351
|
Multiple-genome comparison reveals new loci for Mycobacterium species identification. J Clin Microbiol 2010; 49:144-53. [PMID: 21048007 DOI: 10.1128/jcm.00957-10] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
To identify loci useful for species identification and to enhance our understanding of the population structure and genetic variability of the genus Mycobacterium, we conducted a multiple-genome comparison of a total of 27 sequenced genomes in the suborder of Corynebacterineae (18 from the Mycobacterium genus, 7 from the Corynebacterium genus, 1 each from the Nocardia and Rhodococcus genera). Our study revealed 26 informative loci for species identification in Mycobacterium. The sequences from these loci were used in a phylogenetic analysis to infer the evolutionary relations of the 18 mycobacterial genomes. Among the loci that we identified, rpoBC, dnaK, and hsp65 were amplified from 29 ATCC reference strains and 17 clinical isolates and sequenced. The phylogenetic trees generated from these loci show similar topologies. The newly identified dnaK locus is more discriminatory and more robust than the widely used hsp65 locus. The length-variable rpoBC locus is the first intergenic locus between two protein-encoding genes being used for mycobacterial species identification. A multilocus sequence analysis system including the rpoBC, dnaK, and hsp65 loci is a robust tool for accurate identification of Mycobacterium species.
Collapse
|
352
|
Kateete DP, Okee M, Katabazi FA, Okeng A, Asiimwe J, Boom HW, Eisenach KD, Joloba ML. Rhomboid homologs in mycobacteria: insights from phylogeny and genomic analysis. BMC Microbiol 2010; 10:272. [PMID: 21029479 PMCID: PMC2989971 DOI: 10.1186/1471-2180-10-272] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2010] [Accepted: 10/29/2010] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Rhomboids are ubiquitous proteins with diverse functions in all life kingdoms, and are emerging as important factors in the biology of some pathogenic apicomplexa and Providencia stuartii. Although prokaryotic genomes contain one rhomboid, actinobacteria can have two or more copies whose sequences have not been analyzed for the presence putative rhomboid catalytic signatures. We report detailed phylogenetic and genomic analyses devoted to prokaryotic rhomboids of an important genus, Mycobacterium. RESULTS Many mycobacterial genomes contained two phylogenetically distinct active rhomboids orthologous to Rv0110 (rhomboid protease 1) and Rv1337 (rhomboid protease 2) of Mycobacterium tuberculosis H37Rv, which were acquired independently. There was a genome-wide conservation and organization of the orthologs of Rv1337 arranged in proximity with glutamate racemase (mur1), while the orthologs of Rv0110 appeared evolutionary unstable and were lost in Mycobacterium leprae and the Mycobacterium avium complex. The orthologs of Rv0110 clustered with eukaryotic rhomboids and contained eukaryotic motifs, suggesting a possible common lineage. A novel nonsense mutation at the Trp73 codon split the rhomboid of Mycobacterium avium subsp. Paratuberculosis into two hypothetical proteins (MAP2425c and MAP2426c) that are identical to MAV_1554 of Mycobacterium avium. Mycobacterial rhomboids contain putative rhomboid catalytic signatures, with the protease active site stabilized by Phenylalanine. The topology and transmembrane helices of the Rv0110 orthologs were similar to those of eukaryotic secretase rhomboids, while those of Rv1337 orthologs were unique. Transcription assays indicated that both mycobacterial rhomboids are possibly expressed. CONCLUSIONS Mycobacterial rhomboids are active rhomboid proteases with different evolutionary history. The Rv0110 (rhomboid protease 1) orthologs represent prokaryotic rhomboids whose progenitor may be the ancestors of eukaryotic rhomboids. The Rv1337 (rhomboid protease 2) orthologs appear more stable and are conserved nearly in all mycobacteria, possibly alluding to their importance in mycobacteria. MAP2425c and MAP2426c provide the first evidence for a split homologous rhomboid, contrasting whole orthologs of genetically related species. Although valuable insights to the roles of rhomboids are provided, the data herein only lays a foundation for future investigations for the roles of rhomboids in mycobacteria.
Collapse
Affiliation(s)
- David P Kateete
- Department of Medical Microbiology, School of Biomedical Sciences, Makerere University College of Health Sciences, Kampala, Uganda
| | - Moses Okee
- Department of Medical Microbiology, School of Biomedical Sciences, Makerere University College of Health Sciences, Kampala, Uganda
| | - Fred A Katabazi
- Department of Medical Microbiology, School of Biomedical Sciences, Makerere University College of Health Sciences, Kampala, Uganda
| | - Alfred Okeng
- Department of Medical Microbiology, School of Biomedical Sciences, Makerere University College of Health Sciences, Kampala, Uganda
| | - Jeniffer Asiimwe
- Department of Veterinary Parasitology & Microbiology, Faculty of Veterinary Medicine, Makerere University, Kampala, Uganda
| | - Henry W Boom
- Case Western Reserve University, Cleveland, OH, USA
| | - Kathleen D Eisenach
- Department of Pathology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Moses L Joloba
- Department of Medical Microbiology, School of Biomedical Sciences, Makerere University College of Health Sciences, Kampala, Uganda
| |
Collapse
|
353
|
Kapopoulou A, Lew JM, Cole ST. The MycoBrowser portal: a comprehensive and manually annotated resource for mycobacterial genomes. Tuberculosis (Edinb) 2010; 91:8-13. [PMID: 20980200 DOI: 10.1016/j.tube.2010.09.006] [Citation(s) in RCA: 286] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2010] [Revised: 09/06/2010] [Accepted: 09/28/2010] [Indexed: 12/01/2022]
Abstract
In this paper, we present the MycoBrowser portal (http://mycobrowser.epfl.ch/), a resource that provides both in silico generated and manually reviewed information within databases dedicated to the complete genomes of Mycobacterium tuberculosis, Mycobacterium leprae, Mycobacterium marinum and Mycobacterium smegmatis. A central component of MycoBrowser is TubercuList (http://tuberculist.epfl.ch), which has recently benefited from a new data management system and web interface. These improvements were extended to all MycoBrowser databases. We provide an overview of the functionalities available and the different ways of interrogating the data then discuss how both the new information and the latest features are helping the mycobacterial research communities.
Collapse
Affiliation(s)
- Adamandia Kapopoulou
- Global Health Institute, Ecole Polytechnique Fédérale de Lausanne, Station 19, CH-1015 Lausanne, Switzerland.
| | | | | |
Collapse
|
354
|
Lew JM, Kapopoulou A, Jones LM, Cole ST. TubercuList--10 years after. Tuberculosis (Edinb) 2010; 91:1-7. [PMID: 20980199 DOI: 10.1016/j.tube.2010.09.008] [Citation(s) in RCA: 310] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2010] [Revised: 09/06/2010] [Accepted: 09/30/2010] [Indexed: 01/10/2023]
Abstract
TubercuList (http://tuberculist.epfl.ch/), the relational database that presents genome-derived information about H37Rv, the paradigm strain of Mycobacterium tuberculosis, has been active for ten years and now presents its twentieth release. Here, we describe some of the recent changes that have resulted from manual annotation with information from the scientific literature. Through manual curation, TubercuList strives to provide current gene-based information and is thus distinguished from other online sources of genome sequence data for M. tuberculosis. New, mostly small, genes have been discovered and the coordinates of some existing coding sequences have been changed when bioinformatics or experimental data suggest that this is required. Nucleotides that are polymorphic between different sources of H37Rv are annotated and gene essentiality data have been updated. A host of functional information has been gleaned from the literature and many new activities of proteins and RNAs have been included. To facilitate basic and translational research, TubercuList also provides links to other specialized databases that present diverse datasets such as 3D-structures, expression profiles, drug development criteria and drug resistance information, in addition to direct access to PubMed articles pertinent to particular genes. TubercuList has been and remains a highly valuable tool for the tuberculosis research community with >75,000 visitors per month.
Collapse
Affiliation(s)
- Jocelyne M Lew
- Ecole Polytechnique Fédérale de Lausanne, Global Health Institute, Station 19, CH-1015 Lausanne, Switzerland.
| | | | | | | |
Collapse
|
355
|
Functional analysis of molybdopterin biosynthesis in mycobacteria identifies a fused molybdopterin synthase in Mycobacterium tuberculosis. J Bacteriol 2010; 193:98-106. [PMID: 20971904 DOI: 10.1128/jb.00774-10] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Most mycobacterial species possess a full complement of genes for the biosynthesis of molybdenum cofactor (MoCo). However, a distinguishing feature of members of the Mycobacterium tuberculosis complex is their possession of multiple homologs associated with the first two steps of the MoCo biosynthetic pathway. A mutant of M. tuberculosis lacking the moaA1-moaD1 gene cluster and a derivative in which moaD2 was also deleted were significantly impaired for growth in media containing nitrate as a sole nitrogen source, indicating a reduced availability of MoCo to support the assimilatory function of the MoCo-dependent nitrate reductase, NarGHI. However, the double mutant displayed residual respiratory nitrate reductase activity, suggesting that it retains the capacity to produce MoCo. The M. tuberculosis moaD and moaE homologs were further analyzed by expressing these genes in mutant strains of M. smegmatis that lacked one or both of the sole molybdopterin (MPT) synthase-encoding genes, moaD2 and moaE2, and were unable to grow on nitrate, presumably as a result of the loss of MoCo-dependent nitrate assimilatory activity. Expression of M. tuberculosis moaD2 in the M. smegmatis moaD2 mutant and of M. tuberculosis moaE1 or moaE2 in the M. smegmatis moaE2 mutant restored nitrate assimilation, confirming the functionality of these genes in MPT synthesis. Expression of M. tuberculosis moaX also restored MoCo biosynthesis in M. smegmatis mutants lacking moaD2, moaE2, or both, thus identifying MoaX as a fused MPT synthase. By implicating multiple synthase-encoding homologs in MoCo biosynthesis, these results suggest that important cellular functions may be served by their expansion in M. tuberculosis.
