351
|
Matsumoto T, Okayama H, Nakajima S, Saito K, Nakano H, Endo E, Kase K, Ito M, Yamauchi N, Yamada L, Kanke Y, Onozawa H, Fujita S, Sakamoto W, Saito M, Saze Z, Momma T, Mimura K, Kono K. Tn Antigen Expression Defines an Immune Cold Subset of Mismatch-Repair Deficient Colorectal Cancer. Int J Mol Sci 2020; 21:ijms21239081. [PMID: 33260328 PMCID: PMC7730766 DOI: 10.3390/ijms21239081] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Revised: 11/27/2020] [Accepted: 11/27/2020] [Indexed: 01/09/2023] Open
Abstract
Colorectal cancer (CRC) cells often express Tn antigen, a tumor-associated truncated immature O-glycan (GalNAcα-O-Ser/Thr) that can promote tumor progression. Immunotherapies against Tn antigen have been developed and are being evaluated in clinical trials. Tn antigen can also be considered a novel immune checkpoint that induces immunosuppressive signaling through glycan-biding lectins to lead effector T cell apoptosis. We evaluated the correlation of Tn antigen expression by immunohistochemistry with mismatch-repair (MMR) status, tumor-infiltrating lymphocytes, tumor cell PD-L1 expression, and clinicopathological characteristics in 507 CRC patients. Although 91.9% of CRCs showed negative or weak Tn antigen staining (Tn-negative/weak), we identified a small subset of CRCs (8.1%) that displayed particularly intense and diffuse distribution of Tn antigen immunoreactivity (Tn-strong) that closely related to deficient MMR (dMMR). Moreover, 40 dMMR CRCs were stratified into 24 Tn-negative/weak dMMR tumors (60.0%) exhibiting dense CD8+ lymphocyte infiltrate concomitant with a high rate of PD-L1 positivity, and 16 Tn-strong dMMR tumors (40.0%) that demonstrated CD8+ T cell exclusion and a lack of PD-L1 expression, which was comparable to those of proficient MMR. Our finding suggests that the immune cold subset of patients with Tn-strong dMMR CRC may be effectively treated with immune checkpoint blockade therapy or cellular immunotherapy targeting Tn antigen.
Collapse
Affiliation(s)
- Takuro Matsumoto
- Department of Gastrointestinal Tract Surgery, Fukushima Medical University School of Medicine, Fukushima 960-1295, Japan; (T.M.); (S.N.); (K.S.); (H.N.); (E.E.); (K.K.); (M.I.); (N.Y.); (L.Y.); (Y.K.); (H.O.); (S.F.); (W.S.); (M.S.); (Z.S.); (T.M.); (K.M.); (K.K.)
| | - Hirokazu Okayama
- Department of Gastrointestinal Tract Surgery, Fukushima Medical University School of Medicine, Fukushima 960-1295, Japan; (T.M.); (S.N.); (K.S.); (H.N.); (E.E.); (K.K.); (M.I.); (N.Y.); (L.Y.); (Y.K.); (H.O.); (S.F.); (W.S.); (M.S.); (Z.S.); (T.M.); (K.M.); (K.K.)
- Correspondence: ; Tel.: +81-24-547-1259
| | - Shotaro Nakajima
- Department of Gastrointestinal Tract Surgery, Fukushima Medical University School of Medicine, Fukushima 960-1295, Japan; (T.M.); (S.N.); (K.S.); (H.N.); (E.E.); (K.K.); (M.I.); (N.Y.); (L.Y.); (Y.K.); (H.O.); (S.F.); (W.S.); (M.S.); (Z.S.); (T.M.); (K.M.); (K.K.)
- Department of Medical Electrophysiology, Fukushima Medical University School of Medicine, Fukushima 960-1295, Japan
| | - Katsuharu Saito
- Department of Gastrointestinal Tract Surgery, Fukushima Medical University School of Medicine, Fukushima 960-1295, Japan; (T.M.); (S.N.); (K.S.); (H.N.); (E.E.); (K.K.); (M.I.); (N.Y.); (L.Y.); (Y.K.); (H.O.); (S.F.); (W.S.); (M.S.); (Z.S.); (T.M.); (K.M.); (K.K.)
| | - Hiroshi Nakano
- Department of Gastrointestinal Tract Surgery, Fukushima Medical University School of Medicine, Fukushima 960-1295, Japan; (T.M.); (S.N.); (K.S.); (H.N.); (E.E.); (K.K.); (M.I.); (N.Y.); (L.Y.); (Y.K.); (H.O.); (S.F.); (W.S.); (M.S.); (Z.S.); (T.M.); (K.M.); (K.K.)
| | - Eisei Endo
- Department of Gastrointestinal Tract Surgery, Fukushima Medical University School of Medicine, Fukushima 960-1295, Japan; (T.M.); (S.N.); (K.S.); (H.N.); (E.E.); (K.K.); (M.I.); (N.Y.); (L.Y.); (Y.K.); (H.O.); (S.F.); (W.S.); (M.S.); (Z.S.); (T.M.); (K.M.); (K.K.)
| | - Koji Kase
- Department of Gastrointestinal Tract Surgery, Fukushima Medical University School of Medicine, Fukushima 960-1295, Japan; (T.M.); (S.N.); (K.S.); (H.N.); (E.E.); (K.K.); (M.I.); (N.Y.); (L.Y.); (Y.K.); (H.O.); (S.F.); (W.S.); (M.S.); (Z.S.); (T.M.); (K.M.); (K.K.)
| | - Misato Ito
- Department of Gastrointestinal Tract Surgery, Fukushima Medical University School of Medicine, Fukushima 960-1295, Japan; (T.M.); (S.N.); (K.S.); (H.N.); (E.E.); (K.K.); (M.I.); (N.Y.); (L.Y.); (Y.K.); (H.O.); (S.F.); (W.S.); (M.S.); (Z.S.); (T.M.); (K.M.); (K.K.)
| | - Naoto Yamauchi
- Department of Gastrointestinal Tract Surgery, Fukushima Medical University School of Medicine, Fukushima 960-1295, Japan; (T.M.); (S.N.); (K.S.); (H.N.); (E.E.); (K.K.); (M.I.); (N.Y.); (L.Y.); (Y.K.); (H.O.); (S.F.); (W.S.); (M.S.); (Z.S.); (T.M.); (K.M.); (K.K.)
| | - Leo Yamada
- Department of Gastrointestinal Tract Surgery, Fukushima Medical University School of Medicine, Fukushima 960-1295, Japan; (T.M.); (S.N.); (K.S.); (H.N.); (E.E.); (K.K.); (M.I.); (N.Y.); (L.Y.); (Y.K.); (H.O.); (S.F.); (W.S.); (M.S.); (Z.S.); (T.M.); (K.M.); (K.K.)
| | - Yasuyuki Kanke
- Department of Gastrointestinal Tract Surgery, Fukushima Medical University School of Medicine, Fukushima 960-1295, Japan; (T.M.); (S.N.); (K.S.); (H.N.); (E.E.); (K.K.); (M.I.); (N.Y.); (L.Y.); (Y.K.); (H.O.); (S.F.); (W.S.); (M.S.); (Z.S.); (T.M.); (K.M.); (K.K.)
| | - Hisashi Onozawa
- Department of Gastrointestinal Tract Surgery, Fukushima Medical University School of Medicine, Fukushima 960-1295, Japan; (T.M.); (S.N.); (K.S.); (H.N.); (E.E.); (K.K.); (M.I.); (N.Y.); (L.Y.); (Y.K.); (H.O.); (S.F.); (W.S.); (M.S.); (Z.S.); (T.M.); (K.M.); (K.K.)
| | - Shotaro Fujita
- Department of Gastrointestinal Tract Surgery, Fukushima Medical University School of Medicine, Fukushima 960-1295, Japan; (T.M.); (S.N.); (K.S.); (H.N.); (E.E.); (K.K.); (M.I.); (N.Y.); (L.Y.); (Y.K.); (H.O.); (S.F.); (W.S.); (M.S.); (Z.S.); (T.M.); (K.M.); (K.K.)
| | - Wataru Sakamoto
- Department of Gastrointestinal Tract Surgery, Fukushima Medical University School of Medicine, Fukushima 960-1295, Japan; (T.M.); (S.N.); (K.S.); (H.N.); (E.E.); (K.K.); (M.I.); (N.Y.); (L.Y.); (Y.K.); (H.O.); (S.F.); (W.S.); (M.S.); (Z.S.); (T.M.); (K.M.); (K.K.)
| | - Motonobu Saito
- Department of Gastrointestinal Tract Surgery, Fukushima Medical University School of Medicine, Fukushima 960-1295, Japan; (T.M.); (S.N.); (K.S.); (H.N.); (E.E.); (K.K.); (M.I.); (N.Y.); (L.Y.); (Y.K.); (H.O.); (S.F.); (W.S.); (M.S.); (Z.S.); (T.M.); (K.M.); (K.K.)
| | - Zenichiro Saze
- Department of Gastrointestinal Tract Surgery, Fukushima Medical University School of Medicine, Fukushima 960-1295, Japan; (T.M.); (S.N.); (K.S.); (H.N.); (E.E.); (K.K.); (M.I.); (N.Y.); (L.Y.); (Y.K.); (H.O.); (S.F.); (W.S.); (M.S.); (Z.S.); (T.M.); (K.M.); (K.K.)
| | - Tomoyuki Momma
- Department of Gastrointestinal Tract Surgery, Fukushima Medical University School of Medicine, Fukushima 960-1295, Japan; (T.M.); (S.N.); (K.S.); (H.N.); (E.E.); (K.K.); (M.I.); (N.Y.); (L.Y.); (Y.K.); (H.O.); (S.F.); (W.S.); (M.S.); (Z.S.); (T.M.); (K.M.); (K.K.)
| | - Kosaku Mimura
- Department of Gastrointestinal Tract Surgery, Fukushima Medical University School of Medicine, Fukushima 960-1295, Japan; (T.M.); (S.N.); (K.S.); (H.N.); (E.E.); (K.K.); (M.I.); (N.Y.); (L.Y.); (Y.K.); (H.O.); (S.F.); (W.S.); (M.S.); (Z.S.); (T.M.); (K.M.); (K.K.)
- Department of Blood Transfusion and Transplantation Immunology, Fukushima Medical University School of Medicine, Fukushima 960-1295, Japan
| | - Koji Kono
- Department of Gastrointestinal Tract Surgery, Fukushima Medical University School of Medicine, Fukushima 960-1295, Japan; (T.M.); (S.N.); (K.S.); (H.N.); (E.E.); (K.K.); (M.I.); (N.Y.); (L.Y.); (Y.K.); (H.O.); (S.F.); (W.S.); (M.S.); (Z.S.); (T.M.); (K.M.); (K.K.)
| |
Collapse
|
352
|
Huo J, Wu L, Zang Y. A Prognostic Model of 15 Immune-Related Gene Pairs Associated With Tumor Mutation Burden for Hepatocellular Carcinoma. Front Mol Biosci 2020; 7:581354. [PMID: 33282911 PMCID: PMC7691640 DOI: 10.3389/fmolb.2020.581354] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 10/08/2020] [Indexed: 12/22/2022] Open
Abstract
Introduction Tumor mutation burden (TMB) is an emerging biomarker for immunotherapy of hepatocellular carcinoma (HCC), but its value for clinical application has not been fully revealed. Materials and Methods We used the Wilcox test to identify the differentially expressed immune-related genes (DEIRGs) in groups with high and low TMB as well as screened the immune gene pairs related to prognosis using univariate Cox regression analysis. A LASSO Cox regression prognostic model was developed by combining The Cancer Genome Atlas Liver Hepatocellular Carcinoma (TCGA-LIHC) with the International Cancer Genome Consortium (ICGC) LIRI-JP cohort, and internal (TCGA, ICGC) and external (GSE14520) validation analyses were conducted on the predictive value of the model. We also explored the relationship between the prognostic model and tumor microenvironment via the ESTIMATE algorithm and performed clinical correlation analysis by the chi-square test, revealing its underlying molecular mechanism with the help of Gene Set Enrichment Analysis (GSEA). Results The prognostic model consisting of 15 immune gene pairs showed high predictive value for short- and long-term survival of HCC in three independent cohorts. Based on univariate multivariate Cox regression analysis, the prognostic model could be used to independently predict the prognosis in each independent cohort. The immune score, stromal score, and estimated score values were lower in the high-risk group than in the low-risk group. As shown by the chi-square test, the prognostic model exhibited an obvious correlation with the tumor stage [American Joint Committee on Cancer tumor–node–metastasis (AJCC-TNM) (p < 0.001), Barcelona Clinic Liver Cancer (BCLC) (p = 0.003)], histopathological grade (p = 0.033), vascular invasion (p = 0.009), maximum tumor diameter (p = 0.013), and background of liver cirrhosis (p < 0.001). GSEA revealed that the high-risk group had an enrichment of many oncology features, including the cell cycle, mismatch repair, DNA replication, RNA degradation, etc. Conclusion Our research developed and validated a reliable prognostic model associated with TMB for HCC, which may help to further enrich the therapeutic targets of HCC.
Collapse
Affiliation(s)
- Junyu Huo
- Liver Disease Center, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Liqun Wu
- Liver Disease Center, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yunjin Zang
- Liver Disease Center, The Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
353
|
Deshpande M, Romanski PA, Rosenwaks Z, Gerhardt J. Gynecological Cancers Caused by Deficient Mismatch Repair and Microsatellite Instability. Cancers (Basel) 2020; 12:E3319. [PMID: 33182707 PMCID: PMC7697596 DOI: 10.3390/cancers12113319] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 10/30/2020] [Accepted: 11/07/2020] [Indexed: 01/05/2023] Open
Abstract
Mutations in mismatch repair genes leading to mismatch repair (MMR) deficiency (dMMR) and microsatellite instability (MSI) have been implicated in multiple types of gynecologic malignancies. Endometrial carcinoma represents the largest group, with approximately 30% of these cancers caused by dMMR/MSI. Thus, testing for dMMR is now routine for endometrial cancer. Somatic mutations leading to dMMR account for approximately 90% of these cancers. However, in 5-10% of cases, MMR protein deficiency is due to a germline mutation in the mismatch repair genes MLH1, MSH2, MSH6, PMS2, or EPCAM. These germline mutations, known as Lynch syndrome, are associated with an increased risk of both endometrial and ovarian cancer, in addition to colorectal, gastric, urinary tract, and brain malignancies. So far, gynecological cancers with dMMR/MSI are not well characterized and markers for detection of MSI in gynecological cancers are not well defined. In addition, currently advanced endometrial cancers have a poor prognosis and are treated without regard to MSI status. Elucidation of the mechanism causing dMMR/MSI gynecological cancers would aid in diagnosis and therapeutic intervention. Recently, a new immunotherapy was approved for the treatment of solid tumors with MSI that have recurred or progressed after failing traditional treatment strategies. In this review, we summarize the MMR defects and MSI observed in gynecological cancers, their prognostic value, and advances in therapeutic strategies to treat these cancers.
Collapse
Affiliation(s)
- Madhura Deshpande
- The Ronald O. Perelman and Claudia Cohen Center for Reproductive Medicine, Weill Cornell Medicine, New York, NY 10021, USA; (M.D.); (P.A.R.); (Z.R.)
| | - Phillip A. Romanski
- The Ronald O. Perelman and Claudia Cohen Center for Reproductive Medicine, Weill Cornell Medicine, New York, NY 10021, USA; (M.D.); (P.A.R.); (Z.R.)
| | - Zev Rosenwaks
- The Ronald O. Perelman and Claudia Cohen Center for Reproductive Medicine, Weill Cornell Medicine, New York, NY 10021, USA; (M.D.); (P.A.R.); (Z.R.)
| | - Jeannine Gerhardt
- The Ronald O. Perelman and Claudia Cohen Center for Reproductive Medicine, Weill Cornell Medicine, New York, NY 10021, USA; (M.D.); (P.A.R.); (Z.R.)
- Department of Obstetrics and Gynecology, Weill Cornell Medicine, New York, NY 10021, USA
| |
Collapse
|
354
|
Hallam S, Stockton J, Bryer C, Whalley C, Pestinger V, Youssef H, Beggs AD. The transition from primary colorectal cancer to isolated peritoneal malignancy is associated with an increased tumour mutational burden. Sci Rep 2020; 10:18900. [PMID: 33144643 PMCID: PMC7641117 DOI: 10.1038/s41598-020-75844-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 10/13/2020] [Indexed: 12/31/2022] Open
Abstract
Colorectal Peritoneal metastases (CPM) develop in 15% of colorectal cancers. Cytoreductive surgery and heated intraperitoneal chemotherapy (CRS & HIPEC) is the current standard of care in selected patients with limited resectable CPM. Despite selection using known prognostic factors survival is varied and morbidity and mortality are relatively high. There is a need to improve patient selection and a paucity of research concerning the biology of isolated CPM. We aimed to determine the biology associated with transition from primary CRC to CPM and of patients with CPM not responding to treatment with CRS & HIPEC, to identify those suitable for treatment with CRS & HIPEC and to identify targets for existing repurposed or novel treatment strategies. A cohort of patients with CPM treated with CRS & HIPEC was recruited and divided according to prognosis. Molecular profiling of the transcriptome (n = 25), epigenome (n = 24) and genome (n = 21) of CPM and matched primary CRC was performed. CPM were characterised by frequent Wnt/ β catenin negative regulator mutations, TET2 mutations, mismatch repair mutations and high tumour mutational burden. Here we show the molecular features associated with CPM development and associated with not responding to CRS & HIPEC. Potential applications include improving patient selection for treatment with CRS & HIPEC and in future research into novel and personalised treatments targeting the molecular features identified here.
