351
|
Gruenberg J. Viruses and endosome membrane dynamics. Curr Opin Cell Biol 2009; 21:582-8. [PMID: 19443190 DOI: 10.1016/j.ceb.2009.03.008] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2009] [Accepted: 03/27/2009] [Indexed: 11/29/2022]
Abstract
Cell surface molecules, ligands, and solutes can be endocytosed into animal cells via several pathways in addition to clathrin-mediated endocytosis, which all seem to lead to canonical endosomes. It seems that viruses can enter and infect cells through most of, if not all, endocytic routes, having evolved different, sometimes elaborate, strategies to (mis)use cellular machineries to their own benefit during infection. In this short review, I will discuss recent progress in understanding the pathways followed by animal viruses into cells, and how these studies are also providing novel insights into our understanding of some molecular mechanisms that control endocytic membrane transport.
Collapse
Affiliation(s)
- Jean Gruenberg
- Department of Biochemistry, University of Geneva, Geneva, Switzerland.
| |
Collapse
|
352
|
Abstract
The immune system defends the host against pathogenic attacks by micro-organisms and their products. It does not react against self-components due to the relatively efficient negative selection of developing T lymphocytes in the thymus. This process does permit T cells with low avidity against self to be present in the T cell repertoire. Such cells play an important physiological role as the host needs so-called autoimmune reactions in order to eliminate dying cells or transformed tumour cells. One of the mysteries in immunology is how the host maintains beneficial autoimmune reactions and avoids pathogenic autoimmune reactions. Activation of the adaptive T lymphocytes is mediated by the low avidity interaction between T-cell antigen receptors and antigenic peptides associated with major histocompatibility complex class I or class II molecules. This interaction is strengthened by T-cell co-receptors such as CD2, CD4, CD8, CD28 and CD154, which react with ligands expressed by cells of the innate immune system. In recent years, the importance of pre-activation of the innate immune system for initiation of adaptive T-cell immune responses has been appreciated. In the present review, I will summarize our work on how natural immunity plays an important role in determining the level of beneficial autoimmune reactions against cancer.
Collapse
Affiliation(s)
- B Rubin
- Institut de Science et Technologies du Médicament de Toulouse, UMR 2587 CNRS-Pierre Fabre, Rue des Satellites, Toulouse, France.
| |
Collapse
|
353
|
Xu Y, Tertilt C, Krause A, Quadri LEN, Crystal RG, Worgall S. Influence of the cystic fibrosis transmembrane conductance regulator on expression of lipid metabolism-related genes in dendritic cells. Respir Res 2009; 10:26. [PMID: 19344509 PMCID: PMC2683168 DOI: 10.1186/1465-9921-10-26] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2008] [Accepted: 04/03/2009] [Indexed: 12/23/2022] Open
Abstract
Background Cystic fibrosis (CF) is caused by mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene. Infections of the respiratory tract are a hallmark in CF. The host immune responses in CF are not adequate to eradicate pathogens, such as P. aeruginosa. Dendritic cells (DC) are crucial in initiation and regulation of immune responses. Changes in DC function could contribute to abnormal immune responses on multiple levels. The role of DC in CF lung disease remains unknown. Methods This study investigated the expression of CFTR gene in bone marrow-derived DC. We compared the differentiation and maturation profile of DC from CF and wild type (WT) mice. We analyzed the gene expression levels in DC from naive CF and WT mice or following P. aeruginosa infection. Results CFTR is expressed in DC with lower level compared to lung tissue. DC from CF mice showed a delayed in the early phase of differentiation. Gene expression analysis in DC generated from naive CF and WT mice revealed decreased expression of Caveolin-1 (Cav1), a membrane lipid raft protein, in the CF DC compared to WT DC. Consistently, protein and activity levels of the sterol regulatory element binding protein (SREBP), a negative regulator of Cav1 expression, were increased in CF DC. Following exposure to P. aeruginosa, expression of 3β-hydroxysterol-Δ7 reductase (Dhcr7) and stearoyl-CoA desaturase 2 (Scd2), two enzymes involved in the lipid metabolism that are also regulated by SREBP, was less decreased in the CF DC compared to WT DC. Conclusion These results suggest that CFTR dysfunction in DC affects factors involved in membrane structure and lipid-metabolism, which may contribute to the abnormal inflammatory and immune response characteristic of CF.
