351
|
Ramsay EE, Decollogne S, Joshi S, Corti A, Apte M, Pompella A, Hogg PJ, Dilda PJ. Employing pancreatic tumor γ-glutamyltransferase for therapeutic delivery. Mol Pharm 2014; 11:1500-1511. [PMID: 24654974 DOI: 10.1021/mp400664t] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
γ-Glutamyltransferase (γGT) is a cell surface enzyme that catalyzes hydrolysis of the bond linking the glutamate and cysteine residues of glutathione and glutathione-S-conjugates. We have observed that human pancreatic tumor cells and tumor-associated stellate cells express high levels of this enzyme when compared to normal pancreatic epithelial and stellate cells. Detection of the protein in tumor sections correlated with γGT activity on the surface of the cultured tumor and stellate cells. We tested whether the tumor γGT could be employed to deliver a therapeutic to the tumor endothelial cells. GSAO is a glutathione-S-conjugate of a trivalent arsenical that is activated to enter endothelial cells by γGT cleavage of the γ-glutamyl residue. The arsenical moiety triggers proliferation arrest and death of the endothelial cells by targeting the mitochondria. Human pancreatic tumor and stellate cell γGT activated GSAO in culture and γGT activity positively correlated with GSAO-mediated proliferation arrest and death of endothelial cells in Transwell and coculture systems. A soluble form of γGT is found in blood, and we measured the rate of activation of GSAO by this enzyme. We calculated that systemically administered GSAO would circulate through the pancreatic blood supply several times before appreciable activation by normal blood levels of γGT. In support of this finding, tumor γGT activity positively correlated with GSAO-mediated inhibition of pancreatic tumor angiogenesis and tumor growth in mice. Our findings indicate that pancreatic tumor γGT can be used to deliver a therapeutic to the tumor.
Collapse
Affiliation(s)
- Emma E Ramsay
- Lowy Cancer Research Centre and Prince of Wales Clinical School, University of New South Wales , Sydney, New South Wales 2052, Australia
| | | | | | | | | | | | | | | |
Collapse
|
352
|
Al-Assar O, Demiciorglu F, Lunardi S, Gaspar-Carvalho MM, McKenna WG, Muschel RM, Brunner TB. Contextual regulation of pancreatic cancer stem cell phenotype and radioresistance by pancreatic stellate cells. Radiother Oncol 2014; 111:243-51. [PMID: 24780634 DOI: 10.1016/j.radonc.2014.03.014] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2013] [Revised: 02/12/2014] [Accepted: 03/18/2014] [Indexed: 12/17/2022]
Abstract
BACKGROUND AND PURPOSE Progression of pancreatic ductal adenocarcinoma (PDAC) is promoted by desmoplasia induced by pancreatic stellate cells (PSC). Contributory to this progression is epithelial mesenchymal transition (EMT), which shares many characteristics with the cancer stem cell (CSC) hypothesis. We investigated the role of these processes on the radioresponse and tumorigenicity of pancreatic cancer cells. MATERIALS AND METHODS We used an in vitro sphere model and in vivo xenograft model to examine the role of PSC in EMT and CSC processes. RESULTS We demonstrated that PSC enhanced the CSC phenotype and radioresistance of pancreatic cancer cells. Furthermore, the expression of several EMT and CSC markers supported enhanced processes in our models and that translated into remarkable in vivo tumorigenicity. Multi-dose TGFβ neutralizing antibody inhibited the EMT and CSC processes, sensitized cells to radiation and reduced in vivo tumorigenicity. A proteomic screen identified multiple novel factors that were regulated by PSC in pancreatic cells. CONCLUSION These results are critical in highlighting the role of PSC in tumor progression and radioresistance by manipulating the EMT and CSC processes. TGFβ and the novel factors identified are important targets for better therapeutic outcome in response to PSC mediated mechanisms.
Collapse
Affiliation(s)
- Osama Al-Assar
- The Radiobiology Research Institute, MRC/CR-UK Gray Institute for Radiation Oncology and Biology, Department of Oncology, University of Oxford, Churchill Hospital, UK
| | - Fevzi Demiciorglu
- The Radiobiology Research Institute, MRC/CR-UK Gray Institute for Radiation Oncology and Biology, Department of Oncology, University of Oxford, Churchill Hospital, UK
| | - Serena Lunardi
- The Radiobiology Research Institute, MRC/CR-UK Gray Institute for Radiation Oncology and Biology, Department of Oncology, University of Oxford, Churchill Hospital, UK
| | - Maria Manuela Gaspar-Carvalho
- The Radiobiology Research Institute, MRC/CR-UK Gray Institute for Radiation Oncology and Biology, Department of Oncology, University of Oxford, Churchill Hospital, UK
| | - William Gillies McKenna
- The Radiobiology Research Institute, MRC/CR-UK Gray Institute for Radiation Oncology and Biology, Department of Oncology, University of Oxford, Churchill Hospital, UK
| | - Ruth M Muschel
- The Radiobiology Research Institute, MRC/CR-UK Gray Institute for Radiation Oncology and Biology, Department of Oncology, University of Oxford, Churchill Hospital, UK
| | - Thomas B Brunner
- The Radiobiology Research Institute, MRC/CR-UK Gray Institute for Radiation Oncology and Biology, Department of Oncology, University of Oxford, Churchill Hospital, UK.
| |
Collapse
|
353
|
Akagawa S, Ohuchida K, Torata N, Hattori M, Eguchi D, Fujiwara K, Kozono S, Cui L, Ikenaga N, Ohtsuka T, Aishima S, Mizumoto K, Oda Y, Tanaka M. Peritoneal myofibroblasts at metastatic foci promote dissemination of pancreatic cancer. Int J Oncol 2014; 45:113-20. [PMID: 24756180 DOI: 10.3892/ijo.2014.2391] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2013] [Accepted: 12/27/2013] [Indexed: 11/05/2022] Open
Abstract
Myofibroblasts in the stroma of pancreatic cancers promote tumor proliferation, invasion and metastasis by increasing extracellular matrix and secretion of several growth factors. In contrast, the role of myofibroblasts at peritoneally disseminated sites of pancreatic cancer has not yet been determined. This study was designed to assess the role of myofibroblasts at peritoneally disseminated sites of pancreatic cancer. Three primary cultures of human peritoneal myofibroblasts (hPMFs) were established from disseminated sites of pancreatic cancer and their interactions with the SUIT-2 and CAPAN-1 human pancreatic cancer cell lines were analyzed in vitro. Using a model in BALB/c nu/nu mice, we compared the dissemination ability of intraperitoneally implanted pancreatic cancer cells, with and without hPMFs, and examined the presence of green fluorescent protein (GFP)-labeled hPMFs at peritoneally disseminated sites in mice. hPMFs significantly promoted the migration and invasion of pancreatic cancer cells (P<0.05), while the cancer cells significantly promoted the migration and invasion of hPMFs (P<0.05). In vivo, the number of peritoneally disseminated nodules, more than 3 mm in size, was significantly greater in mice implanted with cancer cells plus hPMFs compared to mice implanted with cancer cells alone, with GFP-labeled hPMFs surviving in the peritoneal cavity of the former. hPMFs promote the peritoneal dissemination of pancreatic cancer. The cancer-stromal cell interaction in the peritoneal cavity may be a new therapeutic target to prevent the dissemination of pancreatic cancer.
Collapse
Affiliation(s)
- Shin Akagawa
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Kenoki Ohuchida
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Nobuhiro Torata
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Masami Hattori
- Department of Anatomic Pathology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Daiki Eguchi
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Kenji Fujiwara
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Shingo Kozono
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Lin Cui
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Naoki Ikenaga
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Takao Ohtsuka
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Shinichi Aishima
- Department of Anatomic Pathology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Kazuhiro Mizumoto
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yoshinao Oda
- Department of Anatomic Pathology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Masao Tanaka
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
354
|
Abstract
FGFR (fibroblast growth factor receptor) signalling plays critical roles in embryogensis, adult physiology, tissue repair and many pathologies. Of particular interest over recent years, it has been implicated in a wide range of cancers, and concerted efforts are underway to target different aspects of FGFR signalling networks. A major focus has been identifying the canonical downstream signalling pathways in cancer cells, and these are now relatively well understood. In the present review, we focus on two distinct but emerging hot topics in FGF biology: its role in stromal cross-talk during cancer progression and the potential roles of FGFR signalling in the nucleus. These neglected areas are proving to be of great interest clinically and are intimately linked, at least in pancreatic cancer. The importance of the stroma in cancer is well accepted, both as a conduit/barrier for treatment and as a target in its own right. Nuclear receptors are less acknowledged as targets, largely due to historical scepticism as to their existence or importance. However, increasing evidence from across the receptor tyrosine kinase field is now strong enough to make the study of nuclear growth factor receptors a major area of interest.
Collapse
|
355
|
McCarroll JA, Naim S, Sharbeen G, Russia N, Lee J, Kavallaris M, Goldstein D, Phillips PA. Role of pancreatic stellate cells in chemoresistance in pancreatic cancer. Front Physiol 2014; 5:141. [PMID: 24782785 PMCID: PMC3988387 DOI: 10.3389/fphys.2014.00141] [Citation(s) in RCA: 105] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Accepted: 03/24/2014] [Indexed: 12/26/2022] Open
Abstract
Pancreatic cancer is highly chemoresistant. A major contributing factor is the characteristic extensive stromal or fibrotic reaction, which comprises up to 90% of the tumor volume. Over the last decade there has been intensive research into the role of the pro-fibrogenic pancreatic stellate cells (PSCs) and their interaction with pancreatic cancer cells. As a result of the significant alterations in the tumor microenvironment following activation of PSCs, tumor progression, and chemoresistance is enhanced. This review will discuss how PSCs contribute to chemoresistance in pancreatic cancer.
Collapse
Affiliation(s)
- Joshua A McCarroll
- Tumour Biology and Targeting Program, Lowy Cancer Research Centre, Children's Cancer Institute Australia, University of New South Wales Sydney, NSW, Australia ; Australian Centre for Nanomedicine, University of New South Wales Sydney, NSW, Australia
| | - Stephanie Naim
- Pancreatic Cancer Translational Research Group, Lowy Cancer Research Centre, Prince of Wales Clinical School, University of New South Wales Sydney, NSW, Australia
| | - George Sharbeen
- Pancreatic Cancer Translational Research Group, Lowy Cancer Research Centre, Prince of Wales Clinical School, University of New South Wales Sydney, NSW, Australia
| | - Nelson Russia
- Pancreatic Cancer Translational Research Group, Lowy Cancer Research Centre, Prince of Wales Clinical School, University of New South Wales Sydney, NSW, Australia
| | - Julia Lee
- Pancreatic Cancer Translational Research Group, Lowy Cancer Research Centre, Prince of Wales Clinical School, University of New South Wales Sydney, NSW, Australia
| | - Maria Kavallaris
- Tumour Biology and Targeting Program, Lowy Cancer Research Centre, Children's Cancer Institute Australia, University of New South Wales Sydney, NSW, Australia ; Australian Centre for Nanomedicine, University of New South Wales Sydney, NSW, Australia
| | - David Goldstein
- Pancreatic Cancer Translational Research Group, Lowy Cancer Research Centre, Prince of Wales Clinical School, University of New South Wales Sydney, NSW, Australia
| | - Phoebe A Phillips
- Pancreatic Cancer Translational Research Group, Lowy Cancer Research Centre, Prince of Wales Clinical School, University of New South Wales Sydney, NSW, Australia
| |
Collapse
|
356
|
Shi C, Washington MK, Chaturvedi R, Drosos Y, Revetta FL, Weaver CJ, Buzhardt E, Yull FE, Blackwell TS, Sosa-Pineda B, Whitehead RH, Beauchamp RD, Wilson KT, Means AL. Fibrogenesis in pancreatic cancer is a dynamic process regulated by macrophage-stellate cell interaction. J Transl Med 2014; 94:409-21. [PMID: 24535260 PMCID: PMC3992484 DOI: 10.1038/labinvest.2014.10] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2013] [Accepted: 01/15/2014] [Indexed: 12/31/2022] Open
Abstract
Pancreatic cancer occurs in the setting of a profound fibrotic microenvironment that often dwarfs the actual tumor. Although pancreatic fibrosis has been well studied in chronic pancreatitis, its development in pancreatic cancer is much less well understood. This article describes the dynamic remodeling that occurs from pancreatic precursors (pancreatic intraepithelial neoplasias (PanINs)) to pancreatic ductal adenocarcinoma, highlighting similarities and differences between benign and malignant disease. Although collagen matrix is a commonality throughout this process, early stage PanINs are virtually free of periostin while late stage PanIN and pancreatic cancer are surrounded by an increasing abundance of this extracellular matrix protein. Myofibroblasts also become increasingly abundant during progression from PanIN to cancer. From the earliest stages of fibrogenesis, macrophages are associated with this ongoing process. In vitro co-culture indicates there is cross-regulation between macrophages and pancreatic stellate cells (PaSCs), precursors to at least some of the fibrotic cell populations. When quiescent PaSCs were co-cultured with macrophage cell lines, the stellate cells became activated and the macrophages increased cytokine production. In summary, fibrosis in pancreatic cancer involves a complex interplay of cells and matrices that regulate not only the tumor epithelium but the composition of the microenvironment itself.