Collapse
Affiliation(s)
- Sally Hallam
- Surgical Research Laboratory, Institute of Cancer and Genomic Science, University of Birmingham, Birmingham, B15 2TT, UK
| | - Joanne Stockton
- Surgical Research Laboratory, Institute of Cancer and Genomic Science, University of Birmingham, Birmingham, B15 2TT, UK
| | - Claire Bryer
- Surgical Research Laboratory, Institute of Cancer and Genomic Science, University of Birmingham, Birmingham, B15 2TT, UK
| | - Celina Whalley
- Surgical Research Laboratory, Institute of Cancer and Genomic Science, University of Birmingham, Birmingham, B15 2TT, UK
| | - Valerie Pestinger
- Surgical Research Laboratory, Institute of Cancer and Genomic Science, University of Birmingham, Birmingham, B15 2TT, UK
| | - Haney Youssef
- Surgical Research Laboratory, Institute of Cancer and Genomic Science, University of Birmingham, Birmingham, B15 2TT, UK
| | - Andrew D Beggs
- Surgical Research Laboratory, Institute of Cancer and Genomic Science, University of Birmingham, Birmingham, B15 2TT, UK.
| |
Collapse
|
355
|
Cohen R, Bennouna J, Meurisse A, Tournigand C, De La Fouchardière C, Tougeron D, Borg C, Mazard T, Chibaudel B, Garcia-Larnicol ML, Svrcek M, Vernerey D, Menu Y, André T. RECIST and iRECIST criteria for the evaluation of nivolumab plus ipilimumab in patients with microsatellite instability-high/mismatch repair-deficient metastatic colorectal cancer: the GERCOR NIPICOL phase II study. J Immunother Cancer 2020; 8:e001499. [PMID: 33148693 PMCID: PMC7640587 DOI: 10.1136/jitc-2020-001499] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/18/2020] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Immune checkpoint inhibitors (ICIs) are highly effective in patients with microsatellite instability/mismatch repair-deficient (MSI/dMMR) metastatic colorectal cancer (mCRC). Response Evaluation Criteria in Solid Tumors (RECIST) 1.1 criteria may underestimate response to ICIs due to the pseudoprogression phenomenon. The GERCOR NIPICOL phase II study aimed to evaluate the frequency of pseudoprogressions in patients with MSI/dMMR mCRC treated with nivolumab and ipilimumab. METHODS Patients with MSI/dMMR mCRC previously treated with fluoropyrimidines, oxaliplatin, and irinotecan with/without targeted therapies received nivolumab 3 mg/kg plus ipilimumab 1 mg/kg every 3 weeks for four cycles then nivolumab 3 mg/kg every 2 weeks until progression or a maximum of 20 cycles. Computed tomography scan tumor assessments were done every 6 weeks for 24 weeks and then every 12 weeks. The primary endpoint was disease control rate at 12 weeks according to RECIST 1.1 and iRECIST by central review. RESULTS Of 57 patients included between December 2017 and November 2018, 48.0% received ≥3 prior lines of chemotherapy, 18.0% had BRAFV600E mutation, and 56.0% had Lynch syndrome-related cancer. Seven patients (12.0%) discontinued treatment due to adverse events; one died due to a treatment-related adverse event. The disease control rate (DCR) at 12 weeks was 86.0% with RECIST 1.1% and 87.7% with iRECIST. Two pseudoprogressions (3.5%) were observed, at week 6 and at week 36, representing 18% of patients with disease progression per RECIST 1.1 criteria. With a median follow-up of 18.4 months, median progression-free survival (PFS) and overall survival (OS) were not reached. The 12-month PFS rate was 72.9% with RECIST 1.1% and 76.5% with iRECIST. The 12-month OS rate was 84%. Overall response rate was 59.7% with both criteria. RAS/BRAF status, sidedness, Lynch syndrome, and other baseline parameters were not associated with PFS. CONCLUSION Pseudoprogression is rare in patients with MSI/dMMR mCRC treated with nivolumab and ipilimumab. This combined ICI therapy confirms impressive DCR and survival outcomes in these patients. TRIAL REGISTRATION NUMBER NCT03350126.
Collapse
Affiliation(s)
- Romain Cohen
- Sorbonne University, Department of Medical Oncology, Saint-Antoine Hospital, APHP, Paris, France
| | - Jaafar Bennouna
- Department of Medical Oncology, University Hospital of Nantes, Nantes, France
| | - Aurélia Meurisse
- Department of Oncology, Besançon University Hospital, Methodology and Quality of Life Unit, Besançon, France
| | - Christophe Tournigand
- Department of Gastroenterology and Digestive Oncology, Henri Mondor University Hospital, APHP, Creteil, France
| | | | - David Tougeron
- Department of Gastroenterology, Poitiers University Hospital and University of Poitiers, Poitiers, France
| | - Christophe Borg
- Department of Medical Oncology, University Hospital of Besançon, Besançon, France
| | - Thibault Mazard
- Department of Medical Oncology, Institut de Recherche en Cancérologie de Montpellier (IRCM), INSERM, Montpellier University, INSERM U1194, Montpellier, France
| | - Benoist Chibaudel
- Department of Medical Oncology, Franco-British Hospital, Fondation Cognacq-Jay, Levallois-Perret, France
| | | | - Magali Svrcek
- Sorbonne University, Department of Pathology, Saint-Antoine Hospital, AP-HP, Paris, France
| | - Dewi Vernerey
- Department of Oncology, Besançon University Hospital, Methodology and Quality of Life Unit, Besançon, France
| | - Yves Menu
- Sorbonne University, Department of Radiology, Saint-Antoine Hospital, AP-HP, Paris, France
| | - Thierry André
- Sorbonne University, Department of Medical Oncology, Saint-Antoine Hospital, APHP, Paris, France
| |
Collapse
|
356
|
Navarro S, Cuatrecasas M, Hernández-Losa J, Landolfi S, Musulén E, Ramón Y Cajal S, García-Carbonero R, García-Foncillas J, Pérez-Segura P, Salazar R, Vera R, García-Alfonso P. [Update of the recommendations for the determination of biomarkers in colorectal carcinoma. National Consensus of the Spanish Society of Medical Oncology and the Spanish Society of Pathology]. REVISTA ESPAÑOLA DE PATOLOGÍA : PUBLICACIÓN OFICIAL DE LA SOCIEDAD ESPAÑOLA DE ANATOMÍA PATOLÓGICA Y DE LA SOCIEDAD ESPAÑOLA DE CITOLOGÍA 2020; 54:41-54. [PMID: 33455693 DOI: 10.1016/j.patol.2020.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 07/02/2020] [Accepted: 07/26/2020] [Indexed: 11/25/2022]
Abstract
This update of the consensus of the Spanish Society of Medical Oncology (Sociedad Española de Oncología Médica - SEOM) and the Spanish Society of Pathology (Sociedad Española de Anatomía Patológica - SEAP), reviews the advances in the analysis of biomarkers in advanced colorectal cancer (CRC) as well as susceptibility markers of hereditary CRC and molecular biomarkers of localized CRC. Recently published information on the essential determination of KRAS, NRAS and BRAF mutations and the possible benefits of determining the amplification of human epidermal growth factor receptor 2 (HER2), the expression of proteins in the DNA repair pathway and the study of NTRK fusions are also evaluated. From a pathological point of view, the importance of analysing the tumour budding and poorly differentiated clusters and its prognostic value in CRC is reviewed, as well as the impact of molecular lymph node analysis on lymph node staging in CRC. The incorporation of pan-genomic technologies, such as next-generation sequencing (NGS) and liquid biopsy in the clinical management of patients with CRC is also outlined. All these aspects are developed in this guide which, like the previous one, will be revised when necessary in the future.
Collapse
Affiliation(s)
- Samuel Navarro
- Departamento de Patología, Universidad de Valencia, Hospital Clínico Universitario de Valencia, CIBERONC, Valencia, España.
| | | | - Javier Hernández-Losa
- Departamento de Patología, Hospital Universitario Vall d'Hebron, CIBERONC, Barcelona, España
| | - Stefania Landolfi
- Departamento de Patología, Hospital Universitario Vall d'Hebron, CIBERONC, Barcelona, España
| | - Eva Musulén
- Departamento de Patología, Hospital Universitari General de Catalunya, Grupo Quirónsalud, Sant Cugat del Vallès, España; Grupo de Epigenética del Cáncer, Institut de Recerca contra la Leucèmia Josep Carreras, Badalona, España
| | - Santiago Ramón Y Cajal
- Departamento de Patología, Hospital Universitario Vall d'Hebron, CIBERONC, Barcelona, España
| | - Rocío García-Carbonero
- Departamento de Oncología Médica, Hospital Universitario 12 de Octubre, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), UCM, CNIO, CIBERONC, Madrid, España
| | - Jesús García-Foncillas
- Departamento de Oncología, Hospital Universitario Fundación Jiménez Díaz, Universidad Autónoma de Madrid, Madrid, España
| | - Pedro Pérez-Segura
- Departamento de Oncología Médica, Hospital Clínico Universitario San Carlos, CIBERONC, Madrid, España
| | - Ramón Salazar
- Departamento de Oncología Médica, ICO ĹHospitalet, Oncobell Program (IDIBELL), CIBERONC, Hospitalet de Llobregat, España
| | - Ruth Vera
- Departamento de Oncología Médica, Complejo Hospitalario de Navarra, Navarrabiomed, IDISNA, Pamplona, España
| | - Pilar García-Alfonso
- Departamento de Oncología Médica, Hospital General Universitario Gregorio Marañón, Madrid, España
| |
Collapse
|
357
|
Gjoerup O, Brown CA, Ross JS, Huang RSP, Schrock A, Creeden J, Fabrizio D, Tolba K. Identification and Utilization of Biomarkers to Predict Response to Immune Checkpoint Inhibitors. AAPS JOURNAL 2020; 22:132. [PMID: 33057937 DOI: 10.1208/s12248-020-00514-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 09/22/2020] [Indexed: 02/06/2023]
Abstract
Immune checkpoint inhibitors (ICPI) have revolutionized cancer therapy and provided clinical benefit to thousands of patients. Despite durable responses in many tumor types, the majority of patients either fail to respond at all or develop resistance to the ICPI. Furthermore, ICPI treatment can be accompanied by serious adverse effects. There is an urgent need for identification of patient populations that will benefit from ICPI as single agents and when used in combinations. As ICPI have achieved regulatory approvals, accompanying biomarkers including PD-L1 immunohistochemistry (IHC) and tumor mutational burden (TMB) have also received approvals for some indications. The ICPI pembrolizumab was the first example of a tissue-agnostic FDA approval based on tumor microsatellite instability (MSI)/deficient mismatch repair (dMMR) biomarker status, rather than on tumor histology assessment. Several other ICPI-associated biomarkers are in the exploratory stage, including quantification of tumor-infiltrating lymphocytes (TILs), gene expression profiling (GEP) of an inflamed microenvironment, and neoantigen prediction. TMB and PD-L1 expression can predict a subset of responses, but they fail to predict all responses to checkpoint blockade. While a single biomarker is currently limited in its ability to fully capture the complexity of the tumor-immune microenvironment, a combination of biomarkers is emerging as a method to improve predictive power. Here we review the steadily growing impact of comprehensive genomic profiling (CGP) for development and utilization of predictive biomarkers by simultaneously capturing TMB, MSI, and the status of genomic targets that confer sensitivity or resistance to immunotherapy, as well as detecting inflammation through RNA expression signatures.
Collapse
Affiliation(s)
- Ole Gjoerup
- Foundation Medicine, Inc, Cambridge, Massachusetts, USA. .,Foundation Medicine, 121 Seaport Blvd, Room 970-35, Boston, Massachusetts, 02210, USA.
| | | | - Jeffrey S Ross
- Foundation Medicine, Inc, Cambridge, Massachusetts, USA.,Upstate Medical University, Syracuse, New York, USA
| | | | - Alexa Schrock
- Foundation Medicine, Inc, Cambridge, Massachusetts, USA
| | - James Creeden
- Foundation Medicine, Inc, Cambridge, Massachusetts, USA
| | | | - Khaled Tolba
- Foundation Medicine, Inc, Cambridge, Massachusetts, USA
| |
Collapse
|
358
|
Yang Z, Wei S, Deng Y, Wang Z, Liu L. Clinical significance of tumour mutation burden in immunotherapy across multiple cancer types: an individual meta-analysis. Jpn J Clin Oncol 2020; 50:1023-1031. [PMID: 32542383 DOI: 10.1093/jjco/hyaa076] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Accepted: 05/07/2020] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Biomarkers for stratifying patients that could benefit from immune checkpoint inhibitors are necessary. Tumour mutation burden has recently become a promising biomarker in cancer, but the associations between tumour mutation burden and outcomes of immune checkpoint inhibitors treatment were not well-documented in present studies. METHODS We searched PubMed, Web of Science and EMBASE databases up to 1 October 2019. Studies evaluated the association between tumour mutation burden and clinical outcomes were included. Hazard ratios and odds ratios were applied to estimate the association of tumour mutation burden score with overall survival, progression-free survival and response rate, respectively. The best cut-off value was chosen by best discriminated overall survival using Contal and O'Quigley method. RESULTS Twenty-two studies involving 6171 patients in diverse cancers were included. The individual participant data meta-analysis demonstrated that high tumour mutation burden was associated with better overall survival (HR = 0.57, 95% CI = 0.50-0.64) and progression-free survival (HR = 0.50, 95% CI = 0.40-0.63) and higher response rate. The best cut-off values in each cancer type were 17.7/MB in non-small cell lung cancer, 7.9/MB in bladder cancer, 6.1/MB in melanoma, 12.3/MB in colorectal cancer, 6.9/MB in esophagogastric cancer, 10.5/MB in head and neck cancer. The pooled meta-analysis showed the prognosis value was robust and the sensitivity, specificity and area under the receiver operating characteristic curves in predicting response rates were 0.63, 0.71 and 0.73, respectively. CONCLUSIONS The present meta-analysis indicates tumour mutation burden is a promising predictor of immune checkpoint inhibitors therapy but the cut-off value differs in different cancers.
Collapse
Affiliation(s)
- Zhenyu Yang
- Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu, China.,Western China Collaborative Innovation Center for Early Diagnosis and Multidisciplinary Therapy of Lung Cancer, Sichuan University, Chengdu, China
| | - Shiyou Wei
- Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu, China.,Western China Collaborative Innovation Center for Early Diagnosis and Multidisciplinary Therapy of Lung Cancer, Sichuan University, Chengdu, China
| | - Yulan Deng
- Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu, China.,Western China Collaborative Innovation Center for Early Diagnosis and Multidisciplinary Therapy of Lung Cancer, Sichuan University, Chengdu, China
| | - Zihuai Wang
- Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu, China.,Western China Collaborative Innovation Center for Early Diagnosis and Multidisciplinary Therapy of Lung Cancer, Sichuan University, Chengdu, China
| | - Lunxu Liu
- Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu, China.,Western China Collaborative Innovation Center for Early Diagnosis and Multidisciplinary Therapy of Lung Cancer, Sichuan University, Chengdu, China
| |
Collapse
|
359
|
De Souza ALPB. Finding the hot spot: identifying immune sensitive gastrointestinal tumors. Transl Gastroenterol Hepatol 2020; 5:48. [PMID: 33073043 DOI: 10.21037/tgh.2019.12.11] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 12/06/2019] [Indexed: 12/16/2022] Open
Abstract
Although researchers have been trying to harness the immune system for over 100 years, the advent of immune checkpoint blockers (ICB) marks an era of significant clinical outcomes in various metastatic solid tumors, characterized by complete and durable responses. ICBs are monoclonal antibodies that target either of a pair of transmembrane molecules in tumors or T-cells involved in immune evasion. Currently 2 ICBs targeting the checkpoint program death 1 (PD-1), nivolumab and pembrolizumab, and one cytotoxic lymphocyte antigen-4 (CTLA-4) inhibitor (ipilimumab) are approved in gastrointestinal malignancies. We review herein the current evidence on predictive biomarkers for ICB response in gastrointestinal tumors. A review of literature based on the National Cancer Institute list of FDA-approved drugs for neoplasms and FDA-approved therapies at the FDA website was performed. An initial literature review was based on the American Association for Clinical Research meeting 2019, the American Society of Clinical Oncology meeting 2019 and the European Society of Medical Oncology 2019 proceedings. A systematic search of PubMed was performed involving MeSH browser terms such as biomarkers, immunotherapy, gastrointestinal diseases and neoplasms. When appropriate, American and British terms were used in the search. The most relevant predictor of response to ICBs is microsatellite instability (MSI) and the data is strongest for colorectal cancer. At least 3 prospective trials show evidence of PD-L1 as a predictive biomarker for ICB response in gastroesophageal malignancies. At least one prospective trial has described tumor mutational burden high (TMB-H), independent of MSI, as predictive of response in anal and biliary tract carcinomas. DNA Polymerase Epsilon (POLE) or delta (POL-D) mutations have been implicated in a subset of MSS colorectal cancer with TMB-H but this biomarker requires prospective validation. There is evolving data based on retrospective observations that gene alterations predicting acquired resistance and hyper-progression. Ongoing clinical research is assessing the role of the human microbiome and RNA-editing complex mutations as predictive biomarkers of response to ICBs. MSI has the strongest predictive power among current biomarkers for ICB response in gastrointestinal cancers. Data continue to accumulate from ongoing clinical trials and new biomarkers are emerging from pre-clinical studies, suggesting that drug combinations targeting pathways complimentary to the PD-1/PD-L1 axis inhibition will define a robust field of clinical research.
Collapse
|
360
|
Li HJ, Wang YL, Ming L, Guo XQ, Li YL, Wang JC, Zhang YQ, Cheng L. Development of a prognostic model based on an immunogenomic landscape analysis of colorectal cancer. Future Oncol 2020; 17:301-313. [PMID: 32996773 DOI: 10.2217/fon-2020-0022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Screening and therapeutic programs for colorectal cancer (CRC) are invasive or not effective and unable to meet patient needs. Major advances in immunogenomics may change this status but need more exploration. Differentially expressed genes and immune-related genes (IRGs) were identified by computational methods. A prognostic model was established and validated based on survival-related IRGs via stepwise multivariate Cox regression analysis. Nine IRGs were selected and identified as survival-related genes. A 7-gene prognostic model could offer a preliminary and valid determination of risk in CRC patients. The area under the curve of the receiver operating characteristic was 0.672. The 7-gene prognostic model might be used as a novel prognostic tool in CRC patients.
