351
|
Flynn JM, Czerwieniec GA, Choi SW, Day NU, Gibson BW, Hubbard A, Melov S. Proteogenomics of synaptosomal mitochondrial oxidative stress. Free Radic Biol Med 2012; 53:1048-60. [PMID: 22796328 PMCID: PMC3436120 DOI: 10.1016/j.freeradbiomed.2012.07.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2011] [Revised: 07/03/2012] [Accepted: 07/05/2012] [Indexed: 12/13/2022]
Abstract
Oxidative stress is frequently implicated in the pathology of neurodegenerative disease. The chief source of this stress is mitochondrial respiration, via the passage of reducing equivalents through the respiratory chain resulting in a small but potentially pathological production of superoxide. The superoxide that is produced during normal respiration is primarily detoxified within the mitochondria by superoxide dismutase 2 (Sod2), a key protein for maintaining mitochondrial function. Mitochondria are distributed throughout the soma of neurons, as well as along neuronal processes and at the synaptic terminus. This distribution of potentially independent mitochondria throughout the neuron, at distinct subcellular locations, allows for the possibility of regional subcellular deficits in mitochondrial function. There has been increasing interest in the quantification and characterization of messages and proteins at the synapse, because of its importance in neurodegenerative disease, most notably Alzheimer disease. Here, we report the transcriptomic and proteomic changes that occur in synaptosomes from frontal cortices of Sod2 null mice. Constitutively Sod2 null mice were differentially dosed with the synthetic catalytic antioxidant EUK-189, which can extend the life span of these mice, as well as uncovering or preventing neurodegeneration due to endogenous oxidative stress. This approach facilitated insight into the quantification of trafficked messages and proteins to the synaptosome. We used two complementary methods to investigate the nature of the synaptosome under oxidative stress: either whole-genome gene expression microarrays or mass spectrometry-based proteomics using isobaric tagging for relative and absolute quantitation of proteins. We characterized the relative enrichment of gene ontologies at both gene and protein expression levels that occurs from mitochondrial oxidative stress in the synaptosome, which may lead to new avenues of investigation in understanding the regulation of synaptic function in normal and diseased states. As a result of using these approaches, we report for the first time an activation of the mTOR pathway in synaptosomes isolated from Sod2 null mice, confirmed by an upregulation of the phosphorylation of 4E-BP1.
Collapse
Affiliation(s)
- James M Flynn
- Buck Institute for Research on Aging, Novato, CA 94945, USA
| | | | | | | | | | | | | |
Collapse
|
352
|
Yeom J, Park W. Pleiotropic effects of the mioC mutation on the physiology of Pseudomonas aeruginosa PAO1. FEMS Microbiol Lett 2012; 335:47-57. [PMID: 22827587 DOI: 10.1111/j.1574-6968.2012.02643.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2012] [Revised: 06/26/2012] [Accepted: 07/09/2012] [Indexed: 11/27/2022] Open
Abstract
Flavodoxin (Fld) is a bacterial electron-transfer protein that possesses flavin mononucleotide as a prosthetic group. In the genomes of the Pseudomonas species, the mioC gene is the sole gene, annotated Fld, but its function remains unclear. In this study, phenotype microarray analysis was performed using the wild-type and mioC mutant of pathogenic Pseudomonas aeruginosa PAO1. Our results showed that the mioC mutant is very resistant to oxidative stress. Different antibiotics and metals worked differently on the sensitivity of the mutant. Other pleiotropic effects of mutation in the mioC gene, such as biofilm formation, aggregation ability, motility and colony morphology, were observed under iron stress conditions. Most of the phenotypic and physiological changes could be recovered in the wild type by complementation. Mutation of the mioC gene also influenced the production of pigments. The mioC mutant and mioC over-expressed complementation cells, over-produced pyocyanin and pyoverdine, respectively. Various secreted chemicals were also changed in the mutant, which was confirmed by (1) H NMR analysis. Interestingly, physiological alterations of the mutant strain were restored by the cell-free supernatant of the wild type. The present study demonstrates that the mioC gene plays an important role in the physiology of P. aeruginosa and might be considered as a suitable drug target candidate in pathogenic P. aeruginosa.
Collapse
Affiliation(s)
- Jinki Yeom
- Department of Environmental Science and Ecological Engineering, Korea University, Seoul, Korea
| | | |
Collapse
|
353
|
Alhebshi A, Sideri TC, Holland SL, Avery SV. The essential iron-sulfur protein Rli1 is an important target accounting for inhibition of cell growth by reactive oxygen species. Mol Biol Cell 2012; 23:3582-90. [PMID: 22855532 PMCID: PMC3442406 DOI: 10.1091/mbc.e12-05-0413] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Reactive oxygen species (ROS) are linked to various degenerative conditions, but it is unclear which molecular target(s) may be the cell's primary “Achilles’ heel,” accounting for inhibition by ROS. Our results indicate that the FeS protein Rli1p, with essential and conserved functions in protein synthesis, is an important target of ROS toxicity. Oxidative stress mediated by reactive oxygen species (ROS) is linked to degenerative conditions in humans and damage to an array of cellular components. However, it is unclear which molecular target(s) may be the primary “Achilles’ heel” of organisms, accounting for the inhibitory action of ROS. Rli1p (ABCE1) is an essential and highly conserved protein of eukaryotes and archaea that requires notoriously ROS-labile cofactors (Fe-S clusters) for its functions in protein synthesis. In this study, we tested the hypothesis that ROS toxicity is caused by Rli1p dysfunction. In addition to being essential, Rli1p activity (in nuclear ribosomal-subunit export) was shown to be impaired by mild oxidative stress in yeast. Furthermore, prooxidant resistance was decreased by RLI1 repression and increased by RLI1 overexpression. This Rlip1 dependency was abolished during anaerobicity and accentuated in cells expressing a FeS cluster–defective Rli1p construct. The protein's FeS clusters appeared ROS labile during in vitro incubations, but less so in vivo. Instead, it was primarily 55FeS-cluster supply to Rli1p that was defective in prooxidant-exposed cells. The data indicate that, owing to its essential nature but dependency on ROS-labile FeS clusters, Rli1p function is a primary target of ROS action. Such insight could help inform new approaches for combating oxidative stress–related disease.
Collapse
Affiliation(s)
- Alawiah Alhebshi
- School of Biology, University of Nottingham, Nottingham, United Kingdom
| | | | | | | |
Collapse
|
354
|
Hong G, Pachter R. Inhibition of biocatalysis in [Fe-Fe] hydrogenase by oxygen: molecular dynamics and density functional theory calculations. ACS Chem Biol 2012; 7:1268-75. [PMID: 22563793 DOI: 10.1021/cb3001149] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Designing O(2)-tolerant hydrogenases is a major challenge in applying [Fe-Fe]H(2)ases for H(2) production. The inhibition involves transport of oxygen through the enzyme to the H-cluster, followed by binding and subsequent deactivation of the active site. To explore the nature of the oxygen diffusion channel for the hydrogenases from Desulfovibrio desulfuricans (Dd) and Clostridium pasteurianum (Cp), empirical molecular dynamics simulations were performed. The dynamic nature of the oxygen pathways in Dd and Cp was elucidated, and insight is provided, in part, into the experimental observation on the difference of oxygen inhibition in Dd and the hydrogenase from Clostridium acetobutylicum (Ca, assumed homologous to Cp). Further, to gain an understanding of the mechanism of oxygen inhibition of the [Fe-Fe]H(2)ase, density functional theory calculations of model compounds composed of the H-cluster and proximate amino acids are reported. Confirmation of the experimentally based suppositions on inactivation by oxygen at the [2Fe](H) domain is provided, validating the model compounds used and oxidation state assumptions, further explaining the mode of damage. This unified approach provides insight into oxygen diffusion in the enzyme, followed by deactivation at the H-cluster.
Collapse
Affiliation(s)
- Gongyi Hong
- Air Force Research Laboratory, Wright-Patterson Air Force Base, Ohio 45433,
United States
- General Dynamics Information Technology, Inc., Dayton, Ohio 45433, United
States
| | - Ruth Pachter
- Air Force Research Laboratory, Wright-Patterson Air Force Base, Ohio 45433,
United States
| |
Collapse
|
355
|
Lodeyro AF, Ceccoli RD, Pierella Karlusich JJ, Carrillo N. The importance of flavodoxin for environmental stress tolerance in photosynthetic microorganisms and transgenic plants. Mechanism, evolution and biotechnological potential. FEBS Lett 2012; 586:2917-24. [PMID: 22819831 DOI: 10.1016/j.febslet.2012.07.026] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2012] [Revised: 07/06/2012] [Accepted: 07/09/2012] [Indexed: 10/28/2022]
Abstract
Ferredoxins are electron shuttles harboring iron-sulfur clusters which participate in oxido-reductive pathways in organisms displaying very different lifestyles. Ferredoxin levels decline in plants and cyanobacteria exposed to environmental stress and iron starvation. Flavodoxin is an isofunctional flavoprotein present in cyanobacteria and algae (not plants) which is induced and replaces ferredoxin under stress. Expression of a chloroplast-targeted flavodoxin in plants confers tolerance to multiple stresses and iron deficit. We discuss herein the bases for functional equivalence between the two proteins, the reasons for ferredoxin conservation despite its susceptibility to aerobic stress and for the loss of flavodoxin as an adaptive trait in higher eukaryotes. We also propose a mechanism to explain the tolerance conferred by flavodoxin when expressed in plants.