Collapse
Affiliation(s)
- Chanjuan Shi
- Dept. of Pathology, Microbiology and Immunology, Vanderbilt University, Nashville TN
| | - M. Kay Washington
- Dept. of Pathology, Microbiology and Immunology, Vanderbilt University, Nashville TN
| | | | - Yiannis Drosos
- Dept. of Genetics, St. Jude Children’s Research Hospital, Memphis, TN
| | - Frank L. Revetta
- Dept. of Pathology, Microbiology and Immunology, Vanderbilt University, Nashville TN
| | | | | | - Fiona E. Yull
- Dept. of Cancer Biology, Vanderbilt University, Nashville TN
| | | | | | | | - R. Daniel Beauchamp
- Dept. of Surgery, Vanderbilt University, Nashville TN,Dept. of Cell and Developmental Biology, Vanderbilt University, Nashville TN
| | - Keith T. Wilson
- Dept. of Pathology, Microbiology and Immunology, Vanderbilt University, Nashville TN,Dept. of Medicine, Vanderbilt University, Nashville TN,Dept. of Cancer Biology, Vanderbilt University, Nashville TN,Veterans Affairs Tennessee Valley Healthcare System, Nashville TN
| | - Anna L. Means
- Dept. of Surgery, Vanderbilt University, Nashville TN,Dept. of Cell and Developmental Biology, Vanderbilt University, Nashville TN
| |
Collapse
|
357
|
Arcangeli A, Crociani O, Bencini L. Interaction of tumour cells with their microenvironment: ion channels and cell adhesion molecules. A focus on pancreatic cancer. Philos Trans R Soc Lond B Biol Sci 2014; 369:20130101. [PMID: 24493749 PMCID: PMC3917355 DOI: 10.1098/rstb.2013.0101] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Cancer must be viewed as a 'tissue', constituted of both transformed cells and a heterogeneous microenvironment, the 'tumour microenvironment' (TME). The TME undergoes a complex remodelling during the course of multistep tumourigenesis, hence strongly contributing to tumour progression. Ion channels and transporters (ICTs), being expressed on both tumour cells and in the different cellular components of the TME, are in a strategic position to sense and mediate signals arising from the TME. Often, this transmission is mediated by integrin adhesion receptors, which are the main cellular receptors capable of mediating cell-to-cell and cell-to-matrix bidirectional signalling. Integrins can often operate in conjunction with ICT because they can behave as functional partners of ICT proteins. The role of integrin receptors in the crosstalk between tumour cells and the TME is particularly relevant in the context of pancreatic cancer (PC), characterized by an overwhelming TME which actively contributes to therapy resistance. We discuss the possibility that this occurs through integrins and ICTs, which could be exploited as targets to overcome chemoresistance in PC.
Collapse
Affiliation(s)
- Annarosa Arcangeli
- Department of Experimental and Clinical Medicine, Section of Internal Medicine, University of Florence, Viale G.B. Morgagni, 50, 50134 Firenze, Italy
| | - Olivia Crociani
- Department of Experimental and Clinical Medicine, Section of Internal Medicine, University of Florence, Viale G.B. Morgagni, 50, 50134 Firenze, Italy
| | - Lapo Bencini
- SOD General and Oncological Surgery, Department of Oncology, Azienda Ospedaliero-Universitaria Careggi, Largo Brambilla 3, 50134 Firenze, Italy
| |
Collapse
|
358
|
Tang D, Zhang J, Yuan Z, Gao J, Wang S, Ye N, Li P, Gao S, Miao Y, Wang D, Jiang K. Pancreatic satellite cells derived galectin-1 increase the progression and less survival of pancreatic ductal adenocarcinoma. PLoS One 2014; 9:e90476. [PMID: 24595374 PMCID: PMC3942444 DOI: 10.1371/journal.pone.0090476] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2013] [Accepted: 01/31/2014] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Galectin-1, a member of carbohydrate-binding proteins with a polyvalent function on tumor progression, was found strongly expressed in pancreatic satellite cells (PSCs), which partner in crime with cancer cells and promote the development of pancreatic ductal adenocarcinoma (PDAC). We evaluated the effects of PSCs derived Galectin-1 on the progression of PDAC, as well as the tumor establishment and development in mouse xenografts. METHODS The relationship between immunohistochemistry staining intensity of Galectin-1 and clinicopathologic variables were assessed in 66 PDAC tissues, 18 chronic pancreatitis tissues and 10 normal controls. The roles of PSCs isolated from PDAC and normal pancreas on the proliferative activity, MMP2 and MMP9 expression, and the invasion of CFPAC-1 in the co-cultured system, as well as on the tumor establishment and development in mouse xenografts by mixed implanting with CFPAC-1 subcutaneously were evaluated. RESULTS Galectin-1 expression was gradually increased from normal pancreas (negative), chronic pancreatitis (weak) to PDAC (strong), in which Galectin-1 expression was also increased from well, moderately to poorly differentiated PDAC. Galectin-1 staining intensity of pancreatic cancer tissue was associated with increase in tumor size, lymph node metastasis, perineural invasion and differentiation and UICC stage, and served as the independent prognostic indicator of poor survival of pancreatic cancer. In vitro and in vivo experiments indicated that TGF-β1 upregulated Galectin-1 expression in PSCs, which could further promotes the proliferative activity, MMP2 and MMP9 expression, and invasion of pancreatic cancer cells, as well as the tumor establishment and growth. CONCLUSION Galectin-1 expression in stromal cells of pancreatic cancer suggests that this protein plays a role in the promotion of cancer cells invasion and metastasis and provides a therapeutic target for the treatment of pancreatic cancer.
Collapse
Affiliation(s)
- Dong Tang
- Department of General Surgery, Subei People's Hospital of Jiangsu Province (Clinic Medical College of Yang Zhou University), Yangzhou, Jiangsu Province, China
| | - Jingqiu Zhang
- Department of Digestive System, Subei People's Hospital of Jiangsu Province (Clinic Medical College of Yang Zhou University), Yangzhou, Jiangsu Province, China
| | - Zhongxu Yuan
- Department of General Surgery, Anhui no. 2 Provincial People's Hospital, Hefei, Anhui Province, China
| | - Jun Gao
- Department of General Surgery, Subei People's Hospital of Jiangsu Province (Clinic Medical College of Yang Zhou University), Yangzhou, Jiangsu Province, China
| | - Sen Wang
- College of Clinical Medicine, Nanjing Medical University (the First Affiliated Hospital of Nanjing Medical University), Nanjing, Jiangsu Province, China
| | - Nianyuan Ye
- Department of General Surgery, Subei People's Hospital of Jiangsu Province (Clinic Medical College of Yang Zhou University), Yangzhou, Jiangsu Province, China
| | - Ping Li
- Department of General Surgery, Subei People's Hospital of Jiangsu Province (Clinic Medical College of Yang Zhou University), Yangzhou, Jiangsu Province, China
| | - Sujun Gao
- Department of Digestive System, Subei People's Hospital of Jiangsu Province (Clinic Medical College of Yang Zhou University), Yangzhou, Jiangsu Province, China
| | - Yi Miao
- Department of General Surgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Daorong Wang
- Department of General Surgery, Subei People's Hospital of Jiangsu Province (Clinic Medical College of Yang Zhou University), Yangzhou, Jiangsu Province, China
| | - Kuirong Jiang
- Department of General Surgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| |
Collapse
|
359
|
Masamune A, Nakano E, Hamada S, Takikawa T, Yoshida N, Shimosegawa T. Alteration of the microRNA expression profile during the activation of pancreatic stellate cells. Scand J Gastroenterol 2014; 49:323-31. [PMID: 24404812 DOI: 10.3109/00365521.2013.876447] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
OBJECTIVE. Pancreatic stellate cells (PSCs) play a pivotal role in the pancreatic fibrosis associated with chronic pancreatitis and pancreatic cancer. In response to pancreatic injury or inflammation, PSCs are activated to myofibroblast-like cells. MicroRNA (miRNA) is a small RNA, consisting of 17-25 nucleotides, which targets 3'-untranslated region sequences of mRNA. miRNAs regulate a variety of cell functions such as cell proliferation, differentiation, and carcinogenesis. We examined here whether the miRNA expression profiles are altered during the activation of PSCs. MATERIALS AND METHODS. Rat PSCs were isolated from the pancreas tissue of male Wistar rats. PSCs were activated in vitro by culture in serum-containing medium. miRNAs were prepared from quiescent (day 1) PSCs and culture-activated (day 14) PSCs. Agilent's miRNA microarray containing probes for 680 miRNAs was used to identify differentially expressed miRNAs. Ingenuity Pathway Analysis (IPA) was used for the integrated analysis of altered miRNAs. RESULTS. Upon activation, 42 miRNAs were upregulated (>2.0-fold) and 42 miRNAs were downregulated (<0.5-fold). Upregulated miRNAs included miR-31, miR-143, and miR-221. Downregulated miRNAs included miR-126, miR-146a, and miR-150. IPA revealed the most impacted biological processes including cellular development, cellular growth, and cell movement. Interestingly, IPA identified 22 miRNAs affected both in pancreatic cancer and PSC activation. The top network generated by IPA revealed the interactions of altered miRNAs with signaling pathways such as p38 mitogen-activated protein kinase, extracellular-signal-regulated kinase, and Smad2/3. CONCLUSIONS. Our results suggest a novel role of miRNAs in the activation of PSCs.
Collapse
Affiliation(s)
- Atsushi Masamune
- Division of Gastroenterology, Tohoku University Graduate School of Medicine , Sendai , Japan
| | | | | | | | | | | |
Collapse
|
360
|
Lohse I, Lourenco C, Ibrahimov E, Pintilie M, Tsao MS, Hedley DW. Assessment of hypoxia in the stroma of patient-derived pancreatic tumor xenografts. Cancers (Basel) 2014; 6:459-71. [PMID: 24577243 PMCID: PMC3980617 DOI: 10.3390/cancers6010459] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2013] [Revised: 01/29/2014] [Accepted: 02/11/2014] [Indexed: 12/21/2022] Open
Abstract
The unusually dense stroma of pancreatic cancers is thought to play an important role in their biological aggression. The presence of hypoxia is also considered an adverse prognostic factor. Although it is usually assumed that this is the result of effects of hypoxia on the epithelial component, it is possible that hypoxia exerts indirect effects via the tumor stroma. We therefore measured hypoxia in the stroma of a series of primary pancreatic cancer xenografts. Nine patient-derived pancreatic xenografts representing a range of oxygenation levels were labeled by immunohistochemistry for EF5 and analyzed using semi-automated pattern recognition software. Hypoxia in the tumor and stroma was correlated with tumor growth and metastatic potential. The extent of hypoxia varied from 1%-39% between the different models. EF5 labeling in the stroma ranged from 0-20% between models, and was correlated with the level of hypoxia in the tumor cell area, but not microvessel density. Tumor hypoxia correlated with spontaneous metastasis formation with the exception of one hypoxic model that showed disproportionately low levels of hypoxia in the stroma and was non-metastatic. Our results demonstrate that hypoxia exists in the stroma of primary pancreatic cancer xenografts and suggest that stromal hypoxia impacts the metastatic potential.
Collapse
Affiliation(s)
- Ines Lohse
- Ontario Cancer Institute and Campbell Family Cancer Research Institute, Princess Margaret Cancer Center, University Health Network, 610 University Ave., Toronto, ON M5G2M9, Canada.
| | - Corey Lourenco
- Ontario Cancer Institute and Campbell Family Cancer Research Institute, Princess Margaret Cancer Center, University Health Network, 610 University Ave., Toronto, ON M5G2M9, Canada.
| | - Emin Ibrahimov
- Ontario Cancer Institute and Campbell Family Cancer Research Institute, Princess Margaret Cancer Center, University Health Network, 610 University Ave., Toronto, ON M5G2M9, Canada.
| | - Melania Pintilie
- Ontario Cancer Institute and Campbell Family Cancer Research Institute, Princess Margaret Cancer Center, University Health Network, 610 University Ave., Toronto, ON M5G2M9, Canada.
| | - Ming-Sound Tsao
- Ontario Cancer Institute and Campbell Family Cancer Research Institute, Princess Margaret Cancer Center, University Health Network, 610 University Ave., Toronto, ON M5G2M9, Canada.
| | - David W Hedley
- Ontario Cancer Institute and Campbell Family Cancer Research Institute, Princess Margaret Cancer Center, University Health Network, 610 University Ave., Toronto, ON M5G2M9, Canada.
| |
Collapse
|
361
|
Wilson JS, Pirola RC, Apte MV. Stars and stripes in pancreatic cancer: role of stellate cells and stroma in cancer progression. Front Physiol 2014; 5:52. [PMID: 24592240 PMCID: PMC3924046 DOI: 10.3389/fphys.2014.00052] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Accepted: 01/27/2014] [Indexed: 12/19/2022] Open
Abstract
Pancreatic cancer is a devastating disease with an unacceptably high mortality to incidence ratio. Traditional therapeutic approaches such as surgery in combination with chemo- or radiotherapy have had limited efficacy in improving the outcome of this disease. Up until just under a decade ago, the prominent desmoplastic reaction which is a characteristic of the majority of pancreatic ductal adenocarcinomas (PDAC) had been largely ignored. However, since the identification of the pancreatic stellate cell (PSC) as the key cell responsible for the production of the collagenous stroma in PDAC, increasing attention has been paid to the role of the stromal reaction in pancreatic cancer pathobiology. There is now compelling evidence that PSCs interact not only with cancer cells themselves, but with several other cell types in the stroma (endothelial cells, immune cells, and possibly neuronal cells) to promote cancer progression. This review summarizes current knowledge in the field about the influence of PSCs and the stromal microenvironment on cancer behavior and discusses novel therapeutic approaches which reflect an increasing awareness amongst clinicians and researchers that targeting cancer cells alone is no longer sufficient to improve patient outcome and that combinatorial treatments targeting the stroma as well as the cancer cells will be required to change the clinical course of this disease.