Collapse
Affiliation(s)
- H J Li
- The First Affiliated Hospital of Zhengzhou University, 450000, PR China.,Academy of Medical Science, Zhengzhou University, 450000, PR China
| | - Y L Wang
- The First Affiliated Hospital of Zhengzhou University, 450000, PR China.,Henan Bioengineering Research Center, 450100, PR China
| | - L Ming
- The First Affiliated Hospital of Zhengzhou University, 450000, PR China
| | - X Q Guo
- Henan Provincial Engineering Center for Tumor Molecular Medicine, School of Basic Medical Sciences, Henan University, 475000, PR China
| | - Y L Li
- Henan Bioengineering Research Center, 450100, PR China
| | - J C Wang
- Henan Bioengineering Research Center, 450100, PR China
| | - Y Q Zhang
- Henan Bioengineering Research Center, 450100, PR China.,Zhengzhou Technical College, 450100, PR China
| | - L Cheng
- Henan Bioengineering Research Center, 450100, PR China
| |
Collapse
|
361
|
Kim JH, Kim SY, Baek JY, Cha YJ, Ahn JB, Kim HS, Lee KW, Kim JW, Kim TY, Chang WJ, Park JO, Kim J, Kim JE, Hong YS, Kim YH, Kim TW. A Phase II Study of Avelumab Monotherapy in Patients with Mismatch Repair-Deficient/Microsatellite Instability-High or POLE-Mutated Metastatic or Unresectable Colorectal Cancer. Cancer Res Treat 2020; 52:1135-1144. [PMID: 32340084 PMCID: PMC7577804 DOI: 10.4143/crt.2020.218] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 04/23/2020] [Indexed: 12/12/2022] Open
Abstract
PURPOSE We evaluated the efficacy and safety of avelumab, an anti-PD-L1 antibody, in patients with metastatic or unresectable colorectal cancer (mCRC) with mismatch repair deficiency (dMMR)/microsatellite instability-high (MSI-H) or POLE mutations. MATERIALS AND METHODS In this prospective, open-label, multicenter phase II study, 33 patients with mCRC harboring dMMR/MSI-H or POLE mutations after failure of ≥1st-line chemotherapy received avelumab 10 mg/kg every 2 weeks. dMMR/MSI-H was confirmed with immunohistochemical staining (IHC) by loss of expression of MMR proteins or polymerase chain reaction (PCR) for microsatellite sequences. POLE mutation was confirmed by next-generation sequencing (NGS). The primary endpoint was the objective response rate (ORR) by Response Evaluation Criteria in Solid Tumors ver. 1.1. RESULTS The median age was 60 years, and 78.8% were male. Thirty patients were dMMR/MSI-H and three had POLE mutations. The ORR was 24.2%, and all of the responders were dMMR/MSI-H. For 21 patients with MSI-H by PCR or NGS, the ORR was 28.6%. At a median follow-up duration of 16.3 months, median progression-free survival and overall survival were 3.9 and 13.2 months in all patients, and 8.1 months and not reached, respectively, in patients with MSI-H by PCR or NGS. Dose interruption and discontinuation due to treatment-related adverse events occurred in four and two patients, respectively, with no treatment-related deaths. CONCLUSION Avelumab displayed antitumor activity with manageable toxicity in patients with previously treated mCRC harboring dMMR/MSI-H. Diagnosis of dMMR/MSI-H with PCR or NGS could be complementary to IHC to select patients who would benefit from immunotherapy.
Collapse
Affiliation(s)
- Jwa Hoon Kim
- Department of Oncology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Sun Young Kim
- Department of Oncology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Ji Yeon Baek
- Center for Colorectal Cancer, Research Institute and Hospital, National Cancer Center, Goyang, Korea
| | - Yong Jun Cha
- Center for Colorectal Cancer, Research Institute and Hospital, National Cancer Center, Goyang, Korea
| | - Joong Bae Ahn
- Division of Medical Oncology, Department of Internal Medicine, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Han Sang Kim
- Division of Medical Oncology, Department of Internal Medicine, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Keun-Wook Lee
- Division of Hematology and Medical Oncology, Department of Internal Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Korea
| | - Ji-Won Kim
- Division of Hematology and Medical Oncology, Department of Internal Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Korea
| | - Tae-You Kim
- Department of Internal Medicine, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea
| | - Won Jin Chang
- Division of Oncology/Hematology, Department of Internal Medicine, Korea University Anam Hospital, Korea University College of Medicine, Seoul, Korea
| | - Joon Oh Park
- Division of Hematology–Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Jihun Kim
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Jeong Eun Kim
- Department of Oncology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Yong Sang Hong
- Department of Oncology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Yeul Hong Kim
- Division of Oncology/Hematology, Department of Internal Medicine, Korea University Anam Hospital, Korea University College of Medicine, Seoul, Korea
| | - Tae Won Kim
- Department of Oncology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| |
Collapse
|
362
|
Pötzsch M, Berg E, Hummel M, Stein U, von Winterfeld M, Jöhrens K, Rau B, Daum S, Treese C. Better prognosis of gastric cancer patients with high levels of tumor infiltrating lymphocytes is counteracted by PD-1 expression. Oncoimmunology 2020; 9:1824632. [PMID: 33101772 PMCID: PMC7553533 DOI: 10.1080/2162402x.2020.1824632] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 09/02/2020] [Accepted: 09/02/2020] [Indexed: 12/20/2022] Open
Abstract
The prognostic potential of anti-tumor immune responses is becoming increasingly important in adenocarcinoma of the gastroesophageal junction and stomach (AGE/S) especially regarding the use of immune checkpoint inhibitors. This study analyzes for the first time the prognostic impact of tumor-infiltrating lymphocytes (TILs) and checkpoint inhibitors in a large Caucasian cohort in patients with AGE/S. We screened tissue samples from 438 therapy-naïve patients with AGE/S undergoing surgery between 1992 and 2005, examined in a tissue microarray (TMA) and stained against human CD3, CD4, CD8, PD-1, and PD-L1. Out of 438 tissue samples, 210 were eligible for multivariate analysis. This revealed that high infiltration with CD3+, CD4+, or CD8+ TILs was associated with an increased overall survival in AGE/S patients, which could only be confirmed in multivariate analysis for CD3 (HR: 0.326; p = .023). Independent improved survival was limited to gastric cancer patients and to early tumor stages as long as TILs did not express PD-1 (HR: 1.522; p = .021). Subgroup analyses indicate that TIL-dependent anti-tumor immune response is only effective in gastric cancer patients in early stages of disease in PD-1 negative TILs. Combined analysis of PD-1 and CD3 could serve as a prognostic marker for the clinical outcome of gastric cancer patients and could also be of interest for immunotherapy.
Collapse
Affiliation(s)
- M. Pötzsch
- Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
- Department of Gastroenterology, Infectious Diseases and Rheumatology, Campus Benjamin Franklin, Berlin, Germany
| | - E. Berg
- Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
- Department of Gastroenterology, Infectious Diseases and Rheumatology, Campus Benjamin Franklin, Berlin, Germany
| | - M. Hummel
- Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
- 1.Institute for Pathology, Charité - Universitätsmedizin Berlin, Charité Campus Mitte, Berlin, Germany
| | - U. Stein
- Experimental and Clinical Research Center, Charité - Universitätsmedizin, Berlin and Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
- German Cancer Consortium (DKTK), Heidelberg, Germany
| | - M. von Winterfeld
- Institute of Pathology Heidelberg, University Hospital Heidelberg, Germany
| | - K. Jöhrens
- Institute of Pathology, University Carl Gustav Carus, Dresden, Germany
| | - B. Rau
- Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
- Department of Surgery, Campus Virchow-Klinikum and Charité Campus Mitte, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - S. Daum
- Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
- Department of Gastroenterology, Infectious Diseases and Rheumatology, Campus Benjamin Franklin, Berlin, Germany
- Berlin Institute of Health (BIH), Berlin, Germany
| | - C. Treese
- Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
- Department of Gastroenterology, Infectious Diseases and Rheumatology, Campus Benjamin Franklin, Berlin, Germany
- Experimental and Clinical Research Center, Charité - Universitätsmedizin, Berlin and Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
- Berlin Institute of Health (BIH), Berlin, Germany
| |
Collapse
|
363
|
Genetic Characteristics of Colorectal Neuroendocrine Carcinoma: More Similar to Colorectal Adenocarcinoma. Clin Colorectal Cancer 2020; 20:177-185.e13. [PMID: 33041225 DOI: 10.1016/j.clcc.2020.09.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 08/25/2020] [Accepted: 09/01/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND Despite the increasing incidence rate of colorectal neuroendocrine carcinoma (CR-NEC), there are still few sequencing data to depict the genomic characteristics of CR-NEC. PATIENTS AND METHODS Next-generation sequencing data of CR-NEC, colorectal adenocarcinoma (COREAD), lung neuroendocrine carcinoma (lung NEC), and gastrointestinal neuroendocrine tumor (GI-NET) were retrieved from the American Association of Cancer Research Project Genomics, Evidence, Neoplasia, Information, Exchange (GENIE) database platform. Overall survival data of patients were obtained from cBioPortal. RESULTS The median tumor mutation burden (TMB) was 5.18 per megabase. TP53 (65.5%), APC (59.5%), KRAS (36.9%), BRAF (20.2%), and RB1 (16.7%) were the most common genes harboring somatic mutations. Nearly all of the BRAF mutations (88.2%) caused V600E. The most common copy number alterations were gain of MYC (12.3%), loss of RB1 (10.7%), and loss of PTEN (5.4%). Compared to lung NEC and GI-NET, the genetic characteristics of CR-NEC were more similar to that of COREAD. CR-NEC had a higher rate of potentially targetable gene alterations compared to lung NEC and GI-NET, and BRAFV600E might be a promising treatment target. Survival analysis indicated that patients with high TMB had significantly worse survival than patients with low TMB (P < .001). In addition, KRAS and RB1 alteration were found to be correlated with worse survival (both P = .023). CONCLUSION CR-NEC has genetic alterations that are more similar to COREAD than other entities. A substantial group of CR-NEC harboring potentially targetable alterations (BRAFV600E) deserves to be tested in clinical practice.
Collapse
|
364
|
Bae JM, Yoo SY, Kim JH, Kang GH. Immune landscape and biomarkers for immuno-oncology in colorectal cancers. J Pathol Transl Med 2020; 54:351-360. [PMID: 32580539 PMCID: PMC7483026 DOI: 10.4132/jptm.2020.05.15] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 05/14/2020] [Indexed: 12/11/2022] Open
Abstract
Recent advances in immuno-oncology have increased understanding of the tumor immune microenvironment (TIME), and clinical trials for immune checkpoint inhibitor treatment have shown remission and/or durable response in certain proportions of patients stratified by predictive biomarkers. The TIME in colorectal cancer (CRC) was initially evaluated several decades ago. The prognostic value of the immune response to tumors, including tumor-infiltrating lymphocytes, peritumoral lymphoid reaction, and Crohn's-like lymphoid reaction, has been well demonstrated. In this review, we describe the chronology of TIME research and review the up-to-date high-dimensional TIME landscape of CRC. We also summarize the clinical relevance of several biomarkers associated with immunotherapy in CRC, such as microsatellite instability, tumor mutational burden, POLE/POLD mutation, consensus molecular subtype, and programmed death-ligand 1 expression.
Collapse
Affiliation(s)
- Jeong Mo Bae
- Department of Pathology, Seoul National University College of Medicine, Seoul, Korea
| | - Seung-Yeon Yoo
- Department of Pathology, Seoul National University College of Medicine, Seoul, Korea
| | - Jung Ho Kim
- Department of Pathology, Seoul National University College of Medicine, Seoul, Korea
| | - Gyeong Hoon Kang
- Department of Pathology, Seoul National University College of Medicine, Seoul, Korea
| |
Collapse
|
365
|
Cui JJ, Wang LY, Tan ZR, Zhou HH, Zhan X, Yin JY. MASS SPECTROMETRY-BASED PERSONALIZED DRUG THERAPY. MASS SPECTROMETRY REVIEWS 2020; 39:523-552. [PMID: 31904155 DOI: 10.1002/mas.21620] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 12/09/2019] [Indexed: 06/10/2023]
Abstract
Personalized drug therapy aims to provide tailored treatment for individual patient. Mass spectrometry (MS) is revolutionarily involved in this area because MS is a rapid, customizable, cost-effective, and easy to be used high-throughput method with high sensitivity, specificity, and accuracy. It is driving the formation of a new field, MS-based personalized drug therapy, which currently mainly includes five subfields: therapeutic drug monitoring (TDM), pharmacogenomics (PGx), pharmacomicrobiomics, pharmacoepigenomics, and immunopeptidomics. Gas chromatography-MS (GC-MS) and liquid chromatography-MS (LC-MS) are considered as the gold standard for TDM, which can be used to optimize drug dosage. Matrix-assisted laser desorption ionization-time of flight-MS (MALDI-TOF-MS) significantly improves the capability of detecting biomacromolecule, and largely promotes the application of MS in PGx. It is becoming an indispensable tool for genotyping, which is used to discover and validate genetic biomarkers. In addition, MALDI-TOF-MS also plays important roles in identity of human microbiome whose diversity can explain interindividual differences of drug response. Pharmacoepigenetics is to study the role of epigenetic factors in individualized drug treatment. MS can be used to discover and validate pharmacoepigenetic markers (DNA methylation, histone modification, and noncoding RNA). For the emerging cancer immunotherapy, personalized cancer vaccine has effective immunotherapeutic activity in the clinic. MS-based immunopeptidomics can effectively discover and screen neoantigens. This article systematically reviewed MS-based personalized drug therapy in the above mentioned five subfields. © 2020 John Wiley & Sons Ltd. Mass Spec Rev.
Collapse
Affiliation(s)
- Jia-Jia Cui
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, P. R. China
- Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, 110 Xiangya Road, Changsha, 410078, P. R. China
- Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, 110 Xiangya Road, Changsha, 410078, P. R. China
- National Clinical Research Center for Geriatric Disorders, 87 Xiangya Road, Changsha, 410008, Hunan, P. R. China
| | - Lei-Yun Wang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, P. R. China
- Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, 110 Xiangya Road, Changsha, 410078, P. R. China
- Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, 110 Xiangya Road, Changsha, 410078, P. R. China
- National Clinical Research Center for Geriatric Disorders, 87 Xiangya Road, Changsha, 410008, Hunan, P. R. China
| | - Zhi-Rong Tan
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, P. R. China
- Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, 110 Xiangya Road, Changsha, 410078, P. R. China
- Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, 110 Xiangya Road, Changsha, 410078, P. R. China
- National Clinical Research Center for Geriatric Disorders, 87 Xiangya Road, Changsha, 410008, Hunan, P. R. China
| | - Hong-Hao Zhou
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, P. R. China
- Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, 110 Xiangya Road, Changsha, 410078, P. R. China
- Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, 110 Xiangya Road, Changsha, 410078, P. R. China
- National Clinical Research Center for Geriatric Disorders, 87 Xiangya Road, Changsha, 410008, Hunan, P. R. China
| | - Xianquan Zhan
- National Clinical Research Center for Geriatric Disorders, 87 Xiangya Road, Changsha, 410008, Hunan, P. R. China
- Department of Oncology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan, 410008, P. R. China
- Key Laboratory of Cancer Proteomics of Chinese Ministry of Health, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan, 410008, P. R. China
- Hunan Engineering Laboratory for Structural Biology and Drug Design, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan, 410008, P. R. China
- State Local Joint Engineering Laboratory for Anticancer Drugs, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan, 410008, P. R. China
| | - Ji-Ye Yin
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, P. R. China
- Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, 110 Xiangya Road, Changsha, 410078, P. R. China
- Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, 110 Xiangya Road, Changsha, 410078, P. R. China
- National Clinical Research Center for Geriatric Disorders, 87 Xiangya Road, Changsha, 410008, Hunan, P. R. China
- Hunan Provincial Gynecological Cancer Diagnosis and Treatment Engineering Research Center, Changsha, Hunan, 410078, P. R. China
- Hunan Key Laboratory of Precise Diagnosis and Treatment of Gastrointestinal Tumor, Changsha, Hunan, 410078, P. R. China
| |
Collapse
|
366
|
Li R, Han D, Shi J, Han Y, Tan P, Zhang R, Li J. Choosing tumor mutational burden wisely for immunotherapy: A hard road to explore. Biochim Biophys Acta Rev Cancer 2020; 1874:188420. [PMID: 32828886 DOI: 10.1016/j.bbcan.2020.188420] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 08/17/2020] [Accepted: 08/17/2020] [Indexed: 12/28/2022]
Abstract
Immunotherapy has revolutionized the treatment of cancer due to its remarkable efficacy and extensive survival benefit in multiple tumor types. However, predictive biomarkers are required to identify patients who are likely to respond to immunotherapy. Recently, tumor mutational burden (TMB) has been shown to be associated with clinical outcomes in diverse cancers, such as melanoma, non-small-cell lung cancer and colorectal cancer. Several studies have demonstrated that high TMB can effectively predict the objective response rate and progression-free survival, but the ability of TMB to predict overall survival is limited. Thus, the clinical utility of TMB as a predictive and prognostic biomarker in immunotherapy is currently controversial. Importantly, multiple factors can affect the accurate assessment of TMB and further interfere with its prediction of clinical outcomes. These factors include preanalytical factors such as sample status, analytical factors such as differences in platforms and methods for determining TMB and variability of cutoff values, and postanalytical factors such as inconsistent interpretation and reporting of results. In addition, the optimal definition and quantification of TMB are unclear and require harmonization and standardization for reliable clinical application. This review elaborates on the factors affecting TMB status in primary tumors, summarizes the clinical utility of TMB as a biomarker in immunotherapy, and evaluates the impact of each analysis stage on the accurate estimation of TMB, especially its quantification, aiming to facilitate TMB assessment in routine clinical settings.