Collapse
|
356
|
Rombouts Y, Elass E, Biot C, Maes E, Coddeville B, Burguière A, Tokarski C, Buisine E, Trivelli X, Kremer L, Guérardel Y. Structural analysis of an unusual bioactive N-acylated lipo-oligosaccharide LOS-IV in Mycobacterium marinum. J Am Chem Soc 2010; 132:16073-84. [PMID: 20964371 DOI: 10.1021/ja105807s] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Although lipo-oligosaccharides (LOSs) are recognized as major parietal components in many mycobacterial species, their involvement in the host-pathogen interactions have been scarcely documented. In particular, the biological implications arising from the high degree of structural species-specificity of these glycolipids remain largely unknown. Growing recognition of the Mycobacterium marinum-Danio rerio as a specific host-pathogen model devoted to the study of the physiopathology of mycobacterial infections prompted us to elucidate the structure-to-function relationships of the elusive end-product, LOS-IV, of the LOS biosynthetic pathway in M. marinum. Combination of physicochemical and molecular modeling methods established that LOS-IV resulted from the differential transfer on the caryophyllose-containing LOS-III of a family of very unusual N-acylated monosaccharides, naturally present as different diastereoisomers. In agreement with the partial loss of pathogenecity previously reported in a LOS-IV-deficient M. marinum mutant, we demonstrated that this terminal monosaccharide conferred to LOS-IV important biological functions, including macrophage activating properties.
Collapse
Affiliation(s)
- Yoann Rombouts
- Université de Lille 1, Unité de Glycobiologie Structurale et Fonctionnelle, UGSF, F-59650 Villeneuve d'Ascq, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
357
|
Pidot SJ, Porter JL, Tobias NJ, Anderson J, Catmull D, Seemann T, Kidd S, Davies JK, Reynolds E, Dashper S, Stinear TP. Regulation of the 18 kDa heat shock protein in Mycobacterium ulcerans: an alpha-crystallin orthologue that promotes biofilm formation. Mol Microbiol 2010; 78:1216-31. [PMID: 21091506 DOI: 10.1111/j.1365-2958.2010.07401.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Mycobacterium ulcerans is the causative agent of the debilitating skin disease Buruli ulcer, which is most prevalent in Western and Central Africa. M. ulcerans shares >98% DNA sequence identity with Mycobacterium marinum, however, M. marinum produces granulomatous, but not ulcerative, lesions in humans and animals. Here we report the differential expression of a small heat shock protein (Hsp18) between strains of M. ulcerans (Hsp18(+) ) and M. marinum (Hsp18(-) ) and describe the molecular basis for this difference. We show by gene deletion and GFP reporter assays in M. marinum that a divergently transcribed gene called hspR_2, immediately upstream of hsp18, encodes a MerR-like regulatory protein that represses hsp18 transcription while promoting its own expression. Naturally occurring mutations within a 70 bp segment of the 144 bp hspR_2-hsp18 intergenic region among M. ulcerans strains inhibit hspR_2 transcription and explain the Hsp18(+) phenotype. We also propose a biological role for Hsp18, as we show that this protein significantly enhances bacterial attachment or aggregation during biofilm formation. This study has uncovered a new member of the MerR family of transcriptional regulators and suggests that upregulation of hsp18 expression was an important pathoadaptive response in the evolution of M. ulcerans from a M. marinum-like ancestor.
Collapse
Affiliation(s)
- Sacha J Pidot
- Department of Microbiology, Monash University, Clayton, Victoria, Australia
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
358
|
Scherzinger D, Scheffer E, Bär C, Ernst H, Al-Babili S. The Mycobacterium tuberculosis ORF Rv0654 encodes a carotenoid oxygenase mediating central and excentric cleavage of conventional and aromatic carotenoids. FEBS J 2010; 277:4662-73. [PMID: 20929460 DOI: 10.1111/j.1742-4658.2010.07873.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Mycobacterium tuberculosis, the causative agent of tuberculosis, is assumed to lack carotenoids, which are widespread pigments fulfilling important functions as radical scavengers and as a source of apocarotenoids. In mammals, the synthesis of apocarotenoids, including retinoic acid, is initiated by the β-carotene cleavage oxygenases I and II catalyzing either a central or an excentric cleavage of β-carotene, respectively. The M. tuberculosis ORF Rv0654 codes for a putative carotenoid oxygenase conserved in other mycobacteria. In the present study, we investigated the corresponding enzyme, here named M. tuberculosis carotenoid cleavage oxygenase (MtCCO). Using heterologously expressed and purified protein, we show that MtCCO converts several carotenoids and apocarotenoids in vitro. Moreover, the identification of the products suggests that, in contrast to other carotenoid oxygenases, MtCCO cleaves the central C15-C15' and an excentric double bond at the C13-C14 position, leading to retinal (C(20)), β-apo-14'-carotenal (C(22)) and β-apo-13-carotenone (C(18)) from β-carotene, as well as the corresponding hydroxylated products from zeaxanthin and lutein. Moreover, the enzyme cleaves also 3,3'-dihydroxy-isorenieratene representing aromatic carotenoids synthesized by other mycobacteria. Quantification of the products from different substrates indicates that the preference for each of the cleavage positions is determined by the hydroxylation and the nature of the ionone ring. The data obtained in the present study reveal MtCCO to be a novel carotenoid oxygenase and indicate that M. tuberculosis may utilize carotenoids from host cells and interfere with their retinoid metabolism.
Collapse
Affiliation(s)
- Daniel Scherzinger
- Institute of Biology II, Albert-Ludwigs University of Freiburg, Freiburg, Germany
| | | | | | | | | |
Collapse
|
359
|
Izumi H, Gauthier MEA, Degnan BM, Ng YK, Hewavitharana AK, Shaw PN, Fuerst JA. Diversity of Mycobacterium species from marine sponges and their sensitivity to antagonism by sponge-derived rifamycin-synthesizing actinobacterium in the genus Salinispora. FEMS Microbiol Lett 2010; 313:33-40. [PMID: 20883497 DOI: 10.1111/j.1574-6968.2010.02118.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Eleven isolates of Mycobacterium species as well as an antimycobacterial Salinispora arenicola strain were cultured from the sponge Amphimedon queenslandica. The 16S rRNA, rpoB, and hsp65 genes from these Mycobacterium isolates were sequenced, and phylogenetic analysis of a concatenated alignment showed the formation of a large clade with Mycobacterium poriferae isolated previously from another sponge species. The separation of these Mycobacterium isolates into three species-level groups was evident from sequence similarity and phylogenetic analyses. In addition, an isolate that is phylogenetically related to Mycobacterium tuberculosis was recovered from the sponge Fascaplysinopsis sp. Several different mycobacteria thus appear to co-occur in the same sponge. An actinobacterium closely related to S. arenicola, a known producer of the antimycobacterial rifamycins, was coisolated from the same A. queenslandica specimen from which mycobacteria had been isolated. This Salinispora isolate was confirmed to synthesize rifamycin and displayed inhibitory effects against representatives from two of three Mycobacterium phylotype groups. Evidence for antagonism of sponge-derived Salinispora against sponge-derived Mycobacterium strains from the same sponge specimen and the production of antimycobacterial antibiotics by this Salinispora strain suggest that the synthesis of such antibiotics may have functions in competition between sponge microbial community members.
Collapse
Affiliation(s)
- Hiroshi Izumi
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Qld, Australia
| | | | | | | | | | | | | |
Collapse
|
360
|
Carlsson F, Kim J, Dumitru C, Barck KH, Carano RAD, Sun M, Diehl L, Brown EJ. Host-detrimental role of Esx-1-mediated inflammasome activation in mycobacterial infection. PLoS Pathog 2010; 6:e1000895. [PMID: 20463815 PMCID: PMC2865529 DOI: 10.1371/journal.ppat.1000895] [Citation(s) in RCA: 120] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2009] [Accepted: 04/05/2010] [Indexed: 11/19/2022] Open
Abstract
The Esx-1 (type VII) secretion system is a major virulence determinant of pathogenic mycobacteria, including Mycobacterium marinum. However, the molecular events and host-pathogen interactions underlying Esx-1-mediated virulence in vivo remain unclear. Here we address this problem in a non-lethal mouse model of M. marinum infection that allows detailed quantitative analysis of disease progression. M. marinum established local infection in mouse tails, with Esx-1-dependent formation of caseating granulomas similar to those formed in human tuberculosis, and bone deterioration reminiscent of skeletal tuberculosis. Analysis of tails infected with wild type or Esx-1-deficient bacteria showed that Esx-1 enhanced generation of proinflammatory cytokines, including the secreted form of IL-1β, suggesting that Esx-1 promotes inflammasome activation in vivo. In vitro experiments indicated that Esx-1-dependent inflammasome activation required the host NLRP3 and ASC proteins. Infection of wild type and ASC-deficient mice demonstrated that Esx-1-dependent inflammasome activation exacerbated disease without restricting bacterial growth, indicating a host-detrimental role of this inflammatory pathway in mycobacterial infection. These findings define an immunoregulatory role for Esx-1 in a specific host-pathogen interaction in vivo, and indicate that the Esx-1 secretion system promotes disease and inflammation through its ability to activate the inflammasome. With ∼2 million people dying from tuberculosis every year, Mycobacterium tuberculosis represents the single most important bacterial pathogen globally. We use the closely related Mycobacterium marinum to study fundamental aspects of mycobacterial pathogenesis, likely to extend to human tuberculosis. The Esx-1 (type VII) secretion system is a major virulence determinant of pathogenic mycobacteria, including M. tuberculosis and M. marinum. However, a molecular explanation for Esx-1-mediated virulence in vivo has been lacking. Here we address this problem in a non-lethal mouse model of M. marinum infection that allows quantitative analysis of disease progression. M. marinum established local infection with important features of human tuberculosis, including formation of granulomas with caseating centers. Using a combination of bacterial and host mutants, we show that Esx-1-mediated activation of the host inflammasome increases inflammation without restricting bacterial growth, suggesting that activation of the inflammasome during mycobacterial infection is a manifestation of bacterial virulence rather than a manifestation of host response. These findings define a biological role for Esx-1 in a specific host-pathogen interaction in vivo, and imply that the Esx-1 secretion system has evolved specifically to promote host pathology.