Collapse
Affiliation(s)
- Yaqin Xu
- Department of Pediatrics, Weill Cornell Medical College, New York, USA.
| | | | | | | | | | | |
Collapse
|
354
|
|
355
|
MHC molecules and microbial antigen processing in phagosomes. Curr Opin Immunol 2009; 21:98-104. [PMID: 19217269 DOI: 10.1016/j.coi.2009.01.001] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2008] [Accepted: 01/16/2009] [Indexed: 11/19/2022]
Abstract
Macrophages and dendritic cells are phagocytic antigen presenting cells that internalize bacteria and other particulate antigens into phagosomes. The phagosome must then balance microbicidal and proteolytic degradation functions with the generation of antigenic peptides for presentation by class I and class II MHC molecules to CD8 and CD4 T cells, respectively. Understanding the host and bacterial factors that affect phagosomal antigen processing may help facilitate new strategies to eliminate pathogens.
Collapse
|
356
|
Becker SM, Delamarre L, Mellman I, Andrews NW. Differential role of the Ca(2+) sensor synaptotagmin VII in macrophages and dendritic cells. Immunobiology 2009; 214:495-505. [PMID: 19157638 DOI: 10.1016/j.imbio.2008.11.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2008] [Accepted: 11/14/2008] [Indexed: 12/11/2022]
Abstract
Synaptotagmin VII (Syt VII) is a Ca(2+) sensing molecule that regulates lysosomal exocytosis in several cell types. In macrophages (MØ), Syt VII is required for efficient uptake of large particle loads, by promoting the delivery of lysosomal membrane to phagocytic cups. Here we compare the phagocytic capacity of bone marrow-derived MØs and dendritic cells (DC), and show that the requirement for Syt VII correlates with the unique ability of MØs for continuous phagocytosis. In contrast to MØs, Syt VII(+/+) and Syt VII(-/-) immature DCs show similar levels of initial phagocytosis, followed by a marked decrease in particle uptake. [Ca(2+)](i) chelation and PI-3 kinase inhibition reduce particle uptake by MØs, but are markedly less inhibitory in DCs. Thus, immature DCs appear to lack the Syt VII, Ca(2+) and PI-3 kinase-dependent forms of phagocytosis that are present in MØs. Interestingly, expression of Syt VII is up-regulated during LPS-induced DC maturation, a stimulus that also induces Syt VII translocation from intracellular compartments to the plasma membrane. Syt VII(-/-) DCs show a delayed translocation of MHC class II to the cell surface during maturation, consistent with the possibility that Syt VII facilitates exocytosis and/or surface retention of molecules critical for antigen presentation.
Collapse
Affiliation(s)
- Steven M Becker
- Section of Microbial Pathogenesis, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06510, USA
| | | | | | | |
Collapse
|
357
|
Tran KK, Shen H. The role of phagosomal pH on the size-dependent efficiency of cross-presentation by dendritic cells. Biomaterials 2008; 30:1356-62. [PMID: 19091401 DOI: 10.1016/j.biomaterials.2008.11.034] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2008] [Accepted: 11/27/2008] [Indexed: 12/26/2022]
Abstract
Vaccines able to stimulate CD8(+) T cells are crucial in controlling a broad range of infectious diseases and tumors. To induce effective CD8(+) T cell responses, exogenous antigen has to be cross-presented onto major histocompatibility complex (MHC) class I molecules by dendritic cells. Although particle size has been recognized as a critical factor of vaccine design, it is unclear how the size of vaccine carriers impacts the intracellular processing of exogenous antigen and cross-presentation onto MHC class I molecules. In this study, by using polystyrene beads with narrowly defined sizes as model antigen carriers, we demonstrate that particle size mediates the efficiency of cross-presentation of exogenous antigens. By examining the intracellular trafficking, kinetics of phagosomal pH and degradation of antigens bounded to beads, we illustrate the possible mechanisms attributed to the profound effect of particle size on the efficiency of cross-presentation. Antigen bounded to 50 nm beads was shuttled rapidly to an acidic environment within half an hour post-exposure to cells, leading to its rapid and unregulated degradation and inefficient cross-presentation. In contrast, antigen bounded to 500 nm and 3 microm beads remained in a more neutral environment, which preserved the majority of antigens, leaving it available for the generation of peptides to be loaded onto MHC class I molecules. We conclude that the size of antigen carriers plays a critical role in directing antigen to the class I antigen presentation pathway. Our results, together with previous in vivo studies on the effect of particle size on CD8(+) T cell responses, provide insight into the rational design of vaccines for the stimulation of cell-mediated immunity.