Collapse
Affiliation(s)
- Jeremy S. Wilson
- Pancreatic Research Group, Faculty of Medicine, South Western Sydney Clinical School, Ingham Institute for Applied Medical Research, University of New South WalesLiverpool, NSW, Australia
- Ingham Institute for Applied Medical ResearchLiverpool, NSW, Australia
| | - Romano C. Pirola
- Pancreatic Research Group, Faculty of Medicine, South Western Sydney Clinical School, Ingham Institute for Applied Medical Research, University of New South WalesLiverpool, NSW, Australia
- Ingham Institute for Applied Medical ResearchLiverpool, NSW, Australia
| | - Minoti V. Apte
- Pancreatic Research Group, Faculty of Medicine, South Western Sydney Clinical School, Ingham Institute for Applied Medical Research, University of New South WalesLiverpool, NSW, Australia
- Ingham Institute for Applied Medical ResearchLiverpool, NSW, Australia
| |
Collapse
|
362
|
Lei J, Huo X, Duan W, Xu Q, Li R, Ma J, Li X, Han L, Li W, Sun H, Wu E, Ma Q. α-Mangostin inhibits hypoxia-driven ROS-induced PSC activation and pancreatic cancer cell invasion. Cancer Lett 2014; 347:129-38. [PMID: 24513179 DOI: 10.1016/j.canlet.2014.02.003] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Revised: 01/22/2014] [Accepted: 02/03/2014] [Indexed: 12/18/2022]
Abstract
Recent advances indicating a key role of microenvironment for tumor progression, we investigated the role of PSCs and hypoxia in pancreatic cancer aggressiveness, and examined the potential protective effect of α-mangostin on hypoxia-driven pancreatic cancer progression. Our data indicate that hypoxic PSCs exploit their oxidative stress due to hypoxia to secrete soluble factors favouring pancreatic cancer invasion. α-Mangostin suppresses hypoxia-induced PSC activation and pancreatic cancer cell invasion through the inhibition of HIF-1α stabilization and GLI1 expression. Increased generation of hypoxic ROS is responsible for HIF-1α stabilization and GLI1 upregulation. Therefore, α-mangostin may be beneficial in preventing hypoxia-induced pancreatic cancer progression.
Collapse
Affiliation(s)
- Jianjun Lei
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Medical College, Xi'an Jiaotong University, 277 West Yanta Road, Xi'an 710061, Shaanxi Province, China
| | - Xiongwei Huo
- Department of General Surgery, First Affiliated Hospital of Medical College, Xi'an Jiaotong University, 277 West Yanta Road, Xi'an 710061, Shaanxi Province, China
| | - Wanxing Duan
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Medical College, Xi'an Jiaotong University, 277 West Yanta Road, Xi'an 710061, Shaanxi Province, China
| | - Qinhong Xu
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Medical College, Xi'an Jiaotong University, 277 West Yanta Road, Xi'an 710061, Shaanxi Province, China
| | - Rong Li
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Medical College, Xi'an Jiaotong University, 277 West Yanta Road, Xi'an 710061, Shaanxi Province, China
| | - Jiguang Ma
- Department of Oncology, First Affiliated Hospital of Medical College, Xi'an Jiaotong University, 277 West Yanta Road, Xi'an 710061, Shaanxi Province, China
| | - Xuqi Li
- Department of General Surgery, First Affiliated Hospital of Medical College, Xi'an Jiaotong University, 277 West Yanta Road, Xi'an 710061, Shaanxi Province, China
| | - Liang Han
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Medical College, Xi'an Jiaotong University, 277 West Yanta Road, Xi'an 710061, Shaanxi Province, China
| | - Wei Li
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Medical College, Xi'an Jiaotong University, 277 West Yanta Road, Xi'an 710061, Shaanxi Province, China
| | - Hao Sun
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Medical College, Xi'an Jiaotong University, 277 West Yanta Road, Xi'an 710061, Shaanxi Province, China.
| | - Erxi Wu
- Department of Pharmaceutical Sciences, North Dakota State University, Fargo, USA
| | - Qingyong Ma
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Medical College, Xi'an Jiaotong University, 277 West Yanta Road, Xi'an 710061, Shaanxi Province, China.
| |
Collapse
|
363
|
Coleman SJ, Chioni AM, Ghallab M, Anderson RK, Lemoine NR, Kocher HM, Grose RP. Nuclear translocation of FGFR1 and FGF2 in pancreatic stellate cells facilitates pancreatic cancer cell invasion. EMBO Mol Med 2014; 6:467-81. [PMID: 24503018 PMCID: PMC3992074 DOI: 10.1002/emmm.201302698] [Citation(s) in RCA: 128] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Pancreatic cancer is characterised by desmoplasia, driven by activated pancreatic stellate cells (PSCs). Over-expression of FGFs and their receptors is a feature of pancreatic cancer and correlates with poor prognosis, but whether their expression impacts on PSCs is unclear. At the invasive front of human pancreatic cancer, FGF2 and FGFR1 localise to the nucleus in activated PSCs but not cancer cells. In vitro, inhibiting FGFR1 and FGF2 in PSCs, using RNAi or chemical inhibition, resulted in significantly reduced cell proliferation, which was not seen in cancer cells. In physiomimetic organotypic co-cultures, FGFR inhibition prevented PSC as well as cancer cell invasion. FGFR inhibition resulted in cytoplasmic localisation of FGFR1 and FGF2, in contrast to vehicle-treated conditions where PSCs with nuclear FGFR1 and FGF2 led cancer cells to invade the underlying extra-cellular matrix. Strikingly, abrogation of nuclear FGFR1 and FGF2 in PSCs abolished cancer cell invasion. These findings suggest a novel therapeutic approach, where preventing nuclear FGF/FGFR mediated proliferation and invasion in PSCs leads to disruption of the tumour microenvironment, preventing pancreatic cancer cell invasion.
Collapse
Affiliation(s)
- Stacey J Coleman
- Centre for Tumour Biology Barts Cancer Institute - a CRUK Centre of Excellence, Queen Mary University of London, London, UK
| | | | | | | | | | | | | |
Collapse
|
364
|
McCarroll J, Teo J, Boyer C, Goldstein D, Kavallaris M, Phillips PA. Potential applications of nanotechnology for the diagnosis and treatment of pancreatic cancer. Front Physiol 2014; 5:2. [PMID: 24478715 PMCID: PMC3900771 DOI: 10.3389/fphys.2014.00002] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Accepted: 01/03/2014] [Indexed: 12/25/2022] Open
Abstract
Despite improvements in our understanding of pancreatic cancer and the emerging concept of personalized medicine for the treatment of this disease, it is still the fourth most common cause of cancer death in the western world. It is established that pancreatic cancer is a highly heterogeneous disease with a complex tumor microenvironment. Indeed the extensive stroma surrounding the cancer cells has been shown to be important in promoting tumor growth and metastases, as well as sequestering chemotherapeutic agents consequently decreasing delivery to the tumor cells. Nanotechnology has come to the forefront in the areas of medical diagnostics, imaging, and therapeutic drug delivery. This review will focus on the potential applications of nanotechnology for diagnosis, imaging, and delivery of therapeutic agents for the treatment of pancreatic cancer.
Collapse
Affiliation(s)
- Joshua McCarroll
- Tumor Biology and Targeting Program, Lowy Cancer Research Centre, Children's Cancer Institute Australia, University of New South Wales Sydney, NSW, Australia ; Australian Centre for NanoMedicine, University of New South Wales Sydney, NSW, Australia
| | - Joann Teo
- Tumor Biology and Targeting Program, Lowy Cancer Research Centre, Children's Cancer Institute Australia, University of New South Wales Sydney, NSW, Australia ; Australian Centre for NanoMedicine, University of New South Wales Sydney, NSW, Australia ; Panceatic Cancer Translational Research Group, Lowy Cancer Research Centre, Prince of Wales Clinical School, University of New South Wales Sydney, NSW, Australia
| | - Cyrille Boyer
- Australian Centre for NanoMedicine, University of New South Wales Sydney, NSW, Australia
| | - David Goldstein
- Panceatic Cancer Translational Research Group, Lowy Cancer Research Centre, Prince of Wales Clinical School, University of New South Wales Sydney, NSW, Australia
| | - Maria Kavallaris
- Tumor Biology and Targeting Program, Lowy Cancer Research Centre, Children's Cancer Institute Australia, University of New South Wales Sydney, NSW, Australia ; Australian Centre for NanoMedicine, University of New South Wales Sydney, NSW, Australia
| | - Phoebe A Phillips
- Australian Centre for NanoMedicine, University of New South Wales Sydney, NSW, Australia ; Panceatic Cancer Translational Research Group, Lowy Cancer Research Centre, Prince of Wales Clinical School, University of New South Wales Sydney, NSW, Australia
| |
Collapse
|
365
|
|
366
|
Guan J, Zhang H, Wen Z, Gu Y, Cheng Y, Sun Y, Zhang T, Jia C, Lu Z, Chen J. Retinoic acid inhibits pancreatic cancer cell migration and EMT through the downregulation of IL-6 in cancer associated fibroblast cells. Cancer Lett 2013; 345:132-9. [PMID: 24334138 DOI: 10.1016/j.canlet.2013.12.006] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2013] [Revised: 11/23/2013] [Accepted: 12/01/2013] [Indexed: 12/15/2022]
Abstract
Retinoic acid (RA) is a small molecular derivative of vitamin A that is stored in quiescent stellate cells in pancreas stroma. Cancer associated fibroblasts (CAFs) are activated fibroblast cells in pancreatic ductal adenocarcinoma tumor microenvironment. We treated CAFs with RA and found that these cells became static due to the low expression of α-SMA, FAP, and IL-6 and decreased production of extracellular matrix (ECM). Furthermore, we verified that the low secretion of IL-6 from CAFs was related to RA-induced inhibition of migration and epithelial-mesenchymal transition (EMT) of tumor cells. However, RA could not inhibit the migration and EMT of tumor cells directly. Therefore, our study showed that one of the therapeutic effects of RA on tumor cells is through its modulation of CAFs in tumor microenvironment. The tumor microenvironment plays an important role in promoting tumor migration and might be a promising target of biological treatment.
Collapse
Affiliation(s)
- Jian Guan
- Department of Pathology, Peking Union Medical College Hospital, Beijing 100730, PR China
| | - Hui Zhang
- Department of Pathology, Peking Union Medical College Hospital, Beijing 100730, PR China
| | - Zhang Wen
- Department of General Surgery, Peking Union Medical College Hospital, Beijing 100730, PR China
| | - Yumei Gu
- Department of Pathology, Peking Union Medical College Hospital, Beijing 100730, PR China
| | - Yin Cheng
- Department of Pathology, Peking Union Medical College Hospital, Beijing 100730, PR China
| | - Yang Sun
- Department of Pathology, Peking Union Medical College Hospital, Beijing 100730, PR China
| | - Tingting Zhang
- Department of Pathology, Peking Union Medical College Hospital, Beijing 100730, PR China
| | - Congwei Jia
- Department of Pathology, Peking Union Medical College Hospital, Beijing 100730, PR China
| | - Zhaohui Lu
- Department of Pathology, Peking Union Medical College Hospital, Beijing 100730, PR China
| | - Jie Chen
- Department of Pathology, Peking Union Medical College Hospital, Beijing 100730, PR China.
| |
Collapse
|
367
|
Li NF, Gemenetzidis E, Marshall FJ, Davies D, Yu Y, Frese K, Froeling FEM, Woolf AK, Feakins RM, Naito Y, Iacobuzio-Donahue C, Tuveson DA, Hart IR, Kocher HM. RhoC interacts with integrin α5β1 and enhances its trafficking in migrating pancreatic carcinoma cells. PLoS One 2013; 8:e81575. [PMID: 24312560 PMCID: PMC3849283 DOI: 10.1371/journal.pone.0081575] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2013] [Accepted: 10/15/2013] [Indexed: 02/08/2023] Open
Abstract
Human pancreatic ductal adenocarcinoma (PDAC) is characterized by early systemic dissemination. Although RhoC has been implicated in cancer cell migration, the relevant underlying molecular mechanisms remain unknown. RhoC has been implicated in the enhancement of cancer cell migration and invasion, with actions which are distinct from RhoA (84% homology), and are possibly attributed to the divergent C-terminus domain. Here, we confirm that RhoC significantly enhances the migratory and invasive properties of pancreatic carcinoma cells. In addition, we show that RhoC over-expression decreases cancer cell adhesion and, in turn, accelerates cellular body movement and focal adhesion turnover, especially, on fibronectin-coated surfaces. Whilst RhoC over-expression did not alter integrin expression patterns, we show that it enhanced integrin α5β1 internalization and re-cycling (trafficking), an effect that was dependent specifically on the C-terminus (180-193 amino acids) of RhoC protein. We also report that RhoC and integrin α5β1 co-localize within the peri-nuclear region of pancreatic tumor cells, and by masking the CAAX motif at the C-terminal of RhoC protein, we were able to abolish this interaction in vitro and in vivo. Co-localization of integrin α5β1 and RhoC was demonstrable in invading cancer cells in 3D-organotypic cultures, and further mimicked in vivo analyses of, spontaneous human, (two distinct sources: operated patients and rapid autopsy programme) and transgenic murine (LSL-KrasG12D/+;LSL-Trp53R172H/+;Pdx-1-Cre), pancreatic cancers. In both cases, co-localization of integrin α5β1 and RhoC correlated with poor differentiation status and metastatic potential. We propose that RhoC facilitates tumor cell invasion and promotes subsequent metastasis, in part, by enhancing integrin α5β1 trafficking. Thus, RhoC may serve as a biomarker and a therapeutic target.