Collapse
Affiliation(s)
- Rui Li
- National Center for Clinical Laboratories, Beijing Hospital, National Center of Gerontology; Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, PR China; Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, PR China; Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital, Beijing, PR China
| | - Dongsheng Han
- National Center for Clinical Laboratories, Beijing Hospital, National Center of Gerontology; Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, PR China; Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, PR China; Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital, Beijing, PR China
| | - Jiping Shi
- National Center for Clinical Laboratories, Beijing Hospital, National Center of Gerontology; Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, PR China; Peking University Fifth School of Clinical Medicine, Beijing, PR China; Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital, Beijing, PR China
| | - YanXi Han
- National Center for Clinical Laboratories, Beijing Hospital, National Center of Gerontology; Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, PR China; Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital, Beijing, PR China
| | - Ping Tan
- National Center for Clinical Laboratories, Beijing Hospital, National Center of Gerontology; Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, PR China; Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, PR China; Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital, Beijing, PR China
| | - Rui Zhang
- National Center for Clinical Laboratories, Beijing Hospital, National Center of Gerontology; Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, PR China; Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital, Beijing, PR China.
| | - Jinming Li
- National Center for Clinical Laboratories, Beijing Hospital, National Center of Gerontology; Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, PR China; Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital, Beijing, PR China.
| |
Collapse
|
367
|
Cohen R, Pudlarz T, Delattre JF, Colle R, André T. Molecular Targets for the Treatment of Metastatic Colorectal Cancer. Cancers (Basel) 2020; 12:E2350. [PMID: 32825275 PMCID: PMC7563268 DOI: 10.3390/cancers12092350] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 08/06/2020] [Accepted: 08/10/2020] [Indexed: 12/14/2022] Open
Abstract
Over the past years, colorectal cancer (CRC) was subtyped according to its molecular and genetic characteristics, allowing the development of therapeutic strategies, based on predictive biomarkers. Biomarkers such as microsatellite instability (MSI), RAS and BRAF mutations, HER2 amplification or NTRK fusions represent major tools for personalized therapeutic strategies. Moreover, the routine implementation of molecular predictive tests provides new perspectives and challenges for the therapeutic management of CRC patients, such as liquid biopsies and the reintroduction of anti-EGFR monoclonal antibodies. In this review, we summarize the current landscape of targeted therapies for metastatic CRC patients, with a focus on new developments for EGFR blockade and emerging biomarkers (MSI, HER2, NTRK).
Collapse
Affiliation(s)
- Romain Cohen
- Department of Medical Oncology, Hôpital Saint-Antoine, Sorbonne Université, Assistance Publique-Hôpitaux de Paris (AP-HP), F-75012 Paris, France; (T.P.); (J.-F.D.); (R.C.); (T.A.)
| | | | | | | | | |
Collapse
|
368
|
Donoghue MTA, Schram AM, Hyman DM, Taylor BS. Discovery through clinical sequencing in oncology. ACTA ACUST UNITED AC 2020; 1:774-783. [PMID: 35122052 PMCID: PMC8985175 DOI: 10.1038/s43018-020-0100-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 07/15/2020] [Indexed: 12/11/2022]
Abstract
The molecular characterization of tumors now informs clinical cancer care for many patients. This advent of molecular oncology is driven by the expanding number of therapeutic biomarkers that can predict sensitivity to both approved and investigational agents. Beyond its role in driving clinical trial enrollments and guiding therapy in individual patients, large-scale clinical genomics in oncology also represents a rapidly expanding research resource for translational scientific discovery. Here, we review the progress, opportunities, and challenges of scientific and translational discovery from prospective clinical genomic screening programs now routinely conducted in cancer patients.
Collapse
|
369
|
Hirsch D, Gaiser T, Merx K, Weingaertner S, Forster M, Hendricks A, Woenckhaus M, Schubert T, Hofheinz RD, Gencer D. Clinical responses to PD-1 inhibition and their molecular characterization in six patients with mismatch repair-deficient metastatic cancer of the digestive system. J Cancer Res Clin Oncol 2020; 147:263-273. [PMID: 32776177 PMCID: PMC7810640 DOI: 10.1007/s00432-020-03335-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Accepted: 07/22/2020] [Indexed: 12/18/2022]
Abstract
Purpose Immune checkpoint inhibitors have shown efficacy in patients with microsatellite instability-high/mismatch repair-deficient (MSI-H/dMMR) gastrointestinal (GI) cancers. However, depth and duration of clinical response is not uniform. We assessed tumor mutation burden (TMB) as a response marker in patients with GI cancers treated with immune checkpoint inhibitors. Methods Detailed clinical and response data were collected from six patients with metastatic MSI-H/dMMR GI cancers treated with immune checkpoint inhibitors. Efficacy was assessed by Response Evaluation Criteria in Solid Tumors (RECIST) version 1.1. Tumors and matched normal tissue were profiled by targeted next generation sequencing (127 gene panel, size 0.8 Mb). Impact of included mutation types, germline filtering methodology and different variant allele frequency thresholds on TMB estimation was assessed. Results Objective radiographic responses were observed in all six patients, and complete response was achieved in two of the six patients. Responses were durable (minimum 25 months). TMB estimates were clearly above the two recently reported cut-offs for metastatic colorectal cancer of 12 or 37 mutations per megabase for five of six patients, respectively, while one patient had borderline TMB elevation. TMB did not show an association with extent and duration of response but was influenced by included mutation types, germline filtering method and variant allele frequency threshold. Conclusion Our case series confirms the clinical benefit of immune checkpoint blockade in patients with metastatic MSI-H/dMMR GI cancers and illustrates the vulnerability of TMB as predictive marker in a subset of patients. Electronic supplementary material The online version of this article (10.1007/s00432-020-03335-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Daniela Hirsch
- Institute of Pathology, Medical Faculty Mannheim, University Medical Center Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany.
| | - Timo Gaiser
- Institute of Pathology, Medical Faculty Mannheim, University Medical Center Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany
| | - Kirsten Merx
- Department of Medicine III, Medical Faculty Mannheim, University Medical Center Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany
| | - Simone Weingaertner
- Department of Medicine III, Medical Faculty Mannheim, University Medical Center Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany
| | - Michael Forster
- Institute of Clinical Molecular Biology, Christian-Albrechts-University Kiel, Kiel, Germany
| | | | - Matthias Woenckhaus
- Institute of Pathology, Caritas-Hospital Bad Mergentheim, Bad Mergentheim, Germany
| | | | - Ralf-Dieter Hofheinz
- Department of Medicine III, Medical Faculty Mannheim, University Medical Center Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany
| | - Deniz Gencer
- Department of Medicine III, Medical Faculty Mannheim, University Medical Center Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany.
| |
Collapse
|
370
|
Li M, Wang H, Li W, Peng Y, Xu F, Shang J, Dong S, Bu L, Wang H, Wei W, Hu Q, Liu L, Zhao Q. Identification and validation of an immune prognostic signature in colorectal cancer. Int Immunopharmacol 2020; 88:106868. [PMID: 32771948 DOI: 10.1016/j.intimp.2020.106868] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 07/31/2020] [Accepted: 07/31/2020] [Indexed: 02/06/2023]
Abstract
BACKGROUND Colorectal cancer (CRC) is one of the most common malignant neoplasms worldwide. Although the significant efficacy of immunotherapy has been shown, only limited CRC patients benefit from it. Therefore, we aimed to establish a prognostic signature based on immune-related genes (IRGs) to predict overall survival (OS) and the potential response to immunotherapy in CRC patients. METHODS Gene expression profiles and clinical information of CRC patients were collected from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases. The prognostic signature composed of IRGs was established using univariate Cox regression and the least absolute shrinkage and selection operator (LASSO) regression analysis. CIBERSORT was used to estimate the immune cell infiltration. RESULTS A total of 24 survival-related IRGs were identified from 247 differentially expressed IRGs. Then, 16 IRGs were selected to establish the prognostic signature that stratified the patients into the high-risk and low-risk groups with statistically different survival outcomes. The AUCs of the time-dependent ROC curves indicated that the signature had a strong predictive accuracy in internal and external validation sets. Multivariate cox regression analysis suggested that the signature could also act as an independent prognostic factor for OS. The low-risk group had a higher proportion of immune cell infiltration than the high-risk group, such as CD4 memory resting T cells, activated dendritic cells, and resting dendritic cells. In addition, patients in the high-risk group exhibited higher tumor mutation burden and BRAF mutation. CONCLUSION We developed an immune-related prognostic signature to predict the OS and immune status in CRC patients. We believed that our signature is conducive to better stratification and more precise immunotherapy for CRC patients.
Collapse
Affiliation(s)
- Mengting Li
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, China; Hubei Clinical Center and Key Lab of Intestinal and Colorectal Diseases, Wuhan, China
| | - Haizhou Wang
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, China; Hubei Clinical Center and Key Lab of Intestinal and Colorectal Diseases, Wuhan, China
| | - Wenjie Li
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, China; Hubei Clinical Center and Key Lab of Intestinal and Colorectal Diseases, Wuhan, China
| | - Yanan Peng
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, China; Hubei Clinical Center and Key Lab of Intestinal and Colorectal Diseases, Wuhan, China
| | - Fei Xu
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, China; Hubei Clinical Center and Key Lab of Intestinal and Colorectal Diseases, Wuhan, China
| | - Jian Shang
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, China; Hubei Clinical Center and Key Lab of Intestinal and Colorectal Diseases, Wuhan, China
| | - Shouquan Dong
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, China; Hubei Clinical Center and Key Lab of Intestinal and Colorectal Diseases, Wuhan, China
| | - Lupin Bu
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, China; Hubei Clinical Center and Key Lab of Intestinal and Colorectal Diseases, Wuhan, China
| | - Hao Wang
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, China; Hubei Clinical Center and Key Lab of Intestinal and Colorectal Diseases, Wuhan, China
| | - Wanhui Wei
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, China; Hubei Clinical Center and Key Lab of Intestinal and Colorectal Diseases, Wuhan, China
| | - Qian Hu
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, China; Hubei Clinical Center and Key Lab of Intestinal and Colorectal Diseases, Wuhan, China
| | - Lan Liu
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, China; Hubei Clinical Center and Key Lab of Intestinal and Colorectal Diseases, Wuhan, China.
| | - Qiu Zhao
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, China; Hubei Clinical Center and Key Lab of Intestinal and Colorectal Diseases, Wuhan, China.
| |
Collapse
|
371
|
Derks S, de Klerk LK, Xu X, Fleitas T, Liu KX, Liu Y, Dietlein F, Margolis C, Chiaravalli AM, Da Silva AC, Ogino S, Akarca FG, Freeman GJ, Rodig SJ, Hornick JL, van Allen E, Li B, Liu SX, Thorsson V, Bass AJ. Characterizing diversity in the tumor-immune microenvironment of distinct subclasses of gastroesophageal adenocarcinomas. Ann Oncol 2020; 31:1011-1020. [PMID: 32387455 PMCID: PMC7690253 DOI: 10.1016/j.annonc.2020.04.011] [Citation(s) in RCA: 97] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 04/11/2020] [Accepted: 04/14/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Gastroesophageal adenocarcinomas (GEAs) are heterogeneous cancers where immune checkpoint inhibitors have robust efficacy in heavily inflamed microsatellite instability (MSI) or Epstein-Barr virus (EBV)-positive subtypes. Immune checkpoint inhibitor responses are markedly lower in diffuse/genome stable (GS) and chromosomal instable (CIN) GEAs. In contrast to EBV and MSI subtypes, the tumor microenvironment of CIN and GS GEAs have not been fully characterized to date, which limits our ability to improve immunotherapeutic strategies. PATIENTS AND METHODS Here we aimed to identify tumor-immune cell association across GEA subclasses using data from The Cancer Genome Atlas (N = 453 GEAs) and archival GEA resection specimen (N = 71). The Cancer Genome Atlas RNAseq data were used for computational inferences of immune cell subsets, which were correlated to tumor characteristics within and between subtypes. Archival tissues were used for more spatial immune characterization spanning immunohistochemistry and mRNA expression analyses. RESULTS Our results confirmed substantial heterogeneity in the tumor microenvironment between distinct subtypes. While MSI-high and EBV+ GEAs harbored most intense T cell infiltrates, the GS group showed enrichment of CD4+ T cells, macrophages and B cells and, in ∼50% of cases, evidence for tertiary lymphoid structures. In contrast, CIN cancers possessed CD8+ T cells predominantly at the invasive margin while tumor-associated macrophages showed tumor infiltrating capacity. Relatively T cell-rich 'hot' CIN GEAs were often from Western patients, while immunological 'cold' CIN GEAs showed enrichment of MYC and cell cycle pathways, including amplification of CCNE1. CONCLUSIONS These results reveal the diversity of immune phenotypes of GEA. Half of GS gastric cancers have tertiary lymphoid structures and are therefore promising candidates for immunotherapy. The majority of CIN GEAs, however, exhibit T cell exclusion and infiltrating macrophages. Associations of immune-poor CIN GEAs with MYC activity and CCNE1 amplification may enable new studies to determine precise mechanisms of immune evasion, ultimately inspiring new therapeutic modalities.
Collapse
Affiliation(s)
- S Derks
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, VU University Medical Center, Amsterdam, The Netherlands; Oncode Institute, Utrecht, The Netherlands.
| | - L K de Klerk
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, VU University Medical Center, Amsterdam, The Netherlands; Oncode Institute, Utrecht, The Netherlands; Dana-Farber Cancer Institute, Boston, USA
| | - X Xu
- Department of Biliary-Pancreatic Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - T Fleitas
- Biomedical Research Institute INCLIVA, CIBERONC, University of Valencia, Valencia, Spain
| | - K X Liu
- Department of Radiation Oncology, Brigham and Women's Hospital, Dana-Farber Cancer Institute, Boston, USA
| | - Y Liu
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, USA
| | - F Dietlein
- Dana-Farber Cancer Institute, Boston, USA; Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, USA
| | - C Margolis
- Dana-Farber Cancer Institute, Boston, USA; Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, USA
| | | | - A C Da Silva
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, USA
| | - S Ogino
- Dana-Farber Cancer Institute, Boston, USA; Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, USA
| | - F G Akarca
- Dana-Farber Cancer Institute, Boston, USA
| | | | - S J Rodig
- Department of Pathology and Center for Immuno-Oncology
| | - J L Hornick
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, USA
| | - E van Allen
- Dana-Farber Cancer Institute, Boston, USA; Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, USA
| | - B Li
- Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, Boston, USA
| | - S X Liu
- Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, Boston, USA
| | - V Thorsson
- Institute for Systems Biology, Seattle, USA
| | - A J Bass
- Dana-Farber Cancer Institute, Boston, USA; Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, USA.
| |
Collapse
|
372
|
Filip S, Vymetalkova V, Petera J, Vodickova L, Kubecek O, John S, Cecka F, Krupova M, Manethova M, Cervena K, Vodicka P. Distant Metastasis in Colorectal Cancer Patients-Do We Have New Predicting Clinicopathological and Molecular Biomarkers? A Comprehensive Review. Int J Mol Sci 2020; 21:E5255. [PMID: 32722130 PMCID: PMC7432613 DOI: 10.3390/ijms21155255] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 07/21/2020] [Accepted: 07/22/2020] [Indexed: 02/06/2023] Open
Abstract
Colorectal cancer (CRC) remains a serious health problem worldwide. Approximately half of patients will develop distant metastasis after CRC resection, usually with very poor prognosis afterwards. Because patient performance after distant metastasis surgery remains very heterogeneous, ranging from death within 2 years to a long-term cure, there is a clinical need for a precise risk stratification of patients to aid pre- and post-operative decisions. Furthermore, around 20% of identified CRC cases are at IV stage disease, known as a metastatic CRC (mCRC). In this review, we overview possible molecular and clinicopathological biomarkers that may provide prognostic and predictive information for patients with distant metastasis. These may comprise sidedness of the tumor, molecular profile and epigenetic characteristics of the primary tumor and arising metastatic CRC, and early markers reflecting cancer cell resistance in mCRC and biomarkers identified from transcriptome. This review discusses current stage in employment of these biomarkers in clinical practice as well as summarizes current experience in identifying predictive biomarkers in mCRC treatment.
Collapse
Affiliation(s)
- Stanislav Filip
- Department of Oncology and Radiotherapy, Charles University, Faculty of Medicine in Hradec Kralove, Šimkova 870, 50001 Hradec Králové, Czech Republic; (J.P.); (O.K.); (S.J.)
| | - Veronika Vymetalkova
- Department of Molecular Biology of Cancer, Institute of Experimental Medicine of the Czech Academy of Sciences, Videnska 1083, 14220 Prague, Czech Republic; (V.V.); (L.V.); (K.C.)
- Biomedical Centre, Faculty of Medicine in Pilsen, Charles University, Alej Svobody 1655, 32300 Pilsen, Czech Republic
- Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University, Albertov 4, 12800 Prague, Czech Republic
| | - Jiri Petera
- Department of Oncology and Radiotherapy, Charles University, Faculty of Medicine in Hradec Kralove, Šimkova 870, 50001 Hradec Králové, Czech Republic; (J.P.); (O.K.); (S.J.)
| | - Ludmila Vodickova
- Department of Molecular Biology of Cancer, Institute of Experimental Medicine of the Czech Academy of Sciences, Videnska 1083, 14220 Prague, Czech Republic; (V.V.); (L.V.); (K.C.)
- Biomedical Centre, Faculty of Medicine in Pilsen, Charles University, Alej Svobody 1655, 32300 Pilsen, Czech Republic
- Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University, Albertov 4, 12800 Prague, Czech Republic
| | - Ondrej Kubecek
- Department of Oncology and Radiotherapy, Charles University, Faculty of Medicine in Hradec Kralove, Šimkova 870, 50001 Hradec Králové, Czech Republic; (J.P.); (O.K.); (S.J.)
| | - Stanislav John
- Department of Oncology and Radiotherapy, Charles University, Faculty of Medicine in Hradec Kralove, Šimkova 870, 50001 Hradec Králové, Czech Republic; (J.P.); (O.K.); (S.J.)
| | - Filip Cecka
- Department of Surgery, University Hospital in Hradec Kralove, Sokolská 581, 50005 Hradec Králové, Czech Republic;
| | - Marketa Krupova
- The Fingerland Department of Pathology, University Hospital in Hradec Kralove, Sokolská 581, 50005 Hradec Králové, Czech Republic; (M.K.); (M.M.)
| | - Monika Manethova
- The Fingerland Department of Pathology, University Hospital in Hradec Kralove, Sokolská 581, 50005 Hradec Králové, Czech Republic; (M.K.); (M.M.)
| | - Klara Cervena
- Department of Molecular Biology of Cancer, Institute of Experimental Medicine of the Czech Academy of Sciences, Videnska 1083, 14220 Prague, Czech Republic; (V.V.); (L.V.); (K.C.)
- Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University, Albertov 4, 12800 Prague, Czech Republic
| | - Pavel Vodicka
- Department of Molecular Biology of Cancer, Institute of Experimental Medicine of the Czech Academy of Sciences, Videnska 1083, 14220 Prague, Czech Republic; (V.V.); (L.V.); (K.C.)
- Biomedical Centre, Faculty of Medicine in Pilsen, Charles University, Alej Svobody 1655, 32300 Pilsen, Czech Republic
- Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University, Albertov 4, 12800 Prague, Czech Republic
| |
Collapse
|
373
|
Martini G, Dienstmann R, Ros J, Baraibar I, Cuadra-Urteaga JL, Salva F, Ciardiello D, Mulet N, Argiles G, Tabernero J, Elez E. Molecular subtypes and the evolution of treatment management in metastatic colorectal cancer. Ther Adv Med Oncol 2020; 12:1758835920936089. [PMID: 32782486 PMCID: PMC7383645 DOI: 10.1177/1758835920936089] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 05/22/2020] [Indexed: 12/22/2022] Open
Abstract
Colorectal cancer (CRC) is a heterogeneous disease representing a therapeutic challenge, which is further complicated by the common occurrence of several molecular alterations that confer resistance to standard chemotherapy and targeted agents. Mechanisms of resistance have been identified at multiple levels in the epidermal growth factor receptor (EGFR) pathway, including mutations in KRAS, NRAS, and BRAF V600E, and in the HER2 and MET receptors. These alterations represent oncogenic drivers that may co-exist in the same tumor with other primary and acquired alterations via a clonal selection process. Other molecular alterations include DNA damage repair mechanisms and rare kinase fusions, potentially offering a rationale for new therapeutic strategies. In recent years, genomic analysis has been expanded by a more complex study of epigenomic, transcriptomic, and microenvironment features. The Consensus Molecular Subtype (CMS) classification describes four CRC subtypes with distinct biological characteristics that show prognostic and potential predictive value in the clinical setting. Here, we review the panorama of actionable targets in CRC, and the developments in more recent molecular tests, such as liquid biopsy analysis, which are increasingly offering clinicians a means of ensuring optimal tailored treatments for patients with metastatic CRC according to their evolving molecular profile and treatment history.
Collapse
Affiliation(s)
- Giulia Martini
- Università della Campania L. Vanvitelli, Naples
- Vall d’Hebron Institute of Oncology, P/ Vall D’Hebron 119-121, Barcelona, 08035, Spain
| | | | - Javier Ros
- Vall d’Hebron Hospital, Barcelona, Catalunya, Spain
| | | | | | | | - Davide Ciardiello
- Università della Campania L. Vanvitelli, Naples
- Vall d’Hebron Hospital, Barcelona, Catalunya, Spain
| | - Nuria Mulet
- Vall d’Hebron Hospital, Barcelona, Catalunya, Spain
| | | | | | - Elena Elez
- Vall D’Hebron Institute of Oncology P/Vall D’Hebron 119-121, Barcelona, 08035 Spain
| |
Collapse
|
374
|
Cohen R, Shi Q, André T. Immunotherapy for Early Stage Colorectal Cancer: A Glance into the Future. Cancers (Basel) 2020; 12:E1990. [PMID: 32708216 PMCID: PMC7409300 DOI: 10.3390/cancers12071990] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 07/10/2020] [Accepted: 07/17/2020] [Indexed: 12/16/2022] Open
Abstract
Immune checkpoint inhibitors (ICI) have reshaped therapeutic strategies for cancer patients. The development of ICI for early stage colorectal cancer is accompanied by specific challenges: (i) the selection of patients who are likely to benefit from these treatments, i.e., patients with tumors harboring predictive factors of efficacy of ICI, such as microsatellite instability and/or mismatch repair deficiency (MSI/dMMR), or other potential parameters (increased T cell infiltration using Immunoscore® or others, high tumor mutational burden, POLE mutation), (ii) the selection of patients at risk of disease recurrence (poor prognostic features), and (iii) the choice of an accurate clinical trial methodological framework. In this review, we will discuss the ins and outs of clinical research of ICI for early stage MSI/dMMR CC patients in adjuvant and neoadjuvant settings. We will then summarize data that might support the development of ICI in localized colorectal cancer beyond MSI/dMMR.
Collapse
Affiliation(s)
- Romain Cohen
- Department of Medical Oncology, Hôpital Saint-Antoine, Sorbonne Université, Assistance Publique-Hôpitaux de Paris (AP-HP), F-75012 Paris, France;
- Department of Health Science Research, Division of Biomedical Statistics and Informatics, Mayo Clinic, Rochester, MN 55905, USA;
| | - Qian Shi
- Department of Health Science Research, Division of Biomedical Statistics and Informatics, Mayo Clinic, Rochester, MN 55905, USA;
| | - Thierry André
- Department of Medical Oncology, Hôpital Saint-Antoine, Sorbonne Université, Assistance Publique-Hôpitaux de Paris (AP-HP), F-75012 Paris, France;
| |
Collapse
|
375
|
Darabi S, Braxton DR, Eisenberg BL, Demeure MJ. Molecular genomic profiling of adrenocortical cancers in clinical practice. Surgery 2020; 169:138-144. [PMID: 32709489 DOI: 10.1016/j.surg.2020.05.039] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 05/01/2020] [Accepted: 05/21/2020] [Indexed: 12/26/2022]
Abstract
BACKGROUND At presentation, 21% to 49% of patients with adrenocortical cancer have metastases. Standard chemotherapy has a 23% response rate. We assessed whether next generation sequencing could elucidate additional treatment options in refractory adrenocortical cancer. METHODS Retrospective analysis using a commercial, 592-gene DNA-based panel was performed of next generation sequencing data from 94 adrenocortical cancer tumors profiled for clinical care. We compared our data to the adrenocortical cancer database of The Cancer Genome Atlas containing survival data. We evaluated mutations, indels, amplifications, tumor mutation burden, microsatellite instability, and programmed death-ligand 1 protein expression. RESULTS Our cohort included 54 primary neoplasms and 40 metastatic lesions. The most frequently mutated genes were TP53 (36%) and CTNNB1 (19%). Low prevalence mutations were noted in 37 genes including DNA damage repair genes in 15 samples. High tumor mutation burden was seen in 3 patients, and programmed death-ligand 1 was positive in 12. Potential targets to Food and Drug Administration-approved drugs were seen in 16% of cases. CONCLUSION DNA sequencing panel tests may identify therapeutic options for some patients with adrenocortical cancer. TP53 and mutations were associated with an adverse outcome. An expanded repertoire of drugs and, perhaps, more expansive multi-omic sequencing are needed to advance the treatment of adrenocortical cancer.
Collapse
Affiliation(s)
- Sourat Darabi
- Hoag Family Cancer Institute, Precision Medicine Program, Newport Beach, CA
| | - David R Braxton
- Hoag Family Cancer Institute, Precision Medicine Program, Newport Beach, CA
| | - Burton L Eisenberg
- Hoag Family Cancer Institute, Precision Medicine Program, Newport Beach, CA; University of Southern California, Los Angeles, CA
| | - Michael J Demeure
- Hoag Family Cancer Institute, Precision Medicine Program, Newport Beach, CA; Translational Genomics Research Institution, Phoenix, AZ.
| |
Collapse
|
376
|
Leoni G, D'Alise AM, Cotugno G, Langone F, Garzia I, De Lucia M, Fichera I, Vitale R, Bignone V, Tucci FG, Mori F, Leuzzi A, Di Matteo E, Troise F, Abbate A, Merone R, Ruzza V, Diodoro MG, Yadav M, Gordon-Alonso M, Vanhaver C, Panigada M, Soprana E, Siccardi A, Folgori A, Colloca S, van der Bruggen P, Nicosia A, Lahm A, Catanese MT, Scarselli E. A Genetic Vaccine Encoding Shared Cancer Neoantigens to Treat Tumors with Microsatellite Instability. Cancer Res 2020; 80:3972-3982. [PMID: 32690723 DOI: 10.1158/0008-5472.can-20-1072] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 06/01/2020] [Accepted: 07/15/2020] [Indexed: 11/16/2022]
Abstract
Tumors with microsatellite instability (MSI) are caused by a defective DNA mismatch repair system that leads to the accumulation of mutations within microsatellite regions. Indels in microsatellites of coding genes can result in the synthesis of frameshift peptides (FSP). FSPs are tumor-specific neoantigens shared across patients with MSI. In this study, we developed a neoantigen-based vaccine for the treatment of MSI tumors. Genetic sequences from 320 MSI tumor biopsies and matched healthy tissues in The Cancer Genome Atlas database were analyzed to select shared FSPs. Two hundred nine FSPs were selected and cloned into nonhuman Great Ape Adenoviral and Modified Vaccinia Ankara vectors to generate a viral-vectored vaccine, referred to as Nous-209. Sequencing tumor biopsies of 20 independent patients with MSI colorectal cancer revealed that a median number of 31 FSPs out of the 209 encoded by the vaccine was detected both in DNA and mRNA extracted from each tumor biopsy. A relevant number of peptides encoded by the vaccine were predicted to bind patient HLA haplotypes. Vaccine immunogenicity was demonstrated in mice with potent and broad induction of FSP-specific CD8 and CD4 T-cell responses. Moreover, a vaccine-encoded FSP was processed in vitro by human antigen-presenting cells and was subsequently able to activate human CD8 T cells. Nous-209 is an "off-the-shelf" cancer vaccine encoding many neoantigens shared across sporadic and hereditary MSI tumors. These results indicate that Nous-209 can induce the optimal breadth of immune responses that might achieve clinical benefit to treat and prevent MSI tumors. SIGNIFICANCE: These findings demonstrate the feasibility of an "off-the-shelf" vaccine for treatment and prevention of tumors harboring frameshift mutations and neoantigenic peptides as a result of microsatellite instability.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Cristophe Vanhaver
- de Duve Institute and the Université catholique de Louvain, Brussels, Belgium
| | - Maddalena Panigada
- Molecular Immunology Unit, San Raffaele Research Institute, Milan, Italy
| | - Elisa Soprana
- Molecular Immunology Unit, San Raffaele Research Institute, Milan, Italy
| | - Antonio Siccardi
- Molecular Immunology Unit, San Raffaele Research Institute, Milan, Italy
| | | | | | | | - Alfredo Nicosia
- Nouscom AG, Bäumleingasse, Basel, Switzerland.,Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy.,CEINGE, Via Comunale Margherita, Naples, Italy
| | | | | | | |
Collapse
|
377
|
Yamamoto H, Watanabe Y, Maehata T, Imai K, Itoh F. Microsatellite instability in cancer: a novel landscape for diagnostic and therapeutic approach. Arch Toxicol 2020; 94:3349-3357. [DOI: 10.1007/s00204-020-02833-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 06/30/2020] [Indexed: 12/14/2022]
|
378
|
Terashima T. Microsatellite instability-high in Japanese patients with hepatocellular carcinoma. Hepatol Res 2020; 50:773-774. [PMID: 32569421 DOI: 10.1111/hepr.13534] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 06/10/2020] [Indexed: 02/08/2023]
Affiliation(s)
- Takeshi Terashima
- Department of Gastroenterology, Kanazawa University Hospital, Kanazawa, Japan
| |
Collapse
|
379
|
Tanaka A, Wang JY, Shia J, Zhou Y, Ogawa M, Hendrickson RC, Klimstra DS, Roehrl MHA. Maspin as a Prognostic Marker for Early Stage Colorectal Cancer With Microsatellite Instability. Front Oncol 2020; 10:945. [PMID: 32587829 PMCID: PMC7297950 DOI: 10.3389/fonc.2020.00945] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Accepted: 05/13/2020] [Indexed: 01/30/2023] Open
Abstract
Colorectal cancers are among the most common cancers and a leading cause of cancer death. In our pursuit to discover molecular markers for better characterization and precision theranostics of these cancers, we first conducted global deep proteome analyses and identified maspin (serpin B5, peptidase inhibitor 5) as an upregulated protein in tumor tissue. We then validated its expression in a large cohort of 743 patients with colorectal cancers of all stages and found that both cytoplasmic and nuclear expression varied widely between different patients. Comparison with clinicopathological features revealed that maspin expression levels correlate significantly only with mismatch repair (MMR) status but not with other features. To elucidate the prognostic significance of maspin, we analyzed two outcome-annotated cohorts, one of 572 early stage cancer patients and another of 93 late stage cancer patients. Kaplan–Meier survival, univariate, and multivariate analyses revealed that maspin overexpression predicts longer overall and disease-free survival for early stage microsatellite instability (MSI) subtype colorectal cancer, but there is no correlation with survival for patients with early stage cancer of the microsatellite stability (MSS) subtype or late stage cancer. Our study identifies maspin expression as an independent prognostic marker for risk stratification of early stage MSI subtype colorectal cancer and may provide guidance for improved therapeutic management.
Collapse
Affiliation(s)
- Atsushi Tanaka
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, United States.,Department of Pathology, Graduate School of Medicine, University of Tokyo, Tokyo, Japan.,Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | | | - Jinru Shia
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Yihua Zhou
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, United States.,ICU Department, Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Makiko Ogawa
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, United States.,Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Ronald C Hendrickson
- Memorial Sloan Kettering Cancer Center, Sloan Kettering Institute, New York, NY, United States
| | - David S Klimstra
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Michael H A Roehrl
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, United States.,Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| |
Collapse
|
380
|
Abstract
This article deals with the treatment of metastatic colorectal cancer (stage IV). The treatment goals and approaches are determined by the resectability status of the metastases: resectable liver and lung metastases are primarily resected and perioperative chemotherapy appears to be dispensable. In potentially resectable metastases, a conversion therapy is attempted to enable a potentially curative resection. In the case of nonresectability the treatment goal is palliative. Induction and maintenance therapy as well as drug holidays are suggested in an attempt to achieve extended survival while maintaining the quality of life, beginning with the best possible individual treatment. For some patients with stage IV, molecular targeted therapies are available. The study situation and approval status are dealt with in detail. With improved molecular characterization of tumors the treatment can be further individualized.
Collapse
|
381
|
Chen EX, Jonker DJ, Loree JM, Kennecke HF, Berry SR, Couture F, Ahmad CE, Goffin JR, Kavan P, Harb M, Colwell B, Samimi S, Samson B, Abbas T, Aucoin N, Aubin F, Koski SL, Wei AC, Magoski NM, Tu D, O’Callaghan CJ. Effect of Combined Immune Checkpoint Inhibition vs Best Supportive Care Alone in Patients With Advanced Colorectal Cancer: The Canadian Cancer Trials Group CO.26 Study. JAMA Oncol 2020; 6:831-838. [PMID: 32379280 PMCID: PMC7206536 DOI: 10.1001/jamaoncol.2020.0910] [Citation(s) in RCA: 222] [Impact Index Per Article: 55.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 03/02/2020] [Indexed: 12/28/2022]
Abstract
Importance Single-agent immune checkpoint inhibition has not shown activities in advanced refractory colorectal cancer (CRC), other than in those patients who are microsatellite-instability high (MSI-H). Objective To evaluate whether combining programmed death-ligand 1 (PD-L1) and cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) inhibition improved patient survival in metastatic refractory CRC. Design, Setting, and Participants A randomized phase 2 study was conducted in 27 cancer centers across Canada between August 2016 and June 2017, and data were analyzed on October 18, 2018. Eligible patients had histologically confirmed adenocarcinoma of the colon or rectum; received all available standard systemic therapies (fluoropyrimidines, oxaliplatin, irinotecan, and bevacizumab if appropriate; cetuximab or panitumumab if RAS wild-type tumors; regorafenib if available); were aged 18 years or older; had adequate organ function; had Eastern Cooperative Oncology Group performance status of 0 or 1, and measurable disease. Interventions We randomly assigned patients to receive either 75 mg of tremelimumab every 28 days for the first 4 cycles plus 1500 mg durvalumab every 28 days, or best supportive care alone (BSC) in a 2:1 ratio. Main Outcomes and Measures The primary end point was overall survival (OS) and a 2-sided P<.10 was considered statistically significant. Circulating cell-free DNA from baseline plasma was used to determine microsatellite instability (MSI) and tumor mutation burden (TMB). Results Of 180 patients enrolled (121 men [67.2%] and 59 women [32.8%]; median [range] age, 65 [36-87] years), 179 were treated. With a median follow-up of 15.2 months, the median OS was 6.6 months for durvalumab and tremelimumab and 4.1 months for BSC (hazard ratio [HR], 0.72; 90% CI, 0.54-0.97; P = .07). Progression-free survival was 1.8 months and 1.9 months respectively (HR, 1.01; 90% CI, 0.76-1.34). Grade 3 or 4 adverse events were significantly more frequent with immunotherapy (75 [64%] patients in the treatment group had at least 1 grade 3 or higher adverse event vs 12 [20%] in the BSC group). Circulating cell-free DNA analysis was successful in 168 of 169 patients with available samples. In patients who were microsatellite stable (MSS), OS was significantly improved with durvalumab and tremelimumab (HR, 0.66; 90% CI, 0.49-0.89; P = .02). Patients who were MSS with plasma TMB of 28 variants per megabase or more (21% of MSS patients) had the greatest OS benefit (HR, 0.34; 90% CI, 0.18-0.63; P = .004). Conclusions and Relevance This phase 2 study suggests that combined immune checkpoint inhibition with durvalumab plus tremelimumab may be associated with prolonged OS in patients with advanced refractory CRC. Elevated plasma TMB may select patients most likely to benefit from durvalumab and tremelimumab. Further confirmation studies are warranted. Trial Registration ClinicalTrials.gov Identifier: NCT02870920.