Collapse
Affiliation(s)
- Kenny K Tran
- Department of Chemical Engineering, University of Washington, 353 Benson Hall, Box 351750, Seattle, WA 98195, USA
| | | |
Collapse
|
358
|
Abstract
There is a need for novel treatment for acute leukaemia as relapse rates remain unacceptably high. Immunotherapy aims to stimulate the patient's immune responses to recognize and destroy leukaemia cells whilst activating immune memory. The qualities of the most potent professional antigen-presenting cell, the dendritic cell (DC), can be used to stimulate leukaemia-specific cytotoxic T cells. DCs can be loaded with leukaemia antigens, or leukaemia blasts can be modified to express DC-like properties for use in vaccine therapy. This chapter will review the rationale for DC vaccine therapy, the preclinical and clinical trials to date, the barriers to successful DC vaccine therapies and the role of immune adjuncts to improve outcomes.
Collapse
Affiliation(s)
- Caroline Duncan
- Department of Haematology, Western General Hospital, Crewe Road South, Edinburgh EH4 2XU, UK.
| | | |
Collapse
|
359
|
Ménard C, Martin F, Apetoh L, Bouyer F, Ghiringhelli F. Cancer chemotherapy: not only a direct cytotoxic effect, but also an adjuvant for antitumor immunity. Cancer Immunol Immunother 2008; 57:1579-87. [PMID: 18369619 PMCID: PMC11030219 DOI: 10.1007/s00262-008-0505-6] [Citation(s) in RCA: 114] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2008] [Accepted: 03/09/2008] [Indexed: 01/19/2023]
Abstract
Treatment of metastatic cancer mainly relies on chemotherapy. Chemotherapeutic agents kill tumor cells by direct cytotoxicity, thus leading to tumor regression. However, emerging data focus on another side of cancer chemotherapy: its antitumor immunity effect. Although cancer chemotherapy was usually considered as immunosuppressive, some chemotherapeutic agents have recently been shown to activate an anticancer immune response, which is involved in the curative effect of these treatments. Cancer development often leads to the occurrence of an immune tolerance that prevents cancer rejection by the immune system and hinders efficacy of immunotherapy. Cancer cells induce proliferation and local accumulation of immunosuppressive cells such as regulatory T cells and immature myeloid cells, and prevent the maturation of dendritic cells and their capacity to present tumor antigens to T lymphocytes. Many anticancer cytotoxic agents interfere with the molecular and cellular mechanisms leading to tumor-induced tolerance. They can restore an efficient immune response that contributes to the therapeutic effects of chemotherapy. These findings open a novel field of investigations for future clinical trial design, taking into account the immunostimulatory capacity of chemotherapeutic agents, and using them in combined chemo-immunotherapy strategies when tumor-induced tolerance is overcome.
Collapse
Affiliation(s)
- Cédric Ménard
- Hematology Laboratory, Centre Hospitalier Universitaire Pontchaillou, 35033 Rennes, France
| | | | | | | | - François Ghiringhelli
- INSERM, CRI-866, Faculté de Médecine, Centre Georges François Leclerc, 1 rue du Professeur Marion, 21000 Dijon, France
- INSERM, CRI-866, Dijon, France
| |
Collapse
|
360
|
Randelli E, Buonocore F, Scapigliati G. Cell markers and determinants in fish immunology. FISH & SHELLFISH IMMUNOLOGY 2008; 25:326-340. [PMID: 18722788 DOI: 10.1016/j.fsi.2008.03.019] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2008] [Accepted: 03/28/2008] [Indexed: 05/26/2023]
Abstract
Despite the impressive increase in the cloning and expression of genes encoding fish immunoregulatory molecules, the knowledge on "in vivo" and "in vitro" functional immunology of the corresponding peptide products is still at an initial stage. This is partly due to the lacking of specific markers for immunoregulatory peptides, that represent an indispensible tool to dissect immune reactions and to trace the fate of cellular events downstream of the activation. In this review we summarise the available information on functional immune activities of some teleost species and discuss the obtained data in an evolutionary and applied context.