Collapse
Affiliation(s)
- Fredric Carlsson
- Department of Microbial Pathogenesis, Genentech Inc., South San Francisco, California, United States of America
- * E-mail: (FC); (EJB)
| | - Janice Kim
- Department of Translational Immunology, Genentech Inc., South San Francisco, California, United States of America
| | - Calin Dumitru
- Department of Translational Immunology, Genentech Inc., South San Francisco, California, United States of America
| | - Kai H. Barck
- Department of Biomedical Imaging, Genentech Inc., South San Francisco, California, United States of America
| | - Richard A. D. Carano
- Department of Biomedical Imaging, Genentech Inc., South San Francisco, California, United States of America
| | - Mei Sun
- Department of Pathology, Genentech Inc., South San Francisco, California, United States of America
| | - Lauri Diehl
- Department of Pathology, Genentech Inc., South San Francisco, California, United States of America
| | - Eric J. Brown
- Department of Microbial Pathogenesis, Genentech Inc., South San Francisco, California, United States of America
- * E-mail: (FC); (EJB)
| |
Collapse
|
361
|
Paradigm redux—Mycobacterium avium subspecies paratuberculosis-macrophage interactions show clear variations between bovine and human physiological body temperatures. Microb Pathog 2010; 48:143-9. [DOI: 10.1016/j.micpath.2010.02.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2009] [Revised: 02/06/2010] [Accepted: 02/18/2010] [Indexed: 11/23/2022]
|
362
|
Singh B, Ghosh J, Islam NM, Dasgupta S, Kirsebom LA. Growth, cell division and sporulation in mycobacteria. Antonie van Leeuwenhoek 2010; 98:165-77. [PMID: 20437098 PMCID: PMC2906719 DOI: 10.1007/s10482-010-9446-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2009] [Accepted: 04/13/2010] [Indexed: 01/25/2023]
Abstract
Bacteria have the ability to adapt to different growth conditions and to survive in various environments. They have also the capacity to enter into dormant states and some bacteria form spores when exposed to stresses such as starvation and oxygen deprivation. Sporulation has been demonstrated in a number of different bacteria but Mycobacterium spp. have been considered to be non-sporulating bacteria. We recently provided evidence that Mycobacterium marinum and likely also Mycobacterium bovis bacillus Calmette–Guérin can form spores. Mycobacterial spores were detected in old cultures and our findings suggest that sporulation might be an adaptation of lifestyle for mycobacteria under stress. Here we will discuss our current understanding of growth, cell division, and sporulation in mycobacteria.
Collapse
Affiliation(s)
- Bhupender Singh
- Department of Cell and Molecular Biology, Biomedical Centre, Uppsala University, Box 596, 751 24 Uppsala, Sweden
| | | | | | | | | |
Collapse
|
363
|
Affiliation(s)
- Michael Y Galperin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| |
Collapse
|
364
|
Mba Medie F, Ben Salah I, Drancourt M, Henrissat B. Paradoxical conservation of a set of three cellulose-targeting genes in Mycobacterium tuberculosis complex organisms. MICROBIOLOGY-SGM 2010; 156:1468-1475. [PMID: 20150238 DOI: 10.1099/mic.0.037812-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
The genome of the tuberculosis agent Mycobacterium tuberculosis encodes a putative cellulose-binding protein (CBD2), one candidate cellulase (Cel12), and one fully active cellulase (Cel6). This observation is puzzling, because cellulose is a major component of plant cell walls, whereas M. tuberculosis is a human pathogen without known contact with plants. In order to investigate the biological role of such cellulose-targeting genes in M. tuberculosis we report here the search for and transcription analysis of this set of genes in the genus Mycobacterium. An in silico search for cellulose-targeting orthologues found that only 2.5 % of the sequenced bacterial genomes encode the Cel6, Cel12 and CBD2 gene set simultaneously, including those of the M. tuberculosis complex (MTC) members. PCR amplification and sequencing further demonstrated the presence of these three genes in five non-sequenced MTC bacteria. Among mycobacteria, the combination of Cel6, Cel12 and CBD2 was unique to MTC members, with the exception of Mycobacterium bovis BCG Pasteur, which lacked CBD2. RT-PCR in M. tuberculosis H37Rv indicated that the three cellulose-targeting genes were transcribed into mRNA. The present work shows that MTC organisms are the sole mycobacteria among very few organisms to encode the three cellulose-targeting genes CBD2, Cel6 and Cel12. Our data point toward a unique, yet unknown, relationship with non-plant cellulose-producing hosts such as amoebae.
Collapse
Affiliation(s)
- Felix Mba Medie
- Architecture et Fonction des Macromolécules Biologiques, UMR 6098, IFR 48, CNRS, Université de la Méditerranée et Université de Provence, Marseille, France.,Unité de Recherche sur les Maladies Infectieuses et Tropicales Emergentes, UMR CNRS 6236, IRD 198, IFR 48, Faculté de Médecine, Université de la Méditerranée, Marseille, France
| | - Iskandar Ben Salah
- Unité de Recherche sur les Maladies Infectieuses et Tropicales Emergentes, UMR CNRS 6236, IRD 198, IFR 48, Faculté de Médecine, Université de la Méditerranée, Marseille, France
| | - Michel Drancourt
- Unité de Recherche sur les Maladies Infectieuses et Tropicales Emergentes, UMR CNRS 6236, IRD 198, IFR 48, Faculté de Médecine, Université de la Méditerranée, Marseille, France
| | - Bernard Henrissat
- Architecture et Fonction des Macromolécules Biologiques, UMR 6098, IFR 48, CNRS, Université de la Méditerranée et Université de Provence, Marseille, France
| |
Collapse
|
365
|
Stone AC, Wilbur AK, Buikstra JE, Roberts CA. Tuberculosis and leprosy in perspective. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2010; 140 Suppl 49:66-94. [PMID: 19890861 DOI: 10.1002/ajpa.21185] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Two of humankind's most socially and psychologically devastating diseases, tuberculosis and leprosy, have been the subject of intensive paleopathological research due to their antiquity, a presumed association with human settlement and subsistence patterns, and their propensity to leave characteristic lesions on skeletal and mummified remains. Despite a long history of medical research and the development of effective chemotherapy, these diseases remain global health threats even in the 21st century, and as such, their causative agents Mycobacterium tuberculosis and M. leprae, respectively, have recently been the subject of molecular genetics research. The new genome-level data for several mycobacterial species have informed extensive phylogenetic analyses that call into question previously accepted theories concerning the origins and antiquity of these diseases. Of special note is the fact that all new models are in broad agreement that human TB predated that in other animals, including cattle and other domesticates, and that this disease originated at least 35,000 years ago and probably closer to 2.6 million years ago. In this work, we review current phylogenetic and biogeographic models derived from molecular biology and explore their implications for the global development of TB and leprosy, past and present. In so doing, we also briefly review the skeletal evidence for TB and leprosy, explore the current status of these pathogens, critically consider current methods for identifying ancient mycobacterial DNA, and evaluate coevolutionary models.
Collapse
Affiliation(s)
- Anne C Stone
- School of Human Evolution and Social Change, Arizona State University, Tempe, AZ 85287, USA.
| | | | | | | |
Collapse
|
366
|
Galperin MY, Higdon R, Kolker E. Interplay of heritage and habitat in the distribution of bacterial signal transduction systems. MOLECULAR BIOSYSTEMS 2010; 6:721-8. [PMID: 20237650 DOI: 10.1039/b908047c] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Comparative analysis of the complete genome sequences from a variety of poorly studied organisms aims at predicting ecological and behavioral properties of these organisms and helping in characterizing their habitats. This task requires finding appropriate descriptors that could be correlated with the core traits of each system and would allow meaningful comparisons. Using the relatively simple bacterial models, first attempts have been made to introduce suitable metrics to describe the complexity of organism's signaling machinery, which included introducing the "bacterial IQ" score. Here, we use an updated census of prokaryotic signal transduction systems to improve this parameter and evaluate its consistency within selected bacterial phyla. We also introduce a more elaborate descriptor, a set of profiles of relative abundance of members of each family of signal transduction proteins encoded in each genome. We show that these family profiles are well conserved within each genus and are often consistent within families of bacteria. Thus, they reflect evolutionary relationships between organisms as well as individual adaptations of each organism to its specific ecological niche.
Collapse
Affiliation(s)
- Michael Y Galperin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, 8600 Rockville Pike, Bethesda, Maryland 20894, USA.
| | | | | |
Collapse
|
367
|
Microscopic cords, a virulence-related characteristic of Mycobacterium tuberculosis, are also present in nonpathogenic mycobacteria. J Bacteriol 2010; 192:1751-60. [PMID: 20097851 DOI: 10.1128/jb.01485-09] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The aggregation of mycobacterial cells in a definite order, forming microscopic structures that resemble cords, is known as cord formation, or cording, and is considered a virulence factor in the Mycobacterium tuberculosis complex and the species Mycobacterium marinum. In the 1950s, cording was related to a trehalose dimycolate lipid that, consequently, was named the cord factor. However, modern techniques of microbial genetics have revealed that cording can be affected by mutations in genes not directly involved in trehalose dimycolate biosynthesis. Therefore, questions such as "How does mycobacterial cord formation occur?" and "Which molecular factors play a role in cord formation?" remain unanswered. At present, one of the problems in cording studies is the correct interpretation of cording morphology. Using optical microscopy, it is sometimes difficult to distinguish between cording and clumping, which is a general property of mycobacteria due to their hydrophobic surfaces. In this work, we provide a new way to visualize cords in great detail using scanning electron microscopy, and we show the first scanning electron microscopy images of the ultrastructure of mycobacterial cords, making this technique the ideal tool for cording studies. This technique has enabled us to affirm that nonpathogenic mycobacteria also form microscopic cords. Finally, we demonstrate that a strong correlation exists between microscopic cords, rough colonial morphology, and increased persistence of mycobacteria inside macrophages.