Collapse
Affiliation(s)
- Eric X. Chen
- Princess Margaret Cancer Center, Toronto, Canada
| | | | | | | | - Scott R. Berry
- Department of Oncology, Queen’s University, Kingston, Canada
| | | | | | | | | | | | | | | | | | | | | | - Francine Aubin
- Centre de recherche du Centre hospitalier de l'Université de Montréal (CHUM), Montreal, Canada
| | | | - Alice C. Wei
- Princess Margaret Cancer Center, Toronto, Canada
| | | | | | | |
Collapse
|
382
|
Loupakis F, Depetris I, Biason P, Intini R, Prete AA, Leone F, Lombardi P, Filippi R, Spallanzani A, Cascinu S, Bonetti LR, Maddalena G, Valeri N, Sottoriva A, Zapata L, Salmaso R, Munari G, Rugge M, Dei Tos AP, Golovato J, Sanborn JZ, Nguyen A, Schirripa M, Zagonel V, Lonardi S, Fassan M. Prediction of Benefit from Checkpoint Inhibitors in Mismatch Repair Deficient Metastatic Colorectal Cancer: Role of Tumor Infiltrating Lymphocytes. Oncologist 2020; 25:481-487. [PMID: 31967692 PMCID: PMC7288636 DOI: 10.1634/theoncologist.2019-0611] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Accepted: 11/27/2019] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND Immunotherapy with immune checkpoint inhibitors (ICIs) is highly effective in microsatellite instability-high (MSI-H) metastatic colorectal cancer (mCRC); however, specific predictive biomarkers are lacking. PATIENTS AND METHODS Data and samples from 85 patients with MSI-H mCRC treated with ICIs were gathered. Tumor infiltrating lymphocytes (TILs) and tumor mutational burden (TMB) were analyzed in an exploratory cohort of "super" responders and "clearly" refractory patients; TILs were then evaluated in the whole cohort of patients. Primary objectives were the correlation between the number of TILs and TMB and their role as biomarkers of ICI efficacy. Main endpoints included response rate (RR), progression-free survival (PFS), and overall survival (OS). RESULTS In the exploratory cohort, an increasing number of TILs correlated to higher TMB (Pearson's test, p = .0429). In the whole cohort, median number of TILs was 3.6 in responders compared with 1.8 in nonresponders (Mann-Whitney test, p = .0448). RR was 70.6% in patients with high number of TILs (TILs-H) compared with 42.9% in patients with low number of TILs (odds ratio = 3.20, p = .0291). Survival outcomes differed significantly in favor of TILs-H (PFS: hazard ratio [HR] = 0.42, p = .0278; OS: HR = 0.41, p = .0463). CONCLUSION A significant correlation between higher TMB and increased number of TILs was shown. A significantly higher activity and better PFS and OS with ICI in MSI-H mCRC were reported in cases with high number of TILs, thus supporting further studies of TIL count as predictive biomarker of ICI efficacy. IMPLICATIONS FOR PRACTICE Microsatellite instability is the result of mismatch repair protein deficiency, caused by germline mutations or somatic modifications in mismatch repair genes. In metastatic colorectal cancer (mCRC), immunotherapy (with immune checkpoint inhibitors [ICIs]) demonstrated remarkable clinical benefit in microsatellite instability-high (MSI-H) patients. ICI primary resistance has been observed in approximately 25% of patients with MSI-H mCRC, underlining the need for predictive biomarkers. In this study, tumor mutational burden (TMB) and tumor infiltrating lymphocyte (TIL) analyses were performed in an exploratory cohort of patients with MSI-H mCRC treated with ICIs, demonstrating a significant correlation between higher TMB and increased number of TILs. Results also demonstrated a significant correlation between high number of TILs and clinical responses and survival benefit in a large data set of patients with MSI-H mCRC treated with ICI. TMB and TILs could represent predictive biomarkers of ICI efficacy in MSI-H mCRC and should be incorporated in future trials testing checkpoint inhibitors in colorectal cancer.
Collapse
Affiliation(s)
- Fotios Loupakis
- Department of Clinical and Experimental Oncology, Medical Oncology Unit 1, Veneto Institute of Oncology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS)PaduaItaly
| | - Ilaria Depetris
- Department of Clinical and Experimental Oncology, Medical Oncology Unit 1, Veneto Institute of Oncology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS)PaduaItaly
| | - Paola Biason
- Department of Clinical and Experimental Oncology, Medical Oncology Unit 1, Veneto Institute of Oncology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS)PaduaItaly
| | - Rossana Intini
- Department of Clinical and Experimental Oncology, Medical Oncology Unit 1, Veneto Institute of Oncology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS)PaduaItaly
| | - Alessandra Anna Prete
- Department of Clinical and Experimental Oncology, Medical Oncology Unit 1, Veneto Institute of Oncology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS)PaduaItaly
| | - Francesco Leone
- Medical Oncology, ASL BiellaBiellaItaly
- Medical Oncology, Candiolo Cancer Institute, Fondazione Piemonte per l'Oncologia, IRCCSCandioloItaly
| | - Pasquale Lombardi
- Medical Oncology, Candiolo Cancer Institute, Fondazione Piemonte per l'Oncologia, IRCCSCandioloItaly
- Department of Oncology, University of TurinTurinItaly
| | - Roberto Filippi
- Medical Oncology, Candiolo Cancer Institute, Fondazione Piemonte per l'Oncologia, IRCCSCandioloItaly
- Department of Oncology, University of TurinTurinItaly
| | - Andrea Spallanzani
- Department of Oncology and Haematology, University Hospital of Modena and Reggio EmiliaModenaItaly
| | - Stefano Cascinu
- Department of Oncology and Haematology, University Hospital of Modena and Reggio EmiliaModenaItaly
| | | | - Giulia Maddalena
- Department of Clinical and Experimental Oncology, Medical Oncology Unit 1, Veneto Institute of Oncology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS)PaduaItaly
| | - Nicola Valeri
- Division of Molecular Pathology, The Institute of Cancer ResearchLondonUnited Kingdom
- Department of Medicine, The Royal Marsden National Health Service (NHS) TrustLondonUnited Kingdom
| | - Andrea Sottoriva
- Centre for Evolution and Cancer, The Institute of Cancer ResearchLondonUnited Kingdom
| | - Luis Zapata
- Centre for Evolution and Cancer, The Institute of Cancer ResearchLondonUnited Kingdom
| | - Roberta Salmaso
- Surgical Pathology and Cytopathology Unit, Department of Medicine (DIMED), University of Padua, Padua University HospitalPaduaItaly
| | - Giada Munari
- Department of Clinical and Experimental Oncology, Medical Oncology Unit 1, Veneto Institute of Oncology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS)PaduaItaly
| | - Massimo Rugge
- Surgical Pathology and Cytopathology Unit, Department of Medicine (DIMED), University of Padua, Padua University HospitalPaduaItaly
| | - Angelo Paolo Dei Tos
- Department of Pathology and Molecular Genetics, Treviso General HospitalTrevisoItaly
| | | | | | | | - Marta Schirripa
- Department of Clinical and Experimental Oncology, Medical Oncology Unit 1, Veneto Institute of Oncology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS)PaduaItaly
| | - Vittorina Zagonel
- Department of Clinical and Experimental Oncology, Medical Oncology Unit 1, Veneto Institute of Oncology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS)PaduaItaly
| | - Sara Lonardi
- Department of Clinical and Experimental Oncology, Medical Oncology Unit 1, Veneto Institute of Oncology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS)PaduaItaly
| | - Matteo Fassan
- Surgical Pathology and Cytopathology Unit, Department of Medicine (DIMED), University of Padua, Padua University HospitalPaduaItaly
| |
Collapse
|
383
|
Zhang C, Fan Y, Che X, Zhang M, Li Z, Li C, Wang S, Wen T, Hou K, Shao X, Liu Y, Qu X. Anti-PD-1 Therapy Response Predicted by the Combination of Exosomal PD-L1 and CD28. Front Oncol 2020; 10:760. [PMID: 32528882 PMCID: PMC7266952 DOI: 10.3389/fonc.2020.00760] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 04/21/2020] [Indexed: 12/26/2022] Open
Abstract
Anti-PD-1 therapy has been approved for cancer treatment. However, the response rate is unsatisfactory. The expression of PD-L1 in tumor tissues is unreliable to predict the treatment response. Recent studies have suggested that exosomal PD-L1 not only exerts immunosuppressive effects but also plays a significant role in the development of tumor microenvironment. Thus, the present study aims to investigate exosomal PD-L1 in improving its predictive value and efficacy. A total of 44 patients of advanced tumors of several types, treated with anti-PD-1 therapy, were enrolled. Exosomes were collected and purified from plasma. The exosomal PD-L1 was detected with ELISA. The cytokines were measured with the MILLIPLEX magnetic bead assay. Compared to the responders, exosomal PD-L1 of the non-responders was significantly higher than that of the responders (P = 0.010) before the treatment. Concurrently, exosomal PD-L1 and tumor burden decreased when the therapy was effective. And, the baseline expression of CD28 was higher in the responders than that in the non-responders (P = 0.005). Univariate and multivariate analyses validated with 1,000 times bootstrapping suggested that high exosomal PD-L1 and low CD28 expressions were negative factors for progression-free survival (PFS) of the patients who underwent anti-PD-1 treatment. The combination of exosomal PD-L1 and CD28 obtained more area under the curve (AUC) of receiver operating characteristic (ROC) (AUC 0.850 vs. 0.784 vs. 0.678) and showed a higher probability of no progression via nomograph. These findings suggested that the expression of exosomal PD-L1 and CD28 could serve as the predictive biomarkers for clinical responses to anti-PD-1 treatment.
Collapse
Affiliation(s)
- Chaoxu Zhang
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, China.,Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University, Shenyang, China
| | - Yibo Fan
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, China.,Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University, Shenyang, China
| | - Xiaofang Che
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, China.,Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University, Shenyang, China
| | - Min Zhang
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, China.,Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University, Shenyang, China
| | - Zhi Li
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, China.,Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University, Shenyang, China
| | - Ce Li
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, China.,Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University, Shenyang, China
| | - Shuo Wang
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, China.,Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University, Shenyang, China
| | - Ti Wen
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, China.,Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University, Shenyang, China
| | - Kezuo Hou
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, China.,Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University, Shenyang, China
| | - Xinye Shao
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, China.,Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University, Shenyang, China
| | - Yunpeng Liu
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, China.,Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University, Shenyang, China
| | - Xiujuan Qu
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, China.,Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University, Shenyang, China
| |
Collapse
|
384
|
Zimmer K, Puccini A, Xiu J, Baca Y, Spizzo G, Lenz HJ, Battaglin F, Goldberg RM, Grothey A, Shields AF, Salem ME, Marshall JL, Korn WM, Wolf D, Kocher F, Seeber A. WRN-Mutated Colorectal Cancer Is Characterized by a Distinct Genetic Phenotype. Cancers (Basel) 2020; 12:E1319. [PMID: 32455893 PMCID: PMC7281075 DOI: 10.3390/cancers12051319] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 05/14/2020] [Accepted: 05/19/2020] [Indexed: 12/27/2022] Open
Abstract
Werner syndrome gene (WRN) contributes to DNA repair. In cancer, WRN mutations (WRN-mut) lead to genomic instability. Thus, WRN is a promising target in cancers with microsatellite instability (MSI). We assessed this study to investigate the molecular profile of WRN-mut in colorectal cancer (CRC). Tumor samples were analyzed using next-generation sequencing (NGS) in-situ hybridization and immunohistochemistry. Tumor mutational burden (TMB) was calculated based on somatic nonsynonymous missense mutations. Determination of tumor mismatch repair (MMR) or microsatellite instability (MSI) status was conducted by fragment analysis. WRN-mut were detected in 80 of 6854 samples (1.2%). WRN-mut were more prevalent in right-sided compared to left-sided CRC (2.5% vs. 0.7%, p < 0.0001). TMB, PD-L1 and MSI-H/dMMR were significantly higher in WRN-mut than in WRN wild-type (WRN-wt). WRN-mut were associated with a higher TMB in the MSI-H/dMMR and in the MSS (microsatellite stable) subgroups. Several genetic differences between WRN-mut and WRN-wt CRC were observed, i.e., TP53 (47% vs. 71%), KRAS (34% vs. 49%) and APC (56% vs. 73%). This is the largest molecular profiling study investigating the genetic landscape of WRN-mut CRCs so far. A high prevalence of MSI-H/dMMR, higher TMB and PD-L1 in WRN-mut tumors were observed. Our data might serve as an additional selection tool for trials testing immune checkpoint antibodies in WRN-mut CRC.
Collapse
Affiliation(s)
- Kai Zimmer
- Department of Hematology and Oncology, Comprehensive Cancer Center Innsbruck, Innsbruck Medical University, 6020 Innsbruck, Austria; (K.Z.); (G.S.); (D.W.); (F.K.)
| | - Alberto Puccini
- Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA; (A.P.); (H.-J.L.); (F.B.)
| | - Joanne Xiu
- Caris Life Sciences, Phoenix, AZ 85040, USA; (J.X.); (Y.B.); (W.M.K.)
| | - Yasmine Baca
- Caris Life Sciences, Phoenix, AZ 85040, USA; (J.X.); (Y.B.); (W.M.K.)
| | - Gilbert Spizzo
- Department of Hematology and Oncology, Comprehensive Cancer Center Innsbruck, Innsbruck Medical University, 6020 Innsbruck, Austria; (K.Z.); (G.S.); (D.W.); (F.K.)
- Department of Internal Medicine, Oncologic Day Hospital, Bressanone Hospital (SABES-ASDAA), 39042 Bressanone-Brixen, Italy
| | - Heinz-Josef Lenz
- Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA; (A.P.); (H.-J.L.); (F.B.)
| | - Francesca Battaglin
- Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA; (A.P.); (H.-J.L.); (F.B.)
| | | | | | - Anthony F. Shields
- Department of Oncology, Karmanos Cancer Institute, Wayne State University, Detroit, MI 48201, USA;
| | | | - John L. Marshall
- Ruesch Center for the Cure of Gastrointestinal Cancers, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA;
| | - W. Michael Korn
- Caris Life Sciences, Phoenix, AZ 85040, USA; (J.X.); (Y.B.); (W.M.K.)
| | - Dominik Wolf
- Department of Hematology and Oncology, Comprehensive Cancer Center Innsbruck, Innsbruck Medical University, 6020 Innsbruck, Austria; (K.Z.); (G.S.); (D.W.); (F.K.)
| | - Florian Kocher
- Department of Hematology and Oncology, Comprehensive Cancer Center Innsbruck, Innsbruck Medical University, 6020 Innsbruck, Austria; (K.Z.); (G.S.); (D.W.); (F.K.)
| | - Andreas Seeber
- Department of Hematology and Oncology, Comprehensive Cancer Center Innsbruck, Innsbruck Medical University, 6020 Innsbruck, Austria; (K.Z.); (G.S.); (D.W.); (F.K.)
| |
Collapse
|
385
|
Pietrantonio F, Loupakis F, Randon G, Raimondi A, Salati M, Trapani D, Pagani F, Depetris I, Maddalena G, Morano F, Corallo S, Prisciandaro M, Corti F, Guarini V, Bocconi A, Marra A, Belli C, Spallanzani A, Fassan M, Lonardi S, Curigliano G, Fucà G, Di Bartolomeo M, de Braud F. Efficacy and Safety of Immune Checkpoint Inhibitors in Patients with Microsatellite Instability-High End-Stage Cancers and Poor Performance Status Related to High Disease Burden. Oncologist 2020; 25:803-809. [PMID: 32369650 DOI: 10.1634/theoncologist.2020-0014] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 03/30/2020] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Few real-world series on the efficacy and safety of anti-programmed cell death protein-1(PD-1)/programmed death ligand-1(PD-L1)-based therapy are available in molecularly unselected patients with poor performance status (PS) and specific types of advanced cancers, because such populations are typically excluded from clinical trials due to poor life expectancy and risk of toxicity. MATERIALS AND METHODS This multicenter retrospective case series included patients with microsatellite instability (MSI)-high metastatic cancers with Eastern Cooperative Oncology Group (ECOG) PS of 2 or 3 not related to comorbidities receiving anti-PD-1 with or without anti-CTLA-4 therapy after failure of at least one prior treatment line. RESULTS We included 27 patients with six diverse tumor types: colorectal (n = 18), gastric (n = 5), biliary tract, pancreatic, small bowel, and endometrial cancers (n = 1 each). Baseline ECOG PS was 2 (74%) or 3 (26%). Overall response rate was 33%, with six partial and three complete responses. Median time to response was 3.1, months and median duration of response was 16.9 months. Median progression-free survival was 3.4 months (95% CI: 2.3 to not evaluable), and 18-month overall survival was 50.8% (95% confidence interval, 32.7-78.8). Baseline variables were not associated with survival outcomes. ECOG PS 1 was reached by 52% of patients in a median time of 6 weeks, and ECOG PS 0 was reached by 30% of patients in a median time of 10 weeks. CONCLUSION In a high proportion of patients with MSI-high cancers and poor performance status related to end-stage disease, salvage immunotherapy can induce potentially long-lasting "Lazarus responses". Immunotherapy decisions near the end-of-life should be carefully integrated with predictive biomarkers and with palliative care measures in the real-world setting. IMPLICATIONS FOR PRACTICE In this retrospective cohort study of 27 pretreated patients with microsatellite instability (MSI)-high cancers and Eastern Cooperative Oncology Group performance status of 2 or 3 not related to comorbidities, PD-1/PD-L1-based therapy induced a RECIST response in 33% of patients, with a median duration of 16.9 months, and an improvement of performance status in 52% of patients. MSI-high status can be used in clinical practice as a tumor-agnostic predictive biomarker to select critically ill patients with end-stage cancers for salvage immunotherapy.