Collapse
Affiliation(s)
- Anabella F Lodeyro
- Instituto de Biología Molecular y Celular de Rosario (IBR-CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, S2002LRK Rosario, Argentina
| | | | | | | |
Collapse
|
356
|
Rouault TA. Biogenesis of iron-sulfur clusters in mammalian cells: new insights and relevance to human disease. Dis Model Mech 2012; 5:155-64. [PMID: 22382365 PMCID: PMC3291637 DOI: 10.1242/dmm.009019] [Citation(s) in RCA: 247] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Iron-sulfur (Fe-S) clusters are ubiquitous cofactors composed of iron and inorganic sulfur. They are required for the function of proteins involved in a wide range of activities, including electron transport in respiratory chain complexes, regulatory sensing, photosynthesis and DNA repair. The proteins involved in the biogenesis of Fe-S clusters are evolutionarily conserved from bacteria to humans, and many insights into the process of Fe-S cluster biogenesis have come from studies of model organisms, including bacteria, fungi and plants. It is now clear that several rare and seemingly dissimilar human diseases are attributable to defects in the basic process of Fe-S cluster biogenesis. Although these diseases –which include Friedreich’s ataxia (FRDA), ISCU myopathy, a rare form of sideroblastic anemia, an encephalomyopathy caused by dysfunction of respiratory chain complex I and multiple mitochondrial dysfunctions syndrome – affect different tissues, a feature common to many of them is that mitochondrial iron overload develops as a secondary consequence of a defect in Fe-S cluster biogenesis. This Commentary outlines the basic steps of Fe-S cluster biogenesis as they have been defined in model organisms. In addition, it draws attention to refinements of the process that might be specific to the subcellular compartmentalization of Fe-S cluster biogenesis proteins in some eukaryotes, including mammals. Finally, it outlines several important unresolved questions in the field that, once addressed, should offer important clues into how mitochondrial iron homeostasis is regulated, and how dysfunction in Fe-S cluster biogenesis can contribute to disease.
Collapse
Affiliation(s)
- Tracey A Rouault
- National Institute of Child Health and Human Development, Bethesda, MD 20892, USA.
| |
Collapse
|
357
|
Inactivation of a single gene enables microaerobic growth of the obligate anaerobe Bacteroides fragilis. Proc Natl Acad Sci U S A 2012; 109:12153-8. [PMID: 22778399 DOI: 10.1073/pnas.1203796109] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Bacteroides fragilis can replicate in atmospheres containing ≤0.05% oxygen, but higher concentrations arrest growth by an unknown mechanism. Here we show that inactivation of a single gene, oxe (i.e., oxygen enabled) in B. fragilis allows for growth in concentrations as high as 2% oxygen while increasing the tolerance of this organism to room air. Known components of the oxidative stress response including the ahpC, kat, batA-E, and tpx genes were not individually important for microaerobic growth. However, a Δoxe strain scavenged H(2)O(2) at a faster rate than WT, indicating that reactive oxygen species may play a critical role in limiting growth of this organism to low-oxygen environments. Clinical isolates of B. fragilis displayed a greater capacity for growth under microaerobic conditions than fecal isolates, with some encoding polymorphisms in oxe. Additionally, isolation of oxygen-enabled mutants of Bacteroides thetaiotaomicron suggests that Oxe may mediate growth arrest of other anaerobes in oxygenated environments.
Collapse
|
358
|
Yeom J, Lee Y, Park W. ATP-dependent RecG helicase is required for the transcriptional regulator OxyR function in Pseudomonas species. J Biol Chem 2012; 287:24492-504. [PMID: 22621928 DOI: 10.1074/jbc.m112.356964] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The oxyR gene appears to reside in an operon with the recG helicase gene in many bacteria, including pathogenic Pseudomonas aeruginosa and Pseudomonas putida. Analysis of P. putida transcriptomes shows that many OxyR-controlled genes are regulated by the ATP-dependent RecG helicase and that RecG alone modulates the expression of many genes. We found that purified RecG binds to the promoters of many OxyR-controlled genes and that expression of these genes was not induced under conditions of oxidative stress in recG mutants of P. aeruginosa, P. putida, and Escherichia coli. In vitro data revealed that promoters containing palindromic sequences are essential for RecG binding and that single-strand binding proteins and ATP are also needed for RecG to promote transcription, whereas a magnesium ion has the opposite effect. The OxyR tetramer preferentially binds to promoters after RecG has generated linear DNA in the presence of ATP; otherwise, the OxyR dimer has higher affinity. This study provides new insights into the mechanism of bacterial transcription by demonstrating that RecG might be required for the induction of the OxyR regulon by unwinding palindromic DNA for transcription. This work describes a novel bacterial transcriptional function by RecG helicase with OxyR and may provide new targets for controlling Pseudomonas species pathogen.
Collapse
Affiliation(s)
- Jinki Yeom
- Department of Environmental Science and Ecological Engineering, Korea University, Seoul 136-713, Korea
| | | | | |
Collapse
|
359
|
Martin DW, Baumgartner JE, Gee JM, Anderson ES, Roop RM. SodA is a major metabolic antioxidant in Brucella abortus 2308 that plays a significant, but limited, role in the virulence of this strain in the mouse model. MICROBIOLOGY-SGM 2012; 158:1767-1774. [PMID: 22556360 DOI: 10.1099/mic.0.059584-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The gene designated BAB1_0591 in the Brucella abortus 2308 genome sequence encodes the manganese-cofactored superoxide dismutase SodA. An isogenic sodA mutant derived from B. abortus 2308, designated JB12, displays a small colony phenotype, increased sensitivity in vitro to endogenous superoxide generators, hydrogen peroxide and exposure to acidic pH, and a lag in growth when cultured in rich and minimal media that can be rescued by the addition of all 20 amino acids to the growth medium. B. abortus JB12 exhibits significant attenuation in both cultured murine macrophages and experimentally infected mice, but this attenuation is limited to the early stages of infection. Addition of the NADPH oxidase inhibitor apocynin to infected macrophages does not alleviate the attenuation exhibited by JB12, suggesting that the basis for the attenuation of the B. abortus sodA mutant is not an increased sensitivity to exogenous superoxide generated through the oxidative burst of host phagocytes. It is possible, however, that the increased sensitivity of the B. abortus sodA mutant to acid makes it less resistant than the parental strain to killing by the low pH encountered during the early stages of the development of the brucella-containing vacuoles in macrophages. These experimental findings support the proposed role for SodA as a major cytoplasmic antioxidant in brucella. Although this enzyme provides a clear benefit to B. abortus 2308 during the early stages of infection in macrophages and mice, SodA appears to be dispensable once the brucellae have established an infection.
Collapse
Affiliation(s)
- Daniel W Martin
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, North Carolina 27834, USA
| | - John E Baumgartner
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, North Carolina 27834, USA
| | - Jason M Gee
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, North Carolina 27834, USA
| | - Eric S Anderson
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, North Carolina 27834, USA
| | - R Martin Roop
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, North Carolina 27834, USA
| |
Collapse
|
360
|
Liu Y, Beer LL, Whitman WB. Methanogens: a window into ancient sulfur metabolism. Trends Microbiol 2012; 20:251-8. [PMID: 22406173 DOI: 10.1016/j.tim.2012.02.002] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2011] [Revised: 01/29/2012] [Accepted: 02/06/2012] [Indexed: 11/26/2022]
Abstract
Methanogenesis is an ancient metabolism that originated on the early anoxic Earth. The buildup of O(2) about 2.4 billion years ago led to formation of a large oceanic sulfate pool, the onset of widespread sulfate reduction and the marginalization of methanogens to anoxic and sulfate-poor niches. Contemporary methanogens are restricted to anaerobic habitats and may have retained some metabolic relics that were common in early anaerobic life. Consistent with this hypothesis, methanogens do not utilize sulfate as a sulfur source, Cys is not utilized as a sulfur donor for Fe-S cluster and Met biosynthesis, and Cys biosynthesis uses an unusual tRNA-dependent pathway.
Collapse
Affiliation(s)
- Yuchen Liu
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA
| | | | | |
Collapse
|
361
|
Bar-Even A, Noor E, Milo R. A survey of carbon fixation pathways through a quantitative lens. JOURNAL OF EXPERIMENTAL BOTANY 2012; 63:2325-42. [PMID: 22200662 DOI: 10.1093/jxb/err417] [Citation(s) in RCA: 148] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
While the reductive pentose phosphate cycle is responsible for the fixation of most of the carbon in the biosphere, it has several natural substitutes. In fact, due to the characterization of three new carbon fixation pathways in the last decade, the diversity of known metabolic solutions for autotrophic growth has doubled. In this review, the different pathways are analysed and compared according to various criteria, trying to connect each of the different metabolic alternatives to suitable environments or metabolic goals. The different roles of carbon fixation are discussed; in addition to sustaining autotrophic growth it can also be used for energy conservation and as an electron sink for the recycling of reduced electron carriers. Our main focus in this review is on thermodynamic and kinetic aspects, including thermodynamically challenging reactions, the ATP requirement of each pathway, energetic constraints on carbon fixation, and factors that are expected to limit the rate of the pathways. Finally, possible metabolic structures of yet unknown carbon fixation pathways are suggested and discussed.
Collapse
Affiliation(s)
- Arren Bar-Even
- Department of Plant Sciences, The Weizmann Institute of Science, Rehovot 76100, Israel
| | | | | |
Collapse
|
362
|
Völlmecke C, Drees SL, Reimann J, Albers SV, Lübben M. The ATPases CopA and CopB both contribute to copper resistance of the thermoacidophilic archaeon Sulfolobus solfataricus. MICROBIOLOGY-SGM 2012; 158:1622-1633. [PMID: 22361944 DOI: 10.1099/mic.0.055905-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Certain heavy metal ions such as copper and zinc serve as essential cofactors of many enzymes, but are toxic at high concentrations. Thus, intracellular levels have to be subtly balanced. P-type ATPases of the P(IB)-subclass play a major role in metal homeostasis. The thermoacidophile Sulfolobus solfataricus possesses two P(IB)-ATPases named CopA and CopB. Both enzymes are present in cells grown in copper-depleted medium and are accumulated upon an increase in the external copper concentration. We studied the physiological roles of both ATPases by disrupting genes copA and copB. Neither of them affected the sensitivity of S. solfataricus to reactive oxygen species, nor were they a strict prerequisite to the biosynthesis of the copper protein cytochrome oxidase. Deletion mutant analysis demonstrated that CopA is an effective copper pump at low and high copper concentrations. CopB appeared to be a low-affinity copper export ATPase, which was only relevant if the media copper concentration was exceedingly high. CopA and CopB thus act as resistance factors to copper ions at overlapping concentrations. Moreover, growth tests on solid media indicated that both ATPases are involved in resistance to silver.