Collapse
|
368
|
Mycobacterium abscessus: a new player in the mycobacterial field. Trends Microbiol 2010; 18:117-23. [PMID: 20060723 DOI: 10.1016/j.tim.2009.12.007] [Citation(s) in RCA: 135] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2009] [Revised: 11/25/2009] [Accepted: 12/09/2009] [Indexed: 11/24/2022]
Abstract
Mycobacterium abscessus, a relative of Koch's bacillus (the bacterium that causes tuberculosis), has recently emerged as the cause of an increasing number of both community- and hospital-acquired infections in humans; it also constitutes a serious threat for cystic fibrosis patients. This situation is worsened by its exceptionally high natural and acquired antibiotic resistance that complicates treatment. Although a rapid grower, it shares some traits with Koch's bacillus, including the ability to induce a persistent lung disease associated with caseous lesions, a landmark of Mycobacterium tuberculosis infection. Its genome sequence and microarrays are now available, and efficient genetic tools have recently been developed. Here we consider the various advantages of using this species as an experimental model to study tuberculosis and other related mycobacterial diseases.
Collapse
|
369
|
Cao B, Williams SJ. Chemical approaches for the study of the mycobacterial glycolipids phosphatidylinositol mannosides, lipomannan and lipoarabinomannan. Nat Prod Rep 2010; 27:919-47. [DOI: 10.1039/c000604a] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
370
|
Slessor KE, Stok JE, Cavaignac SM, Hawkes DB, Ghasemi Y, De Voss JJ. Cineole biodegradation: molecular cloning, expression and characterisation of (1R)-6beta-hydroxycineole dehydrogenase from Citrobacter braakii. Bioorg Chem 2009; 38:81-6. [PMID: 20089292 DOI: 10.1016/j.bioorg.2009.12.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2009] [Revised: 12/04/2009] [Accepted: 12/04/2009] [Indexed: 11/16/2022]
Abstract
The first steps in the biodegradation of 1,8-cineole involve the introduction of an alcohol and its subsequent oxidation to a ketone. In Citrobacter braakii, cytochrome P450(cin) has previously been demonstrated to perform the first oxidation to produce (1R)-6beta-hydroxycineole. In this study, we have cloned cinD from C. braakii and expressed the gene product, which displays significant homology to a number of short-chain alcohol dehydrogenases. It was demonstrated that the gene product of cinD exhibits (1R)-6beta-hydroxycineole dehydrogenase activity, the second step in the degradation of 1,8-cineole. All four isomers of 6-hydroxycineole were examined but only (1R)-6beta-hydroxycineole was converted to (1R)-6-ketocineole. The (1R)-6beta-hydroxycineole dehydrogenase exhibited a strict requirement for NAD(H), with no reaction observed in the presence of NADP(H). The enzyme also catalyses the reverse reaction, reducing (1R)-6-ketocineole to (1R)-6beta-hydroxycineole. During this study the N-terminal His-tag used to assist protein purification was found to interfere with NAD(H) binding and lower enzyme activity. This could be recovered by the addition of Ni(2+) ions or proteolytic removal of the His-tag.
Collapse
Affiliation(s)
- Kate E Slessor
- School of Chemistry and Molecular Biosciences, University of Queensland, St. Lucia, Brisbane QLD 4072, Australia
| | | | | | | | | | | |
Collapse
|
371
|
Salah IB, Ghigo E, Drancourt M. Free-living amoebae, a training field for macrophage resistance of mycobacteria. Clin Microbiol Infect 2009; 15:894-905. [PMID: 19845701 DOI: 10.1111/j.1469-0691.2009.03011.x] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Mycobacterium species evolved from an environmental recent common ancestor by reductive evolution and lateral gene transfer. Strategies selected through evolution and developed by mycobacteria resulted in resistance to predation by environmental unicellular protists, including free-living amoebae. Indeed, mycobacteria are isolated from the same soil and water environments as are amoebae, and experimental models using Acanthamoeba spp. and Dictyostelium discoideum were exploited to analyse the mechanisms for intracellular survival. Most of these mechanisms have been further reproduced in macrophages for mycobacteria regarded as opportunistic and obligate pathogens. Amoebal cysts may protect intracellular mycobacteria against adverse conditions and may act as a vector for mycobacteria. The latter hypothesis warrants further environmental and clinical studies to better assess the role of free-living amoebae in the epidemiology of infections caused by mycobacteria.
Collapse
Affiliation(s)
- I B Salah
- Unité de Recherche sur les Maladies Infectieuses et Tropicales Emergentes, CNRS 6236 IRD 198, IFR 48 Faculté de Médecine, Université de la Méditerranée, Marseille, France
| | | | | |
Collapse
|
372
|
Ramage HR, Connolly LE, Cox JS. Comprehensive functional analysis of Mycobacterium tuberculosis toxin-antitoxin systems: implications for pathogenesis, stress responses, and evolution. PLoS Genet 2009; 5:e1000767. [PMID: 20011113 PMCID: PMC2781298 DOI: 10.1371/journal.pgen.1000767] [Citation(s) in RCA: 372] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2009] [Accepted: 11/12/2009] [Indexed: 12/16/2022] Open
Abstract
Toxin-antitoxin (TA) systems, stress-responsive genetic elements ubiquitous in microbial genomes, are unusually abundant in the major human pathogen Mycobacterium tuberculosis. Why M. tuberculosis has so many TA systems and what role they play in the unique biology of the pathogen is unknown. To address these questions, we have taken a comprehensive approach to identify and functionally characterize all the TA systems encoded in the M. tuberculosis genome. Here we show that 88 putative TA system candidates are present in M. tuberculosis, considerably more than previously thought. Comparative genomic analysis revealed that the vast majority of these systems are conserved in the M. tuberculosis complex (MTBC), but largely absent from other mycobacteria, including close relatives of M. tuberculosis. We found that many of the M. tuberculosis TA systems are located within discernable genomic islands and were thus likely acquired recently via horizontal gene transfer. We discovered a novel TA system located in the core genome that is conserved across the genus, suggesting that it may fulfill a role common to all mycobacteria. By expressing each of the putative TA systems in M. smegmatis, we demonstrate that 30 encode a functional toxin and its cognate antitoxin. We show that the toxins of the largest family of TA systems, VapBC, act by inhibiting translation via mRNA cleavage. Expression profiling demonstrated that four systems are specifically activated during stresses likely encountered in vivo, including hypoxia and phagocytosis by macrophages. The expansion and maintenance of TA genes in the MTBC, coupled with the finding that a subset is transcriptionally activated by stress, suggests that TA systems are important for M. tuberculosis pathogenesis. Tuberculosis (TB) continues to be a major global health problem, causing 2 million deaths every year. A hallmark of TB pathogenesis is that the bacilli can enter into a slow or non-growing state in response to the host immune system. Because these persistent bacteria are resistant to antibiotic treatment, efforts to eliminate TB from the human population must include therapies to target dormant organisms as they can eventually resume replication to cause active disease. How Mycobacterium tuberculosis, the causative agent of TB, alters its replication dynamics in response to host cues is not understood. Toxin-antitoxin (TA) systems, which may control persistence in other bacteria, are massively expanded in M. tuberculosis, suggesting that they are important for TB pathogenesis. Surprisingly, the vast majority of these numerous TA systems are conserved only in pathogenic mycobacteria, suggesting their acquisition was important in M. tuberculosis evolution. Of the 88 putative TA systems identified, we show that 30 are functional in mycobacteria. A subset of these systems is activated upon exposure to stresses encountered during infection, indicating that specific TA systems are involved in adapting to environmental cues in the host. These genes are promising candidates for the development of novel therapies to target persistent bacteria.
Collapse
Affiliation(s)
- Holly R. Ramage
- Department of Microbiology and Immunology, University of California San Francisco, San Francisco, California, United States of America
- Program in Microbial Pathogenesis and Host Defense, University of California San Francisco, San Francisco, California, United States of America
| | - Lynn E. Connolly
- Department of Microbiology and Immunology, University of California San Francisco, San Francisco, California, United States of America
- Program in Microbial Pathogenesis and Host Defense, University of California San Francisco, San Francisco, California, United States of America
- Department of Medicine, Division of Infectious Diseases, University of California San Francisco, San Francisco, California, United States of America
| | - Jeffery S. Cox
- Department of Microbiology and Immunology, University of California San Francisco, San Francisco, California, United States of America
- Program in Microbial Pathogenesis and Host Defense, University of California San Francisco, San Francisco, California, United States of America
- * E-mail:
| |
Collapse
|
373
|
A broad-range of recombination cloning vectors in mycobacteria. Plasmid 2009; 62:158-65. [DOI: 10.1016/j.plasmid.2009.07.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2009] [Revised: 07/23/2009] [Accepted: 07/23/2009] [Indexed: 11/19/2022]
|
374
|
Comparative genomic and phylogeographic analysis of Mycobacterium leprae. Nat Genet 2009; 41:1282-9. [PMID: 19881526 DOI: 10.1038/ng.477] [Citation(s) in RCA: 263] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2009] [Accepted: 09/01/2009] [Indexed: 11/08/2022]
Abstract
Reductive evolution and massive pseudogene formation have shaped the 3.31-Mb genome of Mycobacterium leprae, an unculturable obligate pathogen that causes leprosy in humans. The complete genome sequence of M. leprae strain Br4923 from Brazil was obtained by conventional methods (6x coverage), and Illumina resequencing technology was used to obtain the sequences of strains Thai53 (38x coverage) and NHDP63 (46x coverage) from Thailand and the United States, respectively. Whole-genome comparisons with the previously sequenced TN strain from India revealed that the four strains share 99.995% sequence identity and differ only in 215 polymorphic sites, mainly SNPs, and by 5 pseudogenes. Sixteen interrelated SNP subtypes were defined by genotyping both extant and extinct strains of M. leprae from around the world. The 16 SNP subtypes showed a strong geographical association that reflects the migration patterns of early humans and trade routes, with the Silk Road linking Europe to China having contributed to the spread of leprosy.