Collapse
Affiliation(s)
- Filippo Pietrantonio
- Department of Medical Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
- Oncology and Hemato-oncology Department, University of Milan, Italy
| | - Fotios Loupakis
- Department of Oncology, Istituto Oncologico Veneto, IRCCS Padua, Italy
| | - Giovanni Randon
- Department of Medical Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Alessandra Raimondi
- Department of Medical Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Massimiliano Salati
- Department of Oncology and Hematology, University Hospital of Modena, Modena, Italy
- PhD Program in Clinical and Experimental Medicine, University of Modena and Reggio Emilia, Italy
| | - Dario Trapani
- New Drugs Development Division for Innovative Therapies, Istituto Europeo di Oncologia, IRCCS, Milan, Italy
| | - Filippo Pagani
- Department of Medical Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Ilaria Depetris
- Department of Oncology, Istituto Oncologico Veneto, IRCCS Padua, Italy
| | - Giulia Maddalena
- Department of Oncology, Istituto Oncologico Veneto, IRCCS Padua, Italy
| | - Federica Morano
- Department of Medical Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Salvatore Corallo
- Department of Medical Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Michele Prisciandaro
- Department of Medical Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Francesca Corti
- Department of Medical Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Vincenzo Guarini
- Department of Medical Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Alessandro Bocconi
- Department of Oncology and Hematology, University Hospital of Modena, Modena, Italy
| | - Antonio Marra
- New Drugs Development Division for Innovative Therapies, Istituto Europeo di Oncologia, IRCCS, Milan, Italy
| | - Carmen Belli
- New Drugs Development Division for Innovative Therapies, Istituto Europeo di Oncologia, IRCCS, Milan, Italy
| | - Andrea Spallanzani
- Department of Oncology and Hematology, University Hospital of Modena, Modena, Italy
| | - Matteo Fassan
- Surgical Pathology Unit, Department of Medicine, University of Padua, Padua, Italy
| | - Sara Lonardi
- Department of Oncology, Istituto Oncologico Veneto, IRCCS Padua, Italy
| | - Giuseppe Curigliano
- Oncology and Hemato-oncology Department, University of Milan, Italy
- New Drugs Development Division for Innovative Therapies, Istituto Europeo di Oncologia, IRCCS, Milan, Italy
| | - Giovanni Fucà
- Department of Medical Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Maria Di Bartolomeo
- Department of Medical Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Filippo de Braud
- Department of Medical Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
- Oncology and Hemato-oncology Department, University of Milan, Italy
| |
Collapse
|
386
|
García-Alfonso P, García-Carbonero R, García-Foncillas J, Pérez-Segura P, Salazar R, Vera R, Ramón Y Cajal S, Hernández-Losa J, Landolfi S, Musulén E, Cuatrecasas M, Navarro S. Update of the recommendations for the determination of biomarkers in colorectal carcinoma: National Consensus of the Spanish Society of Medical Oncology and the Spanish Society of Pathology. Clin Transl Oncol 2020; 22:1976-1991. [PMID: 32418154 PMCID: PMC7505870 DOI: 10.1007/s12094-020-02357-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 04/28/2020] [Indexed: 12/16/2022]
Abstract
In this update of the consensus of the Spanish Society of Medical Oncology (Sociedad Española de Oncología Médica—SEOM) and the Spanish Society of Pathology (Sociedad Española de Anatomía Patológica—SEAP), advances in the analysis of biomarkers in advanced colorectal cancer (CRC) as well as susceptibility markers of hereditary CRC and molecular biomarkers of localized CRC are reviewed. Recently published information on the essential determination of KRAS, NRAS and BRAF mutations and the convenience of determining the amplification of human epidermal growth factor receptor 2 (HER2), the expression of proteins in the DNA repair pathway and the study of NTRK fusions are also evaluated. From the pathological point of view, the importance of analysing the tumour budding and poorly differentiated clusters, and its prognostic value in CRC is reviewed, as well as the impact of molecular lymph node analysis on lymph node staging in CRC. The incorporation of pan-genomic technologies, such as next-generation sequencing (NGS) and liquid biopsy in the clinical management of patients with CRC is also outlined. All these aspects are developed in this guide, which, like the previous one, will remain open to any necessary revision in the future.
Collapse
Affiliation(s)
- P García-Alfonso
- Departament of Medical Oncology, Hospital General Universitario Gregorio Marañón, Madrid, Spain.
| | - R García-Carbonero
- Departament of Medical Oncology, Hospital Universitario 12 de Octubre, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), UCM, CNIO, CIBERONC, Madrid, Spain
| | - J García-Foncillas
- Departament of Medical Oncology, Hospital Universitario Fundación Jiménez Díaz, Universidad Autónoma de Madrid, Madrid, Spain
| | - P Pérez-Segura
- Departament of Medical Oncology, Hospital Clínico Universitario San Carlos, CIBERONC, Madrid, Spain
| | - R Salazar
- Departament of Medical Oncology, ICO L'Hospitalet, Oncobell Program (IDIBELL), CIBERONC, Hospitalet de Llobregat, Spain
| | - R Vera
- Departament of Medical Oncology, Complejo Hospitalario de Navarra; Navarrabiomed, IDISNA, Pamplona, Spain
| | - S Ramón Y Cajal
- Department of Pathology, Hospital Universitario Vall D'Hebron, CIBERONC, Barcelona, Spain
| | - J Hernández-Losa
- Department of Pathology, Hospital Universitario Vall D'Hebron, CIBERONC, Barcelona, Spain
| | - S Landolfi
- Department of Pathology, Hospital Universitario Vall D'Hebron, CIBERONC, Barcelona, Spain
| | - E Musulén
- Department of Pathology, Hospital Universitari General de Catalunya, Grupo Quirónsalud, Sant Cugat del Vallès, Spain.,Cancer Epigenetics Group, Institut de Recerca Contra La Leucèmia Josep Carreras, Badalona, Spain
| | - M Cuatrecasas
- Department of Pathology, Hospital Clinic, CIBERehd, Barcelona, Spain
| | - S Navarro
- Department of Pathology, University of Valencia, Hospital Clínico Universitario de Valencia, CIBERONC, Valencia, Spain
| |
Collapse
|
387
|
Chen G, Wang L, Diao T, Chen Y, Cao C, Zhang X. Analysis of immune-related signatures of colorectal cancer identifying two different immune phenotypes: Evidence for immune checkpoint inhibitor therapy. Oncol Lett 2020; 20:517-524. [PMID: 32565977 PMCID: PMC7285802 DOI: 10.3892/ol.2020.11605] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 02/05/2020] [Indexed: 12/24/2022] Open
Abstract
Immune checkpoint inhibitor (ICI) therapy has revolutionized the treatment of numerous types of cancer, including colorectal cancer (CRC). Patients with CRC and deficient mismatch repair or high microsatellite instability could benefit from ICI treatment, although the response rate of most patients is low. Therefore, the immune subtyping of patients with CRC is required in order to determine the subtypes suitable for ICI treatment. The present study used a cohort of patients with CRC from The Cancer Genome Atlas (TCGA) to perform molecular subtyping, with results validated in three CRC cohorts from the Gene Expression Omnibus. Non-negative matrix factorization was used to achieve consensus molecular subtyping. The tumor immune dysfunction and exclusion algorithm was used to predict potential ICI therapy responses and gene set enrichment analysis was performed to define different pathways associated with the immune response. Two distinct subtypes of CRC were finally identified in TCGA cohorts, which were characterized as significantly different prognostic subtypes (low-risk and high-risk subtypes). Higher expression of programmed death-ligand 1, higher proportion of tumor-infiltrating lymphocytes and tumor mutation burden were significantly enriched in the low-risk subtype. Further pathway analysis revealed that the low-risk subtype was associated with immune response activation and signaling pathways involved in ‘antigen processing and presentation’. Three independent CRC cohorts were used to validate the above findings. In summary, two clinical CRC subtypes were identified, which are characterized by significantly different survival outcomes and immune infiltration patterns. The findings of the present study suggest that ICI treatment may be more effective in the low-risk CRC subtype.
Collapse
Affiliation(s)
- Gang Chen
- Department of Anal and Intestinal Surgery, Tengzhou Central People's Hospital, Tengzhou, Shandong 277500, P.R. China
| | - Lin Wang
- Department of Surgery Operating Room, Tengzhou Central People's Hospital, Tengzhou, Shandong 277500, P.R. China
| | - Tongwei Diao
- Department of Anal and Intestinal Surgery, Tengzhou Central People's Hospital, Tengzhou, Shandong 277500, P.R. China
| | - Ying Chen
- Department of Anal and Intestinal Surgery, Tengzhou Central People's Hospital, Tengzhou, Shandong 277500, P.R. China
| | - Chengbo Cao
- Department of Anal and Intestinal Surgery, Tengzhou Central People's Hospital, Tengzhou, Shandong 277500, P.R. China
| | - Xindong Zhang
- Department of Pathology, Tengzhou Central People's Hospital, Tengzhou, Shandong 277500, P.R. China
| |
Collapse
|
388
|
Kitsou M, Ayiomamitis GD, Zaravinos A. High expression of immune checkpoints is associated with the TIL load, mutation rate and patient survival in colorectal cancer. Int J Oncol 2020; 57:237-248. [PMID: 32468013 PMCID: PMC7252459 DOI: 10.3892/ijo.2020.5062] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 04/13/2020] [Indexed: 02/06/2023] Open
Abstract
Adoptive cell therapy with the use of tumor-infiltrating lymphocytes (TILs) is a very promising immunotherapeutic approach for the treatment of patients with colorectal cancer (CRC). However, within the tumor microenvironment, co-inhibitory immune checkpoints can inactivate TILs. The aim of the present study was to examine the association between the TIL load, the mutation rate and the clinical outcome in the immune landscape of patients with CRC. RNA-seq and whole exome seq data of 453 colon adenocarcinomas (COAD) and rectal adenocarcinomas (READ), along with the TIL load and clinicopathological information of each patient, were extracted from the TCGA GDC Data Portal and analyzed computationally. The expression of immune checkpoint molecules was compared between colon cancer and normal tissue. A total of 9 immune-related gene signatures were investigated in CRC. Spearman's correlation analysis was performed to examine the correlation between the TIL load with the expression of each immune checkpoint molecule. Indoleamine 2,3-dioxygenase 1 (IDO1) was found to be significantly overexpressed in CRC, whereas V-domain Ig suppressor of T cell activation (VISTA) and lymphocyte activating 3 (LAG3) were markedly downregulated. A high expression of cytotoxic T-lymphocyte-associated protein 4 (CTLA-4), IDO1, programmed cell death 1 (PD-1) and T-cell immunoreceptor with Ig and ITIM domains (TIGIT), tended to be associated with a better overall survival of the patients. In COAD, the TIL load positively correlated with the expression of adenosine A2A receptor (ADORA2A), CTLA-4, hepatitis A virus cellular receptor 2 (HAVCR2), lymphocyte activating 3 (LAG3), programmed death-ligand PD-L1, PD-L2, TIGIT and VISTA, whereas in READ, such positive correlations were noted only between the TIL load and LAG3 or PD-L2. The 'central memory T-cell' and 'exhausted T-cell' gene signatures were significantly lower among the READ tumors. The expression of PD-1, PD-L1, PD-L2, CTLA-4 and IDO1 was significantly higher among COAD patients with a high mutation rate (>34 mutations/Mb) compared to those with a lower rate. Somatic mutations in PD-1, PD-L1, CTLA-4 and other checkpoint molecules did not seem to affect their expression levels. On the whole, the data of the present study highlight the association of immune checkpoint molecules with the TIL load, patient survival and a high mutation rate in CRC. The data corroborate that patients with colon cancer with higher PD1, PD-L1/2, CTLA-4 and IDO1 expression, and a high mutation rate, are the ones who will benefit more from the respective immune checkpoint inhibition therapies.
Collapse
Affiliation(s)
- Mara Kitsou
- Department of Life Sciences, School of Sciences, European University Cyprus, 1516 Nicosia, Cyprus
| | | | - Apostolos Zaravinos
- College of Medicine, Member of QU Health, Qatar University, P.O. Box 2713 Doha, Qatar
| |
Collapse
|
389
|
Puccini A, Battaglin F, Iaia ML, Lenz HJ, Salem ME. Overcoming resistance to anti-PD1 and anti-PD-L1 treatment in gastrointestinal malignancies. J Immunother Cancer 2020; 8:e000404. [PMID: 32393474 PMCID: PMC7223273 DOI: 10.1136/jitc-2019-000404] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/13/2020] [Indexed: 12/14/2022] Open
Abstract
In the last few years, the unprecedented results of immune checkpoint inhibitors have led to a paradigm shift in clinical practice for the treatment of several cancer types. However, the vast majority of patients with gastrointestinal cancer do not benefit from immunotherapy. To date, microsatellite instability high and DNA mismatch repair deficiency are the only robust predictive biomarkers of response to immune checkpoint inhibitors. Unfortunately, these patients comprise only 5%-10% of all gastrointestinal cancers. Several mechanisms of both innate and adaptive resistance to immunotherapy have been recognized that may be at least in part responsible for the failure of immune checkpoint inhibitors in this population of patients. In the first part of this review article, we provide an overview of the main clinical trials with immune checkpoint inhibitors in patients with gastrointestinal cancer and the role of predictive biomarkers. In the second part, we discuss the actual body of knowledge in terms of mechanisms of resistance to immunotherapy and the most promising approach that are currently under investigation in order to expand the population of patients with gastrointestinal cancer who could benefit from immune checkpoint inhibitors.
Collapse
Affiliation(s)
- Alberto Puccini
- University of Genoa, Medical Oncology Unit 1, Ospedale Policlinico San Martino IRCCS, Genova, Italy
- Division of Medical Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Francesca Battaglin
- Division of Medical Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Maria Laura Iaia
- University of Genoa, Medical Oncology Unit 1, Ospedale Policlinico San Martino IRCCS, Genova, Italy
| | - Heinz-Josef Lenz
- Division of Medical Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Mohamed E Salem
- Department of Medical Oncology, Levine Cancer Institute, Atrium Health, Charlotte, North Carolina, USA
| |
Collapse
|
390
|
Tian T, Chen ZH, Zheng Z, Liu Y, Zhao Q, Liu Y, Qiu H, Long Q, Chen M, Li L, Xie F, Luo G, Wu X, Deng W. Investigation of the role and mechanism of ARHGAP5-mediated colorectal cancer metastasis. Theranostics 2020; 10:5998-6010. [PMID: 32483433 PMCID: PMC7254992 DOI: 10.7150/thno.43427] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Accepted: 04/18/2020] [Indexed: 12/14/2022] Open
Abstract
Background: Metastatic colorectal cancer (CRC) is a lethal disease; however, the underlying molecular mechanisms remain unclear and require further study. Methods: RNA-Seq, PCR, Western blotting, immunohistochemistry, ChIP and RNAi assays were performed to investigate Rho GTPase-activating protein 5 (ARHGAP5, aslo known as p190RhoGAP-B, p190-B) expression and the clinical relevance, functional roles and regulatory mechanisms of this protein using human CRC cells and tissues. In vivo, two cell-based xenograft models were used to evaluate the roles of ARHGAP5 in CRC metastasis. Results: Here, we report that ARHGAP5 expression is significantly increased in metastatic CRC tissues and is inversely associated with patient overall survival. The suppression of ARHGAP5 reduces CRC cell metastasis in vitro and in cell-based xenograft models. Furthermore, we show that ARHGAP5 promotes CRC cell epithelial-mesenchymal transition by negatively regulating RhoA activity. Mechanistically, cAMP response element-binding protein (CREB1) transcriptionally upregulates ARHGAP5 expression, and decreased miR-137 further contributes to ARHGAP5 mRNA stability in CRC. Conclusions: Overall, our study highlights the crucial function of ARHGAP5 in CRC metastasis, thus suggesting novel prognostic biomarkers and hypothetical therapeutic targets.
Collapse
|
391
|
Fumet JD, Truntzer C, Yarchoan M, Ghiringhelli F. Tumour mutational burden as a biomarker for immunotherapy: Current data and emerging concepts. Eur J Cancer 2020; 131:40-50. [PMID: 32278982 PMCID: PMC9473693 DOI: 10.1016/j.ejca.2020.02.038] [Citation(s) in RCA: 131] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 02/13/2020] [Indexed: 01/10/2023]
Abstract
Treatment with immune checkpoint inhibitors targeting programmed cell death protein 1 (PD-1) or its ligand (PD-L1) can generate durable responses in various cancer types, but only in a subset of patients. The use of predictive biomarkers for response to PD-1/PD-L1 inhibitors is critical for patient selection. Expression of PD-L1 has demonstrated utility in patient selection. Tumour mutational burden (TMB) is an emerging biomarker for response to PD-1/PD-L1 inhibitors. The evaluation of this biomarker is based on the hypothesis that a high number of mutations in somatic exonic regions will lead to an increase in neoantigen production, which could then be recognised by CD8+ T cells, resulting in improved immune responses. In this review, we will discuss rationale and implementation of TMB usage in patients, development of different methods to assess it, current limitations and technical issues to use this biomarker as a diagnostic test and propose future perspectives beyond TMB.
Collapse
Affiliation(s)
- Jean-David Fumet
- Department of Medical Oncology, Center GF Leclerc, Dijon, France; Research Platform in Biological Oncology, Dijon, France; GIMI Genetic and Immunology Medical Institute, Dijon, France; University of Burgundy-Franche Comté, Dijon, France; UMR INSERM 1231, Dijon, France
| | - Caroline Truntzer
- Research Platform in Biological Oncology, Dijon, France; GIMI Genetic and Immunology Medical Institute, Dijon, France; UMR INSERM 1231, Dijon, France
| | - Mark Yarchoan
- Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Francois Ghiringhelli
- Department of Medical Oncology, Center GF Leclerc, Dijon, France; Research Platform in Biological Oncology, Dijon, France; GIMI Genetic and Immunology Medical Institute, Dijon, France; University of Burgundy-Franche Comté, Dijon, France; UMR INSERM 1231, Dijon, France.
| |
Collapse
|
392
|
Damilakis E, Mavroudis D, Sfakianaki M, Souglakos J. Immunotherapy in Metastatic Colorectal Cancer: Could the Latest Developments Hold the Key to Improving Patient Survival? Cancers (Basel) 2020; 12:E889. [PMID: 32268531 PMCID: PMC7225960 DOI: 10.3390/cancers12040889] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 04/01/2020] [Accepted: 04/03/2020] [Indexed: 12/19/2022] Open
Abstract
Immunotherapy has considerably increased the number of anticancer agents in many tumor types including metastatic colorectal cancer (mCRC). Anti-PD-1 (programmed death 1) and cytotoxic T-lymphocyte-associated antigen 4 (CTLA-4) immune checkpoint inhibitors (ICI) have been shown to benefit the mCRC patients with mismatch repair deficiency (dMMR) or high microsatellite instability (MSI-H). However, ICI is not effective in mismatch repair proficient (pMMR) colorectal tumors, which constitute a large population of patients. Several clinical trials evaluating the efficacy of immunotherapy combined with chemotherapy, radiation therapy, or other agents are currently ongoing to extend the benefit of immunotherapy to pMMR mCRC cases. In dMMR patients, MSI testing through immunohistochemistry and/or polymerase chain reaction can be used to identify patients that will benefit from immunotherapy. Next-generation sequencing has the ability to detect MSI-H using a low amount of nucleic acids and its application in clinical practice is currently being explored. Preliminary data suggest that radiomics is capable of discriminating MSI from microsatellite stable mCRC and may play a role as an imaging biomarker in the future. Tumor mutational burden, neoantigen burden, tumor-infiltrating lymphocytes, immunoscore, and gastrointestinal microbiome are promising biomarkers that require further investigation and validation.