Collapse
Affiliation(s)
- Christian Völlmecke
- Lehrstuhl für Biophysik, Ruhr-Universität Bochum, Universitätsstr. 150, D-44780 Bochum, Germany
| | - Steffen L Drees
- Lehrstuhl für Biophysik, Ruhr-Universität Bochum, Universitätsstr. 150, D-44780 Bochum, Germany
| | - Julia Reimann
- Molecular Biology of Archaea, MPI für Terrestrische Mikrobiologie, Marburg, Karl-von-Frisch-Straße 10, D-35043 Marburg, Germany
| | - Sonja-Verena Albers
- Molecular Biology of Archaea, MPI für Terrestrische Mikrobiologie, Marburg, Karl-von-Frisch-Straße 10, D-35043 Marburg, Germany
| | - Mathias Lübben
- Lehrstuhl für Biophysik, Ruhr-Universität Bochum, Universitätsstr. 150, D-44780 Bochum, Germany
| |
Collapse
|
363
|
Hackenberg C, Huege J, Engelhardt A, Wittink F, Laue M, Matthijs HCP, Kopka J, Bauwe H, Hagemann M. Low-carbon acclimation in carboxysome-less and photorespiratory mutants of the cyanobacterium Synechocystis sp. strain PCC 6803. Microbiology (Reading) 2012; 158:398-413. [DOI: 10.1099/mic.0.054544-0] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Affiliation(s)
- Claudia Hackenberg
- Universität Rostock, Institut für Biowissenschaften, Pflanzenphysiologie, Albert-Einstein-Str. 3, D-18059 Rostock, Germany
| | - Jan Huege
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, D-14476 Golm, Germany
| | - Annerose Engelhardt
- Universität Rostock, Institut für Biowissenschaften, Pflanzenphysiologie, Albert-Einstein-Str. 3, D-18059 Rostock, Germany
| | - Floyd Wittink
- Microarray Department, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098XH Amsterdam, The Netherlands
| | - Michael Laue
- Universität Rostock, Institut für Pathologie, Elektronenmikroskopisches Zentrum, Strempelstr. 14, D-18055 Rostock, Germany
| | - Hans C. P. Matthijs
- Institute for Biodiversity and Ecosystem Dynamics (IBED), University of Amsterdam, Science Park 904, 1098XH Amsterdam, The Netherlands
| | - Joachim Kopka
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, D-14476 Golm, Germany
| | - Hermann Bauwe
- Universität Rostock, Institut für Biowissenschaften, Pflanzenphysiologie, Albert-Einstein-Str. 3, D-18059 Rostock, Germany
| | - Martin Hagemann
- Universität Rostock, Institut für Biowissenschaften, Pflanzenphysiologie, Albert-Einstein-Str. 3, D-18059 Rostock, Germany
| |
Collapse
|
364
|
Physiology of resistant Deinococcus geothermalis bacterium aerobically cultivated in low-manganese medium. J Bacteriol 2012; 194:1552-61. [PMID: 22228732 DOI: 10.1128/jb.06429-11] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
This dynamic proteome study describes the physiology of growth and survival of Deinococcus geothermalis, in conditions simulating paper machine waters being aerobic, warm, and low in carbon and manganese. The industrial environment of this species differs from its natural habitats, geothermal springs and deep ocean subsurfaces, by being highly exposed to oxygen. Quantitative proteome analysis using two-dimensional gel electrophoresis and bioinformatic tools showed expression change for 165 proteins, from which 47 were assigned to a function. We propose that D. geothermalis grew and survived in aerobic conditions by channeling central carbon metabolism to pathways where mainly NADPH rather than NADH was retrieved from the carbon source. A major part of the carbon substrate was converted into succinate, which was not a fermentation product but likely served combating reactive oxygen species (ROS). Transition from growth to nongrowth resulted in downregulation of the oxidative phosphorylation observed as reduced expression of V-type ATPase responsible for ATP synthesis in D. geothermalis. The battle against oxidative stress was seen as upregulation of superoxide dismutase (Mn dependent) and catalase, as well as several protein repair enzymes, including FeS cluster assembly proteins of the iron-sulfur cluster assembly protein system, peptidylprolyl isomerase, and chaperones. Addition of soluble Mn reinitiated respiration and proliferation with concomitant acidification, indicating that aerobic metabolism was restricted by access to manganese. We conclude that D. geothermalis prefers to combat ROS using manganese-dependent enzymes, but when manganese is not available central carbon metabolism is used to produce ROS neutralizing metabolites at the expense of high utilization of carbon substrate.
Collapse
|
365
|
Kallas T. Cytochrome b 6 f Complex at the Heart of Energy Transduction and Redox Signaling. PHOTOSYNTHESIS 2012. [DOI: 10.1007/978-94-007-1579-0_21] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
366
|
White MF, Dillingham MS. Iron-sulphur clusters in nucleic acid processing enzymes. Curr Opin Struct Biol 2011; 22:94-100. [PMID: 22169085 DOI: 10.1016/j.sbi.2011.11.004] [Citation(s) in RCA: 113] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2011] [Revised: 11/15/2011] [Accepted: 11/16/2011] [Indexed: 12/25/2022]
Abstract
Several unexpected reports of iron-sulphur clusters in nucleic acid binding proteins have recently appeared in the literature. Once thought to be relatively rare in these systems, iron-sulphur clusters are now known to be essential components of diverse nucleic acid processing machinery including glycosylases, primases, helicases, nucleases, transcription factors, RNA polymerases and RNA methyltransferases. In many cases, the function of the cluster is poorly understood and crystal structures of these iron-sulphur enzymes reveal little in common between them. In this article, we review the recent developments in the field and discuss to what extent there might exist common mechanistic roles for iron-sulphur clusters in nucleic acid enzymes.
Collapse
Affiliation(s)
- Malcolm F White
- Biomedical Sciences Research Complex, University of St Andrews, North Haugh, St Andrews, Fife KY16 9ST, UK.
| | | |
Collapse
|
367
|
van der Veen S, Abee T. Generation of variants in Listeria monocytogenes continuous-flow biofilms is dependent on radical-induced DNA damage and RecA-mediated repair. PLoS One 2011; 6:e28590. [PMID: 22163039 PMCID: PMC3230620 DOI: 10.1371/journal.pone.0028590] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2011] [Accepted: 11/11/2011] [Indexed: 12/31/2022] Open
Abstract
The food-borne pathogen Listeria monocytogenes is a Gram-positive microaerophilic facultative anaerobic rod and the causative agent of the devastating disease listeriosis. L. monocytogenes is able to form biofilms in the food processing environment. Since biofilms are generally hard to eradicate, they can function as a source for food contamination. In several occasions biofilms have been identified as a source for genetic variability, which potentially can result in adaptation of strains to food processing or clinical conditions. However, nothing is known about mutagenesis in L. monocytogenes biofilms and the possible mechanisms involved. In this study, we showed that the generation of genetic variants was specifically induced in continuous-flow biofilms of L. monocytogenes, but not in static biofilms. Using specific dyes and radical inhibitors, we showed that the formation of superoxide and hydroxyl radicals was induced in continuous-flow biofilms, which was accompanied with in an increase in DNA damage. Promoter reporter studies showed that recA, which is an important component in DNA repair and the activator of the SOS response, is activated in continuous-flow biofilms and that activation was dependent on radical-induced DNA damage. Furthermore, continuous-flow biofilm experiments using an in-frame recA deletion mutant verified that RecA is required for induced generation of genetic variants. Therefore, we can conclude that generation of genetic variants in L. monocytogenes continuous-flow biofilms results from radical-induced DNA damage and RecA-mediated mutagenic repair of the damaged DNA.
Collapse
Affiliation(s)
- Stijn van der Veen
- Top Institute Food and Nutrition (TIFN), Wageningen, The Netherlands
- Laboratory of Food Microbiology, Wageningen University and Research Centre, Wageningen, The Netherlands
| | - Tjakko Abee
- Top Institute Food and Nutrition (TIFN), Wageningen, The Netherlands
- Laboratory of Food Microbiology, Wageningen University and Research Centre, Wageningen, The Netherlands
- * E-mail:
| |
Collapse
|
368
|
Abstract
Campylobacter jejuni is a leading food-borne pathogen causing gastroenteritis in humans. Although OxyR is a widespread oxidative stress regulator in many Gram-negative bacteria, C. jejuni lacks OxyR and instead possesses the metalloregulator PerR. Despite the important role played by PerR in oxidative stress defense, little is known about the factors influencing perR expression in C. jejuni. In this study, a perR promoter-lacZ fusion assay demonstrated that iron significantly reduced the level of perR transcription, whereas other metal ions, such as copper, cobalt, manganese, and zinc, did not affect perR transcription. Notably, a perR mutation substantially increased the level of perR transcription and in trans complementation restored the transcriptional changes, suggesting perR is transcriptionally autoregulated in C. jejuni. In the perR mutant, iron did not repress perR transcription, indicating the iron dependence of perR expression results from perR autoregulation. Electrophoretic mobility shift assays showed that PerR binds to the perR promoter, and DNase I footprinting assays identified a PerR binding site overlapping the -35 region of the two perR promoters, further supporting perR autoregulation at the transcriptional level. Alignment of the PerR binding sequence in the perR promoter with the regulatory region of other PerR regulon genes of C. jejuni revealed a 16-bp consensus PerR binding sequence, which shares high similarities to the Bacillus subtilis PerR box. The results of this study demonstrated that PerR directly interacts with the perR promoter and regulates perR transcription and that perR autoregulation is responsible for the repression of perR transcription by iron in C. jejuni.
Collapse
|
369
|
Abstract
Everything should be as simple as it can be, but not simpler. —Attributed to Albert Einstein (1)
Reactive oxygen species (ROS) are produced by host phagocytes and exert antimicrobial actions against a broad range of pathogens. The observable antimicrobial actions of ROS are highly dependent on experimental conditions. This perspective reviews recent controversies regarding ROS in Salmonella-phagocyte interactions and attempts to reconcile conflicting observations from different laboratories.
