Peracchi A. Preferential activation of the 8-17 deoxyribozyme by Ca(2+) ions. Evidence for the identity of 8-17 with the catalytic domain of the Mg5 deoxyribozyme.
J Biol Chem 2000;
275:11693-7. [PMID:
10766789 DOI:
10.1074/jbc.275.16.11693]
[Citation(s) in RCA: 101] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The 8-17 deoxyribozyme is a small RNA-cleaving DNA molecule of potential therapeutic interest. Here, the cleavage rates of 16 variants of the 8-17 deoxyribozyme were measured in the presence of different divalent metal ions. Despite the fact that 8-17 was originally selected in vitro for activity in the presence of Mg(2+) (Santoro, S. W., and Joyce, G. F. (1997) Proc. Natl. Acad. Sci. U. S. A. 94, 4262-4266) nearly all the 8-17 variants exhibited substantially higher (up to 20-fold) reaction rates in Ca(2+) as compared with Mg(2+). This preference for calcium ions critically depended on the nucleoside residues at two specific positions of the deoxyribozyme core. The Ca(2+) specificity of 8-17 is strongly reminiscent of the properties of Mg5, an RNA phosphodiester-cleaving deoxyribozyme previously isolated by Faulhammer and Famulok (Faulhammer, D., and Famulok, M. (1996) Angew. Chem. Int. Ed. Engl. 35, 2837-2841). Indeed, analysis of the Mg5 sequence revealed the presence of a complete 8-17 motif, coincident with the conserved region of Mg5. An 8-17 deoxyribozyme modeled after the Mg5 conserved region displayed catalytic features comparable with those reported for the full-length Mg5 deoxyribozyme.
Collapse