Collapse
|
375
|
Bitter W, Houben ENG, Bottai D, Brodin P, Brown EJ, Cox JS, Derbyshire K, Fortune SM, Gao LY, Liu J, Gey van Pittius NC, Pym AS, Rubin EJ, Sherman DR, Cole ST, Brosch R. Systematic genetic nomenclature for type VII secretion systems. PLoS Pathog 2009; 5:e1000507. [PMID: 19876390 PMCID: PMC2763215 DOI: 10.1371/journal.ppat.1000507] [Citation(s) in RCA: 204] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Affiliation(s)
- Wilbert Bitter
- VU University Medical Centre, Amsterdam, The Netherlands
- * E-mail: (WB); (RB)
| | | | - Daria Bottai
- Dipartimento di Patologia Sperimentale, Biotecnologie Mediche, Infettivologia ed Epidemiologia, University of Pisa, Pisa, Italy
| | | | - Eric J. Brown
- Department of Microbial Pathogenesis, Genentech Inc., San Francisco, California, United States of America
| | - Jeffery S. Cox
- Department of Microbiology and Immunology, University of California, San Francisco, California, United States of America
| | - Keith Derbyshire
- Wadsworth Center, New York State Department of Health, Albany, New York, United States of America
| | - Sarah M. Fortune
- Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, Massachusetts, United States of America
| | - Lian-Yong Gao
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland, United States of America
| | - Jun Liu
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | | | - Alexander S. Pym
- Unit for Clinical and Biomedical TB Research, South African MRC, Durban, South Africa
| | - Eric J. Rubin
- Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, Massachusetts, United States of America
| | - David R. Sherman
- Seattle Biomedical Research Institute, Seattle, Washington, United States of America
| | | | - Roland Brosch
- Institut Pasteur, Integrated Mycobacterial Pathogenomics, Paris, France
- * E-mail: (WB); (RB)
| |
Collapse
|
376
|
Abstract
This unit gives background information on Mycobacterium smegmatis, a mycobacterial model system, and covers all the laboratory maintenance for this species including growth in liquid and on solid medium. It also contains recommendations concerning long-term strain storage. Although M. smegmatis is a Biosafety Level 1 organism, some rare infections in humans have been reported, and, thus all of the required safety measures are discussed here.
Collapse
|
377
|
McEvoy CRE, van Helden PD, Warren RM, van Pittius NCG. Evidence for a rapid rate of molecular evolution at the hypervariable and immunogenic Mycobacterium tuberculosis PPE38 gene region. BMC Evol Biol 2009; 9:237. [PMID: 19769792 PMCID: PMC2758852 DOI: 10.1186/1471-2148-9-237] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2009] [Accepted: 09/21/2009] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND PPE38 (Rv2352c) is a member of the large PPE gene family of Mycobacterium tuberculosis and related mycobacteria. The function of PPE proteins is unknown but evidence suggests that many are cell-surface associated and recognised by the host immune system. Previous studies targeting other PPE gene members suggest that some display high levels of polymorphism and it is thought that this might represent a means of providing antigenic variation. We have analysed the genetic variability of the PPE38 genomic region on a cohort of M. tuberculosis clinical isolates representing all of the major phylogenetic lineages, along with the ancestral M. tuberculosis complex (MTBC) member M. canettii, and supplemented this with analysis of publicly available whole genome sequences representing additional M. tuberculosis clinical isolates, other MTBC members and non tuberculous mycobacteria (NTM). Where possible we have extended this analysis to include the adjacent plcABC and PPE39/40 genomic regions. RESULTS We show that the ancestral MTBC PPE38 region comprises 2 homologous PPE genes (PPE38 and PPE71), separated by 2 esat-6 (esx)-like genes and that this structure derives from an esx/esx/PPE duplication in the common ancestor of M. tuberculosis and M. marinum. We also demonstrate that this region of the genome is hypervariable due to frequent IS6110 integration, IS6110-associated recombination, and homologous recombination and gene conversion events between PPE38 and PPE71. These mutations result in combinations of gene deletion, gene truncation and gene disruption in the majority of clinical isolates. These mutations were generally found to be IS6110 strain lineage-specific, although examples of additional within-lineage and even within-cluster mutations were observed. Furthermore, we provide evidence that the published M. tuberculosis H37Rv whole genome sequence is inaccurate regarding this region. CONCLUSION Our results show that this antigen-encoding region of the M. tuberculosis genome is hypervariable. The observation that numerous different mutations have become fixed within specific lineages demonstrates that this genomic region is undergoing rapid molecular evolution and that further lineage-specific evolutionary expansion and diversification has occurred subsequent to the lineage-defining mutational events. We predict that functional loss of these genes could aid immune evasion. Finally, we also show that the PPE38 region of the published M. tuberculosis H37Rv whole genome sequence is not representative of the ATCC H37Rv reference strain.
Collapse
Affiliation(s)
- Christopher RE McEvoy
- DST/NRF Centre of Excellence for Biomedical Tuberculosis Research/MRC Centre for Molecular and Cellular Biology, Division of Molecular Biology and Human Genetics, Faculty of Health Sciences, Stellenbosch University, PO Box 19063, Tygerberg, South Africa
| | - Paul D van Helden
- DST/NRF Centre of Excellence for Biomedical Tuberculosis Research/MRC Centre for Molecular and Cellular Biology, Division of Molecular Biology and Human Genetics, Faculty of Health Sciences, Stellenbosch University, PO Box 19063, Tygerberg, South Africa
| | - Robin M Warren
- DST/NRF Centre of Excellence for Biomedical Tuberculosis Research/MRC Centre for Molecular and Cellular Biology, Division of Molecular Biology and Human Genetics, Faculty of Health Sciences, Stellenbosch University, PO Box 19063, Tygerberg, South Africa
| | - Nicolaas C Gey van Pittius
- DST/NRF Centre of Excellence for Biomedical Tuberculosis Research/MRC Centre for Molecular and Cellular Biology, Division of Molecular Biology and Human Genetics, Faculty of Health Sciences, Stellenbosch University, PO Box 19063, Tygerberg, South Africa
| |
Collapse
|
378
|
Qi W, Käser M, Röltgen K, Yeboah-Manu D, Pluschke G. Genomic diversity and evolution of Mycobacterium ulcerans revealed by next-generation sequencing. PLoS Pathog 2009; 5:e1000580. [PMID: 19806175 PMCID: PMC2736377 DOI: 10.1371/journal.ppat.1000580] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2009] [Accepted: 08/17/2009] [Indexed: 12/02/2022] Open
Abstract
Mycobacterium ulcerans is the causative agent of Buruli ulcer, the third most common mycobacterial disease after tuberculosis and leprosy. It is an emerging infectious disease that afflicts mainly children and youths in West Africa. Little is known about the evolution and transmission mode of M. ulcerans, partially due to the lack of known genetic polymorphisms among isolates, limiting the application of genetic epidemiology. To systematically profile single nucleotide polymorphisms (SNPs), we sequenced the genomes of three M. ulcerans strains using 454 and Solexa technologies. Comparison with the reference genome of the Ghanaian classical lineage isolate Agy99 revealed 26,564 SNPs in a Japanese strain representing the ancestral lineage. Only 173 SNPs were found when comparing Agy99 with two other Ghanaian isolates, which belong to the two other types previously distinguished in Ghana by variable number tandem repeat typing. We further analyzed a collection of Ghanaian strains using the SNPs discovered. With 68 SNP loci, we were able to differentiate 54 strains into 13 distinct SNP haplotypes. The average SNP nucleotide diversity was low (average 0.06–0.09 across 68 SNP loci), and 96% of the SNP locus pairs were in complete linkage disequilibrium. We estimated that the divergence of the M. ulcerans Ghanaian clade from the Japanese strain occurred 394 to 529 thousand years ago. The Ghanaian subtypes diverged about 1000 to 3000 years ago, or even much more recently, because we found evidence that they evolved significantly faster than average. Our results offer significant insight into the evolution of M. ulcerans and provide a comprehensive report on genetic diversity within a highly clonal M. ulcerans population from a Buruli ulcer endemic region, which can facilitate further epidemiological studies of this pathogen through the development of high-resolution tools. Mycobacterium ulcerans is the causative agent of Buruli ulcer (BU), a necrotizing skin disease and the third most common mycobacterial disease after tuberculosis and leprosy. It is an emerging infectious disease that afflicts mainly children and youths in West Africa. The disease is also found in tropical and subtropical regions of Asia, the Western Pacific, and Latin America. Limited knowledge of this neglected tropical disease is partially due to the lack of known genetic polymorphisms among isolates, which hinder the study of transmission, epidemiology, and evolution of M. ulcerans. Our aim is to systematically profile genetic diversity among M. ulcerans isolates by sequencing and comparing the genomes of selected strains. We identified single nucleotide polymorphisms (SNPs) within a highly clonal M. ulcerans population from a Buruli ulcer endemic region. Based on the SNPs discovered, we developed SNP typing assays and were able to differentiate a collection of M. ulcerans isolates from this Buruli ulcer endemic region into 13 SNP haplotypes. Our results lay the ground for developing a highly discriminatory and cost-effective tool to study M. ulcerans evolution and epidemiology at a population level.