Collapse
|
370
|
Kim JYH, Jo BH, Cha HJ. Production of biohydrogen by heterologous expression of oxygen-tolerant Hydrogenovibrio marinus [NiFe]-hydrogenase in Escherichia coli. J Biotechnol 2011; 155:312-9. [PMID: 21794837 DOI: 10.1016/j.jbiotec.2011.07.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2011] [Revised: 07/05/2011] [Accepted: 07/11/2011] [Indexed: 11/15/2022]
Abstract
Oxygen sensitivity of hydrogenase is a critical issue in efficient biological hydrogen production. In the present study, oxygen-tolerant [NiFe]-hydrogenase from the marine bacterium, Hydrogenovibrio marinus, was heterologously expressed in Escherichia coli, for the first time. Recombinant E. coli BL21 expressing H. marinus [NiFe]-hydrogenase actively produced hydrogen, but the parent strain did not. Recombinant H. marinus hydrogenase required both nickel and iron for biological activity. Compared to the recombinant E. coli [NiFe]-hydrogenase 1 described in our previous report, recombinant H. marinus [NiFe]-hydrogenase displayed 1.6- to 1.7-fold higher hydrogen production activity in vitro. Importantly, H. marinus [NiFe]-hydrogenase exhibited relatively good oxygen tolerance in analyses involving changes of surface aeration and oxygen proportion within a gas mixture. Specifically, recombinant H. marinus [NiFe]-hydrogenase produced ∼7- to 9-fold more hydrogen than did E. coli [NiFe]-hydrogenase 1 in a gaseous environment containing 5-10% (v/v) oxygen. In addition, purified H. marinus [NiFe]-hydrogenase displayed a hydrogen evolution activity of ∼28.8 nmol H₂/(minmg protein) under normal aerobic purification conditions. Based on these results, we suggest that oxygen-tolerant H. marinus [NiFe]-hydrogenase can be employed for in vivo and in vitro biohydrogen production without requirement for strictly anaerobic facilities.
Collapse
Affiliation(s)
- Jaoon Y H Kim
- Department of Chemical Engineering, Pohang University of Science and Technology, Pohang 790-784, Republic of Korea
| | | | | |
Collapse
|
371
|
Abstract
Deinococcus radiodurans is a robust bacterium best known for its capacity to repair massive DNA damage efficiently and accurately. It is extremely resistant to many DNA-damaging agents, including ionizing radiation and UV radiation (100 to 295 nm), desiccation, and mitomycin C, which induce oxidative damage not only to DNA but also to all cellular macromolecules via the production of reactive oxygen species. The extreme resilience of D. radiodurans to oxidative stress is imparted synergistically by an efficient protection of proteins against oxidative stress and an efficient DNA repair mechanism, enhanced by functional redundancies in both systems. D. radiodurans assets for the prevention of and recovery from oxidative stress are extensively reviewed here. Radiation- and desiccation-resistant bacteria such as D. radiodurans have substantially lower protein oxidation levels than do sensitive bacteria but have similar yields of DNA double-strand breaks. These findings challenge the concept of DNA as the primary target of radiation toxicity while advancing protein damage, and the protection of proteins against oxidative damage, as a new paradigm of radiation toxicity and survival. The protection of DNA repair and other proteins against oxidative damage is imparted by enzymatic and nonenzymatic antioxidant defense systems dominated by divalent manganese complexes. Given that oxidative stress caused by the accumulation of reactive oxygen species is associated with aging and cancer, a comprehensive outlook on D. radiodurans strategies of combating oxidative stress may open new avenues for antiaging and anticancer treatments. The study of the antioxidation protection in D. radiodurans is therefore of considerable potential interest for medicine and public health.
Collapse
|
372
|
Kern M, Volz J, Simon J. The oxidative and nitrosative stress defence network of Wolinella succinogenes: cytochrome c nitrite reductase mediates the stress response to nitrite, nitric oxide, hydroxylamine and hydrogen peroxide. Environ Microbiol 2011; 13:2478-94. [PMID: 21672122 DOI: 10.1111/j.1462-2920.2011.02520.x] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Microorganisms employ diverse mechanisms to withstand physiological stress conditions exerted by reactive or toxic oxygen and nitrogen species such as hydrogen peroxide, organic hydroperoxides, superoxide anions, nitrite, hydroxylamine, nitric oxide or NO-generating compounds. This study identified components of the oxidative and nitrosative stress defence network of Wolinella succinogenes, an exceptional Epsilonproteobacterium that lacks both catalase and haemoglobins. Various gene deletion-insertion mutants were constructed, grown by either fumarate respiration or respiratory nitrate ammonification and subjected to disc diffusion, growth and viability assays under stress conditions. It was demonstrated that mainly two periplasmic multihaem c-type cytochromes, namely cytochrome c peroxidase and cytochrome c nitrite reductase (NrfA), mediated resistance to hydrogen peroxide. Two AhpC-type peroxiredoxin isoenzymes were shown to be involved in protection against different organic hydroperoxides. The phenotypes of two superoxide dismutase mutants lacking either SodB or SodB2 implied that both isoenzymes play important roles in oxygen and superoxide stress defence although they are predicted to reside in the cytoplasm and periplasm respectively. NrfA and a cytoplasmic flavodiiron protein (Fdp) were identified as key components of nitric oxide detoxification. In addition, NrfA (but not the hybrid cluster protein Hcp) was found to mediate resistance to hydroxylamine stress. The results indicate the presence of a robust oxidative and nitrosative stress defence network and identify NrfA as a multifunctional cytochrome c involved in both anaerobic respiration and stress protection.
Collapse
Affiliation(s)
- Melanie Kern
- Institute of Microbiology and Genetics, Technische Universität Darmstadt, Schnittspahnstr. 10, 64287 Darmstadt, Germany
| | | | | |
Collapse
|
373
|
Berghoff BA, Glaeser J, Sharma CM, Zobawa M, Lottspeich F, Vogel J, Klug G. Contribution of Hfq to photooxidative stress resistance and global regulation in Rhodobacter sphaeroides. Mol Microbiol 2011; 80:1479-95. [PMID: 21535243 DOI: 10.1111/j.1365-2958.2011.07658.x] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The photosynthetic alphaproteobacterium Rhodobacter sphaeroides has to cope with photooxidative stress that is caused by the bacteriochlorophyll a-mediated formation of singlet oxygen ((1)O(2)). Exposure to (1)O(2) induces the alternative sigma factors RpoE and RpoH(II) which then promote transcription of photooxidative stress-related genes, including small RNAs (sRNAs). The ubiquitous RNA chaperone Hfq is well established to interact with and facilitate the base-pairing of sRNAs and target mRNAs to influence mRNA stability and/or translation. Here we report on the pleiotropic phenotype of a Δhfq mutant of R. sphaeroides, which is less pigmented, produces minicells and is more sensitive to (1)O(2). The higher (1)O(2) sensitivity of the Δhfq mutant is paralleled by a reduced RpoE activity and a disordered induction of RpoH(II)-dependent genes. We used co-immunoprecipitation of FLAG-tagged Hfq combined with RNA-seq to identify association of at least 25 sRNAs and of mRNAs encoding cell division proteins and ribosomal proteins with Hfq. Remarkably, > 70% of the Hfq-bound sRNAs are (1)O(2)-affected. Proteomics analysis of the Hfq-deficient strain revealed an impact of Hfq on amino acid transport and metabolic functions. Our data demonstrate for the first time an involvement of Hfq in regulation of photosynthesis genes and in the photooxidative stress response.
Collapse
Affiliation(s)
- Bork A Berghoff
- Institut für Mikrobiologie und Molekularbiologie, Justus-Liebig-Universität, Heinrich-Buff-Ring 26, 35392 Gießen, Germany
| | | | | | | | | | | | | |
Collapse
|
374
|
Abstract
Aerobic life requires organisms to resist the damaging effects of ROS (reactive oxygen species), particularly during stress. Extensive research has established a detailed picture of how cells respond to oxidative stress. Attention is now focusing on identifying the key molecular targets of ROS, which cause killing when resistance is overwhelmed. Experimental criteria used to establish such targets have differing merits. Depending on the nature of the stress, ROS cause loss of essential cellular functions or gain of toxic functions. Essential targets on which life pivots during ROS stress include membrane lipid integrity and activity of ROS-susceptible proteins, including proteins required for faithful translation of mRNA. Protein oxidation also triggers accumulation of toxic protein aggregates or induction of apoptotic cell death. This burgeoning understanding of the principal ROS targets will offer new possibilities for therapy of ROS related diseases.
Collapse
|
375
|
|
376
|
The maturation factors HoxR and HoxT contribute to oxygen tolerance of membrane-bound [NiFe] hydrogenase in Ralstonia eutropha H16. J Bacteriol 2011; 193:2487-97. [PMID: 21441514 DOI: 10.1128/jb.01427-10] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
The membrane-bound [NiFe] hydrogenase (MBH) of Ralstonia eutropha H16 undergoes a complex maturation process comprising cofactor assembly and incorporation, subunit oligomerization, and finally twin-arginine-dependent membrane translocation. Due to its outstanding O(2) and CO tolerance, the MBH is of biotechnological interest and serves as a molecular model for a robust hydrogen catalyst. Adaptation of the enzyme to oxygen exposure has to take into account not only the catalytic reaction but also biosynthesis of the intricate redox cofactors. Here, we report on the role of the MBH-specific accessory proteins HoxR and HoxT, which are key components in MBH maturation at ambient O(2) levels. MBH-driven growth on H(2) is inhibited or retarded at high O(2) partial pressure (pO(2)) in mutants inactivated in the hoxR and hoxT genes. The ratio of mature and nonmature forms of the MBH small subunit is shifted toward the precursor form in extracts derived from the mutant cells grown at high pO(2). Lack of hoxR and hoxT can phenotypically be restored by providing O(2)-limited growth conditions. Analysis of copurified maturation intermediates leads to the conclusion that the HoxR protein is a constituent of a large transient protein complex, whereas the HoxT protein appears to function at a final stage of MBH maturation. UV-visible spectroscopy of heterodimeric MBH purified from hoxR mutant cells points to alterations of the Fe-S cluster composition. Thus, HoxR may play a role in establishing a specific Fe-S cluster profile, whereas the HoxT protein seems to be beneficial for cofactor stability under aerobic conditions.