Collapse
Affiliation(s)
- Emmanouil Damilakis
- Department of Medical Oncology, School of Medicine, University of Crete, 71003 Heraklion, Greece; (D.M.); (J.S.)
| | - Dimitrios Mavroudis
- Department of Medical Oncology, School of Medicine, University of Crete, 71003 Heraklion, Greece; (D.M.); (J.S.)
- Laboratory of Translational Oncology, School of Medicine, University of Crete, 71003 Heraklion, Greece;
| | - Maria Sfakianaki
- Laboratory of Translational Oncology, School of Medicine, University of Crete, 71003 Heraklion, Greece;
| | - John Souglakos
- Department of Medical Oncology, School of Medicine, University of Crete, 71003 Heraklion, Greece; (D.M.); (J.S.)
- Laboratory of Translational Oncology, School of Medicine, University of Crete, 71003 Heraklion, Greece;
| |
Collapse
|
393
|
Kim SY, Kim TW. Current challenges in the implementation of precision oncology for the management of metastatic colorectal cancer. ESMO Open 2020; 5:e000634. [PMID: 32188714 PMCID: PMC7078672 DOI: 10.1136/esmoopen-2019-000634] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Revised: 12/28/2019] [Accepted: 01/02/2020] [Indexed: 12/21/2022] Open
Abstract
Over the last few decades, molecularly targeted agents have been used for the treatment of metastatic colorectal cancer. They have made remarkable contributions to prolonging the lives of patients. The emergence of several biomarkers and their introduction to the clinic have also aided in guiding such treatment. Recently, next-generation sequencing (NGS) has enabled clinicians to identify these biomarkers more easily and reliably. However, there is considerable uncertainty in interpreting and implementing the vast amount of information from NGS. The clinical relevance of biomarkers other than NGS are also subjects of debate. This review covers controversial issues and recent findings on such therapeutics and their molecular targets, including VEGF, EGFR, BRAF, HER2, RAS, actionable fusions, Wnt pathway and microsatellite instability for comprehensive understanding of obstacles on the road to precision oncology in metastatic colorectal cancer.
Collapse
Affiliation(s)
- Sun Young Kim
- Department of Oncology, Asan Medical Center, University of Ulsan, College of Medicine, Songpa-gu, Seoul, Republic of Korea
| | - Tae Won Kim
- Department of Oncology, Asan Medical Center, University of Ulsan, College of Medicine, Songpa-gu, Seoul, Republic of Korea
| |
Collapse
|
394
|
Rachiglio AM, Sacco A, Forgione L, Esposito C, Chicchinelli N, Normanno N. Colorectal cancer genomic biomarkers in the clinical management of patients with metastatic colorectal carcinoma. EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2020; 1:53-70. [PMID: 36046264 PMCID: PMC9400741 DOI: 10.37349/etat.2020.00004] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 02/12/2020] [Indexed: 02/06/2023] Open
Abstract
Colorectal carcinoma (CRC) is an heterogeneous disease in which different genetic alterations play a role in its pathogenesis and progression and offer potential for therapeutic intervention. The research on predictive biomarkers in metastatic CRC (mCRC) mainly focused on the identification of biomarkers of response or resistance to anti-epidermal growth factor receptor monoclonal antibodies. In this respect, international guidelines suggest testing mCRC patients only for KRAS, NRAS and BRAF mutations and for microsatellite instability. However, the use of novel testing methods is raising relevant issue related to these biomarkers, such as the presence of sub-clonal RAS mutations or the clinical interpretation of rare no-V600 BRAF variants. In addition, a number of novel biomarkers is emerging from recent studies including amplification of ERBB2, mutations in ERBB2, MAP2K1 and NF1 and rearrangements of ALK, ROS1, NTRK and RET. Mutations in POLE and the levels of tumor mutation burden also appear as possible biomarkers of response to immunotherapy in CRC. Finally, the consensus molecular subtypes classification of CRC based on gene expression profiling has prognostic and predictive implications. Integration of all these information will be likely necessary in the next future in order to improve precision/personalized medicine in mCRC patients.
Collapse
Affiliation(s)
- Anna Maria Rachiglio
- Cell Biology and Biotherapy Unit, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, 80131 Naples, Italy
| | - Alessandra Sacco
- Cell Biology and Biotherapy Unit, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, 80131 Naples, Italy
| | - Laura Forgione
- Cell Biology and Biotherapy Unit, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, 80131 Naples, Italy
| | - Claudia Esposito
- Cell Biology and Biotherapy Unit, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, 80131 Naples, Italy
| | - Nicoletta Chicchinelli
- Cell Biology and Biotherapy Unit, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, 80131 Naples, Italy
| | - Nicola Normanno
- Cell Biology and Biotherapy Unit, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, 80131 Naples, Italy
| |
Collapse
|
395
|
Ou A, Sumrall A, Phuphanich S, Spetzler D, Gatalica Z, Xiu J, Michelhaugh S, Brenner A, Pandey M, Kesari S, Korn WM, Mittal S, Westin J, Heimberger AB. Primary CNS lymphoma commonly expresses immune response biomarkers. Neurooncol Adv 2020; 2:vdaa018. [PMID: 32201861 PMCID: PMC7067145 DOI: 10.1093/noajnl/vdaa018] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Background Primary central nervous system lymphoma (PCNSL) is rare and there is limited genomic and immunological information available. Incidental clinical and radiographic responses have been reported in PCNSL patients treated with immune checkpoint inhibitors. Materials and Methods To genetically characterize and ascertain if the majority of PCNSL patients may potentially benefit from immune checkpoint inhibitors, we profiled 48 subjects with PCNSL from 2013 to 2018 with (1) next-generation sequencing to detect mutations, gene amplifications, and microsatellite instability (MSI); (2) RNA sequencing to detect gene fusions; and (3) immunohistochemistry to ascertain PD-1 and PD-L1 expression. Tumor mutational burden (TMB) was calculated using somatic nonsynonymous missense mutations. Results High PD-L1 expression (>5% staining) was seen in 18 patients (37.5%), and intermediate expression (1-5% staining) was noted in 14 patients (29.2%). Sixteen patients (33.3%) lacked PD-L1 expression. PD-1 expression (>1 cell/high-power field) was seen in 12/14 tumors (85.7%), uncorrelated with PD-L1 expression. TMB of greater than or equal to 5 mutations per megabase (mt/Mb) occurred in 41/42 tumors, with 19% (n = 8) exhibiting high TMB (≥17 mt/Mb), 71.4% (n = 30) exhibiting intermediate TMB (7-16 mt/Mb), and 9.5% (n = 4) exhibiting low TMB (≤6 mt/Mb). No samples had MSI. Twenty-six genes showed mutations, most frequently in MYD88 (34/42, 81%), CD79B (23/42, 55%), and PIM1 (23/42, 55%). Among 7 cases tested with RNA sequencing, an ETV6-IGH fusion was found. Overall, 18/48 samples expressed high PD-L1 and 38/42 samples expressed intermediate to high TMB. Conclusions Based on TMB biomarker expression, over 90% of PCNSL patients may benefit from the use of immune checkpoint inhibitors.
Collapse
Affiliation(s)
- Alexander Ou
- The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | | | | | | | | | - Joanne Xiu
- Caris Life Sciences, Phoenix, Arizona, USA
| | - Sharon Michelhaugh
- Fralin Biomedical Research Institute, Virginia Tech Carilion School of Medicine and Carilion Clinic, Roanoke, Virginia, USA
| | - Andrew Brenner
- University of Texas at San Antonio, San Antonio, Texas, USA
| | - Manjari Pandey
- Department of Medical Oncology, West Cancer Center and Research Institute, Memphis, Tennessee, USA
| | - Santosh Kesari
- John Wayne Cancer Institute, Santa Monica, California, USA
| | - W Michael Korn
- Caris Life Sciences, Phoenix, Arizona, USA.,Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, California, USA
| | - Sandeep Mittal
- Fralin Biomedical Research Institute, Virginia Tech Carilion School of Medicine and Carilion Clinic, Roanoke, Virginia, USA
| | - Jason Westin
- The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Amy B Heimberger
- The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| |
Collapse
|
396
|
Friedlaender A, Nouspikel T, Christinat Y, Ho L, McKee T, Addeo A. Tissue-Plasma TMB Comparison and Plasma TMB Monitoring in Patients With Metastatic Non-small Cell Lung Cancer Receiving Immune Checkpoint Inhibitors. Front Oncol 2020; 10:142. [PMID: 32117779 PMCID: PMC7028749 DOI: 10.3389/fonc.2020.00142] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 01/27/2020] [Indexed: 12/13/2022] Open
Abstract
Immuno-oncology is an ever growing field that has seen important progress across the spectrum of cancers. Responses can be deep and durable. However, as only a minority of patients respond to checkpoint inhibition, predictive biomarkers are needed. Cancer is a genetic disease arising from the accumulation of somatic mutations in the DNA of affected cells. Tumor mutational burden (TMB), represents the number of somatic mutations in a tumor that form neoantigens, responsible for the immunogenicity of tumors. Randomized controlled trials have so far failed to show a survival benefit when stratifying patients by tissue TMB. TMB has also been evaluated in plasma (PTMB). PTMB is anticipated to represent the biology of the entire cancer, whereas obtaining tissue of an amenable primary or a metastatic lesion may be prone to sampling bias because of tumor heterogeneity. For this reason, we are evaluating the correlation between TMB and PTMB, and prospectively evaluating the impact of these biomarkers on clinical outcomes. We also discuss the technical difficulties inherent to performing and comparing these analyses. Furthermore, we evaluate the correlation between the evolution of PTMB during an immunotherapy treatment and response at 3 and 6 months, as we believe PTMB may be a dynamic biomarker. In this paper, we present results from the first 4 patients in this project.
Collapse
Affiliation(s)
- Alex Friedlaender
- Department of Oncology, University Hospital of Geneva (HUG), Geneva, Switzerland
| | - Thierry Nouspikel
- Service of Medical Genetics, Diagnostics Department, University Hospital of Geneva, Geneva, Switzerland
| | - Yann Christinat
- Department of Pathology, University Hospital of Geneva, Geneva, Switzerland
| | - Liza Ho
- Department of Pathology, University Hospital of Geneva, Geneva, Switzerland
| | - Thomas McKee
- Department of Pathology, University Hospital of Geneva, Geneva, Switzerland
| | - Alfredo Addeo
- Department of Oncology, University Hospital of Geneva (HUG), Geneva, Switzerland
| |
Collapse
|
397
|
Das S, Allen A, Berlin J. Immunotherapy After Immunotherapy: Response Rescue in a Patient With Microsatellite Instability-high Colorectal Cancer Post-Pembrolizumab. Clin Colorectal Cancer 2020; 19:137-140. [PMID: 32146081 DOI: 10.1016/j.clcc.2020.02.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 01/03/2020] [Accepted: 02/02/2020] [Indexed: 01/08/2023]
Affiliation(s)
- Satya Das
- Division of Hematology Oncology, Department of Internal Medicine, Vanderbilt University Medical Center, Nashville, TN.
| | - Audrey Allen
- Division of Hematology Oncology, Department of Internal Medicine, Vanderbilt University Medical Center, Nashville, TN
| | - Jordan Berlin
- Division of Hematology Oncology, Department of Internal Medicine, Vanderbilt University Medical Center, Nashville, TN
| |
Collapse
|
398
|
Huyghe N, Baldin P, Van den Eynde M. Immunotherapy with immune checkpoint inhibitors in colorectal cancer: what is the future beyond deficient mismatch-repair tumours? Gastroenterol Rep (Oxf) 2020; 8:11-24. [PMID: 32104582 PMCID: PMC7034232 DOI: 10.1093/gastro/goz061] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 09/25/2019] [Accepted: 10/22/2019] [Indexed: 12/17/2022] Open
Abstract
Following initial success in melanoma and lung tumours, immune checkpoint inhibitors (ICIs) are now well recognized as a major immunotherapy treatment modality for multiple types of solid cancers. In colorectal cancer (CRC), the small subset that is mismatch-repair-deficient and microsatellite-instability-high (dMMR/MSI-H) derive benefit from immunotherapy; however, the vast majority of patients with proficient MMR (pMMR) or with microsatellite stable (MSS) CRC do not. Immunoscore and the consensus molecular subtype classifications are promising biomarkers in predicting therapeutic efficacy in selected CRC. In pMRR/MSS CRC, biomarkers are also needed to understand the molecular mechanisms governing immune reactivity and to predict their relationship to treatment. The continuous development of such biomarkers would offer new perspectives and more personalized treatments by targeting oncological options, including ICIs, which modify the tumour-immune microenvironment. In this review, we focus on CRC and discuss the current status of ICIs, the role of biomarkers to predict response to immunotherapy, and the approaches being explored to render pMMR/MSS CRC more immunogenic through the use of combined therapies.
Collapse
Affiliation(s)
- Nicolas Huyghe
- Institut de Recherche Clinique et Expérimentale (Pole MIRO), UCLouvain, Brussels, Belgium
| | - Paméla Baldin
- Department of Pathology, Cliniques Universitaires St-Luc, Institut Roi Albert II, Brussels, Belgium
| | - Marc Van den Eynde
- Institut de Recherche Clinique et Expérimentale (Pole MIRO), UCLouvain, Brussels, Belgium
- Department of Medical Oncology, Cliniques Universitaires St-Luc, Institut Roi Albert II, Brussels, Belgium
| |
Collapse
|
399
|
Prognostic and Predictive Molecular Biomarkers for Colorectal Cancer: Updates and Challenges. Cancers (Basel) 2020; 12:cancers12020319. [PMID: 32019056 PMCID: PMC7072488 DOI: 10.3390/cancers12020319] [Citation(s) in RCA: 126] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 01/20/2020] [Accepted: 01/22/2020] [Indexed: 12/12/2022] Open
Abstract
Colorectal cancer (CRC) is a leading cause of death among cancer patients. This heterogeneous disease is characterized by alterations in multiple molecular pathways throughout its development. Mutations in RAS, along with the mismatch repair gene deficiency, are currently routinely tested in clinics. Such biomarkers provide information for patient risk stratification and for the choice of the best treatment options. Nevertheless, reliable and powerful prognostic markers that can identify “high-risk” CRC patients, who might benefit from adjuvant chemotherapy, in early stages, are currently missing. To bridge this gap, genomic information has increasingly gained interest as a potential method for determining the risk of recurrence. However, due to several limitations of gene-based signatures, these have not yet been clinically implemented. In this review, we describe the different molecular markers in clinical use for CRC, highlight new markers that might become indispensable over the next years, discuss recently developed gene expression-based tests and highlight the challenges in biomarker research.
Collapse
|
400
|
Cai H, Zhang Y, Zhang H, Cui C, Li C, Lu S. Prognostic role of tumor mutation burden in hepatocellular carcinoma after radical hepatectomy. J Surg Oncol 2020; 121:1007-1014. [PMID: 31995247 DOI: 10.1002/jso.25859] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 01/18/2020] [Indexed: 01/07/2023]
Abstract
BACKGROUND AND AIM This study aimed to assess the potential relationship between tumor mutation burden (TMB) and the recurrence risk of hepatocellular cancer (HCC) after curative resection and tried to develop a reliable TMB based nomogram. METHODS This retrospective study was conducted in 128 patients (40 patients suffered from a recurrence of HCC) who had received radical hepatectomy by the same surgical team. A nomogram model was constructed using the R and EmpowerStats software. RESULTS TMB was not associated with maximum tumor size and the presence of microvascular invasion (MVI). In the whole population or subgroups, the recurrence-free survival (RFS) rate was significantly lower in the TMB high group. In multivariate analysis, TMB (hazard ratio [HR], 10.12; 95% confidence interval [CI], 5.03-20.31; P < .001), large tumor diameter (HR, 2.91; 95% CI, 1.51-5.63; P = .001), presence of MVI (HR, 1.93; 95% CI, 1.03-3.65; P = .042) were independent predictors of RFS. The predictive power of the nomogram integrating TMB, tumor size and MVI was higher than model only incorporating tumor size and MVI. CONCLUSION This study demonstrated for the first time that higher TMB was associated with poor prognosis in patients with HCC who had received curative resection, and a TMB based nomogram model had a well predictive performance for RFS in this population.
Collapse
Affiliation(s)
- Huayong Cai
- Nankai University School of Medicine, Tianjin, China
| | - Yu Zhang
- Department of Radiology, The Second Hospital, Dalian Medical University, Dalian, China
| | - Haoyun Zhang
- Department of Hepatobiliary Surgery, The First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Chao Cui
- Department of Hepatobiliary Surgery, The First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Chonghui Li
- Institute of Hepatobiliary Surgery, The First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Shichun Lu
- Nankai University School of Medicine, Tianjin, China.,Department of Hepatobiliary Surgery, The First Medical Center of Chinese PLA General Hospital, Beijing, China
| |
Collapse
|