Collapse
Affiliation(s)
- Elisa Randelli
- Dipartimento di Scienze Ambientali, Università della Tuscia, 01100 Viterbo, Italy
| | | | | |
Collapse
|
361
|
CALLE Y, ANTÓN I, THRASHER A, JONES G. WASP and WIP regulate podosomes in migrating leukocytes. J Microsc 2008; 231:494-505. [DOI: 10.1111/j.1365-2818.2008.02062.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
362
|
Nuclear receptor signalling in dendritic cells connects lipids, the genome and immune function. EMBO J 2008; 27:2353-62. [PMID: 18716631 PMCID: PMC2525841 DOI: 10.1038/emboj.2008.160] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2008] [Accepted: 07/24/2008] [Indexed: 11/17/2022] Open
Abstract
Dendritic cells (DCs) are sentinels of the immune system and represent a heterogeneous cell population. The existence of distinct DC subsets is due to their inherent plasticity and to the changing microenvironment modulating their immunological properties. Numerous signalling pathways have impacts on DCs. It appears that besides cytokines/chemokines, lipid mediators also have profound effects on the immunogenicity of DCs. Some of these lipid mediators exert an effect through nuclear hormone receptors. Interestingly, more recent findings suggest that DCs are able to convert precursors to active hormones, ligands for nuclear receptors. Some of these DC-derived lipids, in particular retinoic acid (RA), have a central function in shaping T-cell development and effector functions. In this review, we summarize and highlight the function of a set of nuclear receptors (PPARγ, RA receptor, vitamin D receptor and glucocorticoid receptor) in DC biology. Defining the contribution of nuclear hormone receptor signalling in DCs can help one to understand the regulatory logic of lipid signalling and allow the exploitation of their potential for therapeutic intervention in various immunological diseases.
Collapse
|
363
|
Vasilevsky S, Colino J, Puliaev R, Canaday DH, Snapper CM. Macrophages pulsed with Streptococcus pneumoniae elicit a T cell-dependent antibody response upon transfer into naive mice. THE JOURNAL OF IMMUNOLOGY 2008; 181:1787-97. [PMID: 18641316 DOI: 10.4049/jimmunol.181.3.1787] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Macrophages are less effective than DC at priming naive CD4(+) T cells, suggesting that DC are unique in initiating T cell-dependent Ab responses. We compared the ability of DC and macrophages, pulsed in vitro with Streptococcus pneumoniae, to elicit protein- and polysaccharide-specific Ig isotype production upon adoptive transfer into naive mice. S. pneumoniae-activated DC secreted more proinflammatory and anti-inflammatory cytokines, expressed higher levels of surface MHC class II and CD40, and presented S. pneumoniae or recombinant pneumococcal surface protein A (PspA) to a PspA-specific T hybridoma more efficiently than macrophages. However, upon adoptive transfer into naive mice, S. pneumoniae-pulsed macrophages elicited an IgM or IgG anti-PspA and anti-polysaccharide response comparable in serum titers and IgG isotype distribution to that induced by DC. The IgG anti-PspA response, in contrast to the IgG anti-polysaccharide, to S. pneumoniae-pulsed macrophages was T cell-dependent. S. pneumoniae-pulsed macrophages that were paraformaldehyde-fixed before transfer or lacking expression of MHC class II or CD40 were highly defective in eliciting an anti-PspA response, although the anti-polysaccharide response was largely unaffected. To our knowledge, these data are the first to indicate that macrophages can play an active role in the induction of a T cell-dependent humoral immune response in a naive host.
Collapse
Affiliation(s)
- Sam Vasilevsky
- Department of Pathology, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | | | | | | | | |
Collapse
|
364
|
Mittal R, Prasadarao NV. Outer Membrane Protein A Expression inEscherichia coliK1 Is Required to Prevent the Maturation of Myeloid Dendritic Cells and the Induction of IL-10 and TGF-β. THE JOURNAL OF IMMUNOLOGY 2008; 181:2672-82. [DOI: 10.4049/jimmunol.181.4.2672] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
365
|
Vyas JM, Van der Veen AG, Ploegh HL. The known unknowns of antigen processing and presentation. Nat Rev Immunol 2008; 8:607-18. [PMID: 18641646 PMCID: PMC2735460 DOI: 10.1038/nri2368] [Citation(s) in RCA: 425] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The principal components of both MHC class I and class II antigen processing and presentation pathways are well known. In dendritic cells, these pathways are tightly regulated by Toll-like-receptor signalling and include features, such as cross-presentation, that are not seen in other cell types. However, the exact mechanisms involved in the subcellular trafficking of antigens remain poorly understood and in some cases are controversial. Recent data suggest that diverse cellular machineries, including autophagy, participate in antigen processing and presentation, although their relative contributions remain to be fully elucidated. Here, we highlight some emerging themes of antigen processing and presentation that we think merit further attention.
Collapse
Affiliation(s)
- Jatin M Vyas
- Whitehead Institute for Biomedical Research, Cambridge, Massachusetts 02142, USA
| | | | | |
Collapse
|
366
|
Ito T, Kobayashi D, Uchida K, Takemura T, Nagaoka S, Kobayashi I, Yokoyama T, Ishige I, Ishige Y, Ishida N, Furukawa A, Muraoka H, Ikeda S, Sekine M, Ando N, Suzuki Y, Yamada T, Suzuki T, Eishi Y. Helicobacter pylori invades the gastric mucosa and translocates to the gastric lymph nodes. J Transl Med 2008; 88:664-81. [PMID: 18475258 DOI: 10.1038/labinvest.2008.33] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Helicobacter pylori has been considered to be non-invasive and to rarely infiltrate the gastric mucosa, even though there is an active Th1 immune response in the lamina propria of the H. pylori-infected stomach. To elucidate whether H. pylori invades the lamina propria and translocates to the gastric lymph nodes, we examined H. pylori in formalin-fixed and paraffin-embedded tissue sections of stomach and gastric lymph nodes obtained from 51 cancer patients using real-time PCR and immunohistochemistry (IHC) with a novel anti-H. pylori monoclonal antibody that recognizes lipopolysaccharides. Fresh gastric lymph nodes were used to culture for H. pylori. In 46 patients with H. pylori in the stomach, the bacterium was found in the lymph nodes from 21 patients by culture, 37 patients by PCR, and 29 patients by IHC. H. pylori captured by macrophages was found in the lamina propria of 39 patients. In the lymph nodes, the bacterium was found in many macrophages and a few interdigitating dendritic cells at the paracortical areas. H. pylori was also found in the intracellular canaliculi of parietal cells in 21 patients, but intracytoplasmic invasion into gastric epithelial cells was not identified. When compared to the commercially available anti-H. pylori antibodies, the novel antibody showed the highest sensitivity to detect H. pylori-positive macrophages, whereas no difference was found for H. pylori in the mucous layer. The H. pylori-positive macrophages in the lamina propria correlated with chronic gastritis as well as translocation of such cells to the lymph nodes. These results suggest that H. pylori-induced gastric epithelial damage allows the bacteria to invade the lamina propria and translocate to the gastric lymph nodes, which may chronically stimulate the immune system. The bacteria captured by macrophages, whether remaining alive or not, may contribute to the induction and development of H. pylori-induced chronic gastritis.
Collapse
Affiliation(s)
- Takashi Ito
- Department of Human Pathology, Tokyo Medical and Dental University Graduate School, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
367
|
Mizuno T, McLennan M, Trott D. Intramuscular vaccination of young calves with aSalmonellaDublin metabolic-drift mutant provides superior protection to oral delivery. Vet Res 2008; 39:26. [DOI: 10.1051/vetres:2008001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2007] [Accepted: 12/17/2007] [Indexed: 11/14/2022] Open
|
368
|
Affiliation(s)
- Jeffrey Ravetch
- Laboratory of Molecular Genetics and Immunology, The Rockefeller University, New York, NY, USA
| | | |
Collapse
|