Collapse
Affiliation(s)
- Ningfeng Fiona Li
- Barts Cancer Institute - a CR-United Kingdom Centre of Excellence, Queen Mary University of London, Centre for Tumour Biology, London, United Kingdom
| | - Emilios Gemenetzidis
- Barts Cancer Institute - a CR-United Kingdom Centre of Excellence, Queen Mary University of London, Centre for Tumour Biology, London, United Kingdom
| | - Francis J. Marshall
- Barts Cancer Institute - a CR-United Kingdom Centre of Excellence, Queen Mary University of London, Centre for Tumour Biology, London, United Kingdom
| | - Derek Davies
- Cancer Research United Kingdom London Research Institute, London, United Kingdom
| | - Yongwei Yu
- Changhai Hospital of Shanghai Second Military Medical University, Pathology Department, Shanghai, China
| | - Kristopher Frese
- Cancer Research United Kingdom Cambridge Research Institute, Cambridge, United Kingdom
| | - Fieke E. M. Froeling
- Barts Cancer Institute - a CR-United Kingdom Centre of Excellence, Queen Mary University of London, Centre for Tumour Biology, London, United Kingdom
| | - Adam K. Woolf
- Barts Cancer Institute - a CR-United Kingdom Centre of Excellence, Queen Mary University of London, Centre for Tumour Biology, London, United Kingdom
| | - Roger M. Feakins
- Barts and the London HPB Centre, The Royal London Hospital, London, United Kingdom
| | - Yoshiki Naito
- Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Christine Iacobuzio-Donahue
- Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - David A. Tuveson
- Cancer Research United Kingdom Cambridge Research Institute, Cambridge, United Kingdom
| | - Ian R. Hart
- Barts Cancer Institute - a CR-United Kingdom Centre of Excellence, Queen Mary University of London, Centre for Tumour Biology, London, United Kingdom
| | - Hemant M. Kocher
- Barts Cancer Institute - a CR-United Kingdom Centre of Excellence, Queen Mary University of London, Centre for Tumour Biology, London, United Kingdom
- Barts and the London HPB Centre, The Royal London Hospital, London, United Kingdom
| |
Collapse
|
368
|
Izumi S, Nakamura S, Mano S, Onoda Y. Well-differentiated pancreatic ductal adenocarcinomas measuring ≤ 1 cm exhibit early features of tumor progression: a report of five lesions and a comparative study with advanced lesions. Surg Today 2013; 44:2058-64. [PMID: 24297432 DOI: 10.1007/s00595-013-0804-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2013] [Accepted: 10/21/2013] [Indexed: 01/22/2023]
Abstract
PURPOSE The purpose of this study was to clarify whether the features of well-differentiated pancreatic ductal adenocarcinomas (PDACs) measuring ≤ 1 cm are the same as those of early PDACs. METHODS Five well-differentiated PDACs measuring ≤ 1 cm were clinicopathologically compared with 19 ≥ 2 cm PDACs. Additionally, an immunohistochemical analysis for abnormalities in the expression of five molecular parameters: MUC1, p16, p53, Smad4 and sonic hedgehog, which are associated with tumor progression, was performed. RESULTS The clinicopathological comparison revealed that well-differentiated PDACs measuring ≤ 1 cm were detected significantly more often without angiolymphatic invasion and with a sparse presence of cancer cells than were the ≥ 2 cm PDACs. On the other hand, in well-differentiated PDACs measuring ≤ 1 cm, the incidence of abnormal immunolabeling for MUC1, p16, p53 and sonic hedgehog was similar to that in ≥ 2 cm PDACs. However, the incidence of diffusely positive immunolabeling for MUC1 and the mean number of abnormally immunolabeled samples for the five parameters were significantly lower in well-differentiated ≤ 1 cm PDACs (20 % and 3 ± 1) than in ≥ 2 cm PDACs (90 % and 4 ± 1). CONCLUSION The current study revealed that as the tumor size increases, molecular abnormalities are accumulated, suggesting that well-differentiated PDACs measuring ≤ 1 cm are in an earlier stage of genetic progression than are ≥ 2 cm PDACs, and these lesions may exhibit early features of invasive PDACs.
Collapse
Affiliation(s)
- Sadanobu Izumi
- Department of Gastroenterological Surgery, Kagawa Prefectural Central Hospital, 5-4-16 Banchou, Takamatsu, Kagawa, 760-8557, Japan,
| | | | | | | |
Collapse
|
369
|
Hamada S, Masamune A, Shimosegawa T. Novel therapeutic strategies targeting tumor-stromal interactions in pancreatic cancer. Front Physiol 2013; 4:331. [PMID: 24273517 PMCID: PMC3822297 DOI: 10.3389/fphys.2013.00331] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2013] [Accepted: 10/24/2013] [Indexed: 12/24/2022] Open
Abstract
Therapy-resistance and postoperative recurrence are causes of the poor prognosis in pancreatic cancer. Conventional therapies have a limited impact on the control of pancreatic cancer, resulting in the rapid re-growth of the tumor. The indispensable role of tumor-stromal interaction, which acts as a defender of cancer cells and enhances malignant potential, is being uncovered now. For example, specific signaling pathways for desmoplasia induction have been identified, such as sonic hedgehog (Shh) or connective tissue growth factor (CTGF), whose inhibition causes desmoplasia depletion and therapeutic advantages at least in in vivo mouse models of pancreatic cancer. Revolutions in drug delivery methods have led to the establishment of novel chemotherapeutic regimens, with better patient survival. Furthermore, mechanisms of immunosuppression in the pancreatic cancer-bearing host were clarified by the identification of myeloid-derived suppressor cells (MDSCs), which also promote disease progression. Strategies to target these components of the tumor stroma revealed certain anticancer effects in vitro and in vivo, suggesting the possibility of stroma-targeting therapy. Suppression of the stromal cell function increases the sensitivity of pancreatic cancer cells to therapeutic intervention. Further study will clarify the complex nature of the tumor microenvironment, the targeting of which has the potential to improve clinical outcome.
Collapse
Affiliation(s)
- Shin Hamada
- Division of Gastroenterology, Tohoku University Graduate School of Medicine Sendai, Miyagi, Japan
| | | | | |
Collapse
|
370
|
Pancreatic stellate cells promote hapto-migration of cancer cells through collagen I-mediated signalling pathway. Br J Cancer 2013; 110:409-20. [PMID: 24201748 PMCID: PMC3899756 DOI: 10.1038/bjc.2013.706] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2013] [Revised: 09/27/2013] [Accepted: 10/15/2013] [Indexed: 01/05/2023] Open
Abstract
Background: Pancreatic stellate cells (PSCs) promote metastasis as well as local growth of pancreatic cancer. However, the factors mediating the effect of PSCs on pancreatic cancer cells have not been clearly identified. Methods: We used a modified Boyden chamber assay as an in vitro model to investigate the role of PSCs in migration of Panc1 and UlaPaCa cells and to identify the underlying mechanisms. Results: PSC supernatant (PSC-SN) dose-dependently induced the trans-migration of Panc1 and UlaPaCa cells, mainly via haptokinesis and haptotaxis, respectively. In contrast to poly-L-lysine or fibronectin, collagen I resembled PSC-SN with respect to its effect on cancer cell behaviours, including polarised morphology, facilitated adhesion, accelerated motility and stimulated trans-migration. Blocking antibodies against integrin α2/β1 subunits significantly attenuated PSC-SN- or collagen I-promoted cell trans-migration and adhesion. Moreover, both PSC-SN and collagen I induced the formation of F-actin and focal adhesions in cells, which was consistent with the constantly enhanced phosphorylation of focal adhesion kinase (FAK, Tyr397). Inhibition of FAK function by an inhibitor or small interference RNAs significantly diminished the effect of PSC-SN or collagen I on haptotaxis/haptokinesis of pancreatic cancer cells. Conclusion: Collagen I is the major mediator for PSC-SN-induced haptokinesis of Panc1 and haptotaxis of UlaPaCa by activating FAK signalling via binding to integrin α2β1.
Collapse
|
371
|
Abstract
OBJECTIVES CD105 expression correlates with prognosis for several cancers. However, its significance in pancreatic cancer is unclear. METHODS We analyzed CD105 expression in resected pancreatic cancer tissue and pancreatic cancer cell lines, compared the properties of CD105(+) and CD105(-) cells using quantitative RT-PCR and migration assays, and evaluated the relationship between CD105(+) cells and pancreatic stellate cells (PSCs). RESULTS Immunohistochemistry showed that the frequency of CD105 expression was higher in pancreatic cancer than that in normal tissue(8% vs 0%, respectively). In flow cytometry, CD105 was expressed in pancreatic cancer cells, whereas weak CD105 expression was detected in normal pancreatic ductal epithelial cells. Quantitative RT-PCR showed that E-cadherin mRNA expression was suppressed and vimentin mRNA was overexpressed in CD105(+) cells (P < 0.05). Migration of CD105(+) cancer cells was strongly enhanced (more than that of CD105(+) cells) in coculture with PSCs (P < 0.05). CD105 expression did not correlate to clinicopathologic characteristics or the Kaplan-Meier survival analysis. CONCLUSIONS Suppression of an epithelial marker and over expression of a mesenchymal marker suggest that epithelial-mesenchymal transition is induced in CD105(+) pancreatic cancer cells. CD105(+) pancreatic cancer cell migration is strongly enhanced by PSCs, suggesting that these cells play a role in the pancreatic cancer microenvironment.
Collapse
|
372
|
Lunardi S, Muschel RJ, Brunner TB. The stromal compartments in pancreatic cancer: are there any therapeutic targets? Cancer Lett 2013; 343:147-55. [PMID: 24141189 DOI: 10.1016/j.canlet.2013.09.039] [Citation(s) in RCA: 130] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2013] [Revised: 09/25/2013] [Accepted: 09/26/2013] [Indexed: 12/16/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is characterised by an abundant stromal response also known as a desmoplastic reaction. Pancreatic Stellate Cells have been identified as playing a key role in pancreatic cancer desmoplasia. There is accumulating evidence that the stroma contributes to tumour progression and to the low therapeutic response of PDAC patients. In this review we described the main actors of the desmoplastic reaction within PDAC and novel therapeutic approaches that are being tested to block the detrimental function of the stroma.
Collapse
Affiliation(s)
- Serena Lunardi
- Gray Institute for Radiation Oncology and Biology, Department of Oncology, University of Oxford, Churchill Hospital, RRI, Oxford OX3 7LJ, UK
| | - Ruth J Muschel
- Gray Institute for Radiation Oncology and Biology, Department of Oncology, University of Oxford, Churchill Hospital, RRI, Oxford OX3 7LJ, UK
| | - Thomas B Brunner
- Gray Institute for Radiation Oncology and Biology, Department of Oncology, University of Oxford, Churchill Hospital, RRI, Oxford OX3 7LJ, UK; Department of Radiation Oncology, University Hospitals Freiburg, Robert-Koch-Straße 3, 79106 Freiburg, Germany.
| |
Collapse
|
373
|
Edderkaoui M, Lugea A, Hui H, Eibl G, Lu QY, Moro A, Lu X, Li G, Go VL, Pandol SJ. Ellagic acid and embelin affect key cellular components of pancreatic adenocarcinoma, cancer, and stellate cells. Nutr Cancer 2013; 65:1232-44. [PMID: 24127740 PMCID: PMC3909533 DOI: 10.1080/01635581.2013.832779] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Ellagic acid is a polyphenolic phytochemical present in many fruits and nuts with anticancer properties demonstrated in experimental tumor studies. Embelin is a benzoquinone phytochemical isolated from the Japanese herb Ardisiae Japonicae and has been shown to induce apoptosis in cancer cells. We found that ellagic acid and embelin each dose-dependently increased apoptosis and inhibited proliferation in human pancreatic cancer cells, MIA PaCa-2 and HPAF-II cells, and in pancreatic stellate cells, which are progenitors of pancreatic cancer desmoplasia. In each of these cell types, combinations of ellagic acid and embelin at low micromolar concentrations (0.5-3 μM) induced synergistic increases in apoptosis and decreases in proliferation. Ellagic acid decreased NF-κB transcriptional activity, whereas embelin decreased STAT-3 phosphorylation and protein expression of its downstream target survivin in cancer cells. In vivo dietary ellagic acid alone or in combination with embelin decreased tumor size and tumor cellularity in a subcutaneous xenograft mouse model of pancreatic cancer. These results show that ellagic acid and embelin interact with divergent intracellular signaling pathways resulting in augmentation of apoptosis and inhibition of proliferation at low micromolar concentrations for the key cellular components of pancreatic adenocarcinoma.
Collapse
Affiliation(s)
- Mouad Edderkaoui
- Veterans Affairs Greater Los Angeles Healthcare System, University of California Los Angeles, CA
- UCLA Center for Excellence in Pancreatic Diseases, University of California Los Angeles, CA
- Cedars-Sinai Medical Center, Los Angeles, CA
| | - Aurelia Lugea
- Veterans Affairs Greater Los Angeles Healthcare System, University of California Los Angeles, CA
- UCLA Center for Excellence in Pancreatic Diseases, University of California Los Angeles, CA
| | - Hongxiang Hui
- Veterans Affairs Greater Los Angeles Healthcare System, University of California Los Angeles, CA
- UCLA Center for Excellence in Pancreatic Diseases, University of California Los Angeles, CA
| | - Guido Eibl
- UCLA Center for Excellence in Pancreatic Diseases, University of California Los Angeles, CA
| | - Qing-Yi Lu
- UCLA Center for Excellence in Pancreatic Diseases, University of California Los Angeles, CA
| | - Aune Moro
- UCLA Center for Excellence in Pancreatic Diseases, University of California Los Angeles, CA
| | - Xuyang Lu
- UCLA Center for Excellence in Pancreatic Diseases, University of California Los Angeles, CA
| | - Gang Li
- UCLA Center for Excellence in Pancreatic Diseases, University of California Los Angeles, CA
| | - Vay-Liang Go
- UCLA Center for Excellence in Pancreatic Diseases, University of California Los Angeles, CA
| | - Stephen J. Pandol
- Veterans Affairs Greater Los Angeles Healthcare System, University of California Los Angeles, CA
- UCLA Center for Excellence in Pancreatic Diseases, University of California Los Angeles, CA
- Cedars-Sinai Medical Center, Los Angeles, CA
| |
Collapse
|
374
|
Ohuchida K, Ohtsuka T, Mizumoto K, Hashizume M, Tanaka M. Pancreatic Cancer: Clinical Significance of Biomarkers. Gastrointest Tumors 2013; 1:33-40. [PMID: 26675163 DOI: 10.1159/000354996] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND Improvement in the prognosis of patients with pancreatic cancer, novel effective screening and diagnostic strategies and treatments are needed. Recent advances in the understanding of pancreatic carcinogenesis and tumor microenvironment have allowed identification of biomarkers for screening, diagnosis and prediction of cancer treatments, including novel therapies targeting specific cancer or stromal cell subpopulations. Personalized therapy in pancreatic cancer is also promising as several drugs such as S1, capecitabine and gemcitabine reportedly have significant therapeutic effects. Predictive markers are thus needed to select patients most likely to benefit from therapies based on gemcitabine or other drugs. SUMMARY We review the clinical significance of promising screening, diagnostic, predictive and prognostic biomarkers based on genetic and epigenetic alterations and microRNA abnormalities in pancreatic cancer. We also review new types of biomarkers based on stromal cells, such as pancreatic stellate cells, in the microenvironment of pancreatic cancer.
