connected to the ductal tree. Here we show that Sox9 is expressed throughout the biliary and pancreatic ductal epithelia, which are connected to the intestinal stem-cell zone. Cre-based lineage tracing showed that adult intestinal cells, hepatocytes and pancreatic acinar cells are supplied physiologically from Sox9-expressing progenitors. Combination of lineage analysis and hepatic injury experiments showed involvement of Sox9-positive precursors in liver regeneration. Embryonic pancreatic Sox9-expressing cells differentiate into all types of mature cells, but their capacity for endocrine differentiation diminishes shortly after birth, when endocrine cells detach from the epithelial lining of the ducts and form the islets of Langerhans. We observed a developmental switch in the hepatic progenitor cell type from Sox9-negative to Sox9-positive progenitors as the biliary tree develops. These results suggest interdependence between the structure and homeostasis of endodermal organs, with Sox9 expression being linked to progenitor status.
Collapse
Affiliation(s)
- Kenichiro Furuyama
- Department of Surgery, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
352
|
Soeda T, Deng JM, de Crombrugghe B, Behringer RR, Nakamura T, Akiyama H. Sox9-expressing precursors are the cellular origin of the cruciate ligament of the knee joint and the limb tendons. Genesis 2010; 48:635-44. [PMID: 20806356 DOI: 10.1002/dvg.20667] [Citation(s) in RCA: 133] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2010] [Revised: 07/28/2010] [Accepted: 08/20/2010] [Indexed: 11/07/2022]
Abstract
Sox9 expression defines cell progenitors in a variety of tissues during mouse embryogenesis. To establish a genetic tool for cell-lineage tracing and gene-function analysis, we generated mice in which the CreERT2 gene was targeted to the endogenous mouse Sox9 locus. In Sox9(CreERT2/+) ;R26R embryos, tamoxifen activated Cre recombinase exclusively in Sox9-expressing tissues. To determine the suitability of this mouse line for developmental stage-specific gene recombination, we investigated the cellular origins of the cruciate ligaments of the knee joint and the limb tendons, in which precursor cells have not been defined. The cells in these tissues were labeled after tamoxifen treatment before or at the stage of chondrogenic mesenchymal condensation, indicating that ligament and tendon cells originated from Sox9-expressing cells and that cell fate determination occurred at mesenchymal condensation. This mouse line is a valuable tool for the temporal genetic tracing of the progeny of, and inducible gene modification in Sox9-expressing cells.
Collapse
|
353
|
Kemmis CM, Vahdati A, Weiss HE, Wagner DR. Bone morphogenetic protein 6 drives both osteogenesis and chondrogenesis in murine adipose-derived mesenchymal cells depending on culture conditions. Biochem Biophys Res Commun 2010; 401:20-5. [PMID: 20816936 DOI: 10.1016/j.bbrc.2010.08.135] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2010] [Accepted: 08/29/2010] [Indexed: 10/19/2022]
Abstract
Bone morphogenetic proteins (BMPs) play a dual role as a factor in both bone and cartilage development and correspondingly have the therapeutic potential to regenerate both tissues. Given this dual nature, previous in vitro research using BMPs has relied on distinct media formulations and culture conditions to drive undifferentiated cells to the osteogenic or chondrogenic lineage. To isolate the impact of culture conditions and to explore the effect of BMP-6 on murine adipose-derived mesenchymal cells (ASCs), ASCs were seeded in either monolayer or pellets in an identical medium containing BMP-6. Results indicate that BMP-6 differentially promotes osteogenesis and chondrogenesis in ASCs depending on culture conditions. BMP-6 potently induced alkaline phosphatase activity and mineralization in ASCs cultured in monolayer conditions. In contrast, BMP-6 enhanced proteoglycan accumulation in ASCs seeded in chondrogenic pellet culture. A comparison of gene expression suggests that the differentiating effect of BMP-6 is specific to the particular culture condition. This study highlights the importance of the interactions between chemical signaling and microenvironmental cues in directing cell fate.
Collapse
Affiliation(s)
- Carly M Kemmis
- Department of Mechanical Engineering and Bioengineering Graduate Program, University of Notre Dame, Notre Dame, IN 46556, USA.
| | | | | | | |
Collapse
|
354
|
Multiple functions of Osterix are required for bone growth and homeostasis in postnatal mice. Proc Natl Acad Sci U S A 2010; 107:12919-24. [PMID: 20615976 DOI: 10.1073/pnas.0912855107] [Citation(s) in RCA: 248] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The transcription factor Osterix (Osx) is required for osteoblast differentiation and bone formation during embryonic development, but it is not known whether Osx has an essential function in postnatal bone growth and in bone homeostasis. Conditional deletion of Osx at several time points postnatally revealed that Osx was essential for osteoblast differentiation and new bone formation in growing and adult bones. Additionally, inactivation of Osx in bones severely disrupted the maturation, morphology, and function of osteocytes. These findings identify Osx as having an essential role in the cell-specific genetic program of osteocytes. Interestingly, Osx inactivation also led to the massive accumulation of unresorbed calcified cartilage in a large area below the growth plate of endochondral bones. This specific area was also marked by an unanticipated almost complete lack of bone marrow cells and a marked decrease in the density and size of osteoclasts. This diminished density of osteoclasts could contribute to the lack of resorption of mineralized cartilage. In addition, we speculate that the abnormally accumulated, mainly naked cartilage represents an unfavorable substrate for osteoclasts. Our study identifies Osx as an essential multifunctional player in postnatal bone growth and homeostasis.
Collapse
|
355
|
Behr B, Longaker MT, Quarto N. Differential activation of canonical Wnt signaling determines cranial sutures fate: a novel mechanism for sagittal suture craniosynostosis. Dev Biol 2010; 344:922-40. [PMID: 20547147 DOI: 10.1016/j.ydbio.2010.06.009] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2010] [Revised: 05/21/2010] [Accepted: 06/04/2010] [Indexed: 10/19/2022]
Abstract
Premature closure of cranial sutures, which serve as growth centers for the skull vault, result in craniosynostosis. In the mouse posterior frontal (PF) suture closes by endochondral ossification, whereas sagittal (SAG) remain patent life time, although both are neural crest tissue derived. We therefore, investigated why cranial sutures of same tissue origin adopt a different fate. We demonstrated that closure of the PF suture is tightly regulated by canonical Wnt signaling, whereas patency of the SAG suture is achieved by constantly activated canonical Wnt signaling. Importantly, the fate of PF and SAG sutures can be reversed by manipulating Wnt signaling. Continuous activation of canonical Wnt signaling in the PF suture inhibits endochondral ossification and therefore, suture closure, In contrast, inhibition of canonical Wnt signaling in the SAG suture, upon treatment with Wnt antagonists results in endochondral ossification and suture closure. Thus, inhibition of canonical Wnt signaling in the SAG suture phenocopies craniosynostosis. Moreover, mice haploinsufficient for Twist1, a target gene of canonical Wnt signaling which inhibits chondrogenesis, have sagittal craniosynostosis. We propose that regulation of canonical Wnt signaling is of crucial importance during the physiological patterning of PF and SAG sutures. Importantly, dysregulation of this pathway may lead to craniosynostosis.
Collapse
Affiliation(s)
- Björn Behr
- Children's Surgical Research Program, Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | | | | |
Collapse
|
356
|
Neven E, Persy V, Dauwe S, De Schutter T, De Broe ME, D'Haese PC. Chondrocyte rather than osteoblast conversion of vascular cells underlies medial calcification in uremic rats. Arterioscler Thromb Vasc Biol 2010; 30:1741-50. [PMID: 20522801 DOI: 10.1161/atvbaha.110.204834] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
OBJECTIVE To investigate cell biological changes in calcified aortas of rats that experienced chronic renal failure. METHODS AND RESULTS Vascular smooth muscle cells have the potential to transdifferentiate to either chondrocytes or osteoblasts, depending on the molecular pathways that are stimulated. Uremia-related medial calcification was induced by feeding rats an adenine low-protein diet for 4 weeks. Aortic calcification was evaluated biochemically and histochemically and with in vivo micro-computed tomographic scanning. Immunohistochemistry and RT-PCR were applied to analyze the time-dependent aortic expression of molecules involved in the segregation between the chondrocyte versus osteoblast differentiation pathway. After 4 weeks, 85% of the uremic rats had developed distinct aortic medial calcification, which increased to severely calcified lesions during further follow-up. The calcification process was accompanied by a significant time-dependent increase in the expression of the chondrocyte-specific markers sex determining region Y-box 9 (sox9), collagen II, and aggrecan and a nonsignificant trend toward enhanced core binding factor alpha 1 (cbfa1), and collagen I. The expression of the osteoblast marker osterix and both lipoprotein receptor-related protein 6 and beta-catenin, molecules of the wingless-type MMTV integration site family member (Wnt)/beta-catenin pathway induced during osteoblast differentiation, was suppressed. CONCLUSIONS In the aorta of uremic rats, medial smooth muscle cells acquire a chondrocyte rather than osteoblast phenotype during the calcification process.
Collapse
Affiliation(s)
- Ellen Neven
- Department of Pathophysiology, University of Antwerp, Wilrijk, Belgium
| | | | | | | | | | | |
Collapse
|
357
|
Hong D, Chen HX, Ge R, Li JC. Genetically engineered mesenchymal stem cells: The ongoing research for bone tissue engineering. Anat Rec (Hoboken) 2010; 293:531-7. [PMID: 20027644 DOI: 10.1002/ar.21045] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Bone grafting is crucial in the surgical treatment of bone defects and nonunion fractures. Autogenous bone, allogenous bone, and biomaterial scaffold are three main sources of bone grafts. The biomaterial scaffold, both natural and synthetic, is widely accessible but weak in osteogenic potential. One approach to solve this problem is cell-based bone tissue engineering (BTE), established by growing living osteogenic cells on scaffold in vitro to build up its osteoinducitive capability. Mesenchymal stem cell (MSC) is suitable for use in cell-based BTE, but it remains a considerable challenge to induce MSCs to form solely bone and while preventing MSCs from differentiating into fats, muscles, and possibly neural elements in vivo. Recently, there is a drastic rise in use of genetically engineered MSCs, which can secrete growth factors or alter the transcription level, leading to osteoblast lineage commitment, bone formation, fracture repair, and spinal fusion. In this article, we reviewed the literatures regarding applications of genetically engineered MSCs in BTE. We addressed the currently applicable genes and candidate genes for MSCs modification, transduction efficiency and safety issues of the transfect vectors, and administration routes, and we briefly described in vivo tracking and potential clinical application of the genetically modified MSCs in BTE.
Collapse
Affiliation(s)
- Dun Hong
- Institute of Cell Biology, Medical College of Zhejiang University, Hangzhou, China
| | | | | | | |
Collapse
|
358
|
Cajaiba MM, Jianhua Luo, Goodman MA, Fuhrer KA, Rao UNM. Sox9 expression is not limited to chondroid neoplasms: variable occurrence in other soft tissue and bone tumors with frequent expression by synovial sarcomas. Int J Surg Pathol 2010; 18:319-23. [PMID: 20484142 DOI: 10.1177/1066896910367650] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The transcription factor Sox9 is known to play a crucial role in normal chondrogenesis, and antibodies against Sox9 have been proposed as a diagnostic tool for neoplasms with chondroid differentiation. However, the pattern of Sox9 immunohistochemical expression by other bone and soft tissue neoplasms, as well as its diagnostic specificity, remain unexplored. The authors have performed immunohistochemistry with antibodies against Sox9 in 106 chondroid and nonchondroid bone and soft tissue neoplasms. Moderate to intense Sox9 nuclear staining was observed in 14/20 chondrosarcomas (70%), and in 24/81 (29.6%) cases from a multitumor tissue microarray, which included 16/18 synovial sarcomas, 4/15 osteosarcomas, 2/5 peripheral primitive neuroectodermal tumor (PNET)/Ewing sarcomas, 1/1 mesenchymal chondrosarcoma, and 1/1 chondroblastoma. The results suggest that Sox9 usefulness in the diagnosis of chondroid tumors may be limited because of low sensitivity and specificity. The finding of Sox9 expression by 88.9% of synovial sarcomas represents a novel and striking observation, which deserves further investigation.
Collapse
Affiliation(s)
- Mariana M Cajaiba
- Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA.
| | | | | | | | | |
Collapse
|
359
|
Gracz AD, Ramalingam S, Magness ST. Sox9 expression marks a subset of CD24-expressing small intestine epithelial stem cells that form organoids in vitro. Am J Physiol Gastrointest Liver Physiol 2010; 298:G590-600. [PMID: 20185687 PMCID: PMC2867430 DOI: 10.1152/ajpgi.00470.2009] [Citation(s) in RCA: 122] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The inability to identify, isolate, and culture intestinal epithelial stem cells (IESCs) has been prohibitive to the study and therapeutic utilization of these cells. Using a Sox9(EGFP) mouse model, we demonstrate that Sox9(EGFP) fluorescence signatures can be used to differentiate between and enrich for progenitors (Sox9(EGFPsubLo)) and multipotent IESCs (Sox9(EGFPlo)). Sox9(EGFPlo) cells generate "organoids" in a recently defined culture system that mimics the native IESC niche. These organoids possess all four differentiated cell types of the small intestine epithelium, demonstrating the multipotent capacity of Sox9(EGFPlo) cells. Our results are consistent with the previously reported observation that single IESCs generate cryptlike units without a detectable mesenchymal cell component. A prospective search revealed that CD24 is expressed in the Sox9(EGFPlo) population and marks IESCs that form organoids in culture. CD24 represents the first cell surface marker that facilitates fluorescence-activated cell sorting enrichment of IESCs with widely available antibodies without requiring a specialized fluorescent reporter gene mouse model.
Collapse
Affiliation(s)
- Adam D. Gracz
- Department of Medicine, Division of Gastroenterology and Hepatology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Sendhilnathan Ramalingam
- Department of Medicine, Division of Gastroenterology and Hepatology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Scott T. Magness
- Department of Medicine, Division of Gastroenterology and Hepatology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| |
Collapse
|
360
|
Identification of SOX9 interaction sites in the genome of chondrocytes. PLoS One 2010; 5:e10113. [PMID: 20404928 PMCID: PMC2852419 DOI: 10.1371/journal.pone.0010113] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2009] [Accepted: 03/09/2010] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Our previous work has provided strong evidence that the transcription factor SOX9 is completely needed for chondrogenic differentiation and cartilage formation acting as a "master switch" in this differentiation. Heterozygous mutations in SOX9 cause campomelic dysplasia, a severe skeletal dysmorphology syndrome in humans characterized by a generalized hypoplasia of endochondral bones. To obtain insights into the logic used by SOX9 to control a network of target genes in chondrocytes, we performed a ChIP-on-chip experiment using SOX9 antibodies. METHODOLOGY/PRINCIPAL FINDINGS The ChIP DNA was hybridized to a microarray, which covered 80 genes, many of which are involved in chondrocyte differentiation. Hybridization peaks were detected in a series of cartilage extracellular matrix (ECM) genes including Col2a1, Col11a2, Aggrecan and Cdrap as well as in genes for specific transcription factors and signaling molecules. Our results also showed SOX9 interaction sites in genes that code for proteins that enhance the transcriptional activity of SOX9. Interestingly, a strong SOX9 signal was also observed in genes such as Col1a1 and Osx, whose expression is strongly down regulated in chondrocytes but is high in osteoblasts. In the Col2a1 gene, in addition to an interaction site on a previously identified enhancer in intron 1, another strong interaction site was seen in intron 6. This site is free of nucleosomes specifically in chondrocytes suggesting an important role of this site on Col2a1 transcription regulation by SOX9. CONCLUSIONS/SIGNIFICANCE Our results provide a broad understanding of the strategies used by a "master" transcription factor of differentiation in control of the genetic program of chondrocytes.
Collapse
|
361
|
Baek WY, de Crombrugghe B, Kim JE. Postnatally induced inactivation of Osterix in osteoblasts results in the reduction of bone formation and maintenance. Bone 2010; 46:920-8. [PMID: 20026264 PMCID: PMC4012767 DOI: 10.1016/j.bone.2009.12.007] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2009] [Revised: 12/09/2009] [Accepted: 12/09/2009] [Indexed: 11/24/2022]
Abstract
Osterix (Osx) is a zinc-finger-containing transcription factor that is highly specific to osteoblasts in vivo. Because Osx homozygous null mutants die in the immediate perinatal period showing a complete absence of bone formation, it is impossible determine the role that Osx plays in bones that have already formed after birth. To determine whether Osx is essential for bone maintenance and homeostasis, we conditionally inactivated the Osx gene in adult bone using the Cre/loxP recombination system. In previous reports, 2.3-kb Col1a1-CreERT2 mice that expressed a Cre recombinase that is transiently inducible by 4-hydroxytamoxifen (4-OHT) were intercrossed with Rosa26R (R26R) reporter mice, which resulted in the production of Cre-expressing osteoblasts that were detected upon X-gal staining. In the present study, inducible Col1a1-CreERT2 transgenic mice and conditional Osx mice (Osx(flox/+)) were used to generate Osx(flox/-);Col1a1-CreERT2 mice. The Osx gene in Osx(flox/-);Col1a1-CreERT2 mice was inactivated in the osteoblasts of already formed bones by active Cre recombinase after the administration of 4-OHT. The bones from 4-OHT-treated Osx(flox/-);Col1a1-CreERT2 mice and oil-treated control mice were analyzed by radiography, histology, and histomorphometry. Even though no significant difference was observed in the radiographic images of the whole mouse skeletons, the mineralized trabecular bone volume and number in lumbar vertebrae were remarkably reduced in 4-OHT-treated Osx(flox/-);Col1a1-CreERT2 mice. In addition, the rate of bone formation and area of mineralized surface were also reduced in 4-OHT-treated Osx(flox/-);Col1a1-CreERT2 mice. Osx inactivation in already formed bones during the postnatal period caused a functional defect in osteoblasts that was followed by a reduction of bone formation, even though there were no apparent differences in osteoblast proliferation and osteoclast formation. Taken together, these results indicate that Osx is required to maintain osteoblast function following adult bone maintenance.
Collapse
Affiliation(s)
- Wook-Young Baek
- Department of Molecular Medicine, Cell and Matrix Research Institute, Kyungpook National University School of Medicine, 101 Dongin-dong, Jung-gu, Daegu 700-422, Korea
| | - Benoit de Crombrugghe
- Department of Genetics, University of Texas M. D. Anderson Cancer Center, 1515 Holcomb Blvd, Houston, TX 77030, USA
- Corresponding authors. J.-E. Kim is to be contacted at fax: +82 53 426 4944. B. de Crombrugghe. fax: +1 713 834 6396. (B. de Crombrugghe), (J.-E. Kim)
| | - Jung-Eun Kim
- Department of Molecular Medicine, Cell and Matrix Research Institute, Kyungpook National University School of Medicine, 101 Dongin-dong, Jung-gu, Daegu 700-422, Korea
- Corresponding authors. J.-E. Kim is to be contacted at fax: +82 53 426 4944. B. de Crombrugghe. fax: +1 713 834 6396. (B. de Crombrugghe), (J.-E. Kim)
| |
Collapse
|
362
|
Gao Z, Kim GH, Mackinnon AC, Flagg AE, Bassett B, Earley JU, Svensson EC. Ets1 is required for proper migration and differentiation of the cardiac neural crest. Development 2010; 137:1543-51. [PMID: 20356956 DOI: 10.1242/dev.047696] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Defects in cardiac neural crest lead to congenital heart disease through failure of cardiac outflow tract and ventricular septation. In this report, we demonstrate a previously unappreciated role for the transcription factor Ets1 in the regulation of cardiac neural crest development. When bred onto a C57BL/6 genetic background, Ets1(-/-) mice have a nearly complete perinatal lethality. Histologic examination of Ets1(-/-) embryos revealed a membranous ventricular septal defect and an abnormal nodule of cartilage within the heart. Lineage-tracing experiments in Ets1(-/-) mice demonstrated that cells of the neural crest lineage form this cartilage nodule and do not complete their migration to the proximal aspects of the outflow tract endocardial cushions, resulting in the failure of membranous interventricular septum formation. Given previous studies demonstrating that the MEK/ERK pathway directly regulates Ets1 activity, we cultured embryonic hearts in the presence of the MEK inhibitor U0126 and found that U0126 induced intra-cardiac cartilage formation, suggesting the involvement of a MEK/ERK/Ets1 pathway in blocking chondrocyte differentiation of cardiac neural crest. Taken together, these results demonstrate that Ets1 is required to direct the proper migration and differentiation of cardiac neural crest in the formation of the interventricular septum, and therefore could play a role in the etiology of human congenital heart disease.
Collapse
Affiliation(s)
- Zhiguang Gao
- Department of Medicine, The University of Chicago, Chicago, IL 60637, USA
| | | | | | | | | | | | | |
Collapse
|
363
|
Dong Y, Jesse AM, Kohn A, Gunnell LM, Honjo T, Zuscik MJ, O'Keefe RJ, Hilton MJ. RBPjkappa-dependent Notch signaling regulates mesenchymal progenitor cell proliferation and differentiation during skeletal development. Development 2010; 137:1461-71. [PMID: 20335360 DOI: 10.1242/dev.042911] [Citation(s) in RCA: 137] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The Notch pathway has recently been implicated in mesenchymal progenitor cell (MPC) differentiation from bone marrow-derived progenitors. However, whether Notch regulates MPC differentiation in an RBPjkappa-dependent manner, specifies a particular MPC cell fate, regulates MPC proliferation and differentiation during early skeletal development or controls specific Notch target genes to regulate these processes remains unclear. To determine the exact role and mode of action for the Notch pathway in MPCs during skeletal development, we analyzed tissue-specific loss-of-function (Prx1Cre; Rbpjk(f/f)), gain-of-function (Prx1Cre; Rosa-NICD(f/+)) and RBPjkappa-independent Notch gain-of-function (Prx1Cre; Rosa-NICD(f/+); Rbpjk(f/f)) mice for defects in MPC proliferation and differentiation. These data demonstrate for the first time that the RBPjkappa-dependent Notch signaling pathway is a crucial regulator of MPC proliferation and differentiation during skeletal development. Our study also implicates the Notch pathway as a general suppressor of MPC differentiation that does not bias lineage allocation. Finally, Hes1 was identified as an RBPjkappa-dependent Notch target gene important for MPC maintenance and the suppression of in vitro chondrogenesis.
Collapse
Affiliation(s)
- Yufeng Dong
- Department of Orthopaedics and Rehabilitation, Center for Musculoskeletal Research, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
| | | | | | | | | | | | | | | |
Collapse
|
364
|
Moore YR, Dickinson DP, Wikesjö UME. Growth/differentiation factor-5: a candidate therapeutic agent for periodontal regeneration? A review of pre-clinical data. J Clin Periodontol 2010; 37:288-98. [DOI: 10.1111/j.1600-051x.2009.01527.x] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
365
|
Chung KF, Sicard F, Vukicevic V, Hermann A, Storch A, Huttner WB, Bornstein SR, Ehrhart-Bornstein M. Isolation of neural crest derived chromaffin progenitors from adult adrenal medulla. Stem Cells 2010; 27:2602-13. [PMID: 19609938 DOI: 10.1002/stem.180] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Chromaffin cells of the adrenal medulla are neural crest-derived cells of the sympathoadrenal lineage. Unlike the closely-related sympathetic neurons, a subpopulation of proliferation-competent cells exists even in the adult. Here, we describe the isolation, expansion, and in vitro characterization of proliferation-competent progenitor cells from the bovine adrenal medulla. Similar to neurospheres, these cells, when prevented from adherence to the culture dish, grew in spheres, which we named chromospheres. These chromospheres were devoid of mRNA specific for smooth muscle cells (MYH11) or endothelial cells (PECAM1). During sphere formation, markers for differentiated chromaffin cells, such as phenylethanolamine-N-methyl transferase, were downregulated while neural progenitor markers nestin, vimentin, musashi 1, and nerve growth factor receptor, as well as markers of neural crest progenitor cells such as Sox1 and Sox9, were upregulated. Clonal analysis and bromo-2'-deoxyuridine-incorporation analysis demonstrated the self-renewing capacity of chromosphere cells. Differentiation protocols using NGF and BMP4 or dexamethasone induced neuronal or endocrine differentiation, respectively. Electrophysiological analyses of neural cells derived from chromospheres revealed functional properties of mature nerve cells, such as tetrodotoxin-sensitive sodium channels and action potentials. Our study provides evidence that proliferation and differentiation competent chromaffin progenitor cells can be isolated from adult adrenal medulla and that these cells might harbor the potential for the treatment of neurodegenerative diseases, such as Parkinson's disease.
Collapse
Affiliation(s)
- Kuei-Fang Chung
- Carl Gustav Carus University Medical School, Medical Clinic III, Dresden University of Technology, Dresden, Germany
| | | | | | | | | | | | | | | |
Collapse
|
366
|
Perez WD, Weller CR, Shou S, Stadler HS. Survival of Hoxa13 homozygous mutants reveals a novel role in digit patterning and appendicular skeletal development. Dev Dyn 2010; 239:446-57. [PMID: 20034107 PMCID: PMC2981150 DOI: 10.1002/dvdy.22183] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The loss of HOXA13 function severely disrupts embryonic limb development. However, because embryos lacking HOXA13 die by mid-gestation, the defects present in the mutant limb could arise as a secondary consequence of failing embryonic health. In our analysis of the mutant Hoxa13(GFP) allele, we identified a surviving cohort of homozygous mutants exhibiting severe limb defects including: missing phalanx elements, fusions of the carpal/tarsal elements, and significant reductions in metacarpal/metatarsal length. Characterization of prochondrogenic genes in the affected carpal/tarsal regions revealed significant reduction in Gdf5 expression, whereas Bmp2 expression was significantly elevated. Analysis of Gdf5 mRNA localization also revealed diffuse expression in the carpal/tarsal anlagen, suggesting a role for HOXA13 in the organization of the cells necessary to delineate individual carpal/tarsal elements. Together these results identify Gdf5 as a potential target gene of HOXA13 target gene and confirm a specific role for HOXA13 during appendicular skeletal development.
Collapse
Affiliation(s)
- Wilma D. Perez
- Shriners Hospital for Children Research Department, Portland, Oregon
- Department of Molecular and Medical Genetics, Oregon Health and Science University, Portland, Oregon
| | - Crystal R. Weller
- College of Veterinary Medicine, Oregon State University, Corvallis, Oregon
| | - Siming Shou
- University of Chicago Microarray Core, Chicago, Illinois
| | - H. Scott Stadler
- Shriners Hospital for Children Research Department, Portland, Oregon
- Department of Molecular and Medical Genetics, Oregon Health and Science University, Portland, Oregon
| |
Collapse
|
367
|
Chew LJ, Gallo V. The Yin and Yang of Sox proteins: Activation and repression in development and disease. J Neurosci Res 2010; 87:3277-87. [PMID: 19437544 DOI: 10.1002/jnr.22128] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The general view of development consists of the acquisition of committed/differentiated phenotypes following a period of self-renewal and progenitor expansion. Lineage specification and progression are phenomena of antagonistic events, silencing tissue-specific gene expression in precursors to allow self-renewal and multipotentiality, and subsequently suppressing proliferation and embryonic gene expression to promote the restricted expression of tissue-specific genes during maturation. The high mobility group-containing Sox family of transcription factors constitutes one of the earliest classes of genes to be expressed during embryonic development. These proteins not only are indispensable for progenitor cell specification but also are critical for terminal differentiation of multiple cell types in a wide variety of lineages. Sox transcription factors are now known to induce or repress progenitor cell characteristics and cell proliferation or to activate the expression of tissue-specific genes. Sox proteins fulfill their diverse functions in developmental regulation by distinct molecular mechanisms. Not surprisingly, in addition to DNA binding and bending, Sox transcription factors also interact with different protein partners to function as coactivators or corepressors of downstream target genes. Here we seek to provide an overview of the current knowledge of Sox gene functional mechanisms, in an effort to understand their roles in both development and pathology.
Collapse
Affiliation(s)
- Li-Jin Chew
- Center for Neuroscience Research, Children's National Medical Center, Washington, DC, USA
| | | |
Collapse
|
368
|
Widera D, Zander C, Heidbreder M, Kasperek Y, Noll T, Seitz O, Saldamli B, Sudhoff H, Sader R, Kaltschmidt C, Kaltschmidt B. Adult palatum as a novel source of neural crest-related stem cells. Stem Cells 2010; 27:1899-910. [PMID: 19544446 PMCID: PMC2798069 DOI: 10.1002/stem.104] [Citation(s) in RCA: 118] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Somatic neural and neural crest stem cells are promising sources for cellular therapy of several neurodegenerative diseases. However, because of practical considerations such as inadequate accessibility of the source material, the application of neural crest stem cells is strictly limited. The secondary palate is a highly regenerative and heavily innervated tissue, which develops embryonically under direct contribution of neural crest cells. Here, we describe for the first time the presence of nestin-positive neural crest-related stem cells within Meissner corpuscles and Merkel cell-neurite complexes located in the hard palate of adult Wistar rats. After isolation, palatal neural crest-related stem cells (pNC-SCs) were cultivated in the presence of epidermal growth factor and fibroblast growth factor under serum-free conditions, resulting in large amounts of neurospheres. We used immunocytochemical techniques and reverse transcriptase-polymerase chain reaction to assess the expression profile of pNC-SCs. In addition to the expression of neural crest stem cell markers such as Nestin, Sox2, and p75, we detected the expression of Klf4, Oct4, and c-Myc. pNC-SCs differentiated efficiently into neuronal and glial cells. Finally, we investigated the potential expression of stemness markers within the human palate. We identified expression of stem cell markers nestin and CD133 and the transcription factors needed for reprogramming of somatic cells into pluripotent cells: Sox2, Oct4, Klf4, and c-Myc. These data show that cells isolated from palatal rugae form neurospheres, are highly plastic, and express neural crest stem cell markers. In addition, pNC-SCs may have the ability to differentiate into functional neurons and glial cells, serving as a starting point for therapeutic studies. Stem Cells2009;27:1899–1910
Collapse
Affiliation(s)
- Darius Widera
- Institute of Cell Biology, Faculty of Biology, University of Bielefeld, Bielefeld, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
369
|
|
370
|
Ekaputra AK, Zhou Y, Cool SM, Hutmacher DW. Composite Electrospun Scaffolds for Engineering Tubular Bone Grafts. Tissue Eng Part A 2009; 15:3779-88. [DOI: 10.1089/ten.tea.2009.0186] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Affiliation(s)
| | - Yefang Zhou
- Department of Cellular Biology, School of Biological Science and Technology, Central South University, Changsha, Hunan, People's Republic of China
| | - Simon McKenzie Cool
- Department of Stem Cells and Tissue Repair, Institute of Medical Biology, Singapore
| | - Dietmar Werner Hutmacher
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Queensland, Australia
| |
Collapse
|
371
|
Temporomandibular joint formation requires two distinct hedgehog-dependent steps. Proc Natl Acad Sci U S A 2009; 106:18297-302. [PMID: 19815519 DOI: 10.1073/pnas.0908836106] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We conducted a genetic analysis of the developing temporo-mandibular or temporomandi-bular joint (TMJ), a highly specialized synovial joint that permits movement and function of the mammalian jaw. First, we used laser capture microdissection to perform a genome-wide expression analysis of each of its developing components. The expression patterns of genes identified in this screen were examined in the TMJ and compared with those of other synovial joints, including the shoulder and the hip joints. Striking differences were noted, indicating that the TMJ forms via a distinct molecular program. Several components of the hedgehog (Hh) signaling pathway are among the genes identified in the screen, including Gli2, which is expressed specifically in the condyle and in the disk of the developing TMJ. We found that mice deficient in Gli2 display aberrant TMJ development such that the condyle loses its growth-plate-like cellular organization and no disk is formed. In addition, we used a conditional strategy to remove Smo, a positive effector of the Hh signaling pathway, from chondrocyte progenitors. This cell autonomous loss of Hh signaling allows for disk formation, but the resulting structure fails to separate from the condyle. Thus, these experiments establish that Hh signaling acts at two distinct steps in disk morphogenesis, condyle initiation, and disk-condyle separation and provide a molecular framework for future studies of the TMJ.
Collapse
|
372
|
Bais MV, Wigner N, Young M, Toholka R, Graves DT, Morgan EF, Gerstenfeld LC, Einhorn TA. BMP2 is essential for post natal osteogenesis but not for recruitment of osteogenic stem cells. Bone 2009; 45:254-66. [PMID: 19398045 PMCID: PMC2745982 DOI: 10.1016/j.bone.2009.04.239] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2008] [Revised: 02/19/2009] [Accepted: 04/13/2009] [Indexed: 12/16/2022]
Abstract
The effects of BMP2 on bone marrow stromal cell differentiation and bone formation after bone marrow ablation were determined using C57 BL/6J (B6) mice. Inhibition of BMP2 expression with lentiviral BMP2 shRNA prevented both mineralized nodule formation in vitro and bone formation in vivo, and blocked the expression of Runx2 and osterix, transcriptional determinants of terminal osteogenic differentiation. No effect was observed on the expression of Sox9, a transcription factor, which is the one of the first transcriptional determinant to be expressed in committed chondroprogenitor and osteoprogenitor cells. In vitro studies showed that exogenously added BMP7 rescued the expression of osterix and enhanced the expression of Sox9, but had no effect on the expression of Runx2, while it only partially recovered the development of mineral deposition in the cultures. On the other hand, the exogenous addition of BMP2 rescued both Runx2 and osterix expression, did not enhance the expression of Sox9, but fully recovered the inhibition of mineral deposition in the cultures. Using antibodies against CD146 and Sox9, immunohistological examination of the cell populations found in the medullary space three days after bone marrow ablation, showed qualitatively equal numbers of cells expressing these skeletal progenitor and stem cell markers in control and BMP2 shRNA treated animals. Fluorescence Activated Cell Sorting (FACS) analysis of the cells found with the marrow cavities at three days after marrow ablation using CD146 antibody showed near equal numbers of immunopositive cells in both control and shRNA treated animals. In summary, the differences observed in vitro for BMP2 and BMP7 on osteogenic gene expression and mineralization suggest that they have differing effects on bone cell differentiation. These results further demonstrate that in vivo BMP2 is a central morphogenetic regulator of post natal osteoprogenitor differentiation, but does not affect recruitment of progenitors to the osteoblastic lineage.
Collapse
Affiliation(s)
- M V Bais
- Orthopaedic Research Laboratory, Department of Orthopedic Surgery, Boston University School of Medicine, Boston, Doctors Office Building, Suite 808, 720 Harrison Ave., Boston, MA 02118, USA
| | | | | | | | | | | | | | | |
Collapse
|
373
|
Alman BA. Multiple hereditary exostosis and hedgehog signaling: implications for novel therapies. J Bone Joint Surg Am 2009; 91 Suppl 4:63-7. [PMID: 19571070 DOI: 10.2106/jbjs.i.00301] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- Benjamin A Alman
- Division of Orthopaedic Surgery, The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada.
| |
Collapse
|
374
|
Abstract
Osterix (Osx) is essential for osteoblast differentiation and bone formation, because mice lacking Osx die within 1 h of birth with a complete absence of intramembranous and endochondral bone formation. Perinatal lethality caused by the disruption of the Osx gene prevents studies of the role of Osx in bones that are growing or already formed. Here, the function of Osx was examined in adult bones using the time- and site-specific Cre/loxP system. Osx was inactivated in all osteoblasts by Col1a1-Cre with the activity of Cre recombinase under the control of the 2.3-kb collagen promoter. Even though no bone defects were observed in newborn mice, Osx inactivation with 2.3-kb Col1a1-Cre exhibited osteopenia phenotypes in growing mice. BMD and bone-forming rate were decreased in lumbar vertebra, and the cortical bone of the long bones was thinner and more porous with reduced bone length. The trabecular bones were increased, but they were immature or premature. The expression of early marker genes for osteoblast differentiation such as Runx2, osteopontin, and alkaline phosphatase was markedly increased, but the late marker gene, osteocalcin, was decreased. However, no functional defects were found in osteoclasts. In summary, Osx inactivation in growing bones delayed osteoblast maturation, causing an accumulation of immature osteoblasts and reducing osteoblast function for bone formation, without apparent defects in bone resorption. These findings suggest a significant role of Osx in positively regulating osteoblast differentiation and bone formation in adult bone.
Collapse
|
375
|
High frequency of cephalic neural crest cells shows coexistence of neurogenic, melanogenic, and osteogenic differentiation capacities. Proc Natl Acad Sci U S A 2009; 106:8947-52. [PMID: 19447928 DOI: 10.1073/pnas.0903780106] [Citation(s) in RCA: 98] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The neural crest (NC) is a vertebrate innovation that distinguishes vertebrates from other chordates and was critical for the development and evolution of a "New Head and Brain." In early vertebrates, the NC was the source of dermal armor of fossil jawless fish. In extant vertebrates, including mammals, the NC forms the peripheral nervous system, melanocytes, and the cartilage and bone of the face. Here, we show that in avian embryos, a large majority of cephalic NC cells (CNCCs) have the ability to differentiate into cell types as diverse as neurons, melanocytes, osteocytes, and chondrocytes. Moreover, we find that the morphogen Sonic hedgehog (Shh) acts on CNCCs to increase endochondral osteogenesis while having no effect on osteoblasts prone to membranous ossification. We have developed culture conditions that demonstrate that "neural-mesenchymal" differentiation abilities are present in more than 90% of CNCCs. A highly multipotent progenitor (able to yield neurons, glia, melanocytes, myofibroblasts, chondrocytes, and osteocytes) comprises 7-13% of the clonogenic cells in the absence and presence of Shh, respectively. This progenitor is a good candidate for a cephalic NC stem cell.
Collapse
|
376
|
Quintana L, zur Nieden NI, Semino CE. Morphogenetic and regulatory mechanisms during developmental chondrogenesis: new paradigms for cartilage tissue engineering. TISSUE ENGINEERING PART B-REVIEWS 2009; 15:29-41. [PMID: 19063663 DOI: 10.1089/ten.teb.2008.0329] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Cartilage is the first skeletal tissue to be formed during embryogenesis leading to the creation of all mature cartilages and bones, with the exception of the flat bones in the skull. Therefore, errors occurring during the process of chondrogenesis, the formation of cartilage, often lead to severe skeletal malformations such as dysplasias. There are hundreds of skeletal dysplasias, and the molecular genetic etiology of some remains more elusive than of others. Many efforts have aimed at understanding the morphogenetic event of chondrogenesis in normal individuals, of which the main morphogenetic and regulatory mechanisms will be reviewed here. For instance, many signaling molecules that guide chondrogenesis--for example, transforming growth factor-beta, bone morphogenetic proteins, fibroblast growth factors, and Wnts, as well as transcriptional regulators such as the Sox family--have already been identified. Moreover, extracellular matrix components also play an important role in this developmental event, as evidenced by the promotion of the chondrogenic potential of chondroprogenitor cells caused by collagen II and proteoglycans like versican. The growing evidence of the elements that control chondrogenesis and the increasing number of different sources of progenitor cells will, hopefully, help to create tissue engineering platforms that could overcome many developmental or degenerative diseases associated with cartilage defects.
Collapse
Affiliation(s)
- Lluís Quintana
- Tissue Engineering Division, Department of Bioengineering, IQS-Ramon Llull University, Barcelona, Spain
| | | | | |
Collapse
|
377
|
Lallemand Y, Bensoussan V, Cloment CS, Robert B. Msx genes are important apoptosis effectors downstream of the Shh/Gli3 pathway in the limb. Dev Biol 2009; 331:189-98. [PMID: 19422820 DOI: 10.1016/j.ydbio.2009.04.038] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2008] [Revised: 04/28/2009] [Accepted: 04/29/2009] [Indexed: 11/26/2022]
Abstract
In tetrapods, the anteroposterior (AP) patterning of the limb is under the control of the antagonistic activities of the secreted factor Sonic hedgehog (Shh) and Gli3R, the truncated repressor form of the transcription factor Gli3. In this report, we show that Msx1 and Msx2 are targets and downstream effectors of Gli3R. Consequently, in Shh null mutants, Msx genes are overexpressed and, furthermore, partially responsible for the limb phenotype. This is exemplified by the fact that reducing Msx activity in Shh mutants partially restores a normal limb development. Finally, we show that the main action of the Msx genes, in both normal and Shh(-/-) limb development, is to control cell death in the mesenchyme. We propose that, in the limb, Msx genes act downstream of the Shh/Gli3 pathway by transducing BMP signaling and that, in the absence of Shh signaling, their deregulation contributes to the extensive apoptosis that impairs limb development.
Collapse
|
378
|
Al-kalaly A, Wu C, Wong R, Rabie ABM. The assessment of cell cycle genes in the rat mandibular condyle. Arch Oral Biol 2009; 54:470-8. [DOI: 10.1016/j.archoralbio.2009.01.020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2008] [Revised: 12/28/2008] [Accepted: 01/31/2009] [Indexed: 10/21/2022]
|
379
|
Eshkar-Oren I, Viukov SV, Salameh S, Krief S, Oh CD, Akiyama H, Gerber HP, Ferrara N, Zelzer E. The forming limb skeleton serves as a signaling center for limb vasculature patterning via regulation of Vegf. Development 2009; 136:1263-72. [DOI: 10.1242/dev.034199] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Limb development constitutes a central model for the study of tissue and organ patterning; yet, the mechanisms that regulate the patterning of limb vasculature have been left understudied. Vascular patterning in the forming limb is tightly regulated in order to ensure sufficient gas exchange and nutrient supply to the developing organ. Once skeletogenesis is initiated,limb vasculature undergoes two seemingly opposing processes: vessel regression from regions that undergo mesenchymal condensation; and vessel morphogenesis. During the latter, vessels that surround the condensations undergo an extensive rearrangement, forming a stereotypical enriched network that is segregated from the skeleton. In this study, we provide evidence for the centrality of the condensing mesenchyme of the forming skeleton in regulating limb vascular patterning. Both Vegf loss- and gain-of-function experiments in limb bud mesenchyme firmly established VEGF as the signal by which the condensing mesenchyme regulates the vasculature. Normal vasculature observed in limbs where VEGF receptors Flt1, Flk1, Nrp1 and Nrp2 were blocked in limb bud mesenchyme suggested that VEGF, which is secreted by the condensing mesenchyme, regulates limb vasculature via a direct long-range mechanism. Finally, we provide evidence for the involvement of SOX9 in the regulation of Vegf expression in the condensing mesenchyme. This study establishes Vegf expression in the condensing mesenchyme as the mechanism by which the skeleton patterns limb vasculature.
Collapse
Affiliation(s)
- Idit Eshkar-Oren
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot,Israel
| | - Sergey V. Viukov
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot,Israel
| | - Sharbel Salameh
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot,Israel
| | - Sharon Krief
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot,Israel
| | - Chun-do Oh
- Department of Molecular Genetics, The University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA
| | - Haruhiko Akiyama
- Department of Orthopaedics, Kyoto University, Kyoto 606-8507, Japan
| | | | | | - Elazar Zelzer
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot,Israel
| |
Collapse
|
380
|
Haldar M, Hedberg ML, Hockin MF, Capecchi MR. A CreER-based random induction strategy for modeling translocation-associated sarcomas in mice. Cancer Res 2009; 69:3657-64. [PMID: 19351831 DOI: 10.1158/0008-5472.can-08-4127] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Previously, we reported modeling synovial sarcomas in mice by conditionally expressing the human t(X;18) translocation-derived SYT-SSX2 fusion protein in Myf5-expressing myoblasts. Using a tamoxifen-inducible CreER system in mice, we show here that sporadic expression of SYT-SSX2 across multiple tissue types leads to exclusive formation of synovial sarcoma-like tumors, whereas its widespread expression is lethal. Certain clinical and histologic features of tumors in this new model suggest additional nonmyoblast origin for synovial sarcoma. CreER-based sporadic expression both avoids the severe early developmental phenotypes associated with widespread SYT-SSX2 expression and better models natural pathogenesis of cancers in which transformed cells usually arise within an environment of largely normal cells. Furthermore, this strategy may recapitulate multiple potential cellular origins within a single model system.
Collapse
Affiliation(s)
- Malay Haldar
- Department of Human Genetics, University of Utah, School of Medicine, Salt Lake City, Utah 84112, USA
| | | | | | | |
Collapse
|
381
|
Khan IM, Bishop JC, Gilbert S, Archer CW. Clonal chondroprogenitors maintain telomerase activity and Sox9 expression during extended monolayer culture and retain chondrogenic potential. Osteoarthritis Cartilage 2009; 17:518-28. [PMID: 19010695 DOI: 10.1016/j.joca.2008.08.002] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2007] [Accepted: 08/21/2008] [Indexed: 02/02/2023]
Abstract
OBJECTIVE Articular cartilage contains mesenchymally derived chondroprogenitor cells that have the potential to be used for stem cell therapy. The aim of this study was to characterise the growth kinetics and properties of in vitro expanded cloned chondroprogenitors and determine if critical determinants of the progenitor phenotype were maintained or lost in culture. METHODS Chondroprogenitors were isolated from immature bovine metacarpalphalangeal joints by differential adhesion to fibronectin. Cloned colonies were expanded in vitro up to 50 population doublings (PD). Growth characteristics were assessed by cell counts, analysis of telomere length, telomerase activity, expression of senescence-associated beta-galactosidase activity and real-time quantitative polymerase chain reaction to analyse the gene expression patterns of sox9 and Notch-1 in chondroprogenitors. RESULTS Cloned chondroprogenitors exhibited exponential growth for the first 20 PD, then slower linear growth with evidence of replicative senescence at later passages. Mean telomere lengths of exponentially growing chondroprogenitors were significantly longer than dedifferentiated chondrocytes that had undergone a similar number of PD (P<0.05). Chondroprogenitors also had 2.6-fold greater telomerase activity. Chondroprogenitors maintained similar sox9 and lower Notch-1 mRNA levels compared to non-clonal dedifferentiated chondrocytes. Chondroprogenitors were induced to differentiate into cartilage in 3D pellet cultures, immunological investigation of sox9, Notch-1, aggrecan and proliferating cell nuclear antigen (PCNA) expression showed evidence of co-ordinated growth and differentiation within the cartilage pellet. CONCLUSION Clonal chondroprogenitors from immature articular cartilage provide a useful tool to understand progenitor cell biology from the perspective of cartilage repair. Comparisons with more mature progenitor populations may lead to greater understanding in optimising repair strategies.
Collapse
Affiliation(s)
- I M Khan
- Connective Tissue Laboratories, Cardiff University, Museum Avenue, Cardiff CF10 3US, Wales, UK
| | | | | | | |
Collapse
|
382
|
Guth SIE, Schmidt K, Hess A, Wegner M. Adult-onset degeneration of adipose tissue in mice deficient for the Sox8 transcription factor. J Lipid Res 2009; 50:1269-80. [PMID: 19286648 DOI: 10.1194/jlr.m800531-jlr200] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Although the transcription factor Sox8 is broadly expressed during embryogenesis in developing ectodermal and mesodermal tissues, mice develop surprisingly normally in the absence of Sox8. Phenotypes in adult Sox8-deficient mice include mild osteopenia, late-onset male infertility, and reduced weight. We show here that progressive degeneration of adipose tissue in adult Sox8-deficient mice significantly contributes to weight reduction. Although serum levels of leptin, IGF-1, and noradrenaline were altered in Sox8-deficient mice, these changes could not explain the observed phenotype. Other serum parameters, including indicators of glucose metabolism, were largely normal. However, expression of the preadipocyte marker Pref-1 was elevated in adipose tissues of Sox8-deficient mice. This increase correlated with an impaired differentiation of Sox8-deficient fibroblasts to adipocytes in culture, a defect that could be rescued by reintroducing Sox8 into the cells. Furthermore, Sox8 levels were higher in mesodermal precursors than in mature adipocytes. We postulate a precursor-intrinsic role of Sox8 during replenishment of the adipocyte pool in adult mice and assume that disturbance of this function significantly contributes to adipose tissue degeneration in Sox8-deficient mice.
Collapse
Affiliation(s)
- Sabine I E Guth
- Institut für Biochemie, Emil-Fischer-Zentrum, Universität Erlangen, Erlangen, Germany
| | | | | | | |
Collapse
|
383
|
Horiuchi K, Kimura T, Miyamoto T, Miyamoto K, Akiyama H, Takaishi H, Morioka H, Nakamura T, Okada Y, Blobel CP, Toyama Y. Conditional inactivation of TACE by a Sox9 promoter leads to osteoporosis and increased granulopoiesis via dysregulation of IL-17 and G-CSF. THE JOURNAL OF IMMUNOLOGY 2009; 182:2093-101. [PMID: 19201862 DOI: 10.4049/jimmunol.0802491] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The TNF-alpha converting enzyme (TACE/ADAM17) is involved in the proteolytic release of the ectodomain of diverse cell surface proteins with critical roles in development, immunity, and hematopoiesis. As the perinatal lethality of TACE-deficient mice has prevented an analysis of the roles of TACE in adult animals, we generated mice in which floxed Tace alleles were deleted by Cre recombinase driven by a Sox9 promoter. These mutant mice survived up to 9-10 mo, but exhibited severe growth retardation as well as skin defects and infertility. The analysis of the skeletal system revealed shorter long bones and prominent bone loss, characterized by an increase in osteoclast and osteoblast activity. In addition, these mice exhibited hypercellularity in the bone marrow and extramedullary hematopoiesis in the spleen and liver. Flow cytometric analysis of the bone marrow cells showed a sharp increase in granulopoiesis and in the population of c-Kit-1(+) Sca-1(+) lineage(-) cells, and a decrease in lymphopoiesis. Moreover, we found that serum levels of IL-17 and G-CSF were significantly elevated compared with control littermates. These findings indicate that TACE is associated with a regulation of IL-17 and G-CSF expression in vivo, and that the dysregulation in G-CSF production is causally related to both the osteoporosis-like phenotype and the defects in the hematopoietic system.
Collapse
Affiliation(s)
- Keisuke Horiuchi
- Department of Anti-Aging Orthopedic Research, Keio University, School of Medicine, Shinjuku-ku, Tokyo, Japan.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
384
|
Alman BA, Wunder JS. Parathyroid hormone-related protein regulates glioma-associated oncogene transcriptional activation: lessons learned from bone development and cartilage neoplasia. Ann N Y Acad Sci 2009; 1144:36-41. [PMID: 19076361 DOI: 10.1196/annals.1418.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Hedgehog and parathyroid hormone-related protein (PTHrP) signaling play important roles regulating the differentiation of chondrocytes, which form the template for growing bone. By studying the interaction of the pathways in normal and neoplastic growth-plate chondrocytes (from enchondromas, a benign cartilage tumor), an unexpected direct regulation of hedgehog-mediated transcriptional activation by parathyroid hormone-related protein was uncovered. This regulation acts through the processing of the hedgehog-activated transcription factor, glioma-associated oncogene-three (Gli3). When PTHrP activates its receptor, Gli3 is processed to its repressor form though a protein kinase A (PKA) -dependent mechanism. Thus, activation of a G protein-coupled receptor can negatively regulate hedgehog-mediated transcription independent of hedgehog ligand activity, raising intriguing therapeutic possibilities.
Collapse
Affiliation(s)
- Benjamin A Alman
- Program in Developmental and Stem Cell Biology, Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada.
| | | |
Collapse
|
385
|
Bullough R, Finnigan T, Kay A, Maffulli N, Forsyth NR. Tendon repair through stem cell intervention: cellular and molecular approaches. Disabil Rehabil 2009; 30:1746-51. [PMID: 18720123 DOI: 10.1080/09638280701788258] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Tendon injuries are common in either the workplace or sport activities, with some 3 to 5 million tendon and ligament injuries occurring annually worldwide. Management of tendon injury currently follows two routes: Conservative (rehabilitation and pain relief), or surgical. Irrespective of which of these primary treatment routes are followed, even if healing does occur, it may not result in a full gain of function. The inability of the tendon to self-repair and the relative inefficiency of current treatment regimens suggest that identifying alternative strategies is a priority. One such alternative is the use of stem cells to repair damage, either through direct application or in conjunction with scaffolding. We describe the current state of the art in terms of: (i) Molecular markers of tendon development, (ii) stem cell applicability to human tendon repair, (iii) scaffolding for in vitro tendon generation, and (iv) chemical/molecular approaches to both induce stem cell differentiation into tenocytes and maintain their proliferation in vitro.
Collapse
Affiliation(s)
- Richard Bullough
- Department of Trauma and Orthopaedic Surgery, Keele University Medical School, Keele, Stoke on Trent
| | | | | | | | | |
Collapse
|
386
|
Arnsdorf EJ, Tummala P, Kwon RY, Jacobs CR. Mechanically induced osteogenic differentiation--the role of RhoA, ROCKII and cytoskeletal dynamics. J Cell Sci 2009; 122:546-53. [PMID: 19174467 DOI: 10.1242/jcs.036293] [Citation(s) in RCA: 282] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Many biochemical factors regulating progenitor cell differentiation have been examined in detail; however, the role of the local mechanical environment on stem cell fate has only recently been investigated. In this study, we examined whether oscillatory fluid flow, an exogenous mechanical signal within bone, regulates osteogenic, adipogenic or chondrogenic differentiation of C3H10T1/2 murine mesenchymal stem cells by measuring Runx2, PPARgamma and SOX9 gene expression, respectively. Furthermore, we hypothesized that the small GTPase RhoA and isometric tension within the actin cytoskeleton are essential in flow-induced differentiation. We found that oscillatory fluid flow induces the upregulation of Runx2, Sox9 and PPARgamma, indicating that it has the potential to regulate transcription factors involved in multiple unique lineage pathways. Furthermore, we demonstrate that the small GTPase RhoA and its effector protein ROCKII regulate fluid-flow-induced osteogenic differentiation. Additionally, activated RhoA and fluid flow have an additive effect on Runx2 expression. Finally, we show RhoA activation and actin tension are negative regulators of both adipogenic and chondrogenic differentiation. However, an intact, dynamic actin cytoskeleton under tension is necessary for flow-induced gene expression.
Collapse
Affiliation(s)
- Emily J Arnsdorf
- Bone and Joint R&D Center, VA Palo Alto Health Care System, 3801 Miranda Avenue, Palo Alto, CA 94304, USA.
| | | | | | | |
Collapse
|
387
|
Tominaga H, Maeda S, Miyoshi H, Miyazono K, Komiya S, Imamura T. Expression of osterix inhibits bone morphogenetic protein-induced chondrogenic differentiation of mesenchymal progenitor cells. J Bone Miner Metab 2009; 27:36-45. [PMID: 19018456 DOI: 10.1007/s00774-008-0003-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2008] [Accepted: 02/18/2008] [Indexed: 10/21/2022]
Abstract
Osteoblasts and chondrocytes arise from common bipotential mesenchymal progenitor cells. Although the differentiation of these two cell lineages can be induced by treatment with bone morphogenetic proteins (BMPs), the responses of mesenchymal progenitors to BMP differ from cell line to cell line. Here we demonstrate that C3H/10T1/2 cells preferred chondrogenic differentiation, primary bone marrow stroma cells (MSCs) tended to convert to osteoblasts, and ST-2 cells differentiated into both the osteoblastic and chondrocytic lineages simultaneously, suggesting that a molecular switch functions to select cell fate. Osterix, the secondary master regulator of osteoblastogenesis, was induced by BMP at high and low levels in MSCs and ST-2 cells, respectively; in contrast, C3H/10T1/2 cells demonstrated only faint expression. As osterix has been suggested as a negative regulator of chondrogenesis, we hypothesized that the intense chondrocyte differentiation of C3H/10T1/2 cells may have resulted from an absence of osterix. We therefore restored osterix gene expression in C3H/10T1/2 cells using an adenovirus vector. Following BMP treatment, infection with an osterix-encoding virus dramatically inhibited the chondrocytic differentiation of C3H/10T1/2 cells, resulting instead in prominent osteoblast differentiation. These results indicate the chondrogenic potential of C3H/10T1/2 cells was abrogated by osterix expression. Chondrocyte differentiation of MSCs, however, was not enhanced by silencing the osterix gene using lentivirus-mediated shRNA, despite successful suppression of osteoblast differentiation. These results suggest that the low levels of osterix expression remaining after knockdown are sufficient to block chondrogenesis, whereas higher expression may be required to promote osteoblastic differentiation.
Collapse
Affiliation(s)
- Hiroyuki Tominaga
- Department of Biochemistry, The Cancer Institute of the Japanese Foundation for Cancer Research, 3-10-6 Ariake, Koto-ku, Tokyo 135-8550, Japan
| | | | | | | | | | | |
Collapse
|
388
|
Abstract
Major advances in the molecular genetics, paleobiology, and the evolutionary developmental biology of vertebrate skeletogenesis have improved our understanding of the early evolution and development of the vertebrate skeleton. These studies have involved genetic analysis of model organisms, human genetics, comparative developmental studies of basal vertebrates and nonvertebrate chordates, and both cladistic and histological analyses of fossil vertebrates. Integration of these studies has led to renaissance in the area of skeletal development and evolution. Among the major findings that have emerged is the discovery of an unexpectedly deep origin of the gene network that regulates chondrogenesis. In this chapter, we discuss recent progress in each these areas and identify a number of questions that need to be addressed in order to fill key gaps in our knowledge of early skeletal evolution.
Collapse
|
389
|
Endochondral ossification is required for haematopoietic stem-cell niche formation. Nature 2008; 457:490-4. [PMID: 19078959 PMCID: PMC2648141 DOI: 10.1038/nature07547] [Citation(s) in RCA: 319] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2008] [Accepted: 10/10/2008] [Indexed: 12/11/2022]
Abstract
Little is known about the formation of niches, local micro-environments required for stem cell maintenance. Here we develop an in vivo assay for adult hematopoietic stem cell (HSC) niche formation 1-2. With this assay, we identified a population of progenitor cells with surface markers CD45-Tie2-αV+CD105+Thy1.1- (CD105+Thy1-) that when sorted from 15.5 dpc fetal bones (fb) and transplanted under the adult mouse kidney capsule could recruit host-derived blood vessels, produce donor-derived ectopic bones through a cartilage intermediate, and generate a marrow cavity populated by host-derived long term reconstituting HSC (LT-HSC). In contrast, CD45-Tie2-αV+CD105+Thy1+ (CD105+Thy1+) fb progenitors form bone that does not contain a marrow cavity. Suppressing expression of factors involved in endochondral ossification, such as osterix and VEGF, inhibited niche generation 22-24. CD105+Thy1-progenitor populations derived from regions of the fetal mandible or calvaria that do not undergo endochondral ossification formed only bone without marrow in our assay27. Collectively, our data implicates endochondral ossification, bone formation that proceeds through a cartilage intermediate, as a requirement for adult HSC niche formation.
Collapse
|
390
|
Gittes GK. Developmental biology of the pancreas: a comprehensive review. Dev Biol 2008; 326:4-35. [PMID: 19013144 DOI: 10.1016/j.ydbio.2008.10.024] [Citation(s) in RCA: 300] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2008] [Revised: 10/09/2008] [Accepted: 10/13/2008] [Indexed: 02/06/2023]
Abstract
Pancreatic development represents a fascinating process in which two morphologically distinct tissue types must derive from one simple epithelium. These two tissue types, exocrine (including acinar cells, centro-acinar cells, and ducts) and endocrine cells serve disparate functions, and have entirely different morphology. In addition, the endocrine tissue must become disconnected from the epithelial lining during its development. The pancreatic development field has exploded in recent years, and numerous published reviews have dealt specifically with only recent findings, or specifically with certain aspects of pancreatic development. Here I wish to present a more comprehensive review of all aspects of pancreatic development, though still there is not a room for discussion of stem cell differentiation to pancreas, nor for discussion of post-natal regeneration phenomena, two important fields closely related to pancreatic development.
Collapse
Affiliation(s)
- George K Gittes
- Children's Hospital of Pittsburgh and the University of Pittsburgh School of Medicine, Department of Pediatric Surgery, 3705 Fifth Avenue, Pittsburgh, PA 15213, USA
| |
Collapse
|
391
|
Poché RA, Furuta Y, Chaboissier MC, Schedl A, Behringer RR. Sox9 is expressed in mouse multipotent retinal progenitor cells and functions in Müller glial cell development. J Comp Neurol 2008; 510:237-50. [PMID: 18626943 DOI: 10.1002/cne.21746] [Citation(s) in RCA: 130] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
It is widely accepted that the process of retinal cell fate determination is under tight transcriptional control mediated by a combinatorial code of transcription factors. However, the exact repertoire of factors necessary for the genesis of each retinal cell type remains to be fully defined. Here we show that the HMG-box transcription factor, Sox9, is expressed in multipotent mouse retinal progenitor cells throughout retinogenesis. We also find that Sox9 is downregulated in differentiating neuronal populations, yet expression in Müller glial cells persists into adulthood. Furthermore, by employing a conditional knockout approach, we show that Sox9 is essential for the differentiation and/or survival of postnatal Müller glial cells.
Collapse
Affiliation(s)
- Ross A Poché
- Program in Developmental Biology, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | | | | | |
Collapse
|
392
|
Leucht P, Minear S, Ten Berge D, Nusse R, Helms JA. Translating insights from development into regenerative medicine: the function of Wnts in bone biology. Semin Cell Dev Biol 2008; 19:434-43. [PMID: 18824114 DOI: 10.1016/j.semcdb.2008.09.002] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2008] [Revised: 08/20/2008] [Accepted: 09/02/2008] [Indexed: 11/25/2022]
Abstract
The Wnt pathway constitutes one of the most attractive candidates for modulating skeletal tissue regeneration based on its functions during skeletal development and homeostasis. Wnts participate in every stage of skeletogenesis, from the self-renewal and proliferation of skeletal stem cells to the specification of osteochondroprogenitor cells and the maturation of chondrocytes and osteoblasts. We propose that the function of Wnts depend upon a skeletogenic cell's state of differentiation. In this review we summarize recent data with a focus on the roles of Wnt signaling in mesenchymal stem cell fate, osteoprogenitor cell differentiation, chondrocyte maturation, bone remodeling, and bone regeneration.
Collapse
Affiliation(s)
- P Leucht
- Department of Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | | | | | | | | |
Collapse
|
393
|
Pitsillides A, Ashhurst DE. A critical evaluation of specific aspects of joint development. Dev Dyn 2008; 237:2284-94. [DOI: 10.1002/dvdy.21654] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
394
|
Nowak JA, Polak L, Pasolli HA, Fuchs E. Hair follicle stem cells are specified and function in early skin morphogenesis. Cell Stem Cell 2008; 3:33-43. [PMID: 18593557 DOI: 10.1016/j.stem.2008.05.009] [Citation(s) in RCA: 421] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2008] [Revised: 04/12/2008] [Accepted: 05/13/2008] [Indexed: 12/16/2022]
Abstract
In adult skin, epithelial hair follicle stem cells (SCs) reside in a quiescent niche and are essential for cyclic bouts of hair growth. Niche architecture becomes pronounced postnatally at the start of the first hair cycle. Whether SCs exist or function earlier is unknown. Here we show that slow-cycling cells appear early in skin development, express SC markers, and later give rise to the adult SC population. To test whether these early slow-cycling cells function as SCs, we use Sox9-Cre for genetic marking and K14-Cre to embryonically ablate Sox9, an essential adult SC gene. We find that the progeny of Sox9-expressing cells contribute to all skin epithelial lineages and Sox9 is required for SC specification. In the absence of early SCs, hair follicle and sebaceous gland morphogenesis is blocked, and epidermal wound repair is compromised. These findings establish the existence of early hair follicle SCs and reveal their physiological importance in tissue morphogenesis.
Collapse
Affiliation(s)
- Jonathan A Nowak
- Howard Hughes Medical Institute, Laboratory of Mammalian Cell Biology and Development, The Rockefeller University, New York, NY 10065, USA
| | | | | | | |
Collapse
|
395
|
A dosage-dependent requirement for Sox9 in pancreatic endocrine cell formation. Dev Biol 2008; 323:19-30. [PMID: 18723011 DOI: 10.1016/j.ydbio.2008.07.034] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2008] [Revised: 06/28/2008] [Accepted: 07/16/2008] [Indexed: 11/21/2022]
Abstract
We have previously shown the transcription factor SOX9 to be required for the maintenance of multipotential pancreatic progenitor cells in the early embryonic pancreas. However, the association of pancreatic endocrine defects with the Sox9-haploinsufficiency syndrome campomelic dysplasia (CD) implies additional later roles for Sox9 in endocrine development. Using short-term lineage tracing in mice, we demonstrate here that SOX9 marks a pool of multipotential pancreatic progenitors throughout the window of major cell differentiation. During mid-pancreogenesis, both endocrine and exocrine cells simultaneously arise from the SOX9(+) epithelial cords. Our analysis of mice with 50%-reduced Sox9 gene dosage in pancreatic progenitors reveals endocrine-specific defects phenocopying CD. By birth, these mice display a specific reduction in endocrine cell mass, while their exocrine compartment and total organ size is normal. The decrease in endocrine cells is caused by reduced generation of endocrine progenitors from the SOX9(+) epithelium. Conversely, formation of exocrine progenitors is insensitive to reduced Sox9 gene dosage, thus explaining the normal organ size at birth. Our results show that not only is SOX9 required for the maintenance of early pancreatic progenitors, but also governs their adoption of an endocrine fate. Our findings therefore suggest that defective endocrine specification might underlie the pancreatic phenotype of individuals with CD.
Collapse
|
396
|
Shibata S, Yokohama-Tamaki T. An in situ hybridization study of Runx2, Osterix, and Sox9 in the anlagen of mouse mandibular condylar cartilage in the early stages of embryogenesis. J Anat 2008; 213:274-83. [PMID: 18624832 DOI: 10.1111/j.1469-7580.2008.00934.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Mandibular condylar cartilage is the best-studied mammalian secondary cartilage, differing from primary cartilage in that it originates from alkaline phosphatase-positive progenitor cells. We previously demonstrated that three transcription factors related to bone and cartilage formation, namely Runx2, Osterix and Sox9, are simultaneously expressed in the anlage of mandibular condylar cartilage (condylar anlage) at embryonic day (E)14. In this study, expression of these transcription factors was investigated in the anlagen of mandibular bone (mandibular anlagen) from E11.0 to 14.0. Runx2 mRNA was first expressed in the mandibular anlage at E11.5. Osterix mRNA was first expressed at E12.0, and showed a different expression pattern from that of Runx2 from E12.5 to E14.0, confirming that Osterix acts downstream of Runx2. Sox9 mRNA was expressed in Meckel's cartilage and its anlagen throughout the experimental period, but not clearly in the mandibular anlagen until E13.0. At E13.5, the condylar anlage was morphologically identified at the posterior end of the mandibular anlage, and enhanced Sox9 mRNA expression was detected here. At this stage, Runx2 and Osterix mRNA were simultaneously detected in the condylar anlage. These results indicate that the Sox9 mRNA-expressing condylar anlage is derived from Runx2/Osterix mRNA-expressing mandibular anlage, and that upregulation of Sox9 in this region acts as a trigger for subsequent condylar cartilage formation.
Collapse
Affiliation(s)
- Shunichi Shibata
- Division of Histology, Department of Oral Growth and Development, School of Dentistry, Health Sciences University of Hokkaido, Hokkaido, Japan.
| | | |
Collapse
|
397
|
Best M, Carroll M, Hanley NA, Piper Hanley K. Embryonic stem cells to beta-cells by understanding pancreas development. Mol Cell Endocrinol 2008; 288:86-94. [PMID: 18487011 DOI: 10.1016/j.mce.2008.03.008] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2007] [Revised: 03/18/2008] [Accepted: 03/18/2008] [Indexed: 12/25/2022]
Abstract
Insulin injections treat but do not cure Type 1 diabetes (T1DM). The success of islet transplantation suggests cell replacement therapies may offer a curative strategy. However, cadaver islets are of insufficient number for this to become a widespread treatment. To address this deficiency, the production of beta-cells from pluripotent stem cells offers an ambitious far-sighted opportunity. Recent progress in generating insulin-producing cells from embryonic stem cells has shown promise, highlighting the potential of trying to mimic normal developmental pathways. Here, we provide an overview of the current methodology that has been used to differentiate stem cells toward a beta-cell fate. Parallels are drawn with what is known about normal development, especially regarding the human pancreas.
Collapse
Affiliation(s)
- Marie Best
- Centre for Human Development, Stem Cells & Regeneration, UK
| | | | | | | |
Collapse
|
398
|
Panupinthu N, Rogers JT, Zhao L, Solano-Flores LP, Possmayer F, Sims SM, Dixon SJ. P2X7 receptors on osteoblasts couple to production of lysophosphatidic acid: a signaling axis promoting osteogenesis. ACTA ACUST UNITED AC 2008; 181:859-71. [PMID: 18519738 PMCID: PMC2396816 DOI: 10.1083/jcb.200708037] [Citation(s) in RCA: 140] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Nucleotides are released from cells in response to mechanical stimuli and signal in an autocrine/paracrine manner through cell surface P2 receptors. P2rx7−/− mice exhibit diminished appositional growth of long bones and impaired responses to mechanical loading. We find that calvarial sutures are wider in P2rx7−/− mice. Functional P2X7 receptors are expressed on osteoblasts in situ and in vitro. Activation of P2X7 receptors by exogenous nucleotides stimulates expression of osteoblast markers and enhances mineralization in cultures of rat calvarial cells. Moreover, osteogenesis is suppressed in calvarial cell cultures from P2rx7−/− mice compared with the wild type. P2X7 receptors couple to production of the potent lipid mediators lysophosphatidic acid (LPA) and prostaglandin E2. Either an LPA receptor antagonist or cyclooxygenase (COX) inhibitors abolish the stimulatory effects of P2X7 receptor activation on osteogenesis. We conclude that P2X7 receptors enhance osteoblast function through a cell-autonomous mechanism. Furthermore, a novel signaling axis links P2X7 receptors to production of LPA and COX metabolites, which in turn stimulate osteogenesis.
Collapse
Affiliation(s)
- Nattapon Panupinthu
- Canadian Institutes of Health Research Group in Skeletal Development and Remodeling, London, ON, Canada
| | | | | | | | | | | | | |
Collapse
|
399
|
Abstract
Stromal-epithelial interactions mediated by paracrine signaling mechanisms dictate prostate development and progression of prostate cancer. The regulatory role of androgens in both the prostate stromal and epithelial compartments set the prostate apart from many other organs and tissues with regard to gene targeting. The identification of androgen-dependent prostate epithelial promoters has allowed successful gene targeting to the prostate epithelial compartment. Currently, there are no transgenic mouse models available to specifically alter gene expression within the prostate stromal compartment. As a primary metastatic site for prostate cancer is bone, the functional dissection of the bone stromal compartment is important for understanding stromal-epithelial interactions associated with metastatic tumor growth. Use of currently available methodologies for the expression or deletion of gene expression in recent research studies has advanced our understanding of the stroma. However, the complexity of stromal heterogeneity within the prostate remains a challenge to obtaining compartment or cell-lineage-specific in vivo models necessary for furthering our understanding of prostatic developmental, benign, tumorigenic, and metastatic growth.
Collapse
Affiliation(s)
- Roger S Jackson
- Department of Urologic Surgery, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN 37232-2765, USA
| | | | | |
Collapse
|
400
|
Inhibition of Wnt signaling by the osteoblast-specific transcription factor Osterix. Proc Natl Acad Sci U S A 2008; 105:6936-41. [PMID: 18458345 DOI: 10.1073/pnas.0710831105] [Citation(s) in RCA: 127] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The recent identification of the genes responsible for several human genetic diseases affecting bone homeostasis and the characterization of mouse models for these diseases indicated that canonical Wnt signaling plays a critical role in the control of bone mass. Here, we report that the osteoblast-specific transcription factor Osterix (Osx), which is required for osteoblast differentiation, inhibits Wnt pathway activity. First, in calvarial cells of embryonic day (E)18.5 Osx-null embryos, expression of the Wnt antagonist Dkk1 was abolished, and that of Wnt target genes c-Myc and cyclin D1 was increased. Moreover, our studies demonstrated that Osx bound to and activated the Dkk1 promoter. In addition, Osx inhibited beta-catenin-induced Topflash reporter activity and beta-catenin-induced secondary axis formation in Xenopus embryos. Importantly, in calvaria of E18.5 Osx-null embryos harboring the TOPGAL reporter transgene, beta-galactosidase activity was increased, suggesting that Osx inhibited the Wnt pathway in osteoblasts in vivo. Our data further showed that Osx disrupted binding of Tcf to DNA, providing a likely mechanism for the inhibition by Osx of beta-catenin transcriptional activity. We also showed that Osx decreased osteoblast proliferation. Indeed, E18.5 Osx-null calvaria showed greater BrdU incorporation than wild-type calvaria and that Osx overexpression in C2C12 mesenchymal cells inhibited cell growth. Because Wnt signaling has a major role in stimulating osteoblast proliferation, we speculate that Osx-mediated inhibition of osteoblast proliferation is a consequence of the Osx-mediated control of Wnt/beta-catenin activity. Our results add a layer of control to Wnt/beta-catenin signaling in bone.
Collapse
|