Collapse
|
377
|
Farhana A, Guidry L, Srivastava A, Singh A, Hondalus MK, Steyn AJC. Reductive stress in microbes: implications for understanding Mycobacterium tuberculosis disease and persistence. Adv Microb Physiol 2011; 57:43-117. [PMID: 21078441 DOI: 10.1016/b978-0-12-381045-8.00002-3] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Mycobacterium tuberculosis (Mtb) is a remarkably successful pathogen that is capable of persisting in host tissues for decades without causing disease. Years after initial infection, the bacilli may resume growth, the outcome of which is active tuberculosis (TB). In order to establish infection, resist host defences and re-emerge, Mtb must coordinate its metabolism with the in vivo environmental conditions and nutrient availability within the primary site of infection, the lung. Maintaining metabolic homeostasis for an intracellular pathogen such as Mtb requires a carefully orchestrated series of oxidation-reduction reactions, which, if unbalanced, generate oxidative or reductive stress. The importance of oxidative stress in microbial pathogenesis has been appreciated and well studied over the past several decades. However, the role of its counterpart, reductive stress, has been largely ignored. Reductive stress is defined as an aberrant increase in reducing equivalents, the magnitude and identity of which is determined by host carbon source utilisation and influenced by the presence of host-generated gases (e.g. NO, CO, O(2) and CO(2)). This increased reductive power must be dissipated for bacterial survival. To recycle reducing equivalents, microbes have evolved unique electron 'sinks' that are distinct for their particular environmental niche. In this review, we describe the specific mechanisms that some microbes have evolved to dispel reductive stress. The intention of this review is to introduce the concept of reductive stress, in tuberculosis research in particular, in the hope of stimulating new avenues of investigation.
Collapse
Affiliation(s)
- Aisha Farhana
- Department of Microbiology, University of Alabama at Birmingham, AL, USA
| | | | | | | | | | | |
Collapse
|
378
|
A major role for nonenzymatic antioxidant processes in the radioresistance of Halobacterium salinarum. J Bacteriol 2011; 193:1653-62. [PMID: 21278285 DOI: 10.1128/jb.01310-10] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Oxidative stress occurs when the generation of reactive oxygen species (ROS) exceeds the capacity of the cell's endogenous systems to neutralize them. Our analyses of the cellular damage and oxidative stress responses of the archaeon Halobacterium salinarum exposed to ionizing radiation (IR) revealed a critical role played by nonenzymatic antioxidant processes in the resistance of H. salinarum to IR. ROS-scavenging enzymes were essential for resistance to chemical oxidants, yet those enzymes were not necessary for H. salinarum's resistance to IR. We found that protein-free cell extracts from H. salinarum provided a high level of protection for protein activity against IR in vitro but did not protect DNA significantly. Compared with cell extracts of radiation-sensitive bacteria, H. salinarum extracts were enriched in manganese, amino acids, and peptides, supporting an essential role in ROS scavenging for those small molecules in vivo. With regard to chemical oxidants, we showed that the damage caused by gamma irradiation was mechanistically different than that produced by hydrogen peroxide or by the superoxide-generating redox-cycling drug paraquat. The data presented support the idea that IR resistance is most likely achieved by a "metabolic route," with a combination of tightly coordinated physiological processes.
Collapse
|
379
|
Remelli W, Cereda A, Papenbrock J, Forlani F, Pagani S. The rhodanese RhdA helps Azotobacter vinelandii in maintaining cellular redox balance. Biol Chem 2011; 391:777-84. [PMID: 20482308 DOI: 10.1515/bc.2010.073] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The tandem domain rhodanese-homology protein RhdA of Azotobacter vinelandii shows an active-site loop structure that confers structural peculiarity in the environment of its catalytic cysteine residue. The in vivo effects of the lack of RhdA were investigated using an A. vinelandii mutant strain (MV474) in which the rhdA gene was disrupted by deletion. Here, by combining analytical measurements and transcript profiles, we show that deletion of the rhdA gene generates an oxidative stress condition to which A. vinelandii responds by activating defensive mechanisms. In conditions of growth in the presence of the superoxide generator phenazine methosulfate, a stressor-dependent induction of rhdA gene expression was observed, thus highlighting that RhdA is important for A. vinelandii to sustain oxidative stress. The potential of RhdA to buffer general levels of oxidants in A. vinelandii cells via redox reactions involving its cysteine thiol is discussed.
Collapse
Affiliation(s)
- William Remelli
- Dipartimento di Scienze Molecolari Agroalimentari, Università degli Studi di Milano, I-20133 Milano, Italy
| | | | | | | | | |
Collapse
|
380
|
Kaur A, Van PT, Busch CR, Robinson CK, Pan M, Pang WL, Reiss DJ, DiRuggiero J, Baliga NS. Coordination of frontline defense mechanisms under severe oxidative stress. Mol Syst Biol 2010; 6:393. [PMID: 20664639 PMCID: PMC2925529 DOI: 10.1038/msb.2010.50] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2009] [Accepted: 05/31/2010] [Indexed: 01/15/2023] Open
Abstract
Inference of an environmental and gene regulatory influence network (EGRINOS) by integrating transcriptional responses to H2O2 and paraquat (PQ) has revealed a multi-tiered oxidative stress (OS)-management program to transcriptionally coordinate three peroxidase/catalase enzymes, two superoxide dismutases, production of rhodopsins, carotenoids and gas vesicles, metal trafficking, and various other aspects of metabolism. ChIP-chip, microarray, and survival assays have validated important architectural aspects of this network, identified novel defense mechanisms (including two evolutionarily distant peroxidase enxymes), and showed that general transcription factors of the transcription factor B family have an important function in coordinating the OS response (OSR) despite their inability to directly sense ROS. A comparison of transcriptional responses to sub-lethal doses of H2O2 and PQ with predictions of these responses made by an EGRIN model generated earlier from responses to other environmental factors has confirmed that a significant fraction of the OSR is made up of a generalized component that is also observed in response to other stressors. Analysis of active regulons within environment and gene regulatory influence network for OS (EGRINOS) across diverse environmental conditions has identified the specialized component of oxidative stress response (OSR) that is triggered by sub-lethal OS, but not by other stressors, including sub-inhibitory levels of redox-active metals, extreme changes in oxygen tension, and a sub-lethal dose of γ rays.
Reactive oxygen species (ROS), such as hydrogen peroxide (H2O2), superoxide (O2−), and hydroxyl (OH−) radicals, are normal by-products of aerobic metabolism. Evolutionarily conserved mechanisms including detoxification enzymes (peroxidase/catalase and superoxide dismutase (SOD)) and free radical scavengers manage this endogenous production of ROS. OS is a condition reached when certain environmental stresses or genetic defects cause the production of ROS to exceed the management capacity. The damage to diverse cellular components including DNA, proteins, lipids, and carbohydrates resulting from OS (Imlay, 2003; Apel and Hirt, 2004; Perrone et al, 2008) is recognized as an important player in many diseases and in the aging process (Finkel, 2005). We have applied a systems approach to characterize the OSR of an archaeal model organism, Halobacterium salinarum NRC-1. This haloarchaeon grows aerobically at 4.3 M salt concentration in which it routinely faces cycles of desiccation and rehydration, and increased ultraviolet radiation—both of which can increase the production of ROS (Farr and Kogoma, 1991; Oliver et al, 2001). We have reconstructed the physiological adjustments associated with management of excessive OS through the analysis of global transcriptional changes elicited by step exposure to growth sub-inhibitory and sub-lethal levels of H2O2 and PQ (a redox-cycling drug that produces O2−; Hassan and Fridovich, 1979) as well as during subsequent recovery from these stresses. We have integrated all of these data into a unified model for OSR to discover conditional functional links between protective mechanisms and normal aspects of metabolism. Subsequent phenotypic analysis of gene deletion strains has verified the conditional detoxification functions of three putative peroxidase/catalase enzymes, two SODs, and the protective function of rhodopsins under increased levels of H2O2 and PQ. Similarly, we have also validated ROS scavenging by carotenoids and flotation by gas vesicles as secondary mechanisms that may minimize OS. Given the ubiquitous nature of OS, it is not entirely surprising that most organisms have evolved similar multiple lines of defense—both passive and active. Although such mechanisms have been extensively characterized using other model organisms, our integrated systems approach has uncovered additional protective mechanisms in H. salinarum (e.g. two evolutionarily distant peroxidase/catalase enzymes) and revealed a structure and hierarchy to the OSR through conditional regulatory associations among various components of the response. We have validated some aspects of the architecture of the regulatory network for managing OS by confirming physical protein–DNA interactions of six transcription factors (TFs) with promoters of genes they were predicted to influence in EGRINOS. Furthermore, we have also shown the consequence of deleting two of these TFs on transcript levels of genes they control and survival rate under OS. It is notable that these TFs are not directly associated with sensing ROS, but, rather, they have a general function in coordinating the overall response. This insight would not have been possible without constructing EGRINOS through systems integration of diverse datasets. Although it has been known that OS is a component of diverse environmental stress conditions, we quantitatively show for the first time that much of the transcriptional responses induced by the two treatments could indeed have been predicted using a model constructed from the analysis of transcriptional responses to changes in other environmental factors (UV and γ-radiation, light, oxygen, and six metals). However, using specific examples we also reveal the specific components of the OSR that are triggered only under severe OS. Notably, this model of OSR gives a unified perspective of the interconnections among all of these generalized and OS-specific regulatory mechanisms. Complexity of cellular response to oxidative stress (OS) stems from its wide-ranging damage to nucleic acids, proteins, carbohydrates, and lipids. We have constructed a systems model of OS response (OSR) for Halobacterium salinarum NRC-1 in an attempt to understand the architecture of its regulatory network that coordinates this complex response. This has revealed a multi-tiered OS-management program to transcriptionally coordinate three peroxidase/catalase enzymes, two superoxide dismutases, production of rhodopsins, carotenoids and gas vesicles, metal trafficking, and various other aspects of metabolism. Through experimental validation of interactions within the OSR regulatory network, we show that despite their inability to directly sense reactive oxygen species, general transcription factors have an important function in coordinating this response. Remarkably, a significant fraction of this OSR was accurately recapitulated by a model that was earlier constructed from cellular responses to diverse environmental perturbations—this constitutes the general stress response component. Notwithstanding this observation, comparison of the two models has identified the coordination of frontline defense and repair systems by regulatory mechanisms that are triggered uniquely by severe OS and not by other environmental stressors, including sub-inhibitory levels of redox-active metals, extreme changes in oxygen tension, and a sub-lethal dose of γ rays.