Collapse
Affiliation(s)
- Kenoki Ohuchida
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan ; Department of Advanced Medical Initiatives, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Takao Ohtsuka
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Kazuhiro Mizumoto
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Makoto Hashizume
- Department of Advanced Medical Initiatives, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Masao Tanaka
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
375
|
Yamao J, Toyokawa H, Kim S, Yamaki S, Satoi S, Yanagimoto H, Yamamoto T, Hirooka S, Matsui Y, Kwon AH. Activation of alpha-smooth muscle actin-positive myofibroblast-like cells after chemotherapy with gemcitabine in a rat orthotopic pancreatic cancer model. JOURNAL OF HEPATO-BILIARY-PANCREATIC SCIENCES 2013. [PMID: 23179559 DOI: 10.1007/s00534-012-0576-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
BACKGROUND To investigate the behavior of activated pancreatic stellate cells (PSCs), which express alpha-smooth muscle actin (α-SMA), and pancreatic cancer cells in vivo, we examined the expression of α-SMA-positive myofibroblast-like cells in pancreatic cancer tissue after treatment with gemcitabine (GEM) using a Lewis orthotopic rat pancreatic cancer model. METHODS The effect of GEM on DSL-6A/C1 cell proliferation was determined by cell counting method. The orthotopic pancreatic cancer animals were prepared with DSL-6A/C cells, and treated with GEM (100 mg/kg/weekly, for 3 weeks). At the end of treatment, α-SMA expression, fibrosis, transforming growth factor (TGF)-β1 and vascular endothelial growth factor (VEGF) were evaluated by histopathological and Western blot analyses. RESULTS DSL-6A/C1 cell proliferation was significantly reduced by co-culturing with GEM in vitro. Survival time of pancreatic cancer animals (59.6 ± 13.4 days) was significantly improved by treatment with GEM (89.6 ± 21.8 days; p = 0.0005). Alpha-SMA expression in pancreatic cancer tissue was significantly reduced after treatment with GEM (p = 0.03), however, there was no significant difference in Sirius-red expression. Expression of VEGF was significantly reduced by GEM treatment, but the expression of TGF-β1 was not inhibited. CONCLUSION GEM may suppress not only the tumor cell proliferation but also suppress PSCs activation through VEGF reduction.
Collapse
Affiliation(s)
- Jun Yamao
- Department of Surgery, Kansai Medical University, 2-3-1 Shin-machi, Hirakata, Osaka 573-1191, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
376
|
Yang Y, Yu X, Huang L, Yu C. GLP-1R agonist may activate pancreatic stellate cells to induce rat pancreatic tissue lesion. Pancreatology 2013; 13:498-501. [PMID: 24075514 DOI: 10.1016/j.pan.2013.07.281] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2013] [Revised: 06/19/2013] [Accepted: 07/17/2013] [Indexed: 12/11/2022]
Abstract
OBJECTIVE To explore the mechanism of GLP-1R agonist-induced rat pancreatic tissue lesion. METHODS Thirty SD male rats were divided into three groups, namely GLP-1R agonist experimental group, diabetes-model experimental group and control group. Diabetes-model rats were induced by streptozotocin and high-sugar high-fat diet. GLP-1R agonist group and diabetes-model group were administered with GLP-1R agonist in dose 5 μg/kg each time, twice a day. After 10 weeks of treatment, the amount of matrix metalloproteinase (MMP)-2 and MMP-9, and expression of α-smooth muscle actin (α-SMA) and type III collagen protein in pancreatic tissue were measured. RESULTS The amount of MMP-2 and MMP-9 in GLP-1R agonist group and diabetes-model group were significantly higher than the control group. Compared with the GLP-1R agonist group, the diabetic model group had more severe pathological changes of pancreatic tissue interstitial edema, inflammatory cell infiltration, glandular atrophy and fibrosis, and significantly increased pancreatic tissue MMP-2 and MMP-9 levels, significantly increased α-SMA and collagen III-positive cell counts, all the differences were statistically significant. α-SMA and type III collagen were expressed in all parts of the lesions of GLP-1R agonist group and diabetes-model group. α-SMA can only be observed in the vessel wall in control group, however, in the other two groups, α-SMA can also be observed in pancreatic acinar cell interstitia, in addition to vessel wall. CONCLUSIONS Long-term subcutaneous GLP-1R agonist injection may activate pancreatic stellate cells, causing the expression of α-SMA and collagen III and the amount of MMP-2 and MMP-9 in pancreatic acinar cell interstitial significantly increasing, and thus inducing chronic inflammatory change.
Collapse
Affiliation(s)
- Yongchao Yang
- General Surgery Department, Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, China
| | | | | | | |
Collapse
|
377
|
Takikawa T, Masamune A, Hamada S, Nakano E, Yoshida N, Shimosegawa T. miR-210 regulates the interaction between pancreatic cancer cells and stellate cells. Biochem Biophys Res Commun 2013; 437:433-9. [PMID: 23831622 DOI: 10.1016/j.bbrc.2013.06.097] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2013] [Accepted: 06/25/2013] [Indexed: 12/24/2022]
Abstract
There is accumulating evidence that pancreatic stellate cells (PSCs) promote the progression of pancreatic cancer. microRNAs (miRNAs) are small non-coding RNAs acting as negative regulators of gene expression at the post-transcriptional level. This study aimed to clarify the role of miRNAs in the interaction between PSCs and pancreatic cancer cells. Pancreatic cancer cells were mono-cultured or indirectly co-cultured with PSCs. miRNAs were prepared, and Agilent's miRNA microarray containing probes for 904 human miRNAs was used to identify differentially expressed miRNAs. miR-210 was identified as an upregulated miRNA by co-culture with PSCs. Conditioned media of PSCs activated ERK and Akt, but not hypoxia-inducible factor-1α pathway. PSCs-induced miR-210 upregulation was inhibited by inhibitors of ERK and PI3K/Akt pathways. Inhibition of miR-210 expression decreased migration, decreased the expression of vimentin and snai-1, and increased the membrane-associated expression of β-catenin in Panc-1 cells co-cultured with PSCs. In conclusion, our results suggest a novel role of miR-210 in the interaction between PSCs and pancreatic cancer cells.
Collapse
Affiliation(s)
- Tetsuya Takikawa
- Division of Gastroenterology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | | | | | | | | | | |
Collapse
|
378
|
Apte MV, Wilson JS, Lugea A, Pandol SJ. A starring role for stellate cells in the pancreatic cancer microenvironment. Gastroenterology 2013; 144:1210-1219. [PMID: 23622130 PMCID: PMC3729446 DOI: 10.1053/j.gastro.2012.11.037] [Citation(s) in RCA: 363] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2012] [Revised: 11/27/2012] [Accepted: 11/28/2012] [Indexed: 02/08/2023]
Abstract
Pancreatic ductal adenocarcinoma is a devastating disease, and patient outcomes have not improved in decades. Treatments that target tumor cells have largely failed. This could be because research has focused on cancer cells and the influence of the stroma on tumor progression has been largely ignored. The focus of pancreatic cancer research began to change with the identification of pancreatic stellate cells, which produce the pancreatic tumor stroma. There is compelling in vitro and in vivo evidence for the influence of pancreatic stellate cells on pancreatic cancer development; several recent preclinical studies have reported encouraging results with approaches designed to target pancreatic stellate cells and the stroma. We review the background and recent advances in these areas, along with important areas of future research that could improve therapy.
Collapse
Affiliation(s)
- Minoti V. Apte
- Pancreatic Research Groups
- Faculty of Medicine, South Western Sydney Clinical School, University of New South Wales Sydney, New South Wales, Australia
| | - Jeremy S. Wilson
- Pancreatic Research Groups
- Faculty of Medicine, South Western Sydney Clinical School, University of New South Wales Sydney, New South Wales, Australia
| | - Aurelia Lugea
- Pancreatic Research Groups
- Department of Veterans Affairs and University of California, Los Angeles, California
| | - Stephen J. Pandol
- Pancreatic Research Groups
- Department of Veterans Affairs and University of California, Los Angeles, California
- Cedars-Sinai Medical Center, Los Angeles, California
| |
Collapse
|
379
|
Masamune A, Hamada S, Kikuta K, Takikawa T, Miura S, Nakano E, Shimosegawa T. The angiotensin II type I receptor blocker olmesartan inhibits the growth of pancreatic cancer by targeting stellate cell activities in mice. Scand J Gastroenterol 2013; 48:602-9. [PMID: 23477656 DOI: 10.3109/00365521.2013.777776] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
There is accumulating evidence that pancreatic stellate cells (PSCs), a major profibrogenic cell type in the pancreas, promote the progression of pancreatic cancer. The interactions between PSCs and pancreatic cancer have attracted substantial attention as a novel therapeutic target for the treatment of pancreatic cancer. We examined here the effects of olmesartan, an angiotensin II type I receptor blocker, on pancreatic cancer-associated fibrosis using a subcutaneous tumor model developed by co-injection of pancreatic cancer cells with PSCs in nude mice. Co-injection of pancreatic cancer cells AsPC-1 with PSCs increased the size of tumors compared with AsPC-1 cells alone. Olmesartan administrated at 10 mg/kg in drinking water inhibited the growth of subcutaneous tumors derived from the co-injection, but not those derived from mono-injection. This effect was accompanied by decreased expression of α-smooth muscle actin (a marker of activated PSCs) and collagen deposition. The inhibitory effect of olmesartan was also observed even if it was administrated after significant development of subcutaneous tumors. In addition, olmesartan decreased cell growth and type I collagen production in PSCs in vitro. These results suggest that olmesartan inhibited the growth of tumors by targeting stellate cell activities, and that olmesartan might be useful as an anti-fibrosis therapy in pancreatic cancer.
Collapse
Affiliation(s)
- Atsushi Masamune
- Division of Gastroenterology, Tohoku University Graduate School of Medicine, Sendai, Japan.
| | | | | | | | | | | | | |
Collapse
|
380
|
Ma Y, Hwang RF, Logsdon CD, Ullrich SE. Dynamic mast cell-stromal cell interactions promote growth of pancreatic cancer. Cancer Res 2013; 73:3927-37. [PMID: 23633481 DOI: 10.1158/0008-5472.can-12-4479] [Citation(s) in RCA: 161] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) exists in a complex desmoplastic microenvironment, which includes cancer-associated fibroblasts [also known as pancreatic stellate cells (PSC)] and immune cells that provide a fibrotic niche that impedes successful cancer therapy. We have found that mast cells are essential for PDAC tumorigenesis. Whether mast cells contribute to the growth of PDAC and/or PSCs is unknown. Here, we tested the hypothesis that mast cells contribute to the growth of PSCs and tumor cells, thus contributing to PDAC development. Tumor cells promoted mast cell migration. Both tumor cells and PSCs stimulated mast cell activation. Conversely, mast cell-derived interleukin (IL)-13 and tryptase stimulated PSC proliferation. Treating tumor-bearing mice with agents that block mast cell migration and function depressed PDAC growth. Our findings suggest that mast cells exacerbate the cellular and extracellular dynamics of the tumor microenvironment found in PDAC. Therefore, targeting mast cells may inhibit stromal formation and improve therapy.
Collapse
Affiliation(s)
- Ying Ma
- Department of Immunology and the Center for Cancer Immunology Research, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | | | | | | |
Collapse
|
381
|
Penheiter AR, Dingli D, Bender CE, Russell SJ, Carlson SK. Monitoring the initial delivery of an oncolytic measles virus encoding the human sodium iodide symporter to solid tumors using contrast-enhanced computed tomography. J Gene Med 2013; 14:590-7. [PMID: 23015290 DOI: 10.1002/jgm.2670] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND We aimed to determine the feasibility of monitoring viral delivery and initial distribution to solid tumors using iodinated contrast agent and micro-computed tomography (CT). METHODS Human BxPC-3 pancreatic tumor xenografts were established in nude mice. An oncolytic measles virus with an additional transcriptional unit encoding the sodium iodide symporter (NIS), as a reporter for viral infection, was mixed with a 1:10 dilution of Omnipaque 300 (GE Healthcare, Milwaukee, WI, USA) contrast agent and injected directly into tumors. Mice were imaged with micro-CT immediately before and after injection to determine the location of contrast agent/virus mixture. Mice were imaged again on day 3 after injection with micro-single-photon emission CT/CT to determine the location of NIS-mediated (99m) TcO(4) transport. RESULTS A 1:10 dilution of Omnipaque had no effect on viral infectivity or cell viability in vitro and was more than adequate for CT imaging of the intratumoral injectate distribution. The volume of tumor coverage with initial CT contrast agent and the 3-day postinfection measurement of virally infected tumor volume were significantly correlated. Additionally, regions of the tumor that did not receive contrast agent from the initial injection were largely devoid of viral infection at early time points. CONCLUSIONS Contrast-enhanced viral delivery enables a rapid and accurate prediction of the initial viral distribution within a solid tumor. This technique should enable real-time monitoring of viral propagation from initially infected tumor regions to adjacent tumor regions.