Collapse
Affiliation(s)
- Weihong Qi
- Department of Medical Parasitology and Infection Biology, Swiss Tropical Institute, Basel, Switzerland
| | - Michael Käser
- Department of Medical Parasitology and Infection Biology, Swiss Tropical Institute, Basel, Switzerland
| | - Katharina Röltgen
- Department of Medical Parasitology and Infection Biology, Swiss Tropical Institute, Basel, Switzerland
| | - Dorothy Yeboah-Manu
- Department of Bacteriology, Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, Ghana
| | - Gerd Pluschke
- Department of Medical Parasitology and Infection Biology, Swiss Tropical Institute, Basel, Switzerland
- * E-mail:
| |
Collapse
|
379
|
Veyrier F, Pletzer D, Turenne C, Behr MA. Phylogenetic detection of horizontal gene transfer during the step-wise genesis of Mycobacterium tuberculosis. BMC Evol Biol 2009; 9:196. [PMID: 19664275 PMCID: PMC3087520 DOI: 10.1186/1471-2148-9-196] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2009] [Accepted: 08/10/2009] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND In the past decade, the availability of complete genome sequence data has greatly facilitated comparative genomic research aimed at addressing genetic variability within species. More recently, analysis across species has become feasible, especially in genera where genome sequencing projects of multiple species have been initiated. To understand the genesis of the pathogen Mycobacterium tuberculosis within a genus where the majority of species are harmless environmental organisms, we have used genome sequence data from 16 mycobacteria to look for evidence of horizontal gene transfer (HGT) associated with the emergence of pathogenesis. First, using multi-locus sequence analysis (MLSA) of 20 housekeeping genes across these species, we derived a phylogeny that serves as the basis for HGT assignments. Next, we performed alignment searches for the 3989 proteins of M. tuberculosis H37Rv against 15 other mycobacterial genomes, generating a matrix of 59835 comparisons, to look for genetic elements that were uniquely found in M. tuberculosis and closely-related pathogenic mycobacteria. To assign when foreign genes were likely acquired, we designed a bioinformatic program called mycoHIT (mycobacterial homologue investigation tool) to analyze these data in conjunction with the MLSA-based phylogeny. RESULTS The bioinformatic screen predicted that 137 genes had been acquired by HGT at different phylogenetic strata; these included genes coding for metabolic functions and modification of mycobacterial lipids. For the majority of these genes, corroborating evidence of HGT was obtained, such as presence of phage or plasmid, and an aberrant GC%. CONCLUSION M. tuberculosis emerged through vertical inheritance along with the step-wise addition of genes acquired via HGT events, a process that may more generally describe the evolution of other pathogens.
Collapse
Affiliation(s)
- Frédéric Veyrier
- Department of Medicine, McGill University, Montreal, QC, H3G 1A4, Canada.
| | | | | | | |
Collapse
|
380
|
Abdallah AM, Verboom T, Weerdenburg EM, Gey van Pittius NC, Mahasha PW, Jiménez C, Parra M, Cadieux N, Brennan MJ, Appelmelk BJ, Bitter W. PPE and PE_PGRS proteins ofMycobacterium marinumare transported via the type VII secretion system ESX-5. Mol Microbiol 2009; 73:329-40. [DOI: 10.1111/j.1365-2958.2009.06783.x] [Citation(s) in RCA: 216] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
381
|
Large sequence polymorphisms unveil the phylogenetic relationship of environmental and pathogenic mycobacteria related to Mycobacterium ulcerans. Appl Environ Microbiol 2009; 75:5667-75. [PMID: 19592526 DOI: 10.1128/aem.00446-09] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Mycolactone is an immunosuppressive cytotoxin responsible for the clinical manifestation of Buruli ulcer in humans. It was believed to be confined to its etiologic agent, Mycobacterium ulcerans. However, the identification of other mycolactone-producing mycobacteria (MPMs) in other species, including Mycobacterium marinum, indicated a more complex taxonomic relationship. This highlighted the need for research on the biology, evolution, and distribution of such emerging and potentially infectious strains. The reliable genetic fingerprinting analyses presented here aim at both the unraveling of phylogenetic relatedness and of dispersal between environmental and pathogenic mycolactone producers and the identification of genetic prerequisites that enable lateral gene transfer of such plasmids. This will allow for the identification of environmental reservoirs of virulence plasmids that encode enzymes required for the synthesis of mycolactone. Based on dynamic chromosomal loci identified earlier in M. ulcerans, we characterized large sequence polymorphisms for the phylogenetic analysis of MPMs. Here, we identify new insertional-deletional events and single-nucleotide polymorphisms that confirm and redefine earlier strain differentiation markers. These results support other data showing that all MPMs share a common ancestry. In addition, we found unique genetic features specific for M. marinum strain M, the genome sequence strain which is used widely in research.
Collapse
|
382
|
Bottai D, Brosch R. Mycobacterial PE, PPE and ESX clusters: novel insights into the secretion of these most unusual protein families. Mol Microbiol 2009; 73:325-8. [PMID: 19602151 DOI: 10.1111/j.1365-2958.2009.06784.x] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The human pathogen Mycobacterium tuberculosis harbours a large number of genes that encode proteins whose N-termini contain the characteristic motifs Pro-Glu (PE) or Pro-Pro-Glu (PPE). A subgroup of the PE proteins contains polymorphic GC-rich sequences (PGRS), while a subgroup of the PPE proteins contains major polymorphic tandem repeats (MPTR). The function of most of these proteins remains unknown. However, in this issue of Molecular Microbiology, Abdallah and colleagues show that PE_PGRS proteins from the model organism Mycobacterium marinum are secreted by components of the ESX-5 system that belongs to the recently defined type VII secretion systems. These observations, which now need to be addressed and confirmed in M. tuberculosis, open new perspectives on the function of these highly abundant proteins.
Collapse
Affiliation(s)
- Daria Bottai
- Dipartimento di Patologia Sperimentale, Biotecnologie Mediche, Infettivologia ed Epidemiologia, University of Pisa, Pisa, Italy
| | | |
Collapse
|
383
|
Non mycobacterial virulence genes in the genome of the emerging pathogen Mycobacterium abscessus. PLoS One 2009; 4:e5660. [PMID: 19543527 PMCID: PMC2694998 DOI: 10.1371/journal.pone.0005660] [Citation(s) in RCA: 281] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2008] [Accepted: 04/28/2009] [Indexed: 11/19/2022] Open
Abstract
Mycobacterium abscessus is an emerging rapidly growing mycobacterium (RGM) causing a pseudotuberculous lung disease to which patients with cystic fibrosis (CF) are particularly susceptible. We report here its complete genome sequence. The genome of M. abscessus (CIP 104536T) consists of a 5,067,172-bp circular chromosome including 4920 predicted coding sequences (CDS), an 81-kb full-length prophage and 5 IS elements, and a 23-kb mercury resistance plasmid almost identical to pMM23 from Mycobacterium marinum. The chromosome encodes many virulence proteins and virulence protein families absent or present in only small numbers in the model RGM species Mycobacterium smegmatis. Many of these proteins are encoded by genes belonging to a “mycobacterial” gene pool (e.g. PE and PPE proteins, MCE and YrbE proteins, lipoprotein LpqH precursors). However, many others (e.g. phospholipase C, MgtC, MsrA, ABC Fe(3+) transporter) appear to have been horizontally acquired from distantly related environmental bacteria with a high G+C content, mostly actinobacteria (e.g. Rhodococcus sp., Streptomyces sp.) and pseudomonads. We also identified several metabolic regions acquired from actinobacteria and pseudomonads (relating to phenazine biosynthesis, homogentisate catabolism, phenylacetic acid degradation, DNA degradation) not present in the M. smegmatis genome. Many of the “non mycobacterial” factors detected in M. abscessus are also present in two of the pathogens most frequently isolated from CF patients, Pseudomonas aeruginosa and Burkholderia cepacia. This study elucidates the genetic basis of the unique pathogenicity of M. abscessus among RGM, and raises the question of similar mechanisms of pathogenicity shared by unrelated organisms in CF patients.
Collapse
|
384
|
Rombouts Y, Burguière A, Maes E, Coddeville B, Elass E, Guérardel Y, Kremer L. Mycobacterium marinum lipooligosaccharides are unique caryophyllose-containing cell wall glycolipids that inhibit tumor necrosis factor-alpha secretion in macrophages. J Biol Chem 2009; 284:20975-88. [PMID: 19491094 DOI: 10.1074/jbc.m109.011429] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Earlier studies have reported a role for lipooligosaccharides (LOSs) in sliding motility, biofilm formation, and infection of host macrophages in Mycobacterium marinum. Although a LOS biosynthetic gene cluster has recently been identified in this species, many structural features of the different LOSs (LOS-I-IV) are still unknown. This clearly hampers assessing the contribution of each LOS in mycobacterial virulence as well as structure-function-based studies of these important cell wall-associated glycolipids. In this study, we have identified an M. marinum isolate, M. marinum 7 (Mma7), which failed to produce LOS-IV but instead accumulated large amounts of LOS-III. Local genomic comparison of the LOS biosynthetic cluster established the presence of a highly disorganized region in Mma7 compared with the standard M strain, characterized by multiple genetic lesions that are likely to be responsible for the defect in LOS-IV production in Mma7. Our results indicate that the glycosyltransferase LosA alone is not sufficient to ensure LOS-IV biosynthesis. The availability of different M. marinum strains allowed us to determine the precise structure of individual LOSs through the combination of mass spectrometric and NMR techniques. In particular, we established the presence of two related 4-C-branched monosaccharides within LOS-II to IV sequences, of which one was never identified before. In addition, we provided evidence that LOSs are capable of inhibiting the secretion of tumor necrosis factor-alpha in lipopolysaccharide-stimulated human macrophages. This unexpected finding suggests that these cell wall-associated glycolipids represent key effectors capable of interfering with the establishment of a pro-inflammatory response.
Collapse
Affiliation(s)
- Yoann Rombouts
- Unité de Glycobiologie Structurale et Fonctionnelle, CNRS UMR 8576, IFR 147, Université des Sciences et Technologies de Lille, 59655 Villeneuve d'Ascq Cedex, France
| | | | | | | | | | | | | |
Collapse
|
385
|
Smith NH, Hewinson RG, Kremer K, Brosch R, Gordon SV. Myths and misconceptions: the origin and evolution of Mycobacterium tuberculosis. Nat Rev Microbiol 2009; 7:537-44. [DOI: 10.1038/nrmicro2165] [Citation(s) in RCA: 166] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
386
|
Werlang ICR, Schneider CZ, Mendonça JD, Palma MS, Basso LA, Santos DS. Identification of Rv3852 as a nucleoid-associated protein in Mycobacterium tuberculosis. MICROBIOLOGY-SGM 2009; 155:2652-2663. [PMID: 19477901 DOI: 10.1099/mic.0.030148-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Tuberculosis remains the major cause of mortality due to a bacterial pathogen, Mycobacterium tuberculosis. The molecular mechanisms of infection and persistence have not been completely elucidated for this pathogen. Studies involving nucleoid-associated proteins (NAPs), which have been related to the control and influence of virulence genes in pathogenic bacteria, can help unveil the virulence process of M. tuberculosis. Here, we describe the initial characterization of an ORF for an M. tuberculosis putative NAP. The Rv3852 gene was cloned and expressed, and its product purified to homogeneity. A qualitative protein-DNA binding assay was carried out by gel-retardation and the protein affinity for specific DNA sequences was assessed quantitatively by surface plasmon resonance (SPR). A stoichiometry of 10 molecules of monomeric protein per molecule of DNA was determined. The monophasic apparent dissociation rate constant values increased to a saturable level as a function of protein concentration, yielding two limiting values for the molecular recognition of proU2 DNA. A protein-DNA binding mechanism is proposed. In addition, functional complementation studies with an Escherichia coli hns mutant reinforce the likelihood that the Rv3852 protein represents a novel NAP in M. tuberculosis.
Collapse
Affiliation(s)
- Isabel C R Werlang
- Programa de Pós-Graduação em Biologia Celular e Molecular, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves 9500, Porto Alegre, RS 91501-970, Brazil.,Centro de Pesquisas em Biologia Molecular e Funcional, Instituto Nacional de Ciência e Tecnologia em Tuberculose, Pontifícia Universidade Católica do Rio Grande do Sul, Av. Ipiranga 6681, Porto Alegre, RS 90619-900, Brazil
| | - Cristopher Z Schneider
- Centro de Pesquisas em Biologia Molecular e Funcional, Instituto Nacional de Ciência e Tecnologia em Tuberculose, Pontifícia Universidade Católica do Rio Grande do Sul, Av. Ipiranga 6681, Porto Alegre, RS 90619-900, Brazil
| | - Jordana D Mendonça
- Centro de Pesquisas em Biologia Molecular e Funcional, Instituto Nacional de Ciência e Tecnologia em Tuberculose, Pontifícia Universidade Católica do Rio Grande do Sul, Av. Ipiranga 6681, Porto Alegre, RS 90619-900, Brazil
| | - Mario S Palma
- Laboratório de Biologia Estrutural e Zooquímica, Centro de Estudos de Insetos Sociais, Departamento de Biologia, Instituto de Biociências, Universidade Estadual Paulista, Rio Claro, SP 13506-900, Brazil
| | - Luiz A Basso
- Centro de Pesquisas em Biologia Molecular e Funcional, Instituto Nacional de Ciência e Tecnologia em Tuberculose, Pontifícia Universidade Católica do Rio Grande do Sul, Av. Ipiranga 6681, Porto Alegre, RS 90619-900, Brazil
| | - Diógenes S Santos
- Centro de Pesquisas em Biologia Molecular e Funcional, Instituto Nacional de Ciência e Tecnologia em Tuberculose, Pontifícia Universidade Católica do Rio Grande do Sul, Av. Ipiranga 6681, Porto Alegre, RS 90619-900, Brazil
| |
Collapse
|
387
|
Ambur OH, Davidsen T, Frye SA, Balasingham SV, Lagesen K, Rognes T, Tønjum T. Genome dynamics in major bacterial pathogens. FEMS Microbiol Rev 2009; 33:453-70. [PMID: 19396949 PMCID: PMC2734928 DOI: 10.1111/j.1574-6976.2009.00173.x] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Pathogenic bacteria continuously encounter multiple forms of stress in their hostile environments, which leads to DNA damage. With the new insight into biology offered by genome sequences, the elucidation of the gene content encoding proteins provides clues toward understanding the microbial lifestyle related to habitat and niche. Campylobacter jejuni, Haemophilus influenzae, Helicobacter pylori, Mycobacterium tuberculosis, the pathogenic Neisseria, Streptococcus pneumoniae, Streptococcus pyogenes and Staphylococcus aureus are major human pathogens causing detrimental morbidity and mortality at a global scale. An algorithm for the clustering of orthologs was established in order to identify whether orthologs of selected genes were present or absent in the genomes of the pathogenic bacteria under study. Based on the known genes for the various functions and their orthologs in selected pathogenic bacteria, an overview of the presence of the different types of genes was created. In this context, we focus on selected processes enabling genome dynamics in these particular pathogens, namely DNA repair, recombination and horizontal gene transfer. An understanding of the precise molecular functions of the enzymes participating in DNA metabolism and their importance in the maintenance of bacterial genome integrity has also, in recent years, indicated a future role for these enzymes as targets for therapeutic intervention.
Collapse
Affiliation(s)
- Ole Herman Ambur
- Centre for Molecular Biology and Neuroscience, Institute of Microbiology, University of Oslo, Oslo University Hospital, Norway
| | | | | | | | | | | | | |
Collapse
|
388
|
Vordermeier M, Gordon SV, Hewinson ARG. Antigen mining to define Mycobacterium bovis antigens for the differential diagnosis of vaccinated and infected animals: A VLA perspective. Transbound Emerg Dis 2009; 56:240-7. [PMID: 19413883 DOI: 10.1111/j.1865-1682.2009.01070.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The urgency for new and improved cattle vaccines and diagnostic reagents has been acknowledged by the UK Government, and development of cattle vaccine is a research priority. Significant progress has been made to develop specific antigens that allow the differentiation of bacille Calmette-Guerin (BCG) vaccinated and M. bovis-infected cattle [diagnosis of infected from vaccinated individuals (DIVA) test]. This progress has been greatly facilitated by the completion of the genome sequences of Mycobacterium tuberculosis, M. bovis and BCG Pasteur. In this study, we describe how we applied this knowledge, through comparative genome and transcriptome analysis, to define DIVA antigens that complemented the prototype DIVA antigens ESAT-6 and CFP-10 by increasing their test sensitivity. In addition, we draw general conclusions from our experience, and discuss potential future approaches in this area.
Collapse
Affiliation(s)
- M Vordermeier
- Veterinary Laboratories Agency - Weybridge, TB Research Group, New Haw, Surrey, UK.
| | | | | |
Collapse
|
389
|
Hagedorn M, Rohde KH, Russell DG, Soldati T. Infection by tubercular mycobacteria is spread by nonlytic ejection from their amoeba hosts. Science 2009; 323:1729-33. [PMID: 19325115 DOI: 10.1126/science.1169381] [Citation(s) in RCA: 166] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
To generate efficient vaccines and cures for Mycobacterium tuberculosis, we need a far better understanding of its modes of infection, persistence, and spreading. Host cell entry and the establishment of a replication niche are well understood, but little is known about how tubercular mycobacteria exit host cells and disseminate the infection. Using the social amoeba Dictyostelium as a genetically tractable host for pathogenic mycobacteria, we discovered that M. tuberculosis and M. marinum, but not M. avium, are ejected from the cell through an actin-based structure, the ejectosome. This conserved nonlytic spreading mechanism requires a cytoskeleton regulator from the host and an intact mycobacterial ESX-1 secretion system. This insight offers new directions for research into the spreading of tubercular mycobacteria infections in mammalian cells.
Collapse
Affiliation(s)
- Monica Hagedorn
- Département de Biochimie, Faculté des Sciences, Université de Genève, Sciences II, 30 quai Ernest Ansermet, CH-1211 Genève-4, Switzerland
| | | | | | | |
Collapse
|
390
|
Gordon SV, Bottai D, Simeone R, Stinear TP, Brosch R. Pathogenicity in the tubercle bacillus: molecular and evolutionary determinants. Bioessays 2009; 31:378-88. [DOI: 10.1002/bies.200800191] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
391
|
Whole-genome tiling array analysis of Mycobacterium leprae RNA reveals high expression of pseudogenes and noncoding regions. J Bacteriol 2009; 191:3321-7. [PMID: 19286800 DOI: 10.1128/jb.00120-09] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Whole-genome sequence analysis of Mycobacterium leprae has revealed a limited number of protein-coding genes, with half of the genome composed of pseudogenes and noncoding regions. We previously showed that some M. leprae pseudogenes are transcribed at high levels and that their expression levels change following infection. In order to clarify the RNA expression profile of the M. leprae genome, a tiling array in which overlapping 60-mer probes cover the entire 3.3-Mbp genome was designed. The array was hybridized with M. leprae RNA from the SHR/NCrj-rnu nude rat, and the results were compared to results from an open reading frame array and confirmed by reverse transcription-PCR. RNA expression was detected from genes, pseudogenes, and noncoding regions. The signal intensities obtained from noncoding regions were higher than those from pseudogenes. Expressed noncoding regions include the M. leprae unique repetitive sequence RLEP and other sequences without any homology to known functional noncoding RNAs. Although the biological functions of RNA transcribed from M. leprae pseudogenes and noncoding regions are not known, RNA expression analysis will provide insights into the bacteriological significance of the species. In addition, our study suggests that M. leprae will be a useful model organism for the study of the molecular mechanism underlying the creation of pseudogenes and the role of microRNAs derived from noncoding regions.
Collapse
|
392
|
Carlsson F, Joshi SA, Rangell L, Brown EJ. Polar localization of virulence-related Esx-1 secretion in mycobacteria. PLoS Pathog 2009; 5:e1000285. [PMID: 19180234 PMCID: PMC2628743 DOI: 10.1371/journal.ppat.1000285] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2008] [Accepted: 01/05/2009] [Indexed: 11/18/2022] Open
Abstract
The Esx-1 (type VII) secretion system is critical for virulence of both Mycobacterium tuberculosis and Mycobacterium marinum, and is highly conserved between the two species. Despite its importance, there has been no direct visualization of Esx-1 secretion until now. In M. marinum, we show that secretion of Mh3864, a novel Esx-1 substrate that remains partially cell wall–associated after translocation, occurred in polar regions, indicating that Esx-1 secretion takes place in these regions. Analysis of Esx-1 secretion in infected host cells suggested that Esx-1 activity is similarly localized in vivo. A core component of the Esx-1 apparatus, Mh3870, also localized to bacterial poles, showing a preference for new poles with active cell wall peptidoglycan (PGN) synthesis. This work demonstrates that the Esx-1 secretion machine localizes to, and is active at, the bacterial poles. Thus, virulence-related protein secretion is localized in mycobacteria, suggesting new potential therapeutic targets, which are urgently needed. Mycobacteria represent a major human health problem globally, and there is a pressing need to identify novel processes and mechanisms including therapeutic targets. The Esx-1 secretion system is required for both Mycobacterium tuberculosis and Mycobacterium marinum to cause disease, and is absent from vaccine strains such as Mycobacterium bovis BCG. Esx-1 is functionally conserved between M. tuberculosis and the experimentally amenable M. marinum, which is increasingly used to study this secretory system. Bacterial cells are spatially highly organized; in particular, pathogenic bacteria may localize virulence-related protein secretion to specific regions within the cell envelope, a feature that is generally believed to be important for virulence. However, it has not been known whether Esx-1 is compartmentalized. Our work represents the first visualization of protein secretion in mycobacteria in general. Specifically, we show that the Esx-1 apparatus localizes to, and is active at, the bacterial poles in M. marinum. These findings suggest previously unappreciated mechanisms governing localization of protein secretion in mycobacteria, potentially including new therapeutic targets.
Collapse
Affiliation(s)
- Fredric Carlsson
- Department of Microbial Pathogenesis, Genentech Inc., South San Francisco, California, United States of America
- * E-mail: (FC); (EJB)
| | - Shilpa A. Joshi
- Department of Microbial Pathogenesis, Genentech Inc., South San Francisco, California, United States of America
| | - Linda Rangell
- Department of Pathology, Genentech Inc., South San Francisco, California, United States of America
| | - Eric J. Brown
- Department of Microbial Pathogenesis, Genentech Inc., South San Francisco, California, United States of America
- * E-mail: (FC); (EJB)
| |
Collapse
|
393
|
Simeone R, Bottai D, Brosch R. ESX/type VII secretion systems and their role in host-pathogen interaction. Curr Opin Microbiol 2009; 12:4-10. [PMID: 19155186 DOI: 10.1016/j.mib.2008.11.003] [Citation(s) in RCA: 201] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2008] [Revised: 11/24/2008] [Accepted: 11/26/2008] [Indexed: 01/22/2023]
Abstract
The ESX-1 system is responsible for the secretion of the prototypic ESX proteins, namely the 6 kDa early secreted antigenic target (ESAT-6) and the 10 kDa culture filtrate protein (CFP-10). These two proteins, which form a 1:1 heterodimeric complex, are among the most important proteins of Mycobacterium tuberculosis involved in host-pathogen interaction. They induce a strong T cell mediated immune response, are apparently involved in membrane and/or host-cell lysis and represent key virulence factors. There are four other paralogous ESX systems in M. tuberculosis, some of which are essential for in vitro growth. ESX systems also exist in many other actinobacteria and Gram-positive bacteria, and have recently been suggested to be named type VII secretion systems.
Collapse
Affiliation(s)
- Roxane Simeone
- Institut Pasteur, UP Pathogénomique Mycobactérienne Intégrée, 25 Rue du Dr. Roux, 75724 Paris, France
| | | | | |
Collapse
|
394
|
Sala C, Haouz A, Saul FA, Miras I, Rosenkrands I, Alzari PM, Cole ST. Genome-wide regulon and crystal structure of BlaI (Rv1846c) from Mycobacterium tuberculosis. Mol Microbiol 2009; 71:1102-16. [PMID: 19154333 DOI: 10.1111/j.1365-2958.2008.06583.x] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Comparative genomics with Staphylococcus aureus suggested the existence of a regulatory system governing beta-lactamase (BlaC) production in Mycobacterium tuberculosis. The crystal structure of Rv1846c, a winged helix regulator of previously unknown function, was solved thus revealing strong similarity to the BlaI and MecI repressors of S. aureus, which both respond to beta-lactam treatment. Using chromatin immunoprecipitation and hybridization to microarrays (ChIP-on-chip), the Rv1846c regulon was shown to comprise five separate genomic loci. Two of these mediate responses and resistance to beta-lactam antibiotics (rv1845c, rv1846c-rv1847; blaC-sigC); two encode membrane proteins of unknown function (rv1456c, rv3921c) while the last codes for ATP synthase (rv1303-atpBEFHAGDC-rv1312). The ChIP-on-chip findings were confirmed independently using electrophoretic mobility shift assays, DNAse footprinting and transcript analysis leading to Rv1846c being renamed BlaI. When cells were treated with beta-lactams, BlaI was released from its operator sites causing derepression of the regulon and upregulation of ATP synthase transcription. The existence of a potential regulatory loop between cell wall integrity and ATP production was previously unknown.
Collapse
Affiliation(s)
- Claudia Sala
- Global Health Institute, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | | | | | | | | | | | | |
Collapse
|
395
|
Cosma CL, Humbert O, Sherman DR, Ramakrishnan L. Trafficking of superinfecting Mycobacterium organisms into established granulomas occurs in mammals and is independent of the Erp and ESX-1 mycobacterial virulence loci. J Infect Dis 2009; 198:1851-5. [PMID: 18983252 DOI: 10.1086/593175] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Although tuberculous granulomas, which are composed of infected macrophages and other immune cells, have long been considered impermeable structures, recent studies have shown that superinfecting Mycobacterium marinum traffic rapidly to established fish and frog granulomas by host-mediated and Mycobacterium-directed mechanisms. The present study shows that superinfecting Mycobacterium tuberculosis and Mycobacterium bovis bacille Calmette-Guérin similarly home to established granulomas in mice. Furthermore, 2 prominent mycobacterial virulence determinants, Erp and ESX-1, do not affect this cellular trafficking. These findings suggest that homing of infected macrophages to sites of infection is a general feature of the pathogenesis of tuberculosis and has important consequences for therapeutic strategies.
Collapse
Affiliation(s)
- Christine L Cosma
- Departments of Microbiology, University of Washington, Seattle, WA 98195, USA
| | | | | | | |
Collapse
|
396
|
Sebaihia M. Fishy business. Nat Rev Microbiol 2009; 7:9. [DOI: 10.1038/nrmicro2055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
397
|
Käser M, Pluschke G. Differential gene repertoire in Mycobacterium ulcerans identifies candidate genes for patho-adaptation. PLoS Negl Trop Dis 2008; 2:e353. [PMID: 19104652 PMCID: PMC2600814 DOI: 10.1371/journal.pntd.0000353] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2008] [Accepted: 12/02/2008] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Based on large genomic sequence polymorphisms, several haplotypes belonging to two major lineages of the human pathogen Mycobacterium ulcerans could be distinguished among patient isolates from various geographic origins. However, the biological relevance of insertional/deletional diversity is not understood. METHODOLOGY Using comparative genomics, we have investigated the genes located in regions of difference recently identified by DNA microarray based hybridisation analysis. The analysed regions of difference comprise approximately 7% of the entire M. ulcerans genome. PRINCIPAL FINDINGS Several different mechanisms leading to loss of functional genes were identified, ranging from pseudogenization, caused by frame shift mutations or mobile genetic element interspersing, to large sequence polymorphisms. Four hot spot regions for genetic instability were unveiled. Altogether, 229 coding sequences were found to be differentially inactivated, constituting a repertoire of coding sequence variation in the rather monomorphic M. ulcerans. CONCLUSIONS/SIGNIFICANCE The differential gene inactivation patterns associated with the M. ulcerans haplotypes identified candidate genes that may confer enhanced adaptation upon ablation of expression. A number of gene conversions confined to the classical lineage may contribute to particular virulence of this group comprising isolates from Africa and Australia. Identification of this spectrum of anti-virulence gene candidates expands our understanding of the pathogenicity and ecology of the emerging infectious disease Buruli ulcer.
Collapse
|
398
|
Tumor necrosis factor signaling mediates resistance to mycobacteria by inhibiting bacterial growth and macrophage death. Immunity 2008; 29:283-94. [PMID: 18691913 DOI: 10.1016/j.immuni.2008.06.011] [Citation(s) in RCA: 266] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2008] [Revised: 04/29/2008] [Accepted: 06/02/2008] [Indexed: 11/24/2022]
Abstract
Tumor necrosis factor (TNF), a key effector in controlling tuberculosis, is thought to exert protection by directing formation of granulomas, organized aggregates of macrophages and other immune cells. Loss of TNF signaling causes progression of tuberculosis in humans, and the increased mortality of Mycobacterium tuberculosis-infected mice is associated with disorganized necrotic granulomas, although the precise roles of TNF signaling preceding this endpoint remain undefined. We monitored transparent Mycobacterium marinum-infected zebrafish live to conduct a stepwise dissection of how TNF signaling operates in mycobacterial pathogenesis. We found that loss of TNF signaling caused increased mortality even when only innate immunity was operant. In the absence of TNF, intracellular bacterial growth and granuloma formation were accelerated and was followed by necrotic death of overladen macrophages and granuloma breakdown. Thus, TNF is not required for tuberculous granuloma formation, but maintains granuloma integrity indirectly by restricting mycobacterial growth within macrophages and preventing their necrosis.
Collapse
|
399
|
Sequence and analysis of a plasmid-encoded mercury resistance operon from Mycobacterium marinum identifies MerH, a new mercuric ion transporter. J Bacteriol 2008; 191:439-44. [PMID: 18931130 PMCID: PMC2612448 DOI: 10.1128/jb.01063-08] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In this study, we report the DNA sequence and biological analysis of a mycobacterial mercury resistance operon encoding a novel Hg(2+) transporter. MerH was found to transport mercuric ions in Escherichia coli via a pair of essential cysteine residues but only when coexpressed with the mercuric reductase.
Collapse
|
400
|
Abstract
Mycobacterium tuberculosis (Mtb) requires an alternative protein secretion system, ESX1, for virulence. Recently, Raghavan et al. (2008) reported a new regulatory circuit that may explain how ESX1 activity is controlled during infection. Mtb appears to regulate ESX1 by modulating transcription of associated genes rather than structural components of the secretion system itself.
Collapse
|