Collapse
Affiliation(s)
- Amardeep Kaur
- Institute for Systems Biology, Seattle, WA 98103, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
381
|
Potrykus J, Jonna VR, Dopson M. Iron homeostasis and responses to iron limitation in extreme acidophiles from the Ferroplasma
genus. Proteomics 2010; 11:52-63. [DOI: 10.1002/pmic.201000193] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2010] [Revised: 09/06/2010] [Accepted: 09/21/2010] [Indexed: 11/11/2022]
|
382
|
Bolstad HM, Wood MJ. An in vivo method for characterization of protein interactions within sulfur trafficking systems of E. coli. J Proteome Res 2010; 9:6740-51. [PMID: 20936830 DOI: 10.1021/pr100920r] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Sulfur trafficking systems are multiprotein systems that synthesize sulfur-containing cofactors such as iron-sulfur clusters. The sulfur is derived enzymatically from cysteine and transferred between nucleophilic cysteine residues within proteins until incorporation into the relevant cofactor. As these systems are poorly understood, we have developed an in vivo method for characterizing these interactions and have applied our method to the SUF system of Escherichia coli, which is responsible for iron-sulfur cluster biogenesis under oxidative stress and iron limitation. Proteins that interact covalently with SufE were trapped in vivo, purified, and identified by mass spectrometry. We identified SufE-SufS and SufE-SufB interactions, interactions previously demonstrated in vitro, indicating that our method has the ability to identify physiologically relevant interactions. The sulfur acceptor function of SufE is likely due to the low pK(a) of its active site C51, which we determined to be 6.3 ± 0.7. We found that SufE interacts with several Fe-S cluster proteins, further supporting the validity of the method, and with tryptophanase, glutaredoxin-3, and glutaredoxin-4, possibly suggesting a role for these enzymes in iron-sulfur biogenesis by the SUF system. Our results indicate that this method could serve as a general tool for the determination of sulfur trafficking mechanisms.
Collapse
Affiliation(s)
- Heather M Bolstad
- Department of Environmental Toxicology, University of California, Davis, California 95616, United States
| | | |
Collapse
|
383
|
Bolstad HM, Botelho DJ, Wood MJ. Proteomic analysis of protein-protein interactions within the Cysteine Sulfinate Desulfinase Fe-S cluster biogenesis system. J Proteome Res 2010; 9:5358-69. [PMID: 20734996 DOI: 10.1021/pr1006087] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Fe-S cluster biogenesis is of interest to many fields, including bioenergetics and gene regulation. The CSD system is one of three Fe-S cluster biogenesis systems in E. coli and is comprised of the cysteine desulfurase CsdA, the sulfur acceptor protein CsdE, and the E1-like protein CsdL. The biological role, biochemical mechanism, and protein targets of the system remain uncharacterized. Here we present that the active site CsdE C61 has a lowered pK(a) value of 6.5, which is nearly identical to that of C51 in the homologous SufE protein and which is likely critical for its function. We observed that CsdE forms disulfide bonds with multiple proteins and identified the proteins that copurify with CsdE. The identification of Fe-S proteins and both putative and established Fe-S cluster assembly (ErpA, glutaredoxin-3, glutaredoxin-4) and sulfur trafficking (CsdL, YchN) proteins supports the two-pathway model, in which the CSD system is hypothesized to synthesize both Fe-S clusters and other sulfur-containing cofactors. We suggest that the identified Fe-S cluster assembly proteins may be the scaffold and/or shuttle proteins for the CSD system. By comparison with previous analysis of SufE, we demonstrate that there is some overlap in the CsdE and SufE interactomes.
Collapse
Affiliation(s)
- Heather M Bolstad
- Department of Environmental Toxicology, University of California, Davis, California 95616, USA
| | | | | |
Collapse
|
384
|
Fonknechten N, Chaussonnerie S, Tricot S, Lajus A, Andreesen JR, Perchat N, Pelletier E, Gouyvenoux M, Barbe V, Salanoubat M, Le Paslier D, Weissenbach J, Cohen GN, Kreimeyer A. Clostridium sticklandii, a specialist in amino acid degradation:revisiting its metabolism through its genome sequence. BMC Genomics 2010; 11:555. [PMID: 20937090 PMCID: PMC3091704 DOI: 10.1186/1471-2164-11-555] [Citation(s) in RCA: 108] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2010] [Accepted: 10/11/2010] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Clostridium sticklandii belongs to a cluster of non-pathogenic proteolytic clostridia which utilize amino acids as carbon and energy sources. Isolated by T.C. Stadtman in 1954, it has been generally regarded as a "gold mine" for novel biochemical reactions and is used as a model organism for studying metabolic aspects such as the Stickland reaction, coenzyme-B12- and selenium-dependent reactions of amino acids. With the goal of revisiting its carbon, nitrogen, and energy metabolism, and comparing studies with other clostridia, its genome has been sequenced and analyzed. RESULTS C. sticklandii is one of the best biochemically studied proteolytic clostridial species. Useful additional information has been obtained from the sequencing and annotation of its genome, which is presented in this paper. Besides, experimental procedures reveal that C. sticklandii degrades amino acids in a preferential and sequential way. The organism prefers threonine, arginine, serine, cysteine, proline, and glycine, whereas glutamate, aspartate and alanine are excreted. Energy conservation is primarily obtained by substrate-level phosphorylation in fermentative pathways. The reactions catalyzed by different ferredoxin oxidoreductases and the exergonic NADH-dependent reduction of crotonyl-CoA point to a possible chemiosmotic energy conservation via the Rnf complex. C. sticklandii possesses both the F-type and V-type ATPases. The discovery of an as yet unrecognized selenoprotein in the D-proline reductase operon suggests a more detailed mechanism for NADH-dependent D-proline reduction. A rather unusual metabolic feature is the presence of genes for all the enzymes involved in two different CO2-fixation pathways: C. sticklandii harbours both the glycine synthase/glycine reductase and the Wood-Ljungdahl pathways. This unusual pathway combination has retrospectively been observed in only four other sequenced microorganisms. CONCLUSIONS Analysis of the C. sticklandii genome and additional experimental procedures have improved our understanding of anaerobic amino acid degradation. Several specific metabolic features have been detected, some of which are very unusual for anaerobic fermenting bacteria. Comparative genomics has provided the opportunity to study the lifestyle of pathogenic and non-pathogenic clostridial species as well as to elucidate the difference in metabolic features between clostridia and other anaerobes.
Collapse
Affiliation(s)
- Nuria Fonknechten
- Institut de Génomique, Genoscope, 2 Rue Gaston Crémieux, F-91057 Evry, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
385
|
The elemental sulfur-responsive protein (SipA) from the hyperthermophilic archaeon Pyrococcus furiosus is regulated by sulfide in an iron-dependent manner. J Bacteriol 2010; 192:5841-3. [PMID: 20802041 DOI: 10.1128/jb.00660-10] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The gene (sipA) encoding the sulfur-induced protein A (PF2025) is highly upregulated during growth of Pyrococcus furiosus on elemental sulfur (S(0)). Expression of sipA is regulated by sulfide, the product of S(0) reduction, but in an iron-dependent manner. SipA is proposed to play a role in intracellular iron sulfide detoxification.
Collapse
|
386
|
Uhrigshardt H, Singh A, Kovtunovych G, Ghosh M, Rouault TA. Characterization of the human HSC20, an unusual DnaJ type III protein, involved in iron-sulfur cluster biogenesis. Hum Mol Genet 2010; 19:3816-34. [PMID: 20668094 DOI: 10.1093/hmg/ddq301] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The importance of mitochondrial iron-sulfur cluster (ISC) biogenesis for human health has been well established, but the roles of some components of this critical pathway still remain uncharacterized in mammals. Among them is human heat shock cognate protein 20 (hHSC20), the putative human homolog of the specialized DnaJ type co-chaperones, which are crucial for bacterial and fungal ISC assembly. Here, we show that the human HSC20 protein can complement for its counterpart in yeast, Jac1p, and interacts with its proposed human partners, hISCU and hHSPA9. hHSC20 is expressed in various human tissues and localizes mainly to the mitochondria in HeLa cells. However, small amounts were also detected extra-mitochondrially. RNA interference-mediated depletion of hHSC20 specifically reduced the activities of both mitochondrial and cytosolic ISC-containing enzymes. The recovery of inactivated ISC enzymes was markedly delayed after an oxidative insult of hHSC20-deficient cells. Conversely, overexpression of hHSC20 substantially protected cells from oxidative insults. These results imply that hHSC20 is an integral component of the human ISC biosynthetic machinery that is particularly important in the assembly of ISCs under conditions of oxidative stress. A cysteine-rich N-terminal domain, which clearly distinguishes hHSC20 from the specialized DnaJ type III proteins of fungi and most bacteria, was found to be important for the integrity and function of the human co-chaperone.
Collapse
Affiliation(s)
- Helge Uhrigshardt
- Molecular Medicine Program, The Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD 20892, USA
| | | | | | | | | |
Collapse
|
387
|
Lenz O, Ludwig M, Schubert T, Bürstel I, Ganskow S, Goris T, Schwarze A, Friedrich B. H2 conversion in the presence of O2 as performed by the membrane-bound [NiFe]-hydrogenase of Ralstonia eutropha. Chemphyschem 2010; 11:1107-19. [PMID: 20186906 DOI: 10.1002/cphc.200901002] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
[NiFe]-hydrogenases catalyze the oxidation of H(2) to protons and electrons. This reversible reaction is based on a complex interplay of metal cofactors including the Ni-Fe active site and several [Fe-S] clusters. H(2) catalysis of most [NiFe]-hydrogenases is sensitive to dioxygen. However, some bacteria contain hydrogenases that activate H(2) even in the presence of O(2). There is now compelling evidence that O(2) affects hydrogenase on three levels: 1) H(2) catalysis, 2) hydrogenase maturation, and 3) H(2)-mediated signal transduction. Herein, we summarize the genetic, biochemical, electrochemical, and spectroscopic properties related to the O(2) tolerance of hydrogenases resident in the facultative chemolithoautotroph Ralstonia eutropha H16. A focus is given to the membrane-bound [NiFe]-hydogenase, which currently represents the best-characterized member of O(2)-tolerant hydrogenases.
Collapse
Affiliation(s)
- Oliver Lenz
- Department of Microbiology, Humboldt-Universität zu Berlin, Chausseestrasse 117, 10115 Berlin, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
388
|
Pineda E, Encalada R, Rodríguez-Zavala JS, Olivos-García A, Moreno-Sánchez R, Saavedra E. Pyruvate:ferredoxin oxidoreductase and bifunctional aldehyde-alcohol dehydrogenase are essential for energy metabolism under oxidative stress in Entamoeba histolytica. FEBS J 2010; 277:3382-95. [DOI: 10.1111/j.1742-4658.2010.07743.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
389
|
Pugh RA, Honda M, Spies M. Ensemble and single-molecule fluorescence-based assays to monitor DNA binding, translocation, and unwinding by iron-sulfur cluster containing helicases. Methods 2010; 51:313-21. [PMID: 20167274 PMCID: PMC2911022 DOI: 10.1016/j.ymeth.2010.02.014] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2009] [Revised: 02/04/2010] [Accepted: 02/12/2010] [Indexed: 11/23/2022] Open
Abstract
Many quantitative approaches for analysis of helicase-nucleic acid interactions require a robust and specific signal, which reports on the presence of the helicase and its position on a nucleic acid lattice. Since 2006, iron-sulfur (FeS) clusters have been found in a number of helicases. They serve as endogenous quenchers of Cy3 and Cy5 fluorescence which can be exploited to characterize FeS cluster containing helicases both in ensemble-based assays and at the single-molecule level. Synthetic oligonucleotides site-specifically labeled with either Cy3 or Cy5 can be used to create a variety of DNA substrates that can be used to characterized DNA binding, as well as helicase translocation and unwinding. Equilibrium binding affinities for ssDNA, duplex and branched DNA substrates can be determined using bulk assays. Identification of preferred cognate substrates, and the orientation and position of the helicase when bound to DNA can also be determined by taking advantage of the intrinsic quencher in the helicase. At the single-molecule level, real-time observation of the helicase translocating along DNA either towards the dye or away from the dye can be used to determine the rate of translocation by the helicase on ssDNA and its orientation when bound to DNA. The use of duplex substrates can reveal the rate of unwinding and processivity of the helicase. Finally, the FeS cluster can be used to visualize protein-protein interactions, and to examine the interplay between helicases and other DNA binding proteins on the same DNA substrate.
Collapse
Affiliation(s)
- Robert A. Pugh
- Howard Hughes Medical Institute, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Masayoshi Honda
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Maria Spies
- Howard Hughes Medical Institute, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Center for Biophysics and Computational Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| |
Collapse
|
390
|
Terauchi AM, Peers G, Kobayashi MC, Niyogi KK, Merchant SS. Trophic status of Chlamydomonas reinhardtii influences the impact of iron deficiency on photosynthesis. PHOTOSYNTHESIS RESEARCH 2010; 105:39-49. [PMID: 20535560 PMCID: PMC2885298 DOI: 10.1007/s11120-010-9562-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2010] [Accepted: 05/12/2010] [Indexed: 05/02/2023]
Abstract
To investigate the impact of iron deficiency on bioenergetic pathways in Chlamydomonas, we compared growth rates, iron content, and photosynthetic parameters systematically in acetate versus CO(2)-grown cells. Acetate-grown cells have, predictably (2-fold) greater abundance of respiration components but also, counter-intuitively, more chlorophyll on a per cell basis. We found that phototrophic cells are less impacted by iron deficiency and this correlates with their higher iron content on a per cell basis, suggesting a greater capacity/ability for iron assimilation in this metabolic state. Phototrophic cells maintain both photosynthetic and respiratory function and their associated Fe-containing proteins in conditions where heterotrophic cells lose photosynthetic capacity and have reduced oxygen evolution activity. Maintenance of NPQ capacity might contribute to protection of the photosynthetic apparatus in iron-limited phototrophic cells. Acetate-grown iron-limited cells maintain high growth rates by suppressing photosynthesis but increasing instead respiration. These cells are also able to maintain a reduced plastoquinone pool.
Collapse
Affiliation(s)
- Aimee M. Terauchi
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095-1569 USA
| | - Graham Peers
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720-3102 USA
| | - Marilyn C. Kobayashi
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720-3102 USA
| | - Krishna K. Niyogi
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720-3102 USA
- Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 USA
| | - Sabeeha S. Merchant
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095-1569 USA
- Institute for Genomics and Proteomics, University of California, Los Angeles, CA 90095 USA
| |
Collapse
|
391
|
Abstract
The broad range of cellular activities carried out by Fe-S proteins means that they have a central role in the life of most organisms. At the interface between biology and chemistry, studies of bacterial Fe-S protein biogenesis have taken advantage of the specific approaches of each field and have begun to reveal the molecular mechanisms involved. The multiprotein systems that are required to build Fe-S proteins have been identified, but the in vivo roles of some of the components remain to be clarified. The way in which cellular Fe-S cluster trafficking pathways are organized remains a key issue for future studies.
Collapse
|
392
|
Bar-Even A, Noor E, Lewis NE, Milo R. Design and analysis of synthetic carbon fixation pathways. Proc Natl Acad Sci U S A 2010; 107:8889-94. [PMID: 20410460 PMCID: PMC2889323 DOI: 10.1073/pnas.0907176107] [Citation(s) in RCA: 294] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Carbon fixation is the process by which CO(2) is incorporated into organic compounds. In modern agriculture in which water, light, and nutrients can be abundant, carbon fixation could become a significant growth-limiting factor. Hence, increasing the fixation rate is of major importance in the road toward sustainability in food and energy production. There have been recent attempts to improve the rate and specificity of Rubisco, the carboxylating enzyme operating in the Calvin-Benson cycle; however, they have achieved only limited success. Nature employs several alternative carbon fixation pathways, which prompted us to ask whether more efficient novel synthetic cycles could be devised. Using the entire repertoire of approximately 5,000 metabolic enzymes known to occur in nature, we computationally identified alternative carbon fixation pathways that combine existing metabolic building blocks from various organisms. We compared the natural and synthetic pathways based on physicochemical criteria that include kinetics, energetics, and topology. Our study suggests that some of the proposed synthetic pathways could have significant quantitative advantages over their natural counterparts, such as the overall kinetic rate. One such cycle, which is predicted to be two to three times faster than the Calvin-Benson cycle, employs the most effective carboxylating enzyme, phosphoenolpyruvate carboxylase, using the core of the naturally evolved C4 cycle. Although implementing such alternative cycles presents daunting challenges related to expression levels, activity, stability, localization, and regulation, we believe our findings suggest exciting avenues of exploration in the grand challenge of enhancing food and renewable fuel production via metabolic engineering and synthetic biology.
Collapse
Affiliation(s)
| | | | - Nathan E. Lewis
- Computer Science and Applied Mathematics, The Weizmann Institute of Science, Rehovot 76100, Israel; and
- Department of Bioengineering, University of California San Diego, La Jolla, CA 92093-0412
| | - Ron Milo
- Departments of Plant Sciences and
| |
Collapse
|
393
|
Bruno-Bárcena JM, Azcárate-Peril MA, Hassan HM. Role of antioxidant enzymes in bacterial resistance to organic acids. Appl Environ Microbiol 2010; 76:2747-53. [PMID: 20305033 PMCID: PMC2863438 DOI: 10.1128/aem.02718-09] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2009] [Accepted: 03/08/2010] [Indexed: 11/20/2022] Open
Abstract
Growth in aerobic environments has been shown to generate reactive oxygen species (ROS) and to cause oxidative stress in most organisms. Antioxidant enzymes (i.e., superoxide dismutases and hydroperoxidases) and DNA repair mechanisms provide protection against ROS. Acid stress has been shown to be associated with the induction of Mn superoxide dismutase (MnSOD) in Lactococcus lactis and Staphylococcus aureus. However, the relationship between acid stress and oxidative stress is not well understood. In the present study, we showed that mutations in the gene coding for MnSOD (sodA) increased the toxicity of lactic acid at pH 3.5 in Streptococcus thermophilus. The inclusion of the iron chelators 2,2'-dipyridyl (DIP), diethienetriamine-pentaacetic acid (DTPA), and O-phenanthroline (O-Phe) provided partial protection against 330 mM lactic acid at pH 3.5. The results suggested that acid stress triggers an iron-mediated oxidative stress that can be ameliorated by MnSOD and iron chelators. These findings were further validated in Escherichia coli strains lacking both MnSOD and iron SOD (FeSOD) but expressing a heterologous MnSOD from S. thermophilus. We also found that, in E. coli, FeSOD did not provide the same protection afforded by MnSOD and that hydroperoxidases are equally important in protecting the cells against acid stress. These findings may explain the ability of some microorganisms to survive better in acidified environments, as in acid foods, during fermentation and accumulation of lactic acid or during passage through the low pH of the stomach.
Collapse
Affiliation(s)
- Jose M. Bruno-Bárcena
- Department of Microbiology, Golden Leaf Bio-Manufacturing Training and Education Center, North Carolina State University, Raleigh, North Carolina 27695-7615, Department of Cell and Molecular Physiology, School of Medicine, University of North Carolina, Chapel Hill, North Carolina 27599-7545
| | - M. Andrea Azcárate-Peril
- Department of Microbiology, Golden Leaf Bio-Manufacturing Training and Education Center, North Carolina State University, Raleigh, North Carolina 27695-7615, Department of Cell and Molecular Physiology, School of Medicine, University of North Carolina, Chapel Hill, North Carolina 27599-7545
| | - Hosni M. Hassan
- Department of Microbiology, Golden Leaf Bio-Manufacturing Training and Education Center, North Carolina State University, Raleigh, North Carolina 27695-7615, Department of Cell and Molecular Physiology, School of Medicine, University of North Carolina, Chapel Hill, North Carolina 27599-7545
| |
Collapse
|
394
|
Kohanski MA, DePristo MA, Collins JJ. Sublethal antibiotic treatment leads to multidrug resistance via radical-induced mutagenesis. Mol Cell 2010; 37:311-20. [PMID: 20159551 DOI: 10.1016/j.molcel.2010.01.003] [Citation(s) in RCA: 638] [Impact Index Per Article: 45.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2009] [Revised: 10/18/2009] [Accepted: 11/12/2009] [Indexed: 01/27/2023]
Abstract
Antibiotic resistance arises through mechanisms such as selection of naturally occurring resistant mutants and horizontal gene transfer. Recently, oxidative stress has been implicated as one of the mechanisms whereby bactericidal antibiotics kill bacteria. Here, we show that sublethal levels of bactericidal antibiotics induce mutagenesis, resulting in heterogeneous increases in the minimum inhibitory concentration for a range of antibiotics, irrespective of the drug target. This increase in mutagenesis correlates with an increase in ROS and is prevented by the ROS scavenger thiourea and by anaerobic conditions, indicating that sublethal concentrations of antibiotics induce mutagenesis by stimulating the production of ROS. We demonstrate that these effects can lead to mutant strains that are sensitive to the applied antibiotic but resistant to other antibiotics. This work establishes a radical-based molecular mechanism whereby sublethal levels of antibiotics can lead to multidrug resistance, which has important implications for the widespread use and misuse of antibiotics.
Collapse
Affiliation(s)
- Michael A Kohanski
- Howard Hughes Medical Institute, Boston University, Boston, MA 02215, USA
| | | | | |
Collapse
|
395
|
Comparative transcriptomic and phenotypic analysis of the responses of Bacillus cereus to various disinfectant treatments. Appl Environ Microbiol 2010; 76:3352-60. [PMID: 20348290 DOI: 10.1128/aem.03003-09] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Antimicrobial chemicals are widely applied to clean and disinfect food-contacting surfaces. However, the cellular response of bacteria to various disinfectants is unclear. In this study, the physiological and genome-wide transcriptional responses of Bacillus cereus ATCC 14579 exposed to four different disinfectants (benzalkonium chloride, sodium hypochlorite, hydrogen peroxide, and peracetic acid) were analyzed. For each disinfectant, concentrations leading to the attenuation of growth, growth arrest, and cell death were determined. The transcriptome analysis revealed that B. cereus, upon exposure to the selected concentrations of disinfectants, induced common and specific responses. Notably, the common response included genes involved in the general and oxidative stress responses. Exposure to benzalkonium chloride, a disinfectant known to induce membrane damage, specifically induced genes involved in fatty acid metabolism. Membrane damage induced by benzalkonium chloride was confirmed by fluorescence microscopy, and fatty acid analysis revealed modulation of the fatty acid composition of the cell membrane. Exposure to sodium hypochlorite induced genes involved in metabolism of sulfur and sulfur-containing amino acids, which correlated with the excessive oxidation of sulfhydryl groups observed in sodium hypochlorite-stressed cells. Exposures to hydrogen peroxide and peracetic acid induced highly similar responses, including the upregulation of genes involved in DNA damage repair and SOS response. Notably, hydrogen peroxide- and peracetic acid-treated cells exhibited high mutation rates correlating with the induced SOS response.
Collapse
|
396
|
Mols M, Van Kranenburg R, Van Melis CCJ, Moezelaar R, Abee T. Analysis of acid-stressed Bacillus cereus reveals a major oxidative response and inactivation-associated radical formation. Environ Microbiol 2010; 12:873-85. [DOI: 10.1111/j.1462-2920.2009.02132.x] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
397
|
Crack JC, den Hengst CD, Jakimowicz P, Subramanian S, Johnson MK, Buttner MJ, Thomson AJ, Le Brun NE. Characterization of [4Fe-4S]-containing and cluster-free forms of Streptomyces WhiD. Biochemistry 2009; 48:12252-64. [PMID: 19954209 PMCID: PMC2815329 DOI: 10.1021/bi901498v] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
WhiD, a member of the WhiB-like (Wbl) family of iron-sulfur proteins found exclusively within the actinomycetes, is required for the late stages of sporulation in Streptomyces coelicolor. Like all other Wbl proteins, WhiD has not so far been purified in a soluble form that contains a significant amount of cluster, and characterization has relied on cluster-reconstituted protein. Thus, a major goal in Wbl research is to obtain and characterize native protein containing iron-sulfur clusters. Here we report the analysis of S. coelicolor WhiD purified anaerobically from Escherichia coli as a soluble protein containing a single [4Fe-4S](2+) cluster ligated by four cysteines. Upon exposure to oxygen, spectral features associated with the [4Fe-4S] cluster were lost in a slow reaction that unusually yielded apo-WhiD directly without significant concentrations of cluster intermediates. This process was found to be highly pH dependent with an optimal stability observed between pH 7.0 and pH 8.0. Low molecular weight thiols, including a mycothiol analogue and thioredoxin, exerted a small but significant protective effect against WhiD cluster loss, an activity that could be of physiological importance. [4Fe-4S](2+) WhiD was found to react much more rapidly with superoxide than with either oxygen or hydrogen peroxide, which may also be of physiological significance. Loss of the [4Fe-4S] cluster to form apoprotein destabilized the protein fold significantly but did not lead to complete unfolding. Finally, apo-WhiD exhibited negligible activity in an insulin-based disulfide reductase assay, demonstrating that it does not function as a general protein disulfide reductase.
Collapse
Affiliation(s)
- Jason C. Crack
- Centre for Molecular and Structural Biochemistry, School of Chemistry, University of East Anglia, Norwich, NR4 7TJ, UK
| | - Chris D. den Hengst
- Department of Molecular Microbiology, John Innes Centre, Norwich, NR4 7UH, UK
| | - Piotr Jakimowicz
- Department of Molecular Microbiology, John Innes Centre, Norwich, NR4 7UH, UK
| | - Sowmya Subramanian
- Department of Chemistry and Center for Metalloenzyme Studies, University of Georgia, Athens, GA, 30602-2556
| | - Michael K. Johnson
- Department of Chemistry and Center for Metalloenzyme Studies, University of Georgia, Athens, GA, 30602-2556
| | - Mark J. Buttner
- Department of Molecular Microbiology, John Innes Centre, Norwich, NR4 7UH, UK
| | - Andrew J. Thomson
- Centre for Molecular and Structural Biochemistry, School of Chemistry, University of East Anglia, Norwich, NR4 7TJ, UK
| | - Nick E. Le Brun
- Centre for Molecular and Structural Biochemistry, School of Chemistry, University of East Anglia, Norwich, NR4 7TJ, UK
| |
Collapse
|
398
|
Miao R, Kim H, Koppolu UMK, Ellis EA, Scott RA, Lindahl PA. Biophysical characterization of the iron in mitochondria from Atm1p-depleted Saccharomyces cerevisiae. Biochemistry 2009; 48:9556-68. [PMID: 19761223 DOI: 10.1021/bi901110n] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Atm1p is an ABC transporter localized in the mitochondrial inner membrane; it functions to export an unknown species into the cytosol and is involved in cellular iron metabolism. Depletion or deletion of Atm1p causes Fe accumulation in mitochondria and a defect in cytosolic Fe/S cluster assembly but reportedly not a defect in mitochondrial Fe/S cluster assembly. In this study the nature of the accumulated Fe was examined using Mossbauer spectroscopy, EPR, electronic absorption spectroscopy, X-ray absorption spectroscopy, and electron microscopy. The Fe that accumulated in aerobically grown cells was in the form of iron(III) phosphate nanoparticles similar to that which accumulates in yeast frataxin Yfh1p-deleted or yeast ferredoxin Yah1p-depleted cells. Relative to WT mitochondria, Fe/S cluster and heme levels in Atm1p-depleted mitochondria from aerobic cells were significantly diminished. Atm1p depletion also caused a buildup of nonheme Fe(II) ions in the mitochondria and an increase in oxidative damage. Atm1p-depleted mitochondria isolated from anaerobically grown cells exhibited WT levels of Fe/S clusters and hemes, and they did not hyperaccumulate Fe. Atm1p-depleted cells lacked Leu1p activity, regardless of whether they were grown aerobically or anaerobically. These results indicate that Atm1p does not participate in mitochondrial Fe/S cluster assembly and that the species exported by Atm1p is required for cytosolic Fe/S cluster assembly. The Fe/S cluster defect and the Fe-accumulation phenotype, resulting from the depletion of Atm1p in aerobic cells (but not in anaerobic cells), may be secondary effects that are observed only when cells are exposed to oxygen during growth. Reactive oxygen species generated under these conditions might degrade iron-sulfur clusters and lower heme levels in the organelle.
Collapse
Affiliation(s)
- Ren Miao
- Department of Chemistry, Texas A&M University, College Station, Texas 77843-3255, USA
| | | | | | | | | | | |
Collapse
|
399
|
Identification and characterization of a novel member of the radical AdoMet enzyme superfamily and implications for the biosynthesis of the Hmd hydrogenase active site cofactor. J Bacteriol 2009; 192:595-8. [PMID: 19897660 DOI: 10.1128/jb.01125-09] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The genetic context, phylogeny, and biochemistry of a gene flanking the H(2)-forming methylene-H(4)-methanopterin dehydrogenase gene (hmdA), here designated hmdB, indicate that it is a new member of the radical S-adenosylmethionine enzyme superfamily. In contrast to the characteristic CX(3)CX(2)C or CX(2)CX(4)C motif defining this family, HmdB contains a unique CX(5)CX(2)C motif.
Collapse
|
400
|
Abstract
The spore-forming bacterium and model prokaryotic genetic system, Bacillus subtilis, is extremely useful in the study of oxidative stress management through proteomic and genome-wide transcriptomic analyses, as well as through detailed structural studies of the regulatory factors that govern the oxidative stress response. The factors that sense oxidants and induce expression of protective activities include the PerR and OhrR proteins, which show acute discrimination for their peroxide stimuli, whereas the general stress control factor, the RNA polymerase sigma(B) subunit and the thiol-based sensor Spx, govern the protective response to oxidants under multiple stress conditions. Some specific and some redundant protective mechanisms are mobilized at different stages of the Bacillus developmental cycle to deal with vulnerable cells in stationary-phase conditions and during spore germination and outgrowth. An important unknown is the nature and influence of the low-molecular-weight thiols that mediate the buffering of the redox environment.
Collapse
Affiliation(s)
- Peter Zuber
- Department of Science & Engineering, School of Medicine, Oregon Health & Science University, Beaverton, Oregon 97006, USA.
| |
Collapse
|