Collapse
Affiliation(s)
- Alan R Penheiter
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN, USA
| | | | | | | | | |
Collapse
|
382
|
Barău A, Ruiz-Sauri A, Valencia G, Gómez-Mateo MDC, Sabater L, Ferrandez A, Llombart-Bosch A. High microvessel density in pancreatic ductal adenocarcinoma is associated with high grade. Virchows Arch 2013; 462:541-6. [PMID: 23579431 DOI: 10.1007/s00428-013-1409-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2012] [Revised: 03/04/2013] [Accepted: 03/28/2013] [Indexed: 12/29/2022]
Abstract
The objectives of this work are to study angiogenesis in pancreatic ductal adenocarcinoma using computerized morphometric and image analysis and to compare the microvascular density in intratumoral and peritumoral areas and normal pancreatic tissue. Microvascular density was analyzed in 60 cases of pancreatic ductal adenocarcinoma and 30 samples of normal pancreatic tissue using an avidin-biotin immunoperoxidase technique with an anti-CD31 antibody. Microvascular density (MVD) was analyzed through digital microimaging and computerized analysis. The blood vessel density in the tumor was significantly higher than in peritumoral areas and in normal pancreatic tissue. Well differentiated pancreatic ductal adenocarcinomas contained higher MVD than poorly differentiated carcinomas. In pancreatic adenocarcinoma, MVD is higher than in peritumoral tissue or normal pancreatic tissue.
Collapse
Affiliation(s)
- Anca Barău
- Department of Internal Medicine, Emergency County Hospital Craiova, University of Medicine and Pharmacy Craiova, Petru Rareş 2, Craiova, 200349, Romania.
| | | | | | | | | | | | | |
Collapse
|
383
|
Lee GY, Qian WP, Wang L, Wang YA, Staley CA, Satpathy M, Nie S, Mao H, Yang L. Theranostic nanoparticles with controlled release of gemcitabine for targeted therapy and MRI of pancreatic cancer. ACS NANO 2013; 7:2078-89. [PMID: 23402593 PMCID: PMC3609912 DOI: 10.1021/nn3043463] [Citation(s) in RCA: 235] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
The tumor stroma in human cancers significantly limits the delivery of therapeutic agents into cancer cells. To develop an effective therapeutic approach overcoming the physical barrier of the stroma, we engineered urokinase plasminogen activator receptor (uPAR)-targeted magnetic iron oxide nanoparticles (IONPs) carrying chemotherapy drug gemcitabine (Gem) for targeted delivery into uPAR-expressing tumor and stromal cells. The uPAR-targeted nanoparticle construct, ATF-IONP-Gem, was prepared by conjugating IONPs with the amino-terminal fragment (ATF) peptide of the receptor-binding domain of uPA, a natural ligand of uPAR, and Gem via a lysosomally cleavable tetrapeptide linker. These theranostic nanoparticles enable intracellular release of Gem following receptor-mediated endocytosis of ATF-IONP-Gem into tumor cells and also provide contrast enhancement in magnetic resonance imaging (MRI) of tumors. Our results demonstrated the pH- and lysosomal enzyme-dependent release of gemcitabine, preventing the drug from enzymatic degradation. Systemic administrations of ATF-IONP-Gem significantly inhibited the growth of orthotopic human pancreatic cancer xenografts in nude mice. With MRI contrast enhancement by IONPs, we detected the presence of IONPs in the residual tumors following the treatment, suggesting the possibility of monitoring drug delivery and assessing drug-resistant tumors by MRI. The theranostic ATF-IONP-Gem nanoparticle has great potential for the development of targeted therapeutic and imaging approaches that are capable of overcoming the tumor stromal barrier, thus enhancing the therapeutic effect of nanoparticle drugs on pancreatic cancers.
Collapse
Affiliation(s)
- Gee Young Lee
- Department of Surgery, Emory University School of Medicine, Atlanta, GA, 30322, USA
- Department of Biomedical Engineering, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Wei Ping Qian
- Department of Surgery, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Liya Wang
- Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | | | - Charles A. Staley
- Department of Surgery, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Minati Satpathy
- Department of Surgery, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Shuming Nie
- Department of Biomedical Engineering, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Hui Mao
- Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, GA, 30322, USA
- Address Correspondence to: Lily Yang, M.D., Ph.D. Department of Surgery, Emory University School of Medicine, 1365-C Clifton Road, NE, Atlanta, GA, 30322, USA. Tel: + 1 404-778-4269, Fax: + 1 404-778-5530, , Or Hui Mao, Ph.D. Department of Radiology and Imaging Sciences, Emory University School of Medicine, 1364 Clifton Road, NE Atlanta, GA, 30322, USA. Tel: +1 404-712-0357, Fax: +1 404-712-5948,
| | - Lily Yang
- Department of Surgery, Emory University School of Medicine, Atlanta, GA, 30322, USA
- Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, GA, 30322, USA
- Address Correspondence to: Lily Yang, M.D., Ph.D. Department of Surgery, Emory University School of Medicine, 1365-C Clifton Road, NE, Atlanta, GA, 30322, USA. Tel: + 1 404-778-4269, Fax: + 1 404-778-5530, , Or Hui Mao, Ph.D. Department of Radiology and Imaging Sciences, Emory University School of Medicine, 1364 Clifton Road, NE Atlanta, GA, 30322, USA. Tel: +1 404-712-0357, Fax: +1 404-712-5948,
| |
Collapse
|
384
|
Scarlett CJ. Contribution of bone marrow derived cells to the pancreatic tumor microenvironment. Front Physiol 2013; 4:56. [PMID: 23531764 PMCID: PMC3607802 DOI: 10.3389/fphys.2013.00056] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2013] [Accepted: 03/08/2013] [Indexed: 12/18/2022] Open
Abstract
Pancreatic cancer is a complex, aggressive, and heterogeneous malignancy driven by the multifaceted interactions within the tumor microenvironment. While it is known that the tumor microenvironment accommodates many cell types, each playing a key role in tumorigenesis, the major source of these stromal cells is not well-understood. This review examines the contribution of bone marrow-derived cells (BMDC) to pancreatic carcinogenesis, with respect to their role in constituting the tumor microenvironment. In particular, their role in supporting fibrosis, immunosuppression, and neovascularization will be discussed.
Collapse
Affiliation(s)
- Christopher J Scarlett
- Food Bioactives and Pancreatic Cancer Biology Group, School of Environmental and Life Sciences, University of Newcastle Ourimbah, NSW, Australia ; Cancer Research Program, Garvan Institute of Medical Research Darlinghurst, Sydney, NSW, Australia
| |
Collapse
|
385
|
Mace TA, Ameen Z, Collins A, Wojcik S, Mair M, Young GS, Fuchs JR, Eubank TD, Frankel WL, Bekaii-Saab T, Bloomston M, Lesinski GB. Pancreatic cancer-associated stellate cells promote differentiation of myeloid-derived suppressor cells in a STAT3-dependent manner. Cancer Res 2013; 73:3007-18. [PMID: 23514705 DOI: 10.1158/0008-5472.can-12-4601] [Citation(s) in RCA: 369] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Pancreatic stellate cells (PSC) are a subset of pancreatic cancer-associated fibroblasts. These cells provide prosurvival signals to tumors; however, little is known regarding their interactions with immune cells within the tumor microenvironment. We hypothesized that factors produced by human PSC could enhance myeloid-derived suppressor cell (MDSC) differentiation and function, which promotes an immunosuppressive microenvironment. Primary PSC cell lines (n = 7) were generated from human specimens and phenotypically confirmed via expression of vimentin, α-smooth muscle actin (α-SMA), and glial fibrillary acidic protein (GFAP). Luminex analysis indicated that PSC but not human fetal primary pancreatic fibroblast cells (HPF; negative controls) produced MDSC-promoting cytokines [interleukin (IL-6), VEGF, macrophage colony-stimulating factor (M-CSF) ] and chemokines (SDF-1, MCP-1). Culture of peripheral blood mononuclear cells [peripheral blood mononuclear cell (PBMC), n = 3 donors] with PSC supernatants or IL-6/granulocyte macrophage colony-stimulating factor (GM-CSF; positive control) for 7 days promoted PBMC differentiation into an MDSC (CD11b+CD33+) phenotype and a subpopulation of polymorphonuclear CD11b+CD33+CD15+ cells. The resulting CD11b+CD33+ cells functionally suppressed autologous T-lymphocyte proliferation. In contrast, supernatants from HPF did not induce an MDSC phenotype in PBMCs. Culture of normal PBMCs with PSC supernatants led to STAT3 but not STAT1 or STAT5 phosphorylation. IL-6 was an important mediator as its neutralization inhibited PSC supernatant-mediated STAT3 phosphorylation and MDSC differentiation. Finally, the FLLL32 STAT3 inhibitor abrogated PSC supernatant-mediated MDSC differentiation, PSC viability, and reduced autocrine IL-6 production indicating these processes are STAT3 dependent. These results identify a novel role for PSC in driving immune escape in pancreatic cancer and extend the evidence that STAT3 acts as a driver of stromal immunosuppression to enhance its interest as a therapeutic target.
Collapse
Affiliation(s)
- Thomas A Mace
- Division of Medical Oncology, Department of Internal Medicine, The Ohio State University, Columbus, OH 43210, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
386
|
Tang D, Wang D, Yuan Z, Xue X, Zhang Y, An Y, Chen J, Tu M, Lu Z, Wei J, Jiang K, Miao Y. Persistent activation of pancreatic stellate cells creates a microenvironment favorable for the malignant behavior of pancreatic ductal adenocarcinoma. Int J Cancer 2013; 132:993-1003. [PMID: 22777597 DOI: 10.1002/ijc.27715] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2012] [Revised: 06/20/2012] [Accepted: 06/28/2012] [Indexed: 02/06/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the most common malignant tumors with poor prognosis due to extremely high malignancy, low rate of eligibility for surgical resection and chemoradiation resistance. Increasing evidence indicate that the interaction between activated pancreatic stellate cells (PSCs) and PDAC cells plays an important role in the development of PDAC. By producing high levels of cytokines, chemotactic factors, growth factors and excessive extracellular matrix (ECM), PSCs create desmoplasia and a hypoxic microenvironment that promote the initiation, development, evasion of immune surveillance, invasion, metastasis and resistance to chemoradiation of PDAC. Therefore, targeting the interaction between PSCs and PDAC cells may represent a novel therapeutic approach to advanced PDAC, especially therapies that target PSCs of the pancreatic tumor microenvironment.
Collapse
Affiliation(s)
- Dong Tang
- Department of Gastrointestinal Surgery, Subei People's Hospital of Jiangsu Province (Clinical Medical College of Yangzhou University), Yangzhou, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
387
|
Paracrine Activation of Chemokine Receptor CCR9 Enhances The Invasiveness of Pancreatic Cancer Cells. CANCER MICROENVIRONMENT 2013; 6:241-5. [PMID: 23371851 DOI: 10.1007/s12307-013-0130-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2012] [Accepted: 01/21/2013] [Indexed: 12/11/2022]
Abstract
Chemokine receptors mediate cancer progression and metastasis. We have previously examined chemokine receptor CCR9 expression in pancreatic cancer. Here, our objective was to evaluate pancreatic stellate cells (PSCs) as a source of CCL25, the CCR9 ligand, and as an activator of CCL25-CCR9 signaling in pancreatic cancer cells. CCL25 and CCR9 expression levels in human pancreatic cancer tissues and normal human pancreas were assessed by immunohistochemsitry. In vitro secretion of CCL25 in PSCs and PANC-1 cells was verified by enzyme-linked immunosorbent assay. Pancreatic cancer cell invasion was measured using a modified Boyden chamber assay with CCL25, PSC secreted proteins, and PANC-1 secreted proteins as the chemoattractant. There was immunostaining for CCR9 expression in human pancreatic tumor tissues, but not in normal pancreatic tissue. CCL25 expression was absent in the normal pancreatic tissue sample, but was observed in cancer cells and in the stromal cells surrounding the tumor. In vitro, both PANC-1 cells and PSCs secreted CCL25. In an invasion assay, exposure to CCL25, PSC- and PANC-1-conditioned media significantly increased the invasiveness of PANC-1 cells. Inclusion of a CCR9-neutralizing antibody in the invasion assay blocked the increase in invading cells elicited by the chemoattractants. Our studies show that pancreatic cancer invasiveness is enhanced by autocrine and paracrine stimulation of CCR9. PSCs in the tumor microenvironment appear to contribute to paracrine activation of CCR9. Investigations into CCR9 as a potential therapeutic target in pancreatic cancer must consider cancer cell autocrine signaling and also paracrine signaling from interactions in the tumor microenvironment.
Collapse
|
388
|
Iovanna JL, Marks DL, Fernandez-Zapico ME, Urrutia R. Mechanistic insights into self-reinforcing processes driving abnormal histogenesis during the development of pancreatic cancer. THE AMERICAN JOURNAL OF PATHOLOGY 2013; 182:1078-86. [PMID: 23375449 DOI: 10.1016/j.ajpath.2012.12.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 11/19/2012] [Revised: 12/16/2012] [Accepted: 12/24/2012] [Indexed: 12/28/2022]
Abstract
Pancreatic ductal adenocarcinoma, one of the most feared lethal and painful diseases, is increasing in incidence. The poor prognosis of pancreatic ductal adenocarcinoma-affected patients primarily is owing to our inability to develop effective therapies. Mechanistic studies of genetic, epigenetic, and cell-to-cell signaling events are providing clues to molecular pathways that can be targeted in an attempt to cure this disease. The current review article seeks to draw inferences from available mechanistic knowledge to build a theoretical framework that can facilitate these approaches. This conceptual model considers pancreatic cancer as a tissue disease rather than an isolated epithelial cell problem, which develops and progresses in large part as a result of three positive feedback loops: i) genetic and epigenetic changes in epithelial cells modulate their interaction with mesenchymal cells to generate a dynamically changing process of abnormal histogenesis, which drives more changes; ii) the faulty tissue architecture of neoplastic lesions results in unsynchronized secretion of signaling molecules by cells, which generates an environment that is poor in oxygen and nutrients; and iii) the increased metabolic needs of rapidly dividing cells serve as an evolutionary pressure for them to adapt to this adverse microenvironment, leading to the emergence of resistant clones. We discuss how these concepts can guide mechanistic studies, as well as aid in the design of novel experimental therapeutics.
Collapse
Affiliation(s)
- Juan L Iovanna
- Cancer Research Center of Marseille, Inserm U1068, CNRS, UMR7258, Institute Paoli-Calmettes, Aix-Marseille University, Marseille, France
| | | | | | | |
Collapse
|
389
|
Matsumoto S, Mori H, Kiyonaga M, Sai M, Yamada Y, Hijiya N, Shibata K, Ohta M, Kitano S, Takaki H, Fukuzawa K, Yonemasu H. "Peripancreatic strands appearance" in pancreatic body and tail carcinoma: evaluation by multi-detector CT with pathological correlation. ACTA ACUST UNITED AC 2013; 37:602-8. [PMID: 21912989 DOI: 10.1007/s00261-011-9803-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
OBJECTIVES In pancreatic body and tail carcinoma, "peripancreatic strands appearance" is frequently seen on multidetector CT (MDCT). The purpose of this study was to clarify the pathological and clinical implications of peripancreatic strands appearance. METHODS We retrospectively evaluated MDCT images in 17 patients with pancreatic body and tail carcinoma who underwent surgical resection. Peripancreatic strands appearance was defined as the strands structure deriving from the primary lesion and associated with increased CT attenuation of surrounding adipose tissues. All CT examinations were performed by contrast-enhanced MDCT with a multiplanar reformation technique. RESULTS Peripancreatic strands appearance was detected on MDCT in 13 (76%) patients. The maximum width of the peripancreatic strands seen on MDCT was 1.55 ± 0.36 mm (range, 1.0-2.5 mm). This CT finding was well correlated with extrapancreatic carcinoma invasion with marked fibrotic thickening of adipose tissue septa, including microvessels. This pathological finding was confirmed in all 13 patients with positive CT finding whereas it was not confirmed in the 4 patients with negative CT finding. CONCLUSION Peripancreatic strands appearance on MDCT in pancreatic body and tail carcinoma reflects extrapancreatic carcinoma invasion with marked fibrotic thickening of adipose tissue septa. This CT finding would indicate the property of carcinoma aggressiveness.
Collapse
Affiliation(s)
- Shunro Matsumoto
- Department of Radiology, Faculty of Medicine, Oita University, Hasama-machi, Yufu, Japan.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
390
|
Fujiwara K, Ohuchida K, Mizumoto K, Shindo K, Eguchi D, Kozono S, Ikenaga N, Ohtsuka T, Takahata S, Aishima S, Tanaka M. CD271⁺ subpopulation of pancreatic stellate cells correlates with prognosis of pancreatic cancer and is regulated by interaction with cancer cells. PLoS One 2012; 7:e52682. [PMID: 23300742 PMCID: PMC3531333 DOI: 10.1371/journal.pone.0052682] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2012] [Accepted: 11/19/2012] [Indexed: 12/21/2022] Open
Abstract
Pancreatic stellate cells (PSCs) play a crucial role in the aggressive behavior of pancreatic cancer. Although heterogeneity of PSCs has been identified, the functional differences remain unclear. We characterized CD271+ PSCs in human pancreatic cancer. Immunohistochemistry for CD271 was performed for 31 normal pancreatic tissues and 105 pancreatic ductal adenocarcinomas (PDACs). We performed flow cytometry and quantitative RT-PCR, and assessed CD271 expression in PSCs isolated from pancreatic tissues and the changes in CD271 expression in PSCs cocultured with cancer cells. We also investigated the pattern of CD271 expression in a SCID mouse xenograft model. In the immunohistochemical analyses, the CD271-high staining rates in pancreatic stroma in normal pancreatic tissues and PDACs were 2/31 (6.5%) and 29/105 (27.6%), respectively (p = 0.0069). In PDACs, CD271+ stromal cells were frequently observed on the edge rather than the center of the tumors. Stromal CD271 high expression was associated with a good prognosis (p = 0.0040). Flow cytometric analyses demonstrated CD271-positive rates in PSCs were 0–2.1%. Quantitative RT-PCR analyses revealed that CD271 mRNA expression was increased in PSCs after coculture with pancreatic cancer cells. However, the level of CD271 mRNA expression subsequently decreased after the transient increase. Furthermore, CD271 mRNA expression was decreased in PSCs migrating toward pancreatic cancer cells through Matrigel. In the xenograft model, CD271+ PSCs were present at tumor margins/periphery and were absent in the tumor core. In conclusion, CD271 was expressed in PSCs around pancreatic tumors, but not in the center of the tumors, and expression decreased after long coculture with pancreatic cancer cells or after movement toward pancreatic cancer cells. These findings suggest that CD271+ PSCs appear at the early stage of pancreatic carcinogenesis and that CD271 expression is significantly correlated with a better prognosis in patients with PDAC.
Collapse
MESH Headings
- Adult
- Aged
- Aged, 80 and over
- Animals
- Carcinoma, Pancreatic Ductal/metabolism
- Carcinoma, Pancreatic Ductal/mortality
- Carcinoma, Pancreatic Ductal/pathology
- Cell Communication
- Cell Movement
- Coculture Techniques
- Female
- Gene Expression
- Gene Expression Regulation, Neoplastic
- Humans
- Male
- Mice
- Mice, SCID
- Middle Aged
- Neoplasm Transplantation
- Nerve Tissue Proteins/genetics
- Nerve Tissue Proteins/metabolism
- Pancreatic Neoplasms/metabolism
- Pancreatic Neoplasms/mortality
- Pancreatic Neoplasms/pathology
- Pancreatic Stellate Cells/metabolism
- Prognosis
- Proportional Hazards Models
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Receptors, Nerve Growth Factor/genetics
- Receptors, Nerve Growth Factor/metabolism
- Stromal Cells/metabolism
- Tumor Cells, Cultured
- Tumor Microenvironment
Collapse
Affiliation(s)
- Kenji Fujiwara
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Kenoki Ohuchida
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
- Advanced Medical Initiatives, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
- * E-mail:
| | - Kazuhiro Mizumoto
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
- Kyushu University Hospital Cancer Center, Fukuoka, Japan
| | - Koji Shindo
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
- Department of Anatomic Pathology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Daiki Eguchi
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Shingo Kozono
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Naoki Ikenaga
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Takao Ohtsuka
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Shunichi Takahata
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Shinichi Aishima
- Department of Anatomic Pathology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Masao Tanaka
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
391
|
Tod J, Jenei V, Thomas G, Fine D. Tumor-stromal interactions in pancreatic cancer. Pancreatology 2012; 13:1-7. [PMID: 23395563 DOI: 10.1016/j.pan.2012.11.311] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2012] [Revised: 11/21/2012] [Accepted: 11/25/2012] [Indexed: 12/11/2022]
Abstract
Pancreatic adenocarcinoma has one of the worse prognoses of any cancer with a 5-year survival of only 3%. Pancreatic cancer displays one of the most prominent stromal reactions of all tumors and it is evident that this is a key contributing factor to disease outcome. The tumor microenvironment of pancreatic cancer harbors a wide spectrum of cell types and a complex network of mechanisms which all serve to promote tumor progression. It is clear that the symbiotic relationship between pancreatic cancer cells and stellate cells is the chief factor creating this unique tumor milieu. Pancreatic stellate cells play critical roles in evasion of cancer cell apoptosis, invasion and metastases, angiogenesis, and promotion of an immunosuppressive environment, all key hallmarks of malignancy. Existing treatments for pancreatic cancer focus on targeting the cancer cells rather than the whole tumor, of which cancer cells represent a small proportion. It is now increasingly evident that research targeted towards the interactions between these cell types, ideally at an early stage of tumor development, is imperative in order to propel the way forward to more effective treatments.
Collapse
Affiliation(s)
- Jo Tod
- Cancer Sciences Unit, Somers Building, University of Southampton School of Medicine, Tremona Rd., Southampton SO16 6YD, UK.
| | | | | | | |
Collapse
|
392
|
Yoshikawa K, Mitsunaga S, Kinoshita T, Konishi M, Takahashi S, Gotohda N, Kato Y, Aizawa M, Ochiai A. Impact of tumor-associated macrophages on invasive ductal carcinoma of the pancreas head. Cancer Sci 2012; 103:2012-20. [PMID: 22931216 PMCID: PMC7659389 DOI: 10.1111/j.1349-7006.2012.02411.x] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2012] [Revised: 07/04/2012] [Accepted: 07/18/2012] [Indexed: 12/12/2022] Open
Abstract
Tumor-associated macrophages (TAMs) are candidate histological factors in invasive ductal carcinoma (IDC) of the pancreas. Tumor-associated macrophages can be affected by cancer-related inflammation and pancreatitis and interact with important invasive behavior in a recurrent manner in pancreatic IDC. These features may help elucidate the aggressiveness of pancreatic IDC. The aim of this study was to characterize TAMs in pancreatic IDC in comparison with chronic pancreatitis (CP) and to reveal TAM-related factors and the clinical impact of TAMs. CD68 (a pan-macrophage marker) and CD204 (an M2 macrophage marker) immunohistochemistry was carried out in pancreas head specimens from 107 IDC cases and 11 CP cases. Immunopositive cell areas were calculated at the periphery and center of the tumor. The distributions of macrophages in IDC and CP and the relationship between TAMs and histological tumor factors, survival, and recurrence were evaluated. Macrophages were more frequently observed in the lesion periphery than the center in IDC and CP. The density of macrophages was elevated in IDC compared to CP. Dense M2 macrophages at the tumor periphery were frequently seen in large tumors and showed an independent impact on overall survival and disease-free time. Early recurrence in the liver or the local manipulated area was associated with high accumulation of peripheral M2 macrophages. More M2 macrophages were seen in IDC than in CP in both the periphery and the center. High numbers of peripheral M2 macrophages were associated with large tumor size, early recurrence in the liver, local recurrence, and shortened survival time in patients with pancreatic IDC.
Collapse
Affiliation(s)
- Kiyoshi Yoshikawa
- Pathology Division, Research Center for Innovative Oncology, Kashiwa, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
393
|
Yadav V, Sultana S, Yadav J, Saini N. Gatifloxacin induces S and G2-phase cell cycle arrest in pancreatic cancer cells via p21/p27/p53. PLoS One 2012; 7:e47796. [PMID: 23133524 PMCID: PMC3485023 DOI: 10.1371/journal.pone.0047796] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2012] [Accepted: 09/17/2012] [Indexed: 12/22/2022] Open
Abstract
Pancreatic cancer, despite being the most dreadful among gastrointestinal cancers, is poorly diagnosed, and further, the situation has been aggravated owing to acquired drug resistance against the single known drug therapy. While previous studies have highlighted the growth inhibitory effects of older generation fluoroquinolones, the current study aims to evaluate the growth inhibitory effects of newer generation fluoroquinolone, Gatifloxacin, on pancreatic cancer cell lines MIA PaCa-2 and Panc-1 as well as to elucidate the underlying molecular mechanisms. Herein, we report that Gatifloxacin suppresses the proliferation of MIA PaCa-2 and Panc-1 cells by causing S and G2-phase cell cycle arrest without induction of apoptosis. Blockade in S-phase of the cell cycle was associated with increased TGF-β1 expression and translocation of Smad3-4 complex to the nucleus with subsequent activation of p21 in MIA PaCa-2 cells, whereas TGF-β signalling attenuated Panc-1 cells showed S-phase arrest by direct activation of p27. However, Gatifloxacin mediated G2–phase cell cycle arrest was found to be p53 dependent in both the cell lines. Our study is of interest because fluoroquinolones have the ability to penetrate pancreatic tissue which can be very effective in combating pancreatic cancers that are usually associated with loss or downregulation of CDK inhibitors p21/p27 as well as mutational inactivation of p53. Additionally, Gatifloxacin was also found to synergize the effect of Gemcitabine, the only known drug against pancreatic cancer, as well as the broad spectrum anticancer drug cisplatin. Taken together our results suggest that Gatifloxacin possesses anticancer activities against pancreatic cancer and is a promising candidate to be repositioned from broad spectrum antibiotics to anticancer agent.
Collapse
Affiliation(s)
- Vikas Yadav
- Institute of Genomics and Integrative Biology (CSIR), Mall Road, Delhi, India
- Department of Medical Elementology and Toxicology, Jamia Hamdard (Hamdard University), Hamdard Nagar, Delhi, India
| | - Sarwat Sultana
- Department of Medical Elementology and Toxicology, Jamia Hamdard (Hamdard University), Hamdard Nagar, Delhi, India
| | - Jyoti Yadav
- Institute of Genomics and Integrative Biology (CSIR), Mall Road, Delhi, India
- * E-mail: (JY); (NS)
| | - Neeru Saini
- Institute of Genomics and Integrative Biology (CSIR), Mall Road, Delhi, India
- * E-mail: (JY); (NS)
| |
Collapse
|
394
|
Schwer CI, Stoll P, Rospert S, Fitzke E, Schallner N, Bürkle H, Schmidt R, Humar M. Carbon monoxide releasing molecule-2 CORM-2 represses global protein synthesis by inhibition of eukaryotic elongation factor eEF2. Int J Biochem Cell Biol 2012; 45:201-12. [PMID: 23041477 DOI: 10.1016/j.biocel.2012.09.020] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2012] [Revised: 08/16/2012] [Accepted: 09/25/2012] [Indexed: 01/04/2023]
Abstract
Carbon monoxide (CO) is an endogenous gaseous transmitter that exerts antiproliferative effects in many cell types, but effects of CO on the translational machinery are not described. We examined the effects of the carbon monoxide releasing molecule-2 (CORM-2) on critical steps in translational signaling and global protein synthesis in pancreatic stellate cells (PSCs), the most prominent collagen-producing cells in the pancreas, whose activation is associated with pancreatic fibrosis. PSCs were isolated from rat pancreatic tissue and incubated with CORM-2. CORM-2 prevented the decrease in the phosphorylation of eukaryotic elongation factor 2 (eEF2) caused by serum. By contrast, the activation dependent phosphorylation of initiation factor 4E-binding protein 1 (4E-BP1) was inhibited by CORM-2 treatment. The phosphorylation of eukaryotic initiation factor 2α (eIF2α) and eukaryotic initiation factor 4E (eIF4E) were not affected by CORM-2 treatment. In consequence, CORM-2 mediated eEF2 phosphorylation and inactivation of 4E-BP1 suppressed global protein synthesis. These observations were associated with inhibition of phosphatidylinositol 3-kinase-Akt-mammalian target of rapamycin (PI3K-Akt-mTOR) signaling and increased intracellular calcium and cAMP levels. The CORM-2 mediated inhibition of protein synthesis resulted in downregulation of cyclin D1 and cyclin E expression, a subsequent decline in the phosphorylation of the retinoblastoma tumor suppressor protein (Rb) and cell growth arrest at the G(0)/G(1) phase checkpoint of the cell cycle. Our results suggest the therapeutic application of CO releasing molecules such as CORM-2 for the treatment of fibrosis, inflammation, cancer, or other pathologic states associated with excessive protein synthesis or hyperproliferation. However, prolonged exogenous application of CO might also have negative effects on cellular protein homeostasis.
Collapse
Affiliation(s)
- Christian Ingo Schwer
- Department of Anesthesiology and Critical Care Medicine, University Medical Center Freiburg, Hugstetterstrasse 55, D-79106 Freiburg, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
395
|
Apte MV, Pirola RC, Wilson JS. Pancreatic stellate cells: a starring role in normal and diseased pancreas. Front Physiol 2012; 3:344. [PMID: 22973234 PMCID: PMC3428781 DOI: 10.3389/fphys.2012.00344] [Citation(s) in RCA: 243] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2012] [Accepted: 08/09/2012] [Indexed: 12/12/2022] Open
Abstract
While the morphology and function of cells of the exocrine and endocrine pancreas have been studied over several centuries, one important cell type in the gland, the pancreatic stellate cell (PSC), had remained undiscovered until as recently as 20 years ago. Even after its first description in 1982, it was to be another 16 years before its biology could begin to be studied, because it was only in 1998 that methods were developed to isolate and culture PSCs from rodent and human pancreas. PSCs are now known to play a critical role in pancreatic fibrosis, a consistent histological feature of two major diseases of the pancreas-chronic pancreatitis and pancreatic cancer. In health, PSCs maintain normal tissue architecture via regulation of the synthesis and degradation of extracellular matrix (ECM) proteins. Recent studies have also implied other functions for PSCs as progenitor cells, immune cells or intermediaries in exocrine pancreatic secretion in humans. During pancreatic injury, PSCs transform from their quiescent phase into an activated, myofibroblast-like phenotype that secretes excessive amounts of ECM proteins leading to the fibrosis of chronic pancreatitis and pancreatic cancer. An ever increasing number of factors that stimulate and/or inhibit PSC activation via paracrine and autocrine pathways are being identified and characterized. It is also now established that PSCs interact closely with pancreatic cancer cells to facilitate cancer progression. Based on these findings, several therapeutic strategies have been examined in experimental models of chronic pancreatitis as well as pancreatic cancer, in a bid to inhibit/retard PSC activation and thereby alleviate chronic pancreatitis or reduce tumor growth in pancreatic cancer. The challenge that remains is to translate these pre-clinical developments into clinically applicable treatments for patients with chronic pancreatitis and pancreatic cancer.
Collapse
Affiliation(s)
- Minoti V. Apte
- Pancreatic Research Group, Faculty of Medicine, South Western Sydney Clinical School, University of New South WalesSydney, NSW, Australia
| | | | | |
Collapse
|
396
|
Liu H, Ma Q, Xu Q, Lei J, Li X, Wang Z, Wu E. Therapeutic potential of perineural invasion, hypoxia and desmoplasia in pancreatic cancer. Curr Pharm Des 2012; 18:2395-403. [PMID: 22372500 DOI: 10.2174/13816128112092395] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2011] [Accepted: 01/18/2012] [Indexed: 02/06/2023]
Abstract
Pancreatic cancer is one of the most fatal human malignancies. Though a relatively rare malignancy, it remains one of the deadliest tumors, with an extremely high mortality rate. The prognosis of patients with pancreatic cancer remains poor; only patients with small tumors and complete resection have a chance of a complete cure. Pancreatic cancer responds poorly to conventional therapies, including chemotherapy and irradiation. Tumor-specific targeted therapy is a relatively recent addition to the arsenal of anti-cancer therapies. It is important to find novel targets to distinguish tumor cells from their normal counterparts in therapeutic approaches. In the past few decades, studies have revealed the molecular mechanisms of pancreatic tumorigenesis, growth, invasion and metastasis. The proteins that participate in the pathophysiological processes of pancreatic cancer might be potential targets for therapy. This review describes the main players in perineural invasion, hypoxia and desmoplasia and the molecular mechanisms of these pathophysiological processes.
Collapse
Affiliation(s)
- Han Liu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Medical College, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | | | | | | | | | | | | |
Collapse
|
397
|
Li X, Ma Q, Xu Q, Duan W, Lei J, Wu E. Targeting the cancer-stroma interaction: a potential approach for pancreatic cancer treatment. Curr Pharm Des 2012; 18:2404-15. [PMID: 22372501 DOI: 10.2174/13816128112092404] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2011] [Accepted: 01/18/2012] [Indexed: 02/07/2023]
Abstract
Recent studies have demonstrated that the interaction between the cancer and the stroma, play a key role in the development of pancreatic cancer. The desmoplasia, which consists of fibroblasts, pancreatic stellate cells, lymphatic and vascular endothelial cells, immune cells, pathologic increased nerves, and the extracellular matrix (ECM), creates a complex tumor microenvironment that promotes pancreatic cancer development, invasion, metastasis, and resistance to chemotherapy. Thus, the potential approach for targeting the components of this desmoplastic reaction or the pancreatic tumor microenvironment might represent a novel therapeutic approach to advanced pancreatic carcinoma. Novel therapies that target on the pancreatic tumor microenvironment should become one of the more effective treatments for pancreatic cancer.
Collapse
Affiliation(s)
- Xuqi Li
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Medical College, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | | | | | | | | | | |
Collapse
|
398
|
Spector I, Zilberstein Y, Lavy A, Nagler A, Genin O, Pines M. Involvement of host stroma cells and tissue fibrosis in pancreatic tumor development in transgenic mice. PLoS One 2012; 7:e41833. [PMID: 22848627 PMCID: PMC3404977 DOI: 10.1371/journal.pone.0041833] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2012] [Accepted: 06/26/2012] [Indexed: 12/11/2022] Open
Abstract
Introduction Stroma cells and extracellular matrix (ECM) components provide the pivotal microenvironment for tumor development. The study aimed to evaluate the importance of the pancreatic stroma for tumor development. Methods Pancreatic tumor cells were implanted subcutaneously into green fluorescent protein transgenic mice, and stroma cells invading the tumors were identified through immunohistochemistry. Inhibition of tumor invasion by stroma cells was achieved with halofuginone, an inhibitor of TGFβ/Smad3 signaling, alone or in combination with chemotherapy. The origin of tumor ECM was evaluated with species-specific collagen I antibodies and in situ hybridization of collagen α1(I) gene. Pancreatic fibrosis was induced by cerulean injection and tumors by spleen injection of pancreatic tumor cells. Results Inhibition of stroma cell infiltration and reduction of tumor ECM levels by halofuginone inhibited development of tumors derived from mouse and human pancreatic cancer cells. Halofuginone reduced the number only of stroma myofibroblasts expressing both contractile and collagen biosynthesis markers. Both stroma myofibroblasts and tumor cells generated ECM that contributes to tumor growth. Combination of treatments that inhibit stroma cell infiltration, cause apoptosis of myofibroblasts and inhibit Smad3 phosphorylation, with chemotherapy that increases tumor-cell apoptosis without affecting Smad3 phosphorylation was more efficacious than either treatment alone. More tumors developed in fibrotic than in normal pancreas, and prevention of tissue fibrosis greatly reduced tumor development. Conclusions The utmost importance of tissue fibrosis and of stroma cells for tumor development presents potential new therapy targets, suggesting combination therapy against stroma and neoplastic cells as a treatment of choice.
Collapse
Affiliation(s)
- Itai Spector
- Institute of Animal Sciences, The Volcani Center, Bet Dagan, Israel
- Department of Animal Sciences, Hebrew University of Jerusalem, Rehovot, Israel
| | - Yael Zilberstein
- The Sackler Cellular and Molecular Imaging Center (SCMIC), Tel Aviv University, Tel Aviv, Israel
| | - Adi Lavy
- Institute of Animal Sciences, The Volcani Center, Bet Dagan, Israel
- Department of Animal Sciences, Hebrew University of Jerusalem, Rehovot, Israel
| | - Arnon Nagler
- Department of Hematology and Bone Marrow Transplantation, Chaim Sheba Medical Center, Tel Hashomer, Israel
| | - Olga Genin
- Institute of Animal Sciences, The Volcani Center, Bet Dagan, Israel
| | - Mark Pines
- Institute of Animal Sciences, The Volcani Center, Bet Dagan, Israel
- * E-mail:
| |
Collapse
|
399
|
Eguchi D, Ikenaga N, Ohuchida K, Kozono S, Cui L, Fujiwara K, Fujino M, Ohtsuka T, Mizumoto K, Tanaka M. Hypoxia enhances the interaction between pancreatic stellate cells and cancer cells via increased secretion of connective tissue growth factor. J Surg Res 2012; 181:225-33. [PMID: 22795353 DOI: 10.1016/j.jss.2012.06.051] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2012] [Revised: 06/19/2012] [Accepted: 06/21/2012] [Indexed: 01/27/2023]
Abstract
BACKGROUND Pancreatic cancer (PC), a hypovascular tumor, thrives under hypoxic conditions. Pancreatic stellate cells (PSCs) promote PC progression by secreting soluble factors, but their functions in hypoxia are poorly understood. This study aimed to clarify the effects of hypoxic conditions on the interaction between PC cells and PSCs. METHODS We isolated human PSCs from fresh pancreatic ductal adenocarcinomas and analyzed functional differences in PSCs between normoxia (21% O2) and hypoxia (1% O2), including expression of various factors related to tumor-stromal interactions. We particularly analyzed effects on PC invasiveness of an overexpressed molecule-connective tissue growth factor (CTGF)-in PSCs under hypoxic conditions, using RNA interference techniques. RESULTS Conditioned media from hypoxic PSCs enhanced PC cell invasiveness more intensely than that from normoxic PSCs (P < 0.01). When co-cultured with PSCs, PC cell invasion was more enhanced under hypoxia than under normoxia (P < 0.05). Among various soluble factors, which were related to invasiveness, CTGF was one of the overexpressed molecules in hypoxic PSCs. A higher level of CTGF expression was also found in supernatant of hypoxic PSCs than in supernatant of normoxic PSCs. PC cell invasiveness was reduced by CTGF knockdown in hypoxic PSCs co-cultured with PC cells (P < 0.05). CONCLUSION Hypoxia induces PSCs' secretion of CTGF, leading to enhancement of PC invasiveness. CTGF derived from hypoxia-stimulated PSCs may be a new therapeutic target for pancreatic cancer.
Collapse
Affiliation(s)
- Daiki Eguchi
- Departments of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
400
|
Ikenaga N, Ohuchida K, Mizumoto K, Akagawa S, Fujiwara K, Eguchi D, Kozono S, Ohtsuka T, Takahata S, Tanaka M. Pancreatic cancer cells enhance the ability of collagen internalization during epithelial-mesenchymal transition. PLoS One 2012; 7:e40434. [PMID: 22792318 PMCID: PMC3390374 DOI: 10.1371/journal.pone.0040434] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2012] [Accepted: 06/06/2012] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Extracellular matrix (ECM) remodeling is predominantly mediated by fibroblasts using intracellular and extracellular pathways. Although it is well known that extracellular degradation of the ECM by proteases derived from cancer cells facilitates cellular invasion, the intracellular degradation of ECM components by cancer cells has not been clarified. The aim of this study was to characterize collagen internalization, which is the initial step of the intracellular degradation pathway in pancreatic cancer cells, in light of epithelial-mesenchymal transition (EMT). METHODOLOGY/PRINCIPAL FINDINGS We analyzed the function of collagen internalization in two pancreatic cancer cell lines, SUIT-2 and KP-2, and pancreatic stellate cells (PSCs) using Oregon Green 488-gelatin. PSCs had a strong ability for collagen uptake, and the pancreatic cancer cells also internalized collagen although less efficiently. The collagen internalization abilities of SUIT-2 and KP-2 cells were promoted by EMT induced by human recombinant transforming growth factor β1 (P<0.05). Expression of Endo180, a collagen uptake receptor, was high in mesenchymal pancreatic cancer cell lines, as determined by EMT marker expression (P<0.01). Quantitative RT-PCR and western blot analyses showed that Endo180 expression was also increased by EMT induction in SUIT-2 and KP-2 cells. Endo180 knockdown by RNA interference attenuated the collagen uptake (P<0.01) and invasive abilities (P<0.05) of SUIT-2 and KP-2 cells. CONCLUSIONS/SIGNIFICANCE Pancreatic cancer cells are capable of collagen internalization, which is enhanced by EMT. This ECM clearance system may be a novel mechanism for cellular invasion and a potential therapeutic target in pancreatic cancer.
Collapse
Affiliation(s)
- Naoki Ikenaga
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
- Research Fellow of the Japan Society for the Promotion of Science, Tokyo, Japan
| | - Kenoki Ohuchida
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
- Department of Advanced Medical Initiatives, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
- * E-mail: (KO); (KM)
| | - Kazuhiro Mizumoto
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
- Kyushu University Hospital Cancer Center, Fukuoka, Japan
- * E-mail: (KO); (KM)
| | - Shin Akagawa
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Kenji Fujiwara
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Daiki Eguchi
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Shingo Kozono
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Takao Ohtsuka
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Shunichi Takahata
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Masao Tanaka
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|