351
|
Badhan AK, Chadha BS, Kaur J, Sonia KG, Saini HS, Bhat MK. Role of Transglycosylation Products in the Expression of Multiple Xylanases in Myceliophthora sp. IMI 387099. Curr Microbiol 2007; 54:405-9. [PMID: 17503151 DOI: 10.1007/s00284-006-0204-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2006] [Accepted: 10/30/2006] [Indexed: 12/01/2022]
Abstract
This study reports the regulation of multiple xylanases produced by Myceliophthora sp. IMI 387099. Fructose was found to positively regulate the expression of multiple xylanase when used as sole carbon source. The xylanases (EX(1 )and EX(2)) of acidic pI were expressed in the presence of simple sugars (glucose, arabinose, and xylose), whereas xylanase of both acidic as well as basic pI (EX(1,) EX(2,) EX(3), and EX(5)) were expressed in the presence of fructose, xylan, and combination of xylan and alcohol. The combination of fructose and xylan also led to expression of an additional xylanase (EX(4)). The positional isomer (iso-X4) was found to be the key transglycosylation product when cultures were grown in the presence of fructose and xylan. In the presence of alcohols, the higher expression of xylanase was ascribed to the synergistic effect of alkyl glycoside and other transglycosylation products present in the culture extracts.
Collapse
Affiliation(s)
- A K Badhan
- Department of Microbiology, Guru Nanak Dev University, Amritsar, 143005, India
| | | | | | | | | | | |
Collapse
|
352
|
Savitha S, Sadhasivam S, Swaminathan K. Application of Aspergillus fumigatus xylanase for quality improvement of waste paper pulp. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2007; 78:217-21. [PMID: 17437052 DOI: 10.1007/s00128-007-9132-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2006] [Accepted: 03/16/2007] [Indexed: 05/14/2023]
Affiliation(s)
- S Savitha
- Microbial Biotechnology Division, Department of Biotechnology, Bharathiar University, Coimbatore 641 046, Tamil Nadu, India.
| | | | | |
Collapse
|
353
|
Turner P, Mamo G, Karlsson EN. Potential and utilization of thermophiles and thermostable enzymes in biorefining. Microb Cell Fact 2007; 6:9. [PMID: 17359551 PMCID: PMC1851020 DOI: 10.1186/1475-2859-6-9] [Citation(s) in RCA: 330] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2007] [Accepted: 03/15/2007] [Indexed: 11/10/2022] Open
Abstract
In today's world, there is an increasing trend towards the use of renewable, cheap and readily available biomass in the production of a wide variety of fine and bulk chemicals in different biorefineries. Biorefineries utilize the activities of microbial cells and their enzymes to convert biomass into target products. Many of these processes require enzymes which are operationally stable at high temperature thus allowing e.g. easy mixing, better substrate solubility, high mass transfer rate, and lowered risk of contamination. Thermophiles have often been proposed as sources of industrially relevant thermostable enzymes. Here we discuss existing and potential applications of thermophiles and thermostable enzymes with focus on conversion of carbohydrate containing raw materials. Their importance in biorefineries is explained using examples of lignocellulose and starch conversions to desired products. Strategies that enhance thermostablity of enzymes both in vivo and in vitro are also assessed. Moreover, this review deals with efforts made on developing vectors for expressing recombinant enzymes in thermophilic hosts.
Collapse
Affiliation(s)
- Pernilla Turner
- Dept Biotechnology, Center for Chemistry and Chemical Engineering, Lund University, P.O. Box 124, SE-221 00 Lund, Sweden
| | - Gashaw Mamo
- Dept Biotechnology, Center for Chemistry and Chemical Engineering, Lund University, P.O. Box 124, SE-221 00 Lund, Sweden
| | - Eva Nordberg Karlsson
- Dept Biotechnology, Center for Chemistry and Chemical Engineering, Lund University, P.O. Box 124, SE-221 00 Lund, Sweden
| |
Collapse
|
354
|
Dutta T, Sengupta R, Sahoo R, Sinha Ray S, Bhattacharjee A, Ghosh S. A novel cellulase free alkaliphilic xylanase from alkali tolerant Penicillium citrinum: production, purification and characterization. Lett Appl Microbiol 2007; 44:206-11. [PMID: 17257262 DOI: 10.1111/j.1472-765x.2006.02042.x] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
AIMS The enzymatic hydrolysis of xylan has potential economic and environment-friendly applications. Therefore, attention is focused here on the discovery of new extremophilic xylanase in order to meet the requirements of industry. METHODS AND RESULTS An extracellular xylanase was purified from the culture filtrate of P. citrinum grown on wheat bran bed in solid substrate fermentation. Single step purification was achieved using hydrophobic interaction chromatography. The purified enzyme showed a single band on SDS-PAGE with an apparent molecular weight of c. 25 kDa and pI of 3.6. Stimulation of the activity by beta mercaptoethanol, dithiotheritol (DTT) and cysteine was observed. Moderately thermostable xylanase showed optimum activity at 50 degrees C at pH 8.5. CONCLUSION Xylanase purified from P. citrinum was alkaliphilic and moderately thermostable in nature. SIGNIFICANCE AND IMPACT OF THE STUDY The present work reports for the first time the purification and characterization of a novel endoglucanase free alkaliphilic xylanase from the alkali tolerant fungus Penicillium citrinum. The alkaliphilicity and moderate thermostability of this xylanase may have potential implications in paper and pulp industries.
Collapse
Affiliation(s)
- T Dutta
- Department of Biochemistry, University College of Science, Calcutta University, Kolkata, West Bengal, India
| | | | | | | | | | | |
Collapse
|
355
|
Badhan AK, Chadha BS, Kaur J, Saini HS, Bhat MK. Production of multiple xylanolytic and cellulolytic enzymes by thermophilic fungus Myceliophthora sp. IMI 387099. BIORESOURCE TECHNOLOGY 2007; 98:504-10. [PMID: 16600593 DOI: 10.1016/j.biortech.2006.02.009] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2005] [Revised: 01/27/2006] [Accepted: 02/08/2006] [Indexed: 05/08/2023]
Abstract
This study reports the production of xylanolytic and cellulolytic enzymes by a thermophilic fungal isolate Myceliophthora sp. using a cheap medium containing rice straw and chemically defined basal medium under solid-state culture. A combination of one factor at a time approach followed by response surface methodology using Box-Behnken design of experiments resulted in 2.5, 1.25, 1.28 and 4.23 fold increase in xylanase, endoglucanase, beta-glucosidase and FPase activity, respectively. The zymograms developed against IEF gels showed that multiple isoforms of xylanase (5), endoglucanase (4) and beta-glucosidase (2) were produced under optimized culture conditions. Moreover, thiol containing serine proteases produced during the growth of the culture had no role in the post-translational modification of these xylanases.
Collapse
Affiliation(s)
- A K Badhan
- Department of Microbiology, Guru Nanak Dev University, Amritsar 143 005, Punjab, India
| | | | | | | | | |
Collapse
|
356
|
Martins ES, Silva D, da Silva R, Leite RSR, Gomes E. Purification and characterization of polygalacturonase produced by thermophilic Thermoascus aurantiacus CBMAI-756 in submerged fermentation. Antonie van Leeuwenhoek 2007; 91:291-9. [PMID: 17216535 DOI: 10.1007/s10482-006-9114-6] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2005] [Accepted: 08/16/2006] [Indexed: 11/28/2022]
Abstract
An extracellular polygalacturonase was isolated from 5-day culture filtrates of Thermoascus aurantiacus CBMAI-756 and purified by gel filtration and ion-exchange chromatography. The enzyme was maximally active at pH 5.5 and 60-65 degrees C. The apparent K (m) with citrus pectin was 1.46 mg/ml and the V (max) was 2433.3 micromol/min/mg. The apparent molecular weight of the enzyme was 30 kDa. The enzyme was 100% stable at 50 degrees C for 1 h and showed a half-life of 10 min at 60 degrees C. Polygalacturonase was stable at pH 5.0-5.5 and maintained 33% of initial activity at pH 9.0. Metal ions, such as Zn(+2), Mn(+2), and Hg(+2), inhibited 50, 75 and 100% of enzyme activity. The purified polygalacturonase was shown to be an endo/exo-enzyme, releasing mono, di and tri-galacturonic acids within 10 min of hydrolysis.
Collapse
Affiliation(s)
- Eduardo Silva Martins
- Biologia, Universidade Estadual paulista-UNESP, Instituto de Biociências, Letras e Ciências Exatas-IBILCE, R: Crsitovao Colombo, 2265, Jardim Nazareth, São José do Rio Petro, São Paulo, 15054-000, Brazil
| | | | | | | | | |
Collapse
|
357
|
Partial characterization of protease from a thermophilic fungus, Thermoascus aurantiacus, and its hydrolytic activity on bovine casein. Food Chem 2007. [DOI: 10.1016/j.foodchem.2006.11.010] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
358
|
Hong J, Tamaki H, Kumagai H. Cloning and functional expression of thermostable β-glucosidase gene from Thermoascus aurantiacus. Appl Microbiol Biotechnol 2007; 73:1331-9. [PMID: 17021873 DOI: 10.1007/s00253-006-0618-9] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2006] [Revised: 07/13/2006] [Accepted: 08/08/2006] [Indexed: 11/25/2022]
Abstract
A thermostable beta-glucosidase (BGLI) was purified from Thermoascus aurantiacus IFO9748, and the gene (bgl1) encoding this enzyme was cloned and expressed in yeast Pichia pastoris. The deduced amino acid sequence encoded by bgl1 showed high similarity with the sequence of glycoside hydrolase family 3. The recombinant enzyme was purified and subjected to enzymatic characterization. Recombinant BGLI retained more than 70% of its initial activity after 1 h of incubation at 60 degrees C and was stable in the pH range 3-8. The optimal temperature for enzyme activity was about 70 degrees C and the optimal pH was about 5. P. pastoris expressing recombinant BGLI became able to utilize cellobiose as a carbon source.
Collapse
Affiliation(s)
- Jiong Hong
- Laboratory of Applied Microbiology, Research Institute of Bioresources and Biotechnology, Ishikawa Prefectural University, Nonoichi-cho, Ishikawa, 921-8836, Japan
| | | | | |
Collapse
|
359
|
Harreither W, Coman V, Ludwig R, Haltrich D, Gorton L. Investigation of Graphite Electrodes Modified with Cellobiose Dehydrogenase from the AscomyceteMyriococcum thermophilum. ELECTROANAL 2007. [DOI: 10.1002/elan.200603688] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
360
|
Production and partial characterization of endoxylanase by Bacillus pumilus using agro industrial residues. Biochem Eng J 2006. [DOI: 10.1016/j.bej.2006.09.016] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
361
|
Yang SQ, Yan QJ, Jiang ZQ, Li LT, Tian HM, Wang YZ. High-level of xylanase production by the thermophilic Paecilomyces themophila J18 on wheat straw in solid-state fermentation. BIORESOURCE TECHNOLOGY 2006; 97:1794-800. [PMID: 16230011 DOI: 10.1016/j.biortech.2005.09.007] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2005] [Revised: 08/29/2005] [Accepted: 09/05/2005] [Indexed: 05/04/2023]
Abstract
The production of extracellular xylanase by a newly isolated thermophilic fungus, Paecilomyces themophila J18, on the lignocellulosic materials was studied in solid-state fermentation (SSF). The strain grew well at 50 degrees C and produced a high-level of xylanase activity using the selected lignocellulosic materials, especially wheat straw. Production of xylanase by P. themophila J18 on wheat straw was enhanced by optimizing the particle size of wheat straw, nitrogen source, initial moisture level, growth temperature and initial pH of the culture medium. Under the optimized conditions, yield as high as 18,580 Ug(-1) of carbon source of xylanase was achieved. No CMCase activity was observed. The xylanase exhibited remarkable stability and retained more than 50% of its original activity at 70 degrees C for 4h at pH 7.0-8.0. Therefore, P. themophila J18 could to be a promising microorganism for thermostable, cellulase-free xylanase production in SSF.
Collapse
Affiliation(s)
- S Q Yang
- Department of Biotechnology, College of Food Science and Nutritional Engineering, China Agricultural University, Haidian District, Beijing, China
| | | | | | | | | | | |
Collapse
|
362
|
Dementhon K, Iyer G, Glass NL. VIB-1 is required for expression of genes necessary for programmed cell death in Neurospora crassa. EUKARYOTIC CELL 2006; 5:2161-73. [PMID: 17012538 PMCID: PMC1694810 DOI: 10.1128/ec.00253-06] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Nonself recognition during somatic growth is an essential and ubiquitous phenomenon in both prokaryotic and eukaryotic species. In filamentous fungi, nonself recognition is also important during vegetative growth. Hyphal fusion between genetically dissimilar individuals results in rejection of heterokaryon formation and in programmed cell death of the fusion compartment. In filamentous fungi, such as Neurospora crassa, nonself recognition and heterokaryon incompatibility (HI) are regulated by genetic differences at het loci. In N. crassa, mutations at the vib-1 locus suppress nonself recognition and HI mediated by genetic differences at het-c/pin-c, mat, and un-24/het-6. vib-1 is a homolog of Saccharomyces cerevisiae NDT80, which is a transcriptional activator of genes during meiosis. For this study, we determined that vib-1 encodes a nuclear protein and showed that VIB-1 localization varies during asexual reproduction and during HI. vib-1 is required for the expression of genes involved in nonself recognition and HI, including pin-c, tol, and het-6; all of these genes encode proteins containing a HET domain. vib-1 is also required for the production of downstream effectors associated with HI, including the production of extracellular proteases upon carbon and nitrogen starvation. Our data support a model in which mechanisms associated with starvation and nonself recognition/HI are interconnected. VIB-1 is a major regulator of responses to nitrogen and carbon starvation and is essential for the expression of genes involved in nonself recognition and death in N. crassa.
Collapse
Affiliation(s)
- Karine Dementhon
- Department of Plant and Microbial Biology, The University of California, Berkeley, CA 94720-3102, USA
| | | | | |
Collapse
|
363
|
Katapodis P, Christakopoulou V, Christakopoulos P. Optimization of Xylanase Production bySporotrichum thermophile Using Corn Cobs and Response Surface Methodology. Eng Life Sci 2006. [DOI: 10.1002/elsc.200520134] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
364
|
|
365
|
Li L, Tian H, Cheng Y, Jiang Z, Yang S. Purification and characterization of a thermostable cellulase-free xylanase from the newly isolated Paecilomyces themophila. Enzyme Microb Technol 2006. [DOI: 10.1016/j.enzmictec.2005.08.007] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
366
|
Katapodis P, Christakopoulou V, Christakopoulos P. Optimization of Xylanase Production by Thermomyces Lanuginosus in Tomato Seed Meal Using Response Surface Methodology. World J Microbiol Biotechnol 2006. [DOI: 10.1007/s11274-005-9063-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
367
|
Nakkharat P, Haltrich D. Purification and characterisation of an intracellular enzyme with beta-glucosidase and beta-galactosidase activity from the thermophilic fungus Talaromyces thermophilus CBS 236.58. J Biotechnol 2006; 123:304-13. [PMID: 16446002 DOI: 10.1016/j.jbiotec.2005.12.015] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2005] [Revised: 11/28/2005] [Accepted: 12/15/2005] [Indexed: 10/25/2022]
Abstract
An intracellular beta-glycoside hydrolase with beta-glucosidase and beta-galactosidase activity, designated beta-glucosidase BGL1, was isolated to apparent homogeneity from the thermophilic ascomycete Talaromyces thermophilus CBS 236.58. The monomeric enzyme has a molecular mass of 50 kDa (SDS-PAGE) and an isoelectric point of 4.5-4.6. The enzyme is active with both glucosides such as cellobiose and galactosides including lactose; based on the catalytic efficiencies determined glucosides are the preferred substrates. beta-Galactosidase activity of BGL1 is activated by various mono and divalent cations including Na+, K+ and Mg2+, and it is moderately inhibited by its reaction products glucose and galactose. Its pH optimum for the hydrolysis of galactosides is in the range of 5.5-6.0, and its optimum temperature was found to be 50 degrees C (15 min assay). In addition to its hydrolytic activity, BGL1 shows a significant transferase activity which results in the formation of galacto-oligosaccharides. These have recently attracted interest because of possible applications in food industry. The highest yields of oligosaccharides was approximately 20% when using 38 gl(-1) lactose as the starting material.
Collapse
Affiliation(s)
- Phimchanok Nakkharat
- Division of Food Biotechnology, Department of Food Science and Technology, BOKU, University of Natural Resources and Applied Life Sciences, Vienna Muthgasse 18, A-1190 Vienna, Austria
| | | |
Collapse
|
368
|
Ogel ZB, Yüzügüllü Y, Mete S, Bakir U, Kaptan Y, Sutay D, Demir AS. Production, properties and application to biocatalysis of a novel extracellular alkaline phenol oxidase from the thermophilic fungus Scytalidium thermophilum. Appl Microbiol Biotechnol 2006; 71:853-62. [PMID: 16389559 DOI: 10.1007/s00253-005-0216-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2005] [Revised: 10/10/2005] [Accepted: 10/10/2005] [Indexed: 10/25/2022]
Abstract
Scytalidium thermophilum produces an extracellular phenol oxidase on glucose-containing medium. Certain phenolic acids, specifically gallic acid and tannic acid, induce the expression of the enzyme. Production at 45 degrees C in batch cultures is growth-associated and is enhanced in the presence of 160 microM CuSO4 x 5 H2O and 3 mM gallic acid. The highest enzyme activity is observed at pH 7.5 and 65 degrees C, on catechol. When incubated for 1 h at pH 7 and pH 8, 95% and 86% of the activity is retained. Thermostability decreases gradually from 40 degrees C to 80 degrees C. Estimated molecular mass is c. 83 kDa, and pI is acidic at c. 5.4. Substrate specificity and inhibition analysis in culture supernatants suggest that the enzyme has unique properties showing activity towards catechol; 3,4-dihydroxy-L-phenylalanine (L-DOPA); 4-amino-N, N-diethylaniline (ADA); p-hydroquinone; gallic acid; tannic acid and caffeic acid, and no activity towards L-tyrosine, guaiacol, 2,2'-azino-bis(3-ethyl-benzthiazoline-6-sulphonic acid) (ABTS) and syringaldazine. Inhibition is observed in the presence of salicyl hydroxamic acid (SHAM) and p-coumaric acid. Enzyme activity is enhanced by cetyltrimethylammonium bromide (CTAB) and polyvinylpyrrolidone (PVP), and the organic solvents dimethyl sulfoxide (DMSO) and ethanol. No inhibition is observed in the presence of carbon monoxide. Benzoin, benzoyl benzoin and hydrobenzoin are converted into benzil, and stereoselective oxidation is observed on hydrobenzoin. The reported enzyme is novel due to its catalytic properties resembling mainly catechol oxidases, but displaying some features of laccases at the same time.
Collapse
Affiliation(s)
- Z B Ogel
- Food Engineering Dept., The Middle East Technical University, 06531, Ankara, Turkey.
| | | | | | | | | | | | | |
Collapse
|
369
|
|
370
|
Jatinder K, Chadha BS, Saini HS. Optimization of Medium Components for Production of Cellulases by Melanocarpus sp. MTCC 3922 under Solid-state Fermentation. World J Microbiol Biotechnol 2006. [DOI: 10.1007/s11274-005-2821-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
371
|
Filos G, Tziala T, Lagios G, Vynios DH. Preparation of cross-linked cellulases and their application for the enzymatic production of glucose from municipal paper wastes. Prep Biochem Biotechnol 2006; 36:111-125. [PMID: 16513556 DOI: 10.1080/10826060500533901] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Hydrolysis of cellulosic wastes has been applied for environmental purposes and glucose production. An enzymatic process is proposed for such treatment of municipal cellulosic wastes, and the optimum conditions are described. It was found that different conditions should be applied for the treatment of soft or hard paper wastes, the most characteristic being pretreatment of wastes and temperature of the treatment process. Optimization of enzyme characteristics was also examined after stabilization of the enzymes by cross-linking. Endocellulase was better stabilized after cross-linking with EDAC whereas, exocellulase was better with glutaraldehyde. The application of cross-linked enzyme in the waste paper treatment process resulted in about a 25% increase of glucose liberation.
Collapse
Affiliation(s)
- George Filos
- Laboratory of Biochemistry, Department of Chemistry, University of Patras, Patras, Greece
| | | | | | | |
Collapse
|
372
|
Schnürer A, Schnürer J. Fungal survival during anaerobic digestion of organic household waste. WASTE MANAGEMENT (NEW YORK, N.Y.) 2006; 26:1205-11. [PMID: 16293407 DOI: 10.1016/j.wasman.2005.09.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2004] [Revised: 06/30/2005] [Accepted: 09/15/2005] [Indexed: 05/05/2023]
Abstract
Anaerobic digestion of organic waste yields energy rich biogas and retains nutrients (N, P, K, S, etc.) in a stabilised residue. For the residue to be used as a soil fertiliser, it must be free from pollutants and harmful microorganisms. Fungal survival during sanitation and anaerobic treatment of source-separated organic household waste and during aerobic storage of the residue obtained was investigated. Decimal reduction times were determined for inoculated fungi (Aspergillus flavus and Aspergillus fumigatus, Penicillium roqueforti, Rhizomucor pusillus, Thermoascus crustaceus and Thermomyces lanuginosus). Several different fungal species were found after waste sanitation treatment (70 degrees C, 1 h), with Aspergillus species dominating in non-inoculated waste. Anaerobic waste degradation decreased the diversity of fungal species for processes run at both 37 and 55 degrees C, but not total fungal colony forming units. Fungi surviving the mesophilic anaerobic digestion were mainly thermotolerant Talaromyces and Paecilomyces species. T. crustaceus and T. lanuginosus were the only inoculated fungi to survive the thermophilic anaerobic degradation process. Aerobic storage of both types of anaerobic residues for one month significantly decreased fungal counts.
Collapse
Affiliation(s)
- Anna Schnürer
- Department of Microbiology, Swedish University of Agricultural Sciences, Box 7025, SE-750 07 Uppsala, Sweden.
| | | |
Collapse
|
373
|
Kunamneni A, Singh S. Response surface optimization of enzymatic hydrolysis of maize starch for higher glucose production. Biochem Eng J 2005. [DOI: 10.1016/j.bej.2005.08.027] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
374
|
Purification and characterization of a high molecular weight endoxylanase from the solid-state culture of an alkali-tolerant Aspergillus fumigatus MKU1. World J Microbiol Biotechnol 2005. [DOI: 10.1007/s11274-005-9061-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
375
|
|
376
|
Bhabhra R, Askew DS. Thermotolerance and virulence of Aspergillus fumigatus: role of the fungal nucleolus. Med Mycol 2005; 43 Suppl 1:S87-93. [PMID: 16110798 DOI: 10.1080/13693780400029486] [Citation(s) in RCA: 103] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
The ability to thrive at 37 degrees C is characteristic of all human pathogens and has long been suspected to play a role in the pathogenesis of aspergillosis. As a thermotolerant fungus, Aspergillus fumigatus is capable of growth at temperatures that approach the upper limit for all eukaryotes, suggesting that the organism has evolved unique mechanisms of stress resistance that may be relevant to its ability to adapt to the stress of growth in the host. High temperature is a strain on many biological systems, particularly those involved in complex macromolecular assemblies such as ribosomes. This review will discuss the relationship between thermotolerance and virulence in pathogenic fungi, emphasizing the link to ribosome biogenesis in A. fumigatus. Future work in this area will help determine how rapid growth is accomplished at elevated temperature and may offer new avenues for the development of novel antifungals that disrupt thermotolerant ribosome assembly.
Collapse
Affiliation(s)
- R Bhabhra
- Department of Pathology & Laboratory Medicine, University of Cincinnati, 231 Bethesda Ave., Cincinnati, OH 45267-0529, USA
| | | |
Collapse
|
377
|
Optimizing Xylanase Production by a Newly Isolated Strain CAU44 of the Thermophile Thermomyces lanuginosus. World J Microbiol Biotechnol 2005. [DOI: 10.1007/s11274-004-5988-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
378
|
|
379
|
Helal GA. Bioconversion of straw into improved fodder: fungal flora decomposing rice straw. MYCOBIOLOGY 2005; 33:150-157. [PMID: 24049492 PMCID: PMC3774876 DOI: 10.4489/myco.2005.33.3.150] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2005] [Indexed: 06/02/2023]
Abstract
The fungal flora decomposing rice straw were investigated all over the soil of Sharkia Province, east of Nile Delta, Egypt, using the nylon net bag technique. Sixty-four straw-decomposing species belonging to 30 genera were isolated by the dilution plate method in ground rice straw-Czapek's agar medium at pH 6. The plates were incubated separately at 5℃, 25℃ and 45℃, respectively. Twenty nine species belonging to 14 genera were isolated at 5℃. The most frequent genus was Penicillium (seven species), and the next frequent genera were Acremonium (three species), Fusarium (three species), Alternaria, Chaetomium, Cladosporium, Mucor, Stachybotrys (two species) and Rhizopus stolonifer. At 25℃, 47 species belonging to 24 genera were isolated. The most frequent genus was Aspergillus (nine species), and the next frequent genera were ranked by Penicillium (five species), Chaetomium (three species), Fusarium (three species). Each of Alternaria, Cladosporium, Mucor, Myrothecium and Trichoderma was represented by two species. At 45℃, 15 species belonging to seven genera were isolated. These were seven species of Aspergillus, two species of Chaetomium and two species of Emericella, while Humicola, Malbranchea, Rhizomucor and Talaromyces were represented by one species respectively. The total counts of fungi the genera, and species per gram of dry straw were significantly affected by incubation temperature and soil analysis (P < 0.05).
Collapse
Affiliation(s)
- G A Helal
- Botany Department, Faculty of Science, Zagazig University, Zagazig, Egypt
| |
Collapse
|
380
|
Guerra E, Chye PP, Berardi E, Piper PW. Hypoxia abolishes transience of the heat-shock response in the methylotrophic yeast Hansenula polymorpha. MICROBIOLOGY-SGM 2005; 151:805-811. [PMID: 15758226 DOI: 10.1099/mic.0.27272-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The heat-shock response is conserved amongst practically all organisms. Almost invariably, the massive heat-shock protein (Hsp) synthesis that it induces is subsequently down-regulated, making this a transient, not a sustained, stress response. This study investigated whether the heat-shock response displays any unusual features in the methylotrophic yeast Hansenula polymorpha, since this organism exhibits the highest growth temperature (49-50 degrees C) identified to date for any yeast and grows at 47 degrees C without either thermal death or detriment to final biomass yield. Maximal levels of Hsp induction were observed with a temperature upshift of H. polymorpha from 30 degrees C to 47-49 degrees C. This heat shock induces a prolonged growth arrest, heat-shock protein synthesis being down-regulated long before growth resumes at such high temperatures. A 30 degrees C to 49 degrees C heat shock also induced thermotolerance, although H. polymorpha cells in balanced growth at 49 degrees C were intrinsically thermotolerant. Unexpectedly, the normal transience of the H. polymorpha heat-shock response was suppressed completely by imposing the additional stress of hypoxia at the time of the 30 degrees C to 49 degrees C temperature upshift. Hypoxia abolishing the transience of the heat-shock response appears to operate at the level of Hsp gene transcription, since the heat-induced Hsp70 mRNA was transiently induced in a heat-shocked normoxic culture but displayed sustained induction in a culture deprived of oxygen at the time of temperature upshift.
Collapse
Affiliation(s)
- Emanuela Guerra
- Laboratorio di Genetica Microbica, DiSA, Università Politecnica delle Marche, 60131 Ancona, Italy
| | - Poh Poh Chye
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, S10 2TN, UK
| | - Enrico Berardi
- Laboratorio di Genetica Microbica, DiSA, Università Politecnica delle Marche, 60131 Ancona, Italy
| | - Peter W Piper
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, S10 2TN, UK
| |
Collapse
|
381
|
Helal GA. Bioconversion of straw into improved fodder: mycoprotein production and cellulolytic acivity of rice straw decomposing fungi. MYCOBIOLOGY 2005; 33:90-6. [PMID: 24049480 PMCID: PMC3774869 DOI: 10.4489/myco.2005.33.2.090] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2004] [Indexed: 06/02/2023]
Abstract
Sixty two out of the sixty four species of fungal isolates tested could produce both exo-β1,4-gluconase (C1) and endo-β1,4-gluconase (Cx) on pure cellulose and rice straw as carbon source in Czapek's medium. Fifty-eight and fifteen species were able to grow at 25℃ and at 45℃, respectively. Eleven species could grow at both 25℃ and 45℃ while, four species appeared only at 45℃. The most cellulolytic species at 25℃ was Trichoderma koningii producing 1.164 C1 (mg glucose/1 ml culture filtrate/1 hr) and 2.690 Cx on pure cellulose, and 0.889 C1 and 1.810 Cx on rice straw, respectively. At 45℃, the most active thermotolerant species were Aspergillus terreus, followed by A. fumigatus. Talaromyces thermophilus was the highest active thermophilic species followed by Malbranchea sulfurea. Most of these species were also active in fermentation of rice straw at 25 and 45℃ (P<0.05). The most active ones were T. koningii, A. ochraceus and A. terreus, which produced 201.5, 193.1 and 188.1 mg crude protein/g dry straw, respectively.
Collapse
Affiliation(s)
- G A Helal
- Botany Department, Faculty of Science, Zagazig University, Zagazig, Sharkia Gov. 4419, Egypt
| |
Collapse
|
382
|
Estévez E, Veiga MC, Kennes C. Biodegradation of toluene by the new fungal isolates Paecilomyces variotii and Exophiala oligosperma. J Ind Microbiol Biotechnol 2005; 32:33-7. [PMID: 15702332 DOI: 10.1007/s10295-004-0203-0] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2004] [Accepted: 12/16/2004] [Indexed: 10/25/2022]
Abstract
Two new fungal strains, namely Paecilomyces variotii and Exophiala oligosperma, were isolated on toluene as the sole carbon and energy source, mineralizing the substrate into carbon dioxide. Fungal strains isolated so far on such a pollutant and completely degrading it are very scarce. Both fungi degraded the pollutant over the pH range 3.9-6.9 and temperature range 23-40 degrees C, but E. oligosperma was barely active at the highest temperature of 40 degrees C. Fungal growth on alkylbenzenes at 40 degrees C has not been reported before. Since the activity of the strains gradually decreased at pH values below 4.0, the use of nitrate instead of ammonium was tested. In the presence of toluene, nitrate was a suitable nitrogen source for the Exophiala strain, but not for the Paecilomyces strain. Nitrate rather than ammonium allowed the maintenance of a more constant pH.
Collapse
Affiliation(s)
- Elena Estévez
- Chemical Engineering Laboratory, Faculty of Sciences, University of La Coruña, Campus da Zapateira, La Coruña, 5071, Spain
| | | | | |
Collapse
|
383
|
Rangel DEN, Braga GUL, Anderson AJ, Roberts DW. Variability in conidial thermotolerance of Metarhizium anisopliae isolates from different geographic origins. J Invertebr Pathol 2005; 88:116-25. [PMID: 15766928 DOI: 10.1016/j.jip.2004.11.007] [Citation(s) in RCA: 118] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2004] [Revised: 11/22/2004] [Accepted: 11/23/2004] [Indexed: 11/28/2022]
Abstract
Notable variability in thermotolerance was found among conidia of 16 isolates of the insect-pathogenic fungi Metarhizium anisopliae var. anisopliae and one M. anisopliae var. acridum isolated from latitudes 61 degrees N to 54 degrees S. Conidial suspensions were exposed to 40 or 45 degrees C for 2, 4, 8, and 12 h. Most of the isolates tolerated 40 degrees C very well, with relative germination (germination relative to unheated controls) above 90% after 12 h of exposure. Exceptions were three isolates originating from high latitude, viz., ARSEF 2038 (38 degrees N, South Korea), 4295 (54.4 degrees S, Australia), and 5626 (61.2 degrees N, Finland) that had approximately 80% germination. High variability, however, was observed among isolates at 45 degrees C; viz., after 2 h exposure, relative germination was above 80% for six isolates, between 50 and 70% for three isolates, and between 0 and 30% for eight isolates. After 8 and 12 h at 45 degrees C, only two M. anisopliae isolates pathogenic to grasshoppers, viz., ARSEF 324 (latitude 19 degrees S, Australia) and 3609 (15 degrees N, Thailand), had high relative germination (91.6 and 79.4%, respectively, for 8 h exposures; and 90 and 47.1%, respectively, for 12 h). These isolates also were the most tolerant to UV-B radiation [J. Invertebr. Pathol. 78 (2001) 98-108]. The median lethal dose (LD50) for isolate ARSEF 324 was 49.4 and 47.9 degrees C, for 2 and 4 h of exposures, respectively. Exposure of conidia to wet-heat greatly delayed germination of some isolates. In general, isolates from higher latitudes demonstrated greater heat susceptibility than isolates from nearer the equator. Dry conidia tolerated 50 degrees C better than 45 degrees C in aqueous suspension.
Collapse
|
384
|
Polizeli MLTM, Rizzatti ACS, Monti R, Terenzi HF, Jorge JA, Amorim DS. Xylanases from fungi: properties and industrial applications. Appl Microbiol Biotechnol 2005; 67:577-91. [PMID: 15944805 DOI: 10.1007/s00253-005-1904-7] [Citation(s) in RCA: 673] [Impact Index Per Article: 33.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2004] [Revised: 12/29/2004] [Accepted: 12/31/2004] [Indexed: 10/25/2022]
Abstract
Xylan is the principal type of hemicellulose. It is a linear polymer of beta-D-xylopyranosyl units linked by (1-4) glycosidic bonds. In nature, the polysaccharide backbone may be added to 4-O-methyl-alpha-D-glucuronopyranosyl units, acetyl groups, alpha-L-arabinofuranosyl, etc., in variable proportions. An enzymatic complex is responsible for the hydrolysis of xylan, but the main enzymes involved are endo-1,4-beta-xylanase and beta-xylosidase. These enzymes are produced by fungi, bacteria, yeast, marine algae, protozoans, snails, crustaceans, insect, seeds, etc., but the principal commercial source is filamentous fungi. Recently, there has been much industrial interest in xylan and its hydrolytic enzymatic complex, as a supplement in animal feed, for the manufacture of bread, food and drinks, textiles, bleaching of cellulose pulp, ethanol and xylitol production. This review describes some properties of xylan and its metabolism, as well as the biochemical properties of xylanases and their commercial applications.
Collapse
Affiliation(s)
- M L T M Polizeli
- Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto-Universidade de São Paulo, Av. Bandeirantes, 3900, Bairro Monte Alegre , 14040-901 Ribeirão Preto, São Paulo, Brazil.
| | | | | | | | | | | |
Collapse
|
385
|
Sandgren M, Ståhlberg J, Mitchinson C. Structural and biochemical studies of GH family 12 cellulases: improved thermal stability, and ligand complexes. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2004; 89:246-91. [PMID: 15950056 DOI: 10.1016/j.pbiomolbio.2004.11.002] [Citation(s) in RCA: 97] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In this review we will describe how we have gathered structural and biochemical information from several homologous cellulases from one class of glycoside hydrolases (GH family 12), and used this information within the framework of a protein-engineering program for the design of new variants of these enzymes. These variants have been characterized to identify some of the positions and the types of mutations in the enzymes that are responsible for some of the biochemical differences in thermal stability and activity between the homologous enzymes. In this process we have solved the three-dimensional structure of four of these homologous GH 12 cellulases: Three fungