351
|
Yoshida CA, Komori H, Maruyama Z, Miyazaki T, Kawasaki K, Furuichi T, Fukuyama R, Mori M, Yamana K, Nakamura K, Liu W, Toyosawa S, Moriishi T, Kawaguchi H, Takada K, Komori T. SP7 inhibits osteoblast differentiation at a late stage in mice. PLoS One 2012; 7:e32364. [PMID: 22396760 PMCID: PMC3292551 DOI: 10.1371/journal.pone.0032364] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2011] [Accepted: 01/26/2012] [Indexed: 12/19/2022] Open
Abstract
RUNX2 and SP7 are essential transcription factors for osteoblast differentiation at an early stage. Although RUNX2 inhibits osteoblast differentiation at a late stage, the function of SP7 at the late stage of osteoblast differentiation is not fully elucidated. Thus, we pursued the function of SP7 in osteoblast differentiation. RUNX2 induced Sp7 expression in Runx2−/− calvarial cells. Adenoviral transfer of sh-Sp7 into primary osteoblasts reduced the expression of Alpl, Col1a1, and Bglap2 and mineralization, whereas that of Sp7 reduced Bglap2 expression and mineralization at a late stage of osteoblast differentiation. Sp7 transgenic mice under the control of 2.3 kb Col1a1 promoter showed osteopenia and woven-bone like structure in the cortical bone, which was thin and less mineralized, in a dose-dependent manner. Further, the number of processes in the osteoblasts and osteocytes was reduced. Although the osteoblast density was increased, the bone formation was reduced. The frequency of BrdU incorporation was increased in the osteoblastic cells, while the expression of Col1a1, Spp1, Ibsp, and Bglap2 was reduced. Further, the osteopenia in Sp7 or Runx2 transgenic mice was worsened in Sp7/Runx2 double transgenic mice and the expression of Col1a1 and Bglap2 was reduced. The expression of Sp7 and Runx2 was not increased in Runx2 and Sp7 transgenic mice, respectively. The expression of endogenous Sp7 was increased in Sp7 transgenic mice and Sp7-transduced cells; the introduction of Sp7 activated and sh-Sp7 inhibited Sp7 promoter; and ChIP assay showed the binding of endogenous SP7 in the proximal region of Sp7 promoter. These findings suggest that SP7 and RUNX2 inhibit osteoblast differentiation at a late stage in a manner independent of RUNX2 and SP7, respectively, and SP7 positively regulates its own promoter.
Collapse
Affiliation(s)
- Carolina A. Yoshida
- Department of Cell Biology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Hisato Komori
- Department of Cell Biology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Zenjiro Maruyama
- Department of Cell Biology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
- Department of Orthopaedic Surgery, Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - Toshihiro Miyazaki
- Department of Cell Biology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Keishi Kawasaki
- Department of Cell Biology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
- Department of Orthodontics and Dentofacial Orthopedics, Graduate School of Dentistry, Osaka University, Suita, Japan
| | - Tatsuya Furuichi
- Department of Cell Biology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Ryo Fukuyama
- Laboratory of Pharmacology, Faculty of Pharmaceutical Sciences, Hiroshima International University, Kure, Japan
| | - Masako Mori
- Department of Cell Biology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Kei Yamana
- Teijin Institute for Biomedical Research, Teijin, Tokyo, Japan
| | - Kouhei Nakamura
- Department of Cell Biology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
- Department of Periodontology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Wenguang Liu
- Department of Cell Biology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Satoru Toyosawa
- Department of Oral Pathology, Graduate School of Dentistry, Osaka University, Suita, Japan
| | - Takeshi Moriishi
- Department of Cell Biology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Hiroshi Kawaguchi
- Department of Orthopaedic Surgery, Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - Kenji Takada
- Department of Orthodontics and Dentofacial Orthopedics, Graduate School of Dentistry, Osaka University, Suita, Japan
| | - Toshihisa Komori
- Department of Cell Biology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
- * E-mail:
| |
Collapse
|
352
|
Hu Y, Cai K, Luo Z, Zhang Y, Li L, Lai M, Hou Y, Huang Y, Li J, Ding X, Zhang B, Sung KLP. Regulation of the differentiation of mesenchymal stem cells in vitro and osteogenesis in vivo by microenvironmental modification of titanium alloy surfaces. Biomaterials 2012; 33:3515-28. [PMID: 22333987 DOI: 10.1016/j.biomaterials.2012.01.040] [Citation(s) in RCA: 99] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2012] [Accepted: 01/19/2012] [Indexed: 02/05/2023]
Abstract
To mimic the extracellular microenvironment of bone, a bioactive multilayered structure of gelatin/chitosan pair, containing bone morphogenetic protein 2(BMP2) and fibronectin (FN), was constructed onto Ti6Al4V surface via a layer-by-layer assembly technique. The successful fabrication of multilayered structure was confirmed by contact angle measurement, field emission scanning electron microscopy (FE-SEM) and confocal laser scanning microscopy (CLSM), respectively. Bioactive BMP2 released in a sustained manner along with the degradation of multilayered structure. MSCs grown onto the multilayer coated TC4 substrates displayed significantly higher (p < 0.01 or p < 0.05) production levels of alkaline phosphatase (ALP), mineralization and genes expressions of runt related transcription factor 2 (Runx2), osterix, osteocalcin (OC), osteopontin (OPN), ALP and collagen type Ⅰ(ColⅠ) compared to the controls after culture for 7 days and 21 days, respectively. More importantly, MicroCT analysis and histological observations demonstrated that the multilayer coated Ti6Al4V implants in vivo promoted the bone density and new bone formation around them after implantation for 4 weeks and 12 weeks, respectively. The results indicated that Ti6Al4V coated with biofunctional multilayers was beneficial for osteogenesis and integration of implant/bone. The study therefore presents an alternative to fabricate bio-functionalized Ti6Al4V-based implants for potential application in orthopedics field.
Collapse
Affiliation(s)
- Yan Hu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
353
|
A calcium-induced signaling cascade leading to osteogenic differentiation of human bone marrow-derived mesenchymal stromal cells. Biomaterials 2012; 33:3205-15. [PMID: 22285104 DOI: 10.1016/j.biomaterials.2012.01.020] [Citation(s) in RCA: 319] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2011] [Accepted: 01/09/2012] [Indexed: 12/15/2022]
Abstract
The response of osteoprogenitors to calcium (Ca(2+)) is of primary interest for both normal bone homeostasis and the clinical field of bone regeneration. The latter makes use of calcium phosphate-based bone void fillers to heal bone defects, but it is currently not known how Ca(2+) released from these ceramic materials influences cells in situ. Here, we have created an in vitro environment with high extracellular Ca(2+) concentration and investigated the response of human bone marrow-derived mesenchymal stromal cells (hMSCs) to it. Ca(2+) enhanced proliferation and morphological changes in hMSCs. Moreover, the expression of osteogenic genes is highly increased. A 3-fold up-regulation of BMP-2 is observed after only 6h and pharmaceutical interference with a number of proteins involved in Ca(2+) sensing showed that not the calcium sensing receptor, but rather type L voltage-gated calcium channels are involved in mediating the signaling pathway between extracellular Ca(2+) and BMP-2 expression. MEK1/2 activity is essential for the effect of Ca(2+) and using microarray analysis, we have identified c-Fos as an early Ca(2+) response gene. We have demonstrated that hMSC osteogenesis can be induced via extracellular Ca(2+), a simple and economic way of priming hMSCs for bone tissue engineering applications.
Collapse
|
354
|
Nishimura R, Hata K, Matsubara T, Wakabayashi M, Yoneda T. Regulation of bone and cartilage development by network between BMP signalling and transcription factors. J Biochem 2012; 151:247-54. [PMID: 22253449 DOI: 10.1093/jb/mvs004] [Citation(s) in RCA: 143] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Bone morphogenetic protein(s) (BMP) are very powerful cytokines that induce bone and cartilage formation. BMP also stimulate osteoblast and chondrocyte differentiation. During bone and cartilage development, BMP regulates the expression and/or the function of several transcription factors through activation of Smad signalling. Genetic studies revealed that Runx2, Osterix and Sox9, all of which function downstream of BMP, play essential roles in bone and/or cartilage development. In addition, two other transcription factors, Msx2 and Dlx5, which interact with BMP signalling, are involved in bone and cartilage development. The importance of these transcription factors in bone and cartilage development has been supported by biochemical and cell biological studies. Interestingly, BMP is regulated by several negative feedback systems that appear necessary for fine-tuning of bone and cartilage development induced by BMP. Thus, BMP harmoniously regulates bone and cartilage development by forming network with several transcription factors.
Collapse
Affiliation(s)
- Riko Nishimura
- Department of Molecular and Cellular Biochemistry, Osaka University Graduate School of Dentistry.
| | | | | | | | | |
Collapse
|
355
|
Sadie-Van Gijsen H, Smith W, du Toit EF, Michie J, Hough FS, Ferris WF. Depot-specific and hypercaloric diet-induced effects on the osteoblast and adipocyte differentiation potential of adipose-derived stromal cells. Mol Cell Endocrinol 2012; 348:55-66. [PMID: 21827826 DOI: 10.1016/j.mce.2011.07.030] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2011] [Revised: 06/22/2011] [Accepted: 07/13/2011] [Indexed: 12/30/2022]
Abstract
Adipose-derived stromal cells (ADSCs) can be differentiated in vitro into several mesenchyme-derived cell types. We had previously described depot-specific differences in the adipocyte differentiation of ADSCs, and consequently we hypothesized that there may also be depot-specific differences in osteoblast differentiation of ADSCs. For this study, the osteoblast differentiation potential of rat subcutaneous ADSCs (scADSCs) and perirenal visceral ADSCs (pvADSCs) was compared. Osteoblast differentiation media (OM) induced markers of the osteoblastic phenotype in scADSCs, but not in pvADSCs. ADSCs harvested from rats with diet-induced visceral obesity (DIO) exhibited reduced osteoinduction, compared to lean controls, but adipocyte differentiation was not affected. Expression of the pro-osteogenic transcription factor Msx2 was significantly higher in naïve scADSCs from lean and DIO rats than in pvADSCs. Our findings indicate that ADSCs from different anatomical sites are uniquely pre-programmed in vivo in a depot-specific manner, and that diet-induced metabolic disturbances translate into reduced osteoblast differentiation of ADSCs.
Collapse
Affiliation(s)
- Hanel Sadie-Van Gijsen
- Division of Endocrinology, Department of Medicine, Faculty of Health Sciences, University of Stellenbosch, Tygerberg Campus, P.O. Box 19063, Francie van Zijl Drive, Parow 7505, South Africa
| | | | | | | | | | | |
Collapse
|
356
|
Peschel D, Zhang K, Fischer S, Groth T. Modulation of osteogenic activity of BMP-2 by cellulose and chitosan derivatives. Acta Biomater 2012; 8:183-93. [PMID: 21884830 DOI: 10.1016/j.actbio.2011.08.012] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2011] [Revised: 08/06/2011] [Accepted: 08/15/2011] [Indexed: 10/17/2022]
Abstract
Polysaccharides with structure and potential bioactivity similar to heparin were synthesized based on cellulose which was regioselectively sulfated, carboxylated or carboxymethylated, and chitosan that was sulfated only. Osteogenic activity of these derivatives was studied in cooperation with BMP-2 using C2C12 myoblast cells as a model system measuring alkaline phosphatase (ALP) activity and the expression of the genes Osterix, Noggin and Runx-2. It was found that highly sulfated chitosan showed the strongest osteogenic activity of all polysaccharides, but only at lower concentrations, while higher concentrations were inhibitory. By contrast, cellulose with a low or intermediate degree of sulfation showed increasing ALP activity and expression of Osterix and Noggin with rising concentrations. Lower sulfated cellulose with a high degree of carboxylation was less osteogenic, but had a positive effect on cell viability, while carboxymethylated cellulose had almost no osteogenic activity. The results indicate that regioselectively sulfated as well as carboxylated cellulose and chitosan possess an osteogenic activity, which makes them interesting candidates for application in tissue engineering of bone.
Collapse
|
357
|
Kim JY, Kim BI, Jue SS, Park JH, Shin JW. Localization of osteopontin and osterix in periodontal tissue during orthodontic tooth movement in rats. Angle Orthod 2012; 82:107-114. [PMID: 21806466 PMCID: PMC8881039 DOI: 10.2319/030911-173.1] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2011] [Accepted: 06/01/2011] [Indexed: 06/12/2024] Open
Abstract
OBJECTIVE To evaluate the localization of osteopontin (OPN) and osterix in periodontal tissue during experimental tooth movement with heavy force in rats. MATERIALS AND METHODS Nickel-titanium closed-coil springs were used to create a 100 g mesial force to the maxillary first molars. On days 3, 7, 10, and 14 after force application, histological changes in periodontium were examined by immunohistochemistry using proliferating cell nuclear antigen (PCNA), OPN, and osterix. RESULTS PCNA-positive cells were found close to the alveolar bone and cementum on both sides. OPN-positive cells were observed along the cementing line of the cementum and bone on both sides and also were visible along with newly formed fibers in the periodontal ligament on the tension side. Osterix-positive cells were strongly detected on the surface of the alveolar bone and cementum on both sides. CONCLUSIONS During tooth movement, periodontal remodeling occurs on both sides. These results indicate that OPN and osterix may play an important role of differentiation and osteoblasts and cementoblasts matrix formation during periodontal tissue remodeling.
Collapse
Affiliation(s)
- Ji-Youn Kim
- PhD Student, Department of Oral Anatomy and Developmental Biology, Division of Dentistry, Graduate School, Kyung Hee University, Seoul, Korea
| | - Byung-In Kim
- PhD Student, Department of Oral Anatomy and Developmental Biology, Division of Dentistry, Graduate School, Kyung Hee University, Seoul, Korea
| | - Seong-Suk Jue
- Assistant Professor, Oral Anatomy and Developmental Biology, Graduate School of Dentistry, Kyung Hee University, Seoul, Korea
| | - Jae Hyun Park
- Associate Professor and Chair, Postgraduate Orthodontic Program, Arizona School of Dentistry & Oral Health, A.T. Still University, Mesa, Ariz, and International Scholar, Graduate School of Dentistry, Kyung Hee University, Seoul, Korea
| | - Je-Won Shin
- Professor and Chair, Oral Anatomy and Developmental Biology, Graduate School of Dentistry, Kyung Hee University, Seoul, Korea
| |
Collapse
|
358
|
Kanematsu D, Shofuda T, Yamamoto A, Ban C, Ueda T, Yamasaki M, Kanemura Y. Isolation and cellular properties of mesenchymal cells derived from the decidua of human term placenta. Differentiation 2011; 82:77-88. [PMID: 21684674 DOI: 10.1016/j.diff.2011.05.010] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2010] [Revised: 05/06/2011] [Accepted: 05/26/2011] [Indexed: 12/22/2022]
Abstract
The clinical promise of cell-based therapies is generally recognized, and has driven an intense search for good cell sources. In this study, we isolated plastic-adherent cells from human term decidua vera, called decidua-derived-mesenchymal cells (DMCs), and compared their properties with those of bone marrow-derived-mesenchymal stem cells (BM-MSCs). The DMCs strongly expressed the mesenchymal cell marker vimentin, but not cytokeratin 19 or HLA-G, and had a high proliferative potential. That is, they exhibited a typical fibroblast-like morphology for over 30 population doublings. Cells phenotypically identical to the DMCs were identified in the decidua vera, and genotyping confirmed that the DMCs were derived from the maternal components of the fetal adnexa. Flow cytometry analysis showed that the expression pattern of CD antigens on the DMCs was almost identical to that on BM-MSCs, but some DMCs expressed the CD45 antigen, and over 50% of them also expressed anti-fibroblast antigen. In vitro, the DMCs showed good differentiation into chondrocytes and moderate differentiation into adipocytes, but scant evidence of osteogenesis, compared with the BM-MSCs. Gene expression analysis showed that, compared with BM-MSCs, the DMCs expressed higher levels of TWIST2 and RUNX2 (which are associated with early mesenchymal development and/or proliferative capacity), several matrix metalloproteinases (MMP1, 3, 10, and 12), and cytokines (BMP2 and TGFB2), and lower levels of MSX2, interleukin 26, and HGF. Although DMCs did not show the full multipotency of BM-MSCs, their higher proliferative ability indicates that their cultivation would require less maintenance. Furthermore, the use of DMCs avoids the ethical concerns associated with the use of embryonic tissues, because they are derived from the maternal portion of the placenta, which is otherwise discarded. Thus, the unique properties of DMCs give them several advantages for clinical use, making them an interesting and attractive alternative to MSCs for regenerative medicine.
Collapse
Affiliation(s)
- Daisuke Kanematsu
- Department of Regenerative Medicine, Institute for Clinical Research, Osaka National Hospital, National Hospital Organization, 2-1-14 Hoenzaka, Chuo-ku, Osaka 540-0006, Japan
| | | | | | | | | | | | | |
Collapse
|
359
|
Bocheva G, Boyadjieva N. Epigenetic regulation of fetal bone development and placental transfer of nutrients: progress for osteoporosis. Interdiscip Toxicol 2011; 4:167-72. [PMID: 22319250 PMCID: PMC3274724 DOI: 10.2478/v10102-011-0026-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2011] [Revised: 12/03/2011] [Accepted: 12/15/2011] [Indexed: 12/16/2022] Open
Abstract
Osteoporosis is a common age-related disorder and causes acute and long-term disability and economic cost. Many factors influence the accumulation of bone minerals, including heredity, diet, physical activity, gender, endocrine functions, and risk factors such as alcohol, drug abuse, some pharmacological drugs or cigarette smoking. The pathology of bone development during intrauterine life is a factor for osteoporosis. Moreover, the placental transfer of nutrients plays an important role in the building of bones of fetuses. The importance of maternal calcium intake and vitamin D status are highlighted in this review. Various environmental factors including nutrition state or maternal stress may affect the epigenetic state of a number of genes during fetal development of bones. Histone modifications as histone hypomethylation, histone hypermethylation, hypoacetylation, etc. are involved in chromatin remodeling, known to contribute to the epigenetic landscape of chromosomes, and play roles in both fetal bone development and osteoporosis. This review will give an overview of epigenetic modulation of bone development and placental transfer of nutrients. In addition, the data from animal and human studies support the role of epigenetic modulation of calcium and vitamin D in the pathogenesis of osteoporosis. We review the evidence suggesting that various genes are involved in regulation of osteoclast formation and differentiation by osteoblasts and stem cells. Epigenetic changes in growth factors as well as cytokines play a rol in fetal bone development. On balance, the data suggest that there is a link between epigenetic changes in placental transfer of nutrients, including calcium and vitamin D, abnormal intrauterine bone development and pathogenesis of osteoporosis.
Collapse
Affiliation(s)
- Georgeta Bocheva
- Department of Pharmacology and Toxicology, Medical Faculty, Medical University, Sofia, Bulgaria
| | - Nadka Boyadjieva
- Department of Pharmacology and Toxicology, Medical Faculty, Medical University, Sofia, Bulgaria
- Endocrine Research Facility, Department of Animal Sciences, Rutgers University, New Brunswick, New Jersey, 08901, USA
| |
Collapse
|
360
|
Choi YH, Gu YM, Oh JW, Lee KY. Osterix is regulated by Erk1/2 during osteoblast differentiation. Biochem Biophys Res Commun 2011; 415:472-8. [PMID: 22056560 DOI: 10.1016/j.bbrc.2011.10.097] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2011] [Accepted: 10/21/2011] [Indexed: 12/29/2022]
Abstract
Osterix (Osx) is a novel zinc finger-containing transcription factor that is essential for osteoblast differentiation and bone formation in bone homeostasis. The mitogen-activated protein (MAP) kinases are a group of evolutionarily conserved proline-directed protein serine/threonine kinases that are activated in response to a variety of extracellular stimuli and mediate signal transduction from the cell surface to the nucleus. Erk1/2 plays essential roles in osteoblast differentiation and in supporting osteoclastogenesis, but the precise molecular signaling mechanisms between Osterix and Erk1/2 are not known. We therefore focused on the relationship between Osterix and Erk1/2 during osteoblast differentiation because BMP signaling induces Erk activation in osteoblasts. We investigated the role of the MAPK pathway in regulating protein levels and transcriptional functions of Osterix. We found that Erk activation by overexpression of constitutively active MEK increased the mRNA and protein levels of Osterix and enhanced the transcriptional activity of Osterix, whereas U0126, an inhibitor of MEK, suppressed the protein levels of Osterix and the transcriptional activity. Also, overexpression of constitutively active MEK stabilized Osterix protein. These results suggest that Erk1/2 regulates a major transcription factor, Osterix, during osteoblast differentiation by increasing its protein stability and transcriptional activity.
Collapse
Affiliation(s)
- You Hee Choi
- College of Pharmacy and Research Institute of Drug Development, Chonnam National University, Gwangju 500-757, Republic of Korea
| | | | | | | |
Collapse
|
361
|
Ker DFE, Weiss LE, Junkers SN, Chen M, Yin Z, Sandbothe MF, Huh SI, Eom S, Bise R, Osuna-Highley E, Kanade T, Campbell PG. An engineered approach to stem cell culture: automating the decision process for real-time adaptive subculture of stem cells. PLoS One 2011; 6:e27672. [PMID: 22110715 PMCID: PMC3218005 DOI: 10.1371/journal.pone.0027672] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2011] [Accepted: 10/21/2011] [Indexed: 11/18/2022] Open
Abstract
Current cell culture practices are dependent upon human operators and remain laborious and highly subjective, resulting in large variations and inconsistent outcomes, especially when using visual assessments of cell confluency to determine the appropriate time to subculture cells. Although efforts to automate cell culture with robotic systems are underway, the majority of such systems still require human intervention to determine when to subculture. Thus, it is necessary to accurately and objectively determine the appropriate time for cell passaging. Optimal stem cell culturing that maintains cell pluripotency while maximizing cell yields will be especially important for efficient, cost-effective stem cell-based therapies. Toward this goal we developed a real-time computer vision-based system that monitors the degree of cell confluency with a precision of 0.791±0.031 and recall of 0.559±0.043. The system consists of an automated phase-contrast time-lapse microscope and a server. Multiple dishes are sequentially imaged and the data is uploaded to the server that performs computer vision processing, predicts when cells will exceed a pre-defined threshold for optimal cell confluency, and provides a Web-based interface for remote cell culture monitoring. Human operators are also notified via text messaging and e-mail 4 hours prior to reaching this threshold and immediately upon reaching this threshold. This system was successfully used to direct the expansion of a paradigm stem cell population, C2C12 cells. Computer-directed and human-directed control subcultures required 3 serial cultures to achieve the theoretical target cell yield of 50 million C2C12 cells and showed no difference for myogenic and osteogenic differentiation. This automated vision-based system has potential as a tool toward adaptive real-time control of subculturing, cell culture optimization and quality assurance/quality control, and it could be integrated with current and developing robotic cell cultures systems to achieve complete automation.
Collapse
Affiliation(s)
- Dai Fei Elmer Ker
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States of America
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
362
|
Bergeron E, Leblanc E, Drevelle O, Giguère R, Beauvais S, Grenier G, Faucheux N. The evaluation of ectopic bone formation induced by delivery systems for bone morphogenetic protein-9 or its derived peptide. Tissue Eng Part A 2011; 18:342-52. [PMID: 21902464 DOI: 10.1089/ten.tea.2011.0008] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
We have earlier shown that a peptide derived from the bone morphogenetic protein-9 (pBMP-9) stimulates mouse preosteoblasts MC3T3-E1 differentiation in vitro. Here, we evaluated the effects of two delivery systems (DSs) for pBMP-9, one based on collagen and the other on chitosan. The release kinetics of BMP-9 (used as control) and pBMP-9 from these DSs were first determined in vitro by using enzyme-linked immunosorbent assay and high performance liquid chromatography assays, respectively. Micro-computerized tomography and histological analysis were then performed to study in vivo the ectopic ossification induced by both DSs containing these molecules in C57BL/6 mouse quadriceps. We found that collagen DS released in vitro about 35% of its BMP-9 within 1 h, whereas chitosan DS released 80%. The pBMP-9 was released from both DSs more slowly for up to 10 days. These release kinetics seemed to fit the Korsmeyer-Peppas model. Only chitosan DS containing BMP-9 induced strong bone formation in all mice quadriceps within 24 days. All mice quadriceps treated by pBMP-9 trapped in this DS also favored bone structures that started to mineralize. However, pBMP-9 in collagen DS failed to promote ectopic ossification within 24 days in vivo. This study highlights the importance to optimize carrier, thus improving the efficiency of pBMP-9 in vivo.
Collapse
Affiliation(s)
- Eric Bergeron
- Laboratory of Cell-Biomaterial Biohybrid Systems, Department of Chemical Engineering and Biotechnological Engineering, Faculty of Engineering, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | | | | | | | | | | | | |
Collapse
|
363
|
Maeno T, Moriishi T, Yoshida CA, Komori H, Kanatani N, Izumi SI, Takaoka K, Komori T. Early onset of Runx2 expression caused craniosynostosis, ectopic bone formation, and limb defects. Bone 2011; 49:673-82. [PMID: 21807129 DOI: 10.1016/j.bone.2011.07.023] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2011] [Revised: 07/07/2011] [Accepted: 07/13/2011] [Indexed: 11/23/2022]
Abstract
RUNX2 is an essential transcription factor for osteoblast differentiation, because osteoblast differentiation is completely blocked in Runx2-deficient mice. However, it remains to be clarified whether RUNX2 is sufficient for osteoblast differentiation during embryogenesis. To address this issue, Runx2 transgenic mice were generated under the control of the Prrx1 promoter, which directs the transgene expression to mesenchymal cells before the onset of bone development. The transgene expression was detected in the cranium, limb buds, and the region from the mandible to anterior chest wall. The skull became small and the limbs were shortened depending on the levels of the transgene expression. Early onset of Runx2 expression in the cranial mesenchyme induced mineralization on E13.0, when no mineralization was observed in wild-type mice, and resulted in craniosynostosis as shown by the closure of sutures and fontanelles on E18.5. Col1a1 and Spp1 expressions were detected in the mineralized regions on E12.5-13.5. The limb bones were hypoplastic and fused, and ectopic bones were formed in the hands and feet. Col2a1 expression was inhibited but Col1a1 expression was induced in the limb buds on E12.5. In the anterior chest wall, ectopic bones were formed through the process of intramembranous ossification, interrupting the formation of cartilaginous anlagen of sternal manubrium. These findings indicate that RUNX2 is sufficient to direct mesenchymal cells to osteoblasts and lead to intramembranous bone formation during embryogenesis; Runx2 inhibits chondrocyte differentiation at an early stage; and that Runx2 expression at appropriate level, times and spaces during embryogenesis is essential for skeletal development.
Collapse
Affiliation(s)
- Takafumi Maeno
- Department of Cell Biology, Unit of Basic Medical Sciences, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki 852-8588, Japan
| | | | | | | | | | | | | | | |
Collapse
|
364
|
Niger C, Lima F, Yoo DJ, Gupta RR, Buo AM, Hebert C, Stains JP. The transcriptional activity of osterix requires the recruitment of Sp1 to the osteocalcin proximal promoter. Bone 2011; 49:683-92. [PMID: 21820092 PMCID: PMC3170016 DOI: 10.1016/j.bone.2011.07.027] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2011] [Revised: 07/13/2011] [Accepted: 07/16/2011] [Indexed: 12/11/2022]
Abstract
The transcription factor osterix (Osx/Sp7) is required for osteogenic differentiation and bone formation in vivo. While Osx can act at canonical Sp1 DNA-binding sites and/or interact with NFATc1 to cooperatively regulate transcription in some osteoblast promoters, little is known about the molecular details by which Osx regulates osteocalcin (OCN) transcription. We previously identified in the OCN proximal promoter a minimal C/T-rich motif, termed OCN-CxRE (connexin-response element) that binds Sp1 and Sp3 in a gap junction-dependent manner. In the present study, we hypothesized that Osx could act via this non-canonical Sp1/Sp3-binding element to regulate OCN transcription. OCN promoter luciferase reporter assays show that Osx alone is an insufficient activator that requires Sp1, but not Sp3, to synergistically stimulate OCN promoter activity. Moreover, promoter deletion analyses demonstrate that both the Sp1/Sp3-binding OCN-CxRE (-70 to -57) and the -92 to -87 region of the OCN proximal promoter are critical for Osx/Sp1 synergistic activities. Our data show that Sp1 influences Osx activity by enhancing Osx occupancy on the OCN promoter, perhaps via physical interactions between the two transcription factors. Finally, alteration of the expression of the gap junction protein connexin43 modulates the recruitment of both Sp1 and Osx to the OCN promoter. In total, our data are strongly in support of Sp1 as an essential transcription factor required for Osx recruitment and transactivation of the OCN promoter. Further, these data lend insight into a mechanism by which alteration of connexin43 impacts osteogenesis in vitro and in vivo.
Collapse
Affiliation(s)
- Corinne Niger
- Department of Orthopaedics, University of Maryland, School of Medicine, Baltimore, MD, USA.
| | | | | | | | | | | | | |
Collapse
|
365
|
Takahata Y, Takarada T, Hinoi E, Nakamura Y, Fujita H, Yoneda Y. Osteoblastic γ-aminobutyric acid, type B receptors negatively regulate osteoblastogenesis toward disturbance of osteoclastogenesis mediated by receptor activator of nuclear factor κB ligand in mouse bone. J Biol Chem 2011; 286:32906-17. [PMID: 21828041 PMCID: PMC3190880 DOI: 10.1074/jbc.m111.253526] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2011] [Revised: 07/11/2011] [Indexed: 11/06/2022] Open
Abstract
The prevailing view is that signaling machineries for the neurotransmitter GABA are also expressed by cells outside the CNS. In cultured murine calvarial osteoblasts, mRNA was constitutively expressed for both subunits 1 and 2 of metabotropic GABA(B) receptor (GABA(B)R), along with inhibition by the GABA(B)R agonist baclofen of cAMP formation, alkaline phosphatase (ALP) activity, and Ca(2+) accumulation. Moreover, baclofen significantly inhibited the transactivation of receptor activator of nuclear factor-κB ligand (RANKL) gene in a manner sensitive to a GABA(B)R antagonist, in addition to decreasing mRNA expression of bone morphogenetic protein-2 (BMP2), osteocalcin, and osterix. In osteoblastic MC3T3-E1 cells stably transfected with GABA(B)R1 subunit, significant reductions were seen in ALP activity and Ca(2+) accumulation, as well as mRNA expression of osteocalcin, osteopontin, and osterix. In cultured calvarial osteoblasts from GABA(B)R1-null mice exhibiting low bone mineral density in tibia and femur, by contrast, both ALP activity and Ca(2+) accumulation were significantly increased together with promoted expression of both mRNA and proteins for BMP2 and osterix. No significant change was seen in the number of multinucleated cells stained for tartrate-resistant acid phosphatase during the culture of osteoclasts prepared from GABA(B)R1-null mice, whereas a significant increase was seen in the number of tartrate-resistant acid phosphatase-positive multinucleated cells in co-culture of osteoclasts with osteoblasts isolated from GABA(B)R1-null mice. These results suggest that GABA(B)R is predominantly expressed by osteoblasts to negatively regulate osteoblastogenesis through down-regulation of BMP2 expression toward disturbance of osteoclastogenesis after down-regulation of RANKL expression in mouse bone.
Collapse
Affiliation(s)
- Yoshifumi Takahata
- From the Laboratory of Molecular Pharmacology, Division of Pharmaceutical Sciences, Kanazawa University Graduate School of Natural Science and Technology, Kanazawa, Ishikawa 920-1192, Japan
| | - Takeshi Takarada
- From the Laboratory of Molecular Pharmacology, Division of Pharmaceutical Sciences, Kanazawa University Graduate School of Natural Science and Technology, Kanazawa, Ishikawa 920-1192, Japan
| | - Eiichi Hinoi
- From the Laboratory of Molecular Pharmacology, Division of Pharmaceutical Sciences, Kanazawa University Graduate School of Natural Science and Technology, Kanazawa, Ishikawa 920-1192, Japan
| | - Yukari Nakamura
- From the Laboratory of Molecular Pharmacology, Division of Pharmaceutical Sciences, Kanazawa University Graduate School of Natural Science and Technology, Kanazawa, Ishikawa 920-1192, Japan
| | - Hiroyuki Fujita
- From the Laboratory of Molecular Pharmacology, Division of Pharmaceutical Sciences, Kanazawa University Graduate School of Natural Science and Technology, Kanazawa, Ishikawa 920-1192, Japan
| | - Yukio Yoneda
- From the Laboratory of Molecular Pharmacology, Division of Pharmaceutical Sciences, Kanazawa University Graduate School of Natural Science and Technology, Kanazawa, Ishikawa 920-1192, Japan
| |
Collapse
|
366
|
Mori T, Miyamoto T, Yoshida H, Asakawa M, Kawasumi M, Kobayashi T, Morioka H, Chiba K, Toyama Y, Yoshimura A. IL-1β and TNFα-initiated IL-6-STAT3 pathway is critical in mediating inflammatory cytokines and RANKL expression in inflammatory arthritis. Int Immunol 2011; 23:701-12. [PMID: 21937456 DOI: 10.1093/intimm/dxr077] [Citation(s) in RCA: 251] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Rheumatoid arthritis (RA) is a chronic inflammatory disease that causes irreversible joint damage and significant disability. However, the fundamental mechanisms underlying how inflammation and joint destruction in RA develop and are sustained chronically remain largely unknown. Here, we show that signal transducer and activator of transcription 3 (STAT3) is the key mediator of both chronic inflammation and joint destruction in RA. We found that inflammatory cytokines highly expressed in RA patients, such as IL-1β, tumor necrosis factor alpha and IL-6, activated STAT3 either directly or indirectly and in turn induced expression of IL-6 family cytokines, further activating STAT3 in murine osteoblastic and fibroblastic cells. STAT3 activation also induced expression of receptor activator of nuclear factor kappa B ligand (RANKL), a cytokine essential for osteoclastogenesis, and STAT3 deficiency or pharmacological inhibition promoted significant reduction in expression of both IL-6 family cytokines and RANKL in vitro. STAT3 inhibition was also effective in treating an RA model, collagen-induced arthritis, in vivo through significant reduction in expression of IL-6 family cytokines and RANKL, inhibiting both inflammation and joint destruction. Leukemia inhibitory factor expression and STAT3 activation by IL-1β were mainly promoted by IL-6 but still induced in IL-6-deficient cells. Thus, our data provide new insight into RA pathogenesis and provide evidence that inflammatory cytokines trigger a cytokine amplification loop via IL-6-STAT3 that promotes sustained inflammation and joint destruction.
Collapse
Affiliation(s)
- Tomoaki Mori
- Department of Orthopedic Surgery, Keio University School of Medicine, 35 Shinano-machi, Shinjuku-ku, Tokyo 160-8582, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
367
|
Choi YH, Jeong HM, Jin YH, Li H, Yeo CY, Lee KY. Akt phosphorylates and regulates the osteogenic activity of Osterix. Biochem Biophys Res Commun 2011; 411:637-41. [PMID: 21777568 DOI: 10.1016/j.bbrc.2011.07.009] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2011] [Accepted: 07/01/2011] [Indexed: 12/15/2022]
Abstract
Osterix (Osx), a zinc-finger transcription factor is required for osteoblast differentiation and new bone formation during embryonic development. Akt is a member of the serine/threonine-specific protein kinase and plays important roles in osteoblast differentiation. The function of Osterix can be also modulated by post-translational modification. But, the precise molecular signaling mechanisms between Osterix and Akt are not known. In this study, we investigated the potential regulation of Osterix function by Akt in osteoblast differentiation. We found that Akt phosphorylates Osterix and that Akt activation increases protein stability, osteogenic activity and transcriptional activity of Osterix. We also found that BMP-2 increases the protein level of Osterix in an Akt activity-dependent manner. These results suggest that Akt activity enhances the osteogenic function of Osterix, at least in part, through protein stabilization and that BMP-2 regulates the osteogenic function of Osterix, at least in part, through Akt.
Collapse
Affiliation(s)
- You Hee Choi
- College of Pharmacy and Research Institute of Drug development, Chonnam National University, Gwangju 500-757, Republic of Korea
| | | | | | | | | | | |
Collapse
|
368
|
Lau E, Lee WD, Li J, Xiao A, Davies JE, Wu Q, Wang L, You L. Effect of low-magnitude, high-frequency vibration on osteogenic differentiation of rat mesenchymal stromal cells. J Orthop Res 2011; 29:1075-80. [PMID: 21344497 PMCID: PMC3119487 DOI: 10.1002/jor.21334] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2010] [Accepted: 11/15/2010] [Indexed: 02/04/2023]
Abstract
Whole body vibration (WBV), consisting of a low-magnitude, high-frequency (LMHF) signal, is anabolic to bone in vivo and may act through alteration of the lineage commitment of mesenchymal stromal cells (MSC). We investigated the effect of LMHF vibration on rat bone marrow-derived MSCs (rMSCs) in an in vitro system. We subjected rMSCs to repeated (six) bouts of 1-h vibration at 0.3g and 60 Hz in the presence of osteogenic (OS) induction medium. The OS differentiation of rMSCs under the loaded and non-loaded conditions was assessed by examining cell proliferation, alkaline phosphatase (ALP) activity, mRNA expression of various osteoblast-associated markers [ALP, Runx2, osterix (Osx), collagen type I alpha 1 (COL1A1), bone sialoprotein (BSP), osteopontin (OPN), and osteocalcin (OCN)], and matrix mineralization. LMHF vibration did not enhance the OS differentiation of rMSCs. Surprisingly, the mRNA level of Osx, a transcription factor necessary for osteoblast formation, was decreased, and matrix mineralization was inhibited. Our findings suggest that LMHF vibration may exert its anabolic effects in vivo via mechanosensing of a cell type different from MSCs.
Collapse
Affiliation(s)
- Esther Lau
- Institute of Biomaterials & Biomedical Engineering, University of Toronto, Toronto, ON, Canada
| | - Whitaik David Lee
- Institute of Biomaterials & Biomedical Engineering, University of Toronto, Toronto, ON, Canada
| | - Jason Li
- Institute of Biomaterials & Biomedical Engineering, University of Toronto, Toronto, ON, Canada
| | - Andrew Xiao
- Department of Physiology and Pharmacology, The University of Western Ontario, London, Ontario, Canada
| | | | - Qianhong Wu
- Department of Mechanical Engineering, Villanova University, Villanova, PA, USA
| | - Liyun Wang
- Department of Mechanical Engineering, University of Delaware, Newark, DE, USA
| | - Lidan You
- Institute of Biomaterials & Biomedical Engineering, University of Toronto, Toronto, ON, Canada, Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, ON, Canada,Corresponding author: 5 King’s College Road, Room 314D, Toronto, Ontario, Canada M5S 3G8, Tel: 416-978-5736 Fax: 416-978-7753,
| |
Collapse
|
369
|
Regulation of osteogenetic differentiation of mesenchymal stem cells by two axial rotational culture. J Artif Organs 2011; 14:310-7. [PMID: 21692002 DOI: 10.1007/s10047-011-0580-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2011] [Accepted: 05/27/2011] [Indexed: 10/18/2022]
Abstract
It is crucial to understand how gravitational force affects the osteogenic differentiation of mesenchymal stem cells (MSCs), and these fundamental aspects hold promise for the development of a novel model of MSC regulation for cell proliferation and differentiation. The objective of this study was to investigate how significantly gravitational dispersion affects the spontaneously induced osteogenic differentiation of MSCs. Expression of surface antigen was measured by flow cytometry prior to two axial rotational cultures. About 12,500 hMSC cells were spread on culture wells of 1.8 cm(2) surface area and incubated for 7 days at 5% CO(2). The culture medium, 10% FCS/DMEM containing 3 ng/ml bFGF, was replaced every 3 days. Four wells then were placed in a 50-ml centrifugal tube filled with 10% FCS/DMEM without bFGF. The centrifugal tube was attached to the center of the rotor, and two axial rotational cultures were started at 10 rpm each of both rotational speeds. It was confirmed that the hMSCs used in this study expressed typical surface antigens as well as a multipotent differentiation ability for either osteogenic or adipogenic differentiation. Spontaneous expression of alkaline phosphatase (Alp) mRNA following the conventional static culture (1G condition) was suppressed by two axial rotational cultures for 7 days (p < 0.05). A separate study indicated that the cell count number eventually increased from 24,700 ± 6,400 to 78,400 ± 18,700 (p < 0.05). In addition, suppressed Alp mRNA was recovered after an additional 7-day culture under static conditions. This result indicated that dispersion of gravity is a promising modality to regulate osteogenic differentiation of hMSCs.
Collapse
|
370
|
Shimizu T, Tanaka T, Iso T, Matsui H, Ooyama Y, Kawai-Kowase K, Arai M, Kurabayashi M. Notch signaling pathway enhances bone morphogenetic protein 2 (BMP2) responsiveness of Msx2 gene to induce osteogenic differentiation and mineralization of vascular smooth muscle cells. J Biol Chem 2011; 286:19138-48. [PMID: 21471203 DOI: 10.1074/jbc.m110.175786] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Vascular calcification is regulated in a process similar to bone formation. BMP2 (bone morphogenetic protein 2) is essential for osteoblastic differentiation of mesenchymal progenitor cells and thus has been implicated in the development of vascular calcification. Here we examined whether Notch signaling interacts with BMP2 signaling to regulate osteogenic differentiation and mineralization of vascular smooth muscle cells (SMCs). BMP2 alone scarcely induced the expression of alkaline phosphatase (ALP), an ectoenzyme crucially required for active biomineralization, in human aortic SMCs (HASMCs), despite its strong induction in osteoblast precursor MC3T3-E1 cells. Notably, overexpression of the Notch1 intracellular domain (N1-ICD) markedly enhanced BMP2-mediated induction of ALP activity and mineralization of HASMCs. In HASMCs, expression of Msx2 gene, a well documented BMP2 target gene in osteoblasts, was barely induced by BMP2 alone, and N1-ICD clearly enhanced the BMP2-driven Msx2 gene expression. Deletion and site-directed mutation analysis of Msx2 gene promoter revealed that the RBPJk-binding site was necessary for BMP2 responsiveness. Using the RBPJk-deficient cells and siRNA for RBPJk, we showed that RBPJk was required for BMP2 induction of Msx2 gene expression and ALP activity. Moreover, we showed that Smad1, a transcription factor downstream of BMP2 signaling, interacted with N1-ICD to form a complex within the Msx2 promoter. Immunohistochemistry of human calcifying atherosclerotic plaques revealed colocalized expression of Notch1, BMP2, and Msx2. These results indicate that the Notch intracellular domain·RBPJk complex enhances the BMP2-induced Msx2 gene expression by cooperating with Smad1 and suggest that Notch signaling makes vascular SMC responsive to BMP2 and promotes vascular calcification.
Collapse
Affiliation(s)
- Takehisa Shimizu
- Department of Medicine and Biological Science, Gunma University Graduate School of Medicine, Gunma 371-8511, Japan
| | | | | | | | | | | | | | | |
Collapse
|
371
|
Xing W, Pourteymoor S, Mohan S. Ascorbic acid regulates osterix expression in osteoblasts by activation of prolyl hydroxylase and ubiquitination-mediated proteosomal degradation pathway. Physiol Genomics 2011; 43:749-57. [PMID: 21467157 DOI: 10.1152/physiolgenomics.00229.2010] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Mouse genetic studies reveal that ascorbic acid (AA) is essential for osteoblast (OB) differentiation and that osterix (Osx) was a key downstream target of AA action in OBs. To determine the molecular pathways for AA regulation of Osx expression, we evaluated if AA regulates Osx expression by regulating production and/or actions of local growth factors and extracellular matrix (ECM) proteins. Inhibition of actions of IGFs by inhibitory IGFBP-4, BMPs by noggin, and ECM-mediated integrin signaling by RGD did not block AA effects on Osx expression in OBs. Furthermore, blockade of components of MAPK signaling pathway had no effect on AA-induced Osx expression. Because AA is required for prolyl hydroxylase domain (PHD) activity and because PHD-induced prolyl-hydroxylation targets proteins to proteosomal degradation, we next tested if AA effect on Osx expression involves activation of PHD to hydroxylate and induce ubiquitin-proteosome-mediated degradation of transcriptional repressor(s) of Osx gene. Treatment of OBs with dimethyloxallyl glycine and ethyl 3, 4-dihydroxybenzoate, known inhibitors of PHD, completely blocked AA effect on Osx expression and OB differentiation. Knockdown of PHD2 expression by Lentivirus-mediated shRNA abolished AA-induced Osx induction and alkaline phosphatase activity. Furthermore, treatment of OBs with MG115, inhibitor of proteosomal degradation, completely blocked AA effects on Osx expression. Based on these data, we conclude that AA effect on Osx expression is mediated via a novel mechanism that involves PHD2 and proteosomal degradation of a yet to be identified transcriptional repressor that is independent of BMP, IGF-I, or integrin-mediated signaling in mouse OBs.
Collapse
Affiliation(s)
- Weirong Xing
- Musculoskeletal Disease Center, Jerry L. Pettis VA Medical Center, California, USA
| | | | | |
Collapse
|
372
|
Tanaka S, Kudo H, Asari T, Ono A, Motomura S, Toh S, Furukawa KI. P2Y1 transient overexpression induced mineralization in spinal ligament cells derived from patients with ossification of the posterior longitudinal ligament of the cervical spine. Calcif Tissue Int 2011; 88:263-71. [PMID: 21210088 DOI: 10.1007/s00223-010-9456-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2010] [Accepted: 12/12/2010] [Indexed: 12/01/2022]
Abstract
Ossification of the posterior longitudinal ligament of the spine (OPLL) is characterized by ectopic bone formation in the spinal ligaments. We previously reported that P2 purinoceptor Y1 (P2Y1) expression is elevated in the spinal ligament cells of OPLL patients, but the role of P2Y1 in the spinal ligament calcification process is unknown. To verify the hypothesis that P2Y1 expression causes ossification of the spinal ligaments, we forced expression of P2Y1 in spinal ligament cells obtained from OPLL and non-OPLL patients using a cytomegaloviral vector. The expression of mRNA and protein was investigated by quantitative real-time polymerase chain reaction and immunofluorescence staining, respectively. After transfection, bone morphogenetic protein-2 (BMP-2) and Sox9 mRNA expression was significantly increased in spinal ligament cells derived from OPLL patients (4.36- and 6.44-fold, respectively) compared with cells from non-OPLL patients (0.57- and 3.64-fold, respectively) 2 days after P2Y1 transient transfection. Furthermore, a statistically significant correlation was observed between BMP-2 and P2Y1 mRNA expression levels in cells obtained from OPLL patients but not from non-OPLL patients. Immunofluorescence analysis showed that BMP-2 and P2Y1 expression was increased in OPLL patients only, while Sox9 expression was increased in OPLL and non-OPLL patients. MRS2279, a selective P2Y1 antagonist, blocked the upregulation of Sox9 and BMP-2 after forced expression of P2Y1. Furthermore, 4 days after transient transfection of P2Y1, mineralization was observed only in spinal ligament cells from OPLL patients. These results suggest that P2Y1 expression plays an important role in ectopic bone formation in the spinal ligaments of OPLL patients.
Collapse
Affiliation(s)
- Sunao Tanaka
- Department of Pharmacology, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki, Aomori 036-8562, Japan
| | | | | | | | | | | | | |
Collapse
|
373
|
Rodríguez-Carballo E, Ulsamer A, Susperregui ARG, Manzanares-Céspedes C, Sánchez-García E, Bartrons R, Rosa JL, Ventura F. Conserved regulatory motifs in osteogenic gene promoters integrate cooperative effects of canonical Wnt and BMP pathways. J Bone Miner Res 2011; 26:718-29. [PMID: 20878775 DOI: 10.1002/jbmr.260] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Osteoblast differentiation depends on the coordinated network of evolutionary conserved transcription factors during bone formation and homeostasis. Evidence indicates that bone morphogenetic protein (BMP) and Wnt proteins regulate several steps of skeletal development. Here, we provide a molecular description of the cooperative effects of BMP and Wnt canonical pathway on the expression of the early osteogenic genes Dlx5, Msx2, and Runx2 in C2C12 cells, primary cultures of bone marrow-mesenchymal stem cells, and organotypic calvarial cultures. Coordinated regulation of these genes leads to the cooperative activation of their downstream osteogenic target gene osterix. Induction of these genes is mediated through enhancer regions with an evolutionary conserved structure encompassing both Smad and TCF/LEF1 DNA-binding sites. Formation of a cooperative complex is mediated through DNA binding of Smads and TCF4/β-catenin to their cognate sequences, as well as protein-protein interactions between them. The formation of these cooperative transcriptional complexes results in a more efficient recruitment of coactivators such as p300. We propose that evolutionary conserved regulatory regions in specific osteogenic master genes are key integrative modules during osteogenesis.
Collapse
Affiliation(s)
- Edgardo Rodríguez-Carballo
- Departament de Ciències Fisiològiques II, Universitat de Barcelona, IDIBELL, L'Hospitalet de Llobregat, Spain
| | | | | | | | | | | | | | | |
Collapse
|
374
|
Zuk P, Chou YF, Mussano F, Benhaim P, Wu BM. Adipose-derived stem cells and BMP2: part 2. BMP2 may not influence the osteogenic fate of human adipose-derived stem cells. Connect Tissue Res 2011; 52:119-32. [PMID: 20701465 DOI: 10.3109/03008207.2010.484515] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Although recent studies have proposed that human adipose-derived stem cells (ASCs), together with BMP2, can heal critical-sized bony defects, a companion study in this issue suggests that ASCs may not respond to BMP2 in vivo. To examine why this may be occurring. ASCs were treated with BMP2 and the cells' in vitro osteogenic capacity assessed along with the canonical BMP2 signaling pathway. In vitro treatment of ASCs with BMP2 had no consistent and significant effect on matrix mineralization or their expression of several osteogenic markers. Consistent and significant changes to Smad1/5/8 phosphorylation levels were also not observed upon BMP2 induction. The removal of dexamethasone from the BMP2 induction conditions had no effect on the observed results nor did stimulating ASCs with BMP2 from an alternate source (INFUSE; Medtronic, Minneapolis, MN, USA). In addition, no BMP-induced nuclear translocation of Smad1/Smad4 complexes could be discerned, suggesting that the canonical BMP2 signaling pathway may not be functional in ASCs. Interestingly, three downstream BMP2 pathway genes, distal-less3 (dlx3), distal-less5 (dlx5), and osterix, were not expressed in BMP2-induced ASCs, calling the utility of BMP2 induced in ASCs into question. The results of this in vitro study were consistent with that of our companion in vivo study that suggests a lack of effect of BMP2 on the osteogenic capacity of ASCs. Taken together, the data from both studies suggest that ASC osteogenic differentiation may not be influenced by BMP2. Consequently, combining BMP2 treatment with adult stem cells, like ASCs, may not be a viable strategy for bony healing.
Collapse
Affiliation(s)
- Patricia Zuk
- Department of Surgery, David Geffen School of Medicine at UCLA, University of California, Los Angeles, California 90095-1749, USA.
| | | | | | | | | |
Collapse
|
375
|
Zhang M, Ho HC, Sheu TJ, Breyer MD, Flick LM, Jonason JH, Awad HA, Schwarz EM, O'Keefe RJ. EP1(-/-) mice have enhanced osteoblast differentiation and accelerated fracture repair. J Bone Miner Res 2011; 26:792-802. [PMID: 20939055 PMCID: PMC3179328 DOI: 10.1002/jbmr.272] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
As a downstream product of cyclooxygenase 2 (COX-2), prostaglandin E(2) (PGE(2)) plays a crucial role in the regulation of bone formation. It has four different receptor subtypes (EP1 through EP4), each of which exerts different effects in bone. EP2 and EP4 induce bone formation through the protein kinase A (PKA) pathway, whereas EP3 inhibits bone formation in vitro. However, the effect of EP1 receptor signaling during bone formation remains unclear. Closed, stabilized femoral fractures were created in mice with EP1 receptor loss of function at 10 weeks of age. Healing was evaluated by radiographic imaging, histology, gene expression studies, micro-computed tomographic (µCT), and biomechanical measures. EP1(-/-) mouse fractures have increased formation of cartilage, increased fracture callus, and more rapid completion of endochondral ossification. The fractures heal faster and with earlier fracture callus mineralization with an altered expression of genes involved in bone repair and remodeling. Fractures in EP1(-/-) mice also had an earlier appearance of tartrate-resistant acid phosphatase (TRAcP)-positive osteoclasts, accelerated bone remodeling, and an earlier return to normal bone morphometry. EP1(-/-) mesenchymal progenitor cells isolated from bone marrow have higher osteoblast differentiation capacity and accelerated bone nodule formation and mineralization in vitro. Loss of the EP1 receptor did not affect EP2 or EP4 signaling, suggesting that EP1 and its downstream signaling targets directly regulate fracture healing. We show that unlike the PGE(2) receptors EP2 and EP4, the EP1 receptor is a negative regulator that acts at multiple stages of the fracture healing process. Inhibition of EP1 signaling is a potential means to enhance fracture healing.
Collapse
Affiliation(s)
- Minjie Zhang
- Center for Musculoskeletal Research, University of Rochester, Rochester, NY, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
376
|
Neven E, De Schutter TM, De Broe ME, D'Haese PC. Cell biological and physicochemical aspects of arterial calcification. Kidney Int 2011; 79:1166-77. [PMID: 21412217 DOI: 10.1038/ki.2011.59] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Processes similar to endochondral or intramembranous bone formation occur in the vascular wall. Bone and cartilage tissue as well as osteoblast- and chondrocyte-like cells are present in calcified arteries. As in bone formation, apoptosis and matrix vesicles play an important role in the initiation of vascular calcification. Recent evidence indicates that nanocrystals initially formed in the vessel wall may actively be involved in the progression of the calcification process. This review focuses on the cellular and structural similarities between bone formation and vascular calcification and discusses the initial events in this pathological mineralization process.
Collapse
Affiliation(s)
- Ellen Neven
- Department of Pathophysiology, University of Antwerp, Belgium
| | | | | | | |
Collapse
|
377
|
Rui YF, Lui PPY, Ni M, Chan LS, Lee YW, Chan KM. Mechanical loading increased BMP-2 expression which promoted osteogenic differentiation of tendon-derived stem cells. J Orthop Res 2011; 29:390-6. [PMID: 20882582 DOI: 10.1002/jor.21218] [Citation(s) in RCA: 142] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2010] [Accepted: 06/23/2010] [Indexed: 02/04/2023]
Abstract
This study aimed to investigate the effect of repetitive tensile loading on the expression of BMP-2 and the effect of BMP-2 on the osteogenic differentiation of tendon-derived stem cells (TDSCs) in vitro. Repetitive stretching was applied to TDSCs isolated from rat patellar tendon at 0%, 4%, and 8%, 0.5 Hz. The expression of BMP-2 was detected by Western blotting and qPCR. To study the osteogenic effects of BMP-2 on TDSCs, BMP-2 was added to the TDSC monolayer for the detection of ALP activity and calcium nodule formation in a separate experiment. TDSCs adhered, proliferated, and aligned along the direction of externally applied tensile force while they were randomly oriented in the control group. Western blotting showed increased expression of BMP-2 in 4% and 8% stretching groups but not in the control group. Up-regulation of BMP-2 mRNA was also observed in the 4% stretching group. BMP-2 increased the osteogenic differentiation of TDSCs as indicated by higher ALP cytochemical staining, ALP activity, and calcium nodule formation. Repetitive tensile loading increased the expression of BMP-2 and addition of BMP-2 enhanced osteogenic differentiation of TDSCs. Activation of BMP-2 expression in TDSCs during tendon overuse might provide a possible explanation of ectopic calcification in calcifying tendinopathy.
Collapse
Affiliation(s)
- Yun Feng Rui
- Faculty of Medicine, Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Hong Kong SAR, China
| | | | | | | | | | | |
Collapse
|
378
|
Abstract
RUNX2 is an essential transcription factor for osteoblast differentiation and chondrocyte maturation. SP7, another transcription factor, is required for osteoblast differentiation. Major signaling pathways, including FGF, Wnt, and IHH, also play important roles in skeletal development. RUNX2 regulates Sp7 expression at an early stage of osteoblast differentiation. FGF2 upregulates Runx2 expression and activates RUNX2, and gain-of-function mutations of FGFRs cause craniosynostosis and limb defect with upregulation of Runx2 expression. Wnt signaling upregulates Runx2 expression and activates RUNX2, and RUNX2 induces Tcf7 expression. IHH is required for Runx2 expression in osteoprogenitor cells during endochondral bone development, and RUNX2 directly regulates Ihh expression in chondrocytes. Thus, RUNX2 regulates osteoblast differentiation and chondrocyte maturation through the network with SP7 and with FGF, Wnt, and IHH signaling pathways during skeletal development.
Collapse
Affiliation(s)
- Toshihisa Komori
- Department of Cell Biology, Unit of Basic Medical Sciences, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki 852-8588, Japan.
| |
Collapse
|
379
|
Wu LA, Feng J, Wang L, Mu YD, Baker A, Donly KJ, Harris SE, MacDougall M, Chen S. Development and characterization of a mouse floxed Bmp2 osteoblast cell line that retains osteoblast genotype and phenotype. Cell Tissue Res 2011; 343:545-58. [PMID: 21271257 DOI: 10.1007/s00441-010-1120-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2010] [Accepted: 12/15/2010] [Indexed: 01/29/2023]
Abstract
Bone morphogenetic protein 2 (Bmp2) is essential for osteoblast differentiation and osteogenesis. Generation of floxed Bmp2 osteoblast cell lines is a valuable tool for studying the effects of Bmp2 on osteoblast differentiation and its signaling pathways during skeletal metabolism. Due to relatively limited sources of primary osteoblasts, we have developed cell lines that serve as good surrogate models for the study of osteoblast cell differentiation and bone mineralization. In this study, we established and characterized immortalized mouse floxed Bmp2 osteoblast cell lines. Primary mouse floxed Bmp2 osteoblasts were transfected with pSV3-neo and clonally selected. These transfected cells were verified by PCR and immunohistochemistry. To determine the genotype and phenotype of the immortalized cells, cell morphology, proliferation, differentiation and mineralization were analyzed. Also, expression of osteoblast-related gene markers including Runx2, Osx, ATF4, Dlx3, bone sialoprotein, dentin matrix protein 1, osteonectin, osteocalcin and osteopontin were examined by quantitative RT-PCR and immunohistochemistry. These results showed that immortalized floxed Bmp2 osteoblasts had a higher proliferation rate but preserved their genotypic and phenotypic characteristics similar to the primary cells. Thus, we, for the first time, describe the development of immortalized mouse floxed Bmp2 osteoblast cell lines and present a useful model to study osteoblast biology mediated by BMP2 and its downstream signaling transduction pathways.
Collapse
Affiliation(s)
- Li-an Wu
- Department of Pediatric Dentistry, Dental School, The University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229-3900, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
380
|
Taylor J, Butcher M, Zeadin M, Politano A, Shaughnessy SG. Oxidized low-density lipoprotein promotes osteoblast differentiation in primary cultures of vascular smooth muscle cells by up-regulatingOsterixexpression in an Msx2-dependent manner. J Cell Biochem 2011; 112:581-8. [DOI: 10.1002/jcb.22948] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
381
|
Baek JA, Lan Y, Liu H, Maltby KM, Mishina Y, Jiang R. Bmpr1a signaling plays critical roles in palatal shelf growth and palatal bone formation. Dev Biol 2010; 350:520-31. [PMID: 21185278 DOI: 10.1016/j.ydbio.2010.12.028] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2010] [Revised: 12/02/2010] [Accepted: 12/16/2010] [Indexed: 12/27/2022]
Abstract
Cleft palate, including submucous cleft palate, is among the most common birth defects in humans. While overt cleft palate results from defects in growth or fusion of the developing palatal shelves, submucous cleft palate is characterized by defects in palatal bones. In this report, we show that the Bmpr1a gene, encoding a type I receptor for bone morphogenetic proteins (Bmp), is preferentially expressed in the primary palate and anterior secondary palate during palatal outgrowth. Following palatal fusion, Bmpr1a mRNA expression was upregulated in the condensed mesenchyme progenitors of palatal bone. Tissue-specific inactivation of Bmpr1a in the developing palatal mesenchyme in mice caused reduced cell proliferation in the primary and anterior secondary palate, resulting in partial cleft of the anterior palate at birth. Expression of Msx1 and Fgf10 was downregulated in the anterior palate mesenchyme and expression of Shh was downregulated in the anterior palatal epithelium in the Bmpr1a conditional mutant embryos, indicating that Bmp signaling regulates mesenchymal-epithelial interactions during palatal outgrowth. In addition, formation of the palatal processes of the maxilla was blocked while formation of the palatal processes of the palatine was significantly delayed, resulting in submucous cleft of the hard palate in the mutant mice. Our data indicate that Bmp signaling plays critical roles in the regulation of palatal mesenchyme condensation and osteoblast differentiation during palatal bone formation.
Collapse
Affiliation(s)
- Jin-A Baek
- Center for Oral Biology, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
| | | | | | | | | | | |
Collapse
|
382
|
Abstract
Osteosarcoma is an aggressive but ill-understood cancer of bone that predominantly affects adolescents. Its rarity and biological heterogeneity have limited studies of its molecular basis. In recent years, an important role has emerged for the RUNX2 "platform protein" in osteosarcoma oncogenesis. RUNX proteins are DNA-binding transcription factors that regulate the expression of multiple genes involved in cellular differentiation and cell-cycle progression. RUNX2 is genetically essential for developing bone and osteoblast maturation. Studies of osteosarcoma tumours have revealed that the RUNX2 DNA copy number together with RNA and protein levels are highly elevated in osteosarcoma tumors. The protein is also important for metastatic bone disease of prostate and breast cancers, while RUNX2 may have both tumor suppressive and oncogenic roles in bone morphogenesis. This paper provides a synopsis of the current understanding of the functions of RUNX2 and its potential role in osteosarcoma and suggests directions for future study.
Collapse
|
383
|
Mandal CC, Drissi H, Choudhury GG, Ghosh-Choudhury N. Integration of phosphatidylinositol 3-kinase, Akt kinase, and Smad signaling pathway in BMP-2-induced osterix expression. Calcif Tissue Int 2010; 87:533-40. [PMID: 20872216 PMCID: PMC3055166 DOI: 10.1007/s00223-010-9419-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2010] [Accepted: 07/23/2010] [Indexed: 12/31/2022]
Abstract
Osterix (Osx), a BMP-2-regulated transcription factor, controls expression of genes essential for osteoblast differentiation. Using progressive deletion of the Osx promoter, we characterized a Smad binding element (SBE) between -552 and -839 bp from its transcription start site. Electrophoretic mobility shift assay and chromatin immunoprecipitation assay showed binding and in vivo recruitment of Smads 1 and 5 to the Osx SBE. Inactivation of PI 3-kinase by the pharmacologic inhibitor Ly294002 or by dominant negative (DN) enzyme significantly blocked BMP-2-induced Osx protein and mRNA expression and Osx transcription. Finally, both DN PI 3-kinase and DN Akt significantly attenuated Smad 5-dependent transcription of Osx, demonstrating the first evidence for a concerted action of PI 3-kinase/Akt signaling with BMP-specific Smads for expression of Osx.
Collapse
Affiliation(s)
- Chandi Charan Mandal
- Department of Pathology, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Hicham Drissi
- Department of Orthopedic Surgery, New England Musculoskeletal Institute, University of Connecticut Health Center, Farmington, CT, USA
| | - Goutam Ghosh Choudhury
- Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA. Geriatric Research, Education and Clinical Center, South Texas Veterans Health Care System, San Antonio, TX, USA. VA Research, South Texas Veterans Health Care System, San Antonio, TX, USA
| | - Nandini Ghosh-Choudhury
- Department of Pathology, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA. VA Research, South Texas Veterans Health Care System, San Antonio, TX, USA
| |
Collapse
|
384
|
Tanaka K, Tanaka S, Sakai A, Ninomiya T, Arai Y, Nakamura T. Deficiency of vitamin A delays bone healing process in association with reduced BMP2 expression after drill-hole injury in mice. Bone 2010; 47:1006-12. [PMID: 20807599 DOI: 10.1016/j.bone.2010.08.016] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2010] [Revised: 07/12/2010] [Accepted: 08/25/2010] [Indexed: 12/12/2022]
Abstract
Although it is predicted that vitamin A and its active form, retinoic acid, regulate osteoblast lineage, this has not been elucidated in growing mammalians. To clarify the direct effect of retinoic acid on bone, we observed the process of filling up newly generating bone into a drill-hole of the bone, which is understood as membranous ossification, in vitamin A-deficient mice. Mice were assigned to three groups: a vitamin A-deficient group (VAD), which was fed a diet without vitamin A from the 10th day of gestation to the end of the experiments; a vitamin A-deficient-sufficient group (VADS), which was fed a diet without vitamin A from the 10th day of gestation to 4 weeks of age; and a vitamin A-sufficient group (VAS), which was fed a standard diet to the end of the experiment. In mice at 10 weeks of age (day 0), a drill-hole injury was made with a diameter of 1mm at the anterior portion of the diaphysis of the bilateral femurs. In VAD, retardation in repairing the drill-hole was demonstrated by in vivo micro-CT and histomorphometry from day 7 and after surgery. During repair of the bone defect, increases of bmp2, dlx5, msx2, col1a1, and osteocalcin mRNA expression were suppressed, and runx2-p2 mRNA expression was accelerated in VAD. Implantation of BMP2 in the bone defect of VAD normalized the delayed bone healing and mRNA expressions. We concluded that vitamin A regulates bmp2 mRNA expression and plays a crucial role in osteoblastogenesis and bone formation.
Collapse
Affiliation(s)
- Kazuhiro Tanaka
- Department of Orthopaedic Surgery, School of Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu 807-8555, Japan.
| | | | | | | | | | | |
Collapse
|
385
|
The effects of Sp7/Osterix gene silencing in the chondroprogenitor cell line, ATDC5. Biochem Biophys Res Commun 2010; 403:242-6. [PMID: 21075078 DOI: 10.1016/j.bbrc.2010.11.023] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2010] [Accepted: 11/09/2010] [Indexed: 11/21/2022]
Abstract
Chondrocytes are known to express Sp7/Osterix (Osx) to varying degrees, but the role of Osx in chondrocytes is still unknown. In the current study, we investigated the role of the Osx gene using the clonal mouse embryonic cell line ATDC5, which retains the properties of the chondroprogenitor. ATDC5 cells express Osx; therefore, the effects of Osx gene silencing with shRNA lentiviral particles on chondrocyte marker gene expression and alkaline phosphatase (ALP) activity were investigated. At confluency, gene silencing down-regulated expression of the Sox trio (Sox5, 6, 9), Dlx5 and Alp mRNA, as well as ALP enzyme activity. Bone morphogenetic protein 2 (BMP2) is known to induce Osx gene expression in chondrocytes, and stimulation with BMP2 rescued Osx expression accompanied by up-regulation of Alp expression and ALP enzyme activity in a dose-dependent manner. To clarify the role of Osx in chondrocyte differentiation, cells induced to differentiate by 10μg/ml insulin for 21days were examined. Gene silencing inhibited the expression of the hypertrophic chondrocyte marker gene, type X collagen (Col X), and attenuated up-regulation of Dlx5 and Alp mRNA, as well as ALP enzyme activity. Taken together, these results suggest that Osx is involved in chondrogenic gene activation and is a positive regulator of the chondrocyte differentiation.
Collapse
|
386
|
Sethi S, Radio NM, Kotlarczyk MP, Chen CT, Wei YH, Jockers R, Witt-Enderby PA. Determination of the minimal melatonin exposure required to induce osteoblast differentiation from human mesenchymal stem cells and these effects on downstream signaling pathways. J Pineal Res 2010; 49:222-38. [PMID: 20626586 DOI: 10.1111/j.1600-079x.2010.00784.x] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The purpose of this study was to determine the critical time periods of melatonin treatment required to induce human mesenchymal stem cells (hAMSCs) into osteoblasts and to determine which osteogenic genes are involved in the process. The study design consisted of adding melatonin for different times (2, 5, 10, 14 or 21 days) toward the end of a 21-day treatment containing osteogenic (OS+) medium or at the beginning of the 21-day treatment and then withdrawn. The results show that a 21-day continuous melatonin treatment was required to induce both alkaline phosphatase (ALP) activity and calcium deposition and these effects were mediated through MT₂Rs. Functional analysis revealed that peak ALP levels induced by melatonin were accompanied by attenuation of melatonin-mediated inhibition of forskolin-induced cAMP accumulation. Immunoprecipitation and western blot analyses, respectively, showed that MT₂R/β-arrestin scaffolds complexed to Gi, MEK1/2 and ERK1/2 formed in these differentiated hAMSCs (i.e., when ALP levels were highest) where ERK1/2 resided primarily in the cytosol. It is hypothesized that these complexes form to modulate the subcellular localization of ERK1/2 to affect osteogenic gene expression. Using real-time RT-PCR, chronic melatonin exposure induced the expression of osteogenic genes RUNX-2, osteocalcin and BMP-2, through MT₂Rs. No melatonin-mediated changes in the mRNA expression of ALP, BMP-6 or in the oxidative enzymes MtTFA, PGC-1α, Polγ, NRF-1, PDH, PDK and LDH occurred. These data show that a continuous 21-day melatonin exposure is required to induce osteoblast differentiation from hAMSCs through the formation of MT₂R/Gi/β-arrestin/MEK/ERK1/2 complexes to induce osteogenesis.
Collapse
Affiliation(s)
- Shalini Sethi
- Duquesne University School of Pharmacy, Division of Pharmaceutical Sciences, Pittsburgh, PA 15282, USA
| | | | | | | | | | | | | |
Collapse
|
387
|
Wu LA, Feng J, Wang L, Mu YD, Baker A, Donly KJ, Gluhak-Heinrich J, Harris SE, MacDougall M, Chen S. Immortalized mouse floxed Bmp2 dental papilla mesenchymal cell lines preserve odontoblastic phenotype and respond to BMP2. J Cell Physiol 2010; 225:132-9. [PMID: 20458728 DOI: 10.1002/jcp.22204] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Bone morphogenetic protein 2 (Bmp2) is essential for odontogensis and dentin mineralization. Generation of floxed Bmp2 dental mesenchymal cell lines is a valuable application for studying the effects of Bmp2 on dental mesenchymal cell differentiation and its signaling pathways during dentinogenesis. Limitation of the primary culture of dental mesenchymal cells has led to the development of cell lines that serve as good surrogate models for the study of dental mesenchymal cell differentiation into odontoblasts and mineralization. In this study, we established and characterized immortalized mouse floxed Bmp2 dental papilla mesenchymal cell lines, which were isolated from 1st mouse mandibular molars at postnatal day 1 and immortalized with pSV40 and clonally selected. These transfected cell lines were characterized by RT-PCR, immunohistochemistry, and analyzed for alkaline phosphatase activity and mineralization nodule formation. One of these immortalized cell lines, iBmp2-dp, displayed a higher proliferation rate, but retained the genotypic and phenotypic characteristics similar to primary cells as determined by expression of tooth-specific markers as well as demonstrated the ability to differentiate and form mineralized nodules. In addition, iBmp2-dp cells were inducible and responded to BMP2 stimulation. Thus, we for the first time described the establishment of an immortalized mouse floxed Bmp2 dental papilla mesenchyma cell line that might be used for studying the mechanisms of dental cell differentiation and dentin mineralization mediated by Bmp2 and other growth factor signaling pathways.
Collapse
Affiliation(s)
- Li-an Wu
- Department of Pediatric Dentistry, Dental School, The University of Texas Health Science Center, San Antonio, Texas 78229-3900, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
388
|
Eapen A, Sundivakkam P, Song Y, Ravindran S, Ramachandran A, Tiruppathi C, George A. Calcium-mediated stress kinase activation by DMP1 promotes osteoblast differentiation. J Biol Chem 2010; 285:36339-51. [PMID: 20841352 DOI: 10.1074/jbc.m110.145607] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Calcium signaling and calcium transport play a key role during osteoblast differentiation and bone formation. Here, we demonstrate that DMP1 mediated calcium signaling, and its downstream effectors play an essential role in the differentiation of preosteoblasts to fully functional osteoblasts. DMP1, a key regulatory bone matrix protein, can be endocytosed by preosteoblasts, triggering a rise in cytosolic levels of calcium that initiates a series of downstream events leading to cellular stress. These events include release of store-operated calcium that facilitates the activation of stress-induced p38 MAPK leading to osteoblast differentiation. However, chelation of intracellular calcium and inhibition of the p38 signaling pathway by specific pharmacological inhibitors and dominant negative plasmid suppressed this activation. Interestingly, activated p38 MAPK can translocate to the nucleus to phosphorylate transcription factors that coordinate the expression of downstream target genes such as Runx 2, a key modulator of osteoblast differentiation. These studies suggest a novel paradigm by which DMP1-mediated release of intracellular calcium activates p38 MAPK signaling cascade to regulate gene expression and osteoblast differentiation.
Collapse
Affiliation(s)
- Asha Eapen
- Brodie Tooth Development Genetics and Regenerative Medicine Research Laboratory, University of Illinois, Chicago, Illinois 60612, USA
| | | | | | | | | | | | | |
Collapse
|
389
|
Huang CH, Tseng WY, Yao CC, Jeng JH, Young TH, Chen YJ. Glucosamine promotes osteogenic differentiation of dental pulp stem cells through modulating the level of the transforming growth factor-beta type I receptor. J Cell Physiol 2010; 225:140-51. [PMID: 20458730 DOI: 10.1002/jcp.22206] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Dental pulp stem cells (DPSCs) are clonogenic, self-renewing, and multi-potential DPSCs capable of differentiating into osteoblasts. In this study, primary cell cultures were obtained from human dental pulp tissue of developing third molars, and flow cytometry was used to sort the subpopulation of DPSCs with STRO-1 and CD146 double-positive expression (denoted "DPSCs"). It was noted that DPSCs exhibited superior clonogenic potential and osteogenic differentiation capability than the dental pulp cell subpopulation with STRO-1 and CD146 double-negative expression (denoted DPCs). Furthermore, a low concentration (0.005 mg/ml) of exogenous glucosamine (GlcN) was effective in promoting the early osteogenic differentiation of DPSCs through the transforming growth factor-beta receptor (TGF-betar) type I and Smads signal pathways, which upregulated the Runt-related transcription factor 2/core-binding factor alpha1 (Runx2/Cbfa1) and alkaline phosphatase at both the mRNA and protein levels. In the presence of osteogenic supplements, GlcN-treated DPSCs produced more mineralized-matrix deposition than did the untreated groups. Taken together, this study demonstrates the capacity of GlcN to promote the osteogenic differentiation of human DPSCs, and the underlying mechanism involves a TGF-betar-dependent Smad signal pathway.
Collapse
Affiliation(s)
- Chien-Hsun Huang
- Institute of Biomedical Engineering, College of Medicine and College of Engineering, National Taiwan University, Taipei, Taiwan
| | | | | | | | | | | |
Collapse
|
390
|
Lin L, Dai SD, Fan GY. Glucocorticoid-induced differentiation of primary cultured bone marrow mesenchymal cells into adipocytes is antagonized by exogenous Runx2. APMIS 2010; 118:595-605. [PMID: 20666741 DOI: 10.1111/j.1600-0463.2010.02634.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Long-term clinical use of glucocorticoids often causes the serious side effect of non-traumatic avascular osteonecrosis. The aim of this study was to examine the effects and mechanisms of a glucocorticoid, dexamethasone (Dex), on differentiation of primary cultured rat bone marrow mesenchymal cells (BMCs). We also tried to block the inhibitory effects of Dex on osteoblast differentiation. Adipocyte markers (peroxisome proliferator-activated receptorgamma-2 and aP2) were increased in response to Dex treatment in a dose- and time-dependent manner, while osteoblastic markers [Runx2, COL 1, osterix, alkaline phosphatase (ALP) and OC] were down-regulated, consistent with ALP and osteocalcin promoter activity. To validate the effects of Runx2 on the expression of osteogenesis and adipocyte genes, pCMV/Flag-Runx2 was transfected into BMCs, and relevant markers were detected after 10(-7) M Dex treatment for 48 h. The results indicated that Dex treatment induced adipogenic differentiation and suppressed proliferation. No significant difference was detected in expressions of these genes between Runx2-transfected cells and Dex-treated BMCs. These data suggest that Dex primarily induced adipocyte differentiation of BMCs. Exogenous Runx2 can antagonize the effect of Dex on osteoblast differentiation.
Collapse
Affiliation(s)
- Le Lin
- Departments of Orthopedics, First Affiliated Hospital China Medical University, Shenyang 110001, China
| | | | | |
Collapse
|
391
|
Thi MM, Urban-Maldonado M, Spray DC, Suadicani SO. Characterization of hTERT-immortalized osteoblast cell lines generated from wild-type and connexin43-null mouse calvaria. Am J Physiol Cell Physiol 2010; 299:C994-C1006. [PMID: 20686067 DOI: 10.1152/ajpcell.00544.2009] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The gap junction protein connexin43 (Cx43) has been proposed to play key roles in bone differentiation and mineralization, but underlying cellular mechanisms are not totally understood. To further explore roles of Cx43 in these processes, we immortalized calvarial osteoblasts from wild-type and Cx43-null mice using human telomerase reverse transcriptase (hTERT). Osteoblastic (MOB) cell lines were generated from three individual wild-type and three individual Cx43-null mouse calvaria. Average population doubling times of the cell lines were higher than of the primary osteoblasts but did not greatly differ with regard to genotype. Modest to high level of Cx45 expression was detected in MOBs of both genotypes. Most of the cell lines expressed osteoblastic markers [Type I collagen, osteopontin, osteocalcin, parathyroid hormone/parathyroid hormone-related peptide receptor (PTH/PTHrP), periostin (OSF-2), osterix (Osx), runt-related transcription factor 2 (Runx2), alkaline phosphatase (ALP)], and mineralization was comparable to that of primary osteoblasts. Two MOB cell lines from each genotype with most robust maintenance of osteoblast lineage markers were analyzed in greater detail, revealing that the Cx43-null cell lines showed a significant delay in early differentiation (up to 9 days in culture). Matrix mineralization was markedly delayed in one of the Cx43-null lines and slightly delayed in the other. These findings comparing new and very stable wild-type and Cx43-null osteoblastic cell lines define a role for Cx43 in early differentiation and mineralization stages of osteoblasts and further support the concept that Cx43 plays important role in the cellular processes associated with skeleton function.
Collapse
Affiliation(s)
- Mia M Thi
- Department of Orthopaedic Surgery, Albert Einstein College of Medicine of Yeshiva University, Bronx, NY 10461, USA.
| | | | | | | |
Collapse
|
392
|
Ortuño MJ, Ruiz-Gaspà S, Rodríguez-Carballo E, Susperregui ARG, Bartrons R, Rosa JL, Ventura F. p38 regulates expression of osteoblast-specific genes by phosphorylation of osterix. J Biol Chem 2010; 285:31985-94. [PMID: 20682789 DOI: 10.1074/jbc.m110.123612] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Osterix, a zinc finger transcription factor, is specifically expressed in osteoblasts and osteocytes of all developing bones. Because no bone formation occurs in Osx-null mice, Osterix is thought to be an essential regulator of osteoblast differentiation. We report that, in several mesenchymal and osteoblastic cell types, BMP-2 induces an increase in expression of the two isoforms of Osterix arising from two alternative promoters. We identified a consensus Sp1 sequence (GGGCGG) as Osterix binding regions in the fibromodulin and the bone sialoprotein promoters in vitro and in vivo. Furthermore, we show that Osterix is a novel substrate for p38 MAPK in vitro and in vivo and that Ser-73 and Ser-77 are the regulatory sites phosphorylated by p38. Our data also demonstrate that Osterix is able to increase recruitment of p300 and Brg1 to the promoters of its target genes fibromodulin and bone sialoprotein in vivo and that it directly associates with these cofactors through protein-protein interactions. Phosphorylation of Osterix at Ser-73/77 increased its ability to recruit p300 and SWI/SNF to either fibromodulin or bone sialoprotein promoters. We therefore propose that Osterix binds to Sp1 sequences on target gene promoters and that its phosphorylation by p38 enhances recruitment of coactivators to form transcriptionally active complexes.
Collapse
Affiliation(s)
- María José Ortuño
- Departament de Ciències Fisiològiques II, Universitat de Barcelona, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), E-08907 L'Hospitalet de Llobregat, Spain
| | | | | | | | | | | | | |
Collapse
|
393
|
Xu XH, Dong SS, Guo Y, Yang TL, Lei SF, Papasian CJ, Zhao M, Deng HW. Molecular genetic studies of gene identification for osteoporosis: the 2009 update. Endocr Rev 2010; 31:447-505. [PMID: 20357209 PMCID: PMC3365849 DOI: 10.1210/er.2009-0032] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2009] [Accepted: 02/02/2010] [Indexed: 12/12/2022]
Abstract
Osteoporosis is a complex human disease that results in increased susceptibility to fragility fractures. It can be phenotypically characterized using several traits, including bone mineral density, bone size, bone strength, and bone turnover markers. The identification of gene variants that contribute to osteoporosis phenotypes, or responses to therapy, can eventually help individualize the prognosis, treatment, and prevention of fractures and their adverse outcomes. Our previously published reviews have comprehensively summarized the progress of molecular genetic studies of gene identification for osteoporosis and have covered the data available to the end of September 2007. This review represents our continuing efforts to summarize the important and representative findings published between October 2007 and November 2009. The topics covered include genetic association and linkage studies in humans, transgenic and knockout mouse models, as well as gene-expression microarray and proteomics studies. Major results are tabulated for comparison and ease of reference. Comments are made on the notable findings and representative studies for their potential influence and implications on our present understanding of the genetics of osteoporosis.
Collapse
Affiliation(s)
- Xiang-Hong Xu
- Institute of Molecular Genetics, Xi'an Jiaotong University, Shaanxi, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
394
|
Tajima K, Takaishi H, Takito J, Tohmonda T, Yoda M, Ota N, Kosaki N, Matsumoto M, Ikegami H, Nakamura T, Kimura T, Okada Y, Horiuchi K, Chiba K, Toyama Y. Inhibition of STAT1 accelerates bone fracture healing. J Orthop Res 2010; 28:937-41. [PMID: 20063384 DOI: 10.1002/jor.21086] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Skeletal fracture healing involves a variety of cellular and molecular events; however, the mechanisms behind these processes are not fully understood. In the current study, we investigated the potential involvement of the signal transducer and activator of transcription 1 (STAT1), a critical regulator for both osteoclastogenesis and osteoblast differentiation, in skeletal fracture healing. We used a fracture model and a cortical defect model in mice, and found that fracture callus remodeling and membranous ossification are highly accelerated in STAT1-deficient mice. Additionally, we found that STAT1 suppresses Osterix transcript levels and Osterix promoter activity in vitro, indicating the suppression of Osterix transcription as one of the mechanisms behind the inhibitory effect of STAT1 on osteoblast differentiation. Furthermore, we found that fludarabine, a potent STAT1 inhibitor, significantly increases bone formation in a heterotopic ossification model. These results reveal previously unknown functions of STAT1 in skeletal homeostasis and may have important clinical implications for the treatment of skeletal bone fracture.
Collapse
Affiliation(s)
- Kosuke Tajima
- Department of Orthopaedic Surgery, School of Medicine, Keio University, 35 Shinanomachi, Shinjuku, Tokyo 160-8582, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
395
|
Ling L, Dombrowski C, Foong KM, Haupt LM, Stein GS, Nurcombe V, van Wijnen AJ, Cool SM. Synergism between Wnt3a and heparin enhances osteogenesis via a phosphoinositide 3-kinase/Akt/RUNX2 pathway. J Biol Chem 2010; 285:26233-44. [PMID: 20547765 DOI: 10.1074/jbc.m110.122069] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
A new strategy has emerged to improve healing of bone defects using exogenous glycosaminoglycans by increasing the effectiveness of bone-anabolic growth factors. Wnt ligands play an important role in bone formation. However, their functional interactions with heparan sulfate/heparin have only been investigated in non-osseous tissues. Our study now shows that the osteogenic activity of Wnt3a is cooperatively stimulated through physical interactions with exogenous heparin. N-Sulfation and to a lesser extent O-sulfation of heparin contribute to the physical binding and optimal co-stimulation of Wnt3a. Wnt3a-heparin signaling synergistically increases osteoblast differentiation with minimal effects on cell proliferation. Thus, heparin selectively reduces the effective dose of Wnt3a needed to elicit osteogenic, but not mitogenic responses. Mechanistically, Wnt3a-heparin signaling strongly activates the phosphoinositide 3-kinase/Akt pathway and requires the bone-related transcription factor RUNX2 to stimulate alkaline phosphatase activity, which parallels canonical beta-catenin signaling. Collectively, our findings establish the osteo-inductive potential of a heparin-mediated Wnt3a-phosphoinositide 3-kinase/Akt-RUNX2 signaling network and suggest that heparan sulfate supplementation may selectively reduce the therapeutic doses of peptide factors required to promote bone formation.
Collapse
Affiliation(s)
- Ling Ling
- Institute of Medical Biology, Immunos, Singapore
| | | | | | | | | | | | | | | |
Collapse
|
396
|
Yang J, Zhang X, Wang W, Liu J. Insulin stimulates osteoblast proliferation and differentiation through ERK and PI3K in MG-63 cells. Cell Biochem Funct 2010; 28:334-41. [PMID: 20517899 DOI: 10.1002/cbf.1668] [Citation(s) in RCA: 99] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Insulin has been proposed to be an anabolic agent in bone, but the mechanisms underlying insulin effects on osteoblast differentiation are still not clear. To explore the mechanisms of action of insulin on osteoblast growth and differentiation, human osteoblastic cell line-MG-63 was used and stimulated by insulin in the presence or absence of ERK inhibitor PD98059, PI3-K inhibitor LY294002, or inhibitor PD98059 + LY294002. The results showed that insulin positively regulated the expression of its receptor. Insulin stimulated the proliferation of MG-63 cells in a time- and dose-dependent manner and blockade of both MAPK and PI3K pathways could inhibit the cell proliferation. In addition, ALP activity, the secretion of type I collagen, OC gene expression, and mineralized nodule formation were increased in the insulin treated group, whereas these indicators were decreased after treatment with blocking agents. However, treatment with PI3-K inhibitor LY294002 significantly reversed the down-regulation of Runx2 expression and treatment with ERK inhibitor PD98059 remarkably decreased up-regulation of Osx and IGF-1 expression after insulin treatment. Therefore, the data obtained from this study suggested that insulin promoted osteoblast proliferation and differentiation through MAPK and PI3K pathway in MG-63 cells.
Collapse
Affiliation(s)
- Jianhong Yang
- University of Science and Technology of China, Hefei, China
| | | | | | | |
Collapse
|
397
|
Mikami Y, Asano M, Honda MJ, Takagi M. Bone morphogenetic protein 2 and dexamethasone synergistically increase alkaline phosphatase levels through JAK/STAT signaling in C3H10T1/2 cells. J Cell Physiol 2010; 223:123-33. [PMID: 20039267 DOI: 10.1002/jcp.22017] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Alkaline phosphatase (ALP) is generally believed to be a faithful marker of osteoblast differentiation, and its expression is induced by bone morphogenetic protein-2 (BMP-2) and dexamethasone (Dex). However, the effects of combined administration of BMP-2 and Dex on ALP transcription have not been extensively examined. In this study, we found that BMP-2 and Dex synergistically increase ALP levels in mouse C3H10T1/2 pluripotent stem cells. However, switching from one inducer to the other, by adding BMP-2 or Dex to cell cultures at different times, was no more effective than continuous treatment with either inducer alone. A significant induction of ALP mRNA expression was observed only in cells continuously treated with both inducers. This result suggests that both BMP-2 and Dex may act in the same pathway or at the same stage of differentiation. A luciferase assay using ALP promoter deletion constructs showed that a region of the promoter containing a putative signal transducer and activator of transcription 3 (STAT3) response element (SRE) responds to treatment with a combination of BMP-2 and Dex. Furthermore, a ChIP assay indicated that STAT3 bound to the SRE. In addition, a STAT3 siRNA suppressed the synergistic effect of BMP-2 and Dex on ALP levels. These results indicate that STAT3 may play an important role in regulating ALP expression. To our knowledge, this is the first time that STAT3 has been implicated in the regulation of ALP expression by BMP-2 and Dex. These findings raise the possibility of developing new strategies for the enhancement of bone formation using a combination of BMPs and Dex.
Collapse
Affiliation(s)
- Yoshikazu Mikami
- 1st Department of Anatomy, Nihon University School of Dentistry, Chiyoda-ku, Tokyo, Japan.
| | | | | | | |
Collapse
|
398
|
Abstract
Smad proteins are intracellular molecules that mediate the canonical signaling cascade of TGFbeta superfamily growth factors. The TGFbeta superfamily comprises two groups of growth factors, BMPs and TGFbetas. Both groups can be further divided into several sub-groups based on sequence homologies and functional similarities. Ligands of the TGFbeta superfamily bind to cell surface receptors to activate Smad proteins in the cytoplasm; then the activated Smad proteins translocate into the nucleus to activate or repress specific target gene transcription. Both groups of growth factors play important roles in skeletal development and regeneration. However, whether these effects reflect signaling through canonical Smad pathways, or other non-canonical signaling pathways in vivo remains a mystery. Moreover, the mechanisms utilized by Smad proteins to initiate nuclear events and their interactions with cytoplasmic proteins are still under intensive investigation. This review will discuss the most recent progress understanding Smad signaling in the context of skeletal development and regeneration.
Collapse
Affiliation(s)
- Buer Song
- Orthopedic Hospital Research Center, Department of Orthopedic Surgery, University of California-Los Angeles, Los Angeles, CA 90095, United States
| | | | | |
Collapse
|
399
|
Psaltis P, Paton S, See F, Arthur A, Martin S, Itescu S, Worthley S, Gronthos S, Zannettino A. Enrichment for STRO-1 expression enhances the cardiovascular paracrine activity of human bone marrow-derived mesenchymal cell populations. J Cell Physiol 2010; 223:530-40. [DOI: 10.1002/jcp.22081] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
400
|
Matsuda H, Nakano K, Muraoka R, Tomoda M, Okafuji N, Kurihara S, Yamada K, Kawakami T. BMPs and Related Factors Appearing in the Mouse Periodontal Tissues Due to Orthodontic Mechanical Stress. J HARD TISSUE BIOL 2010. [DOI: 10.2485/jhtb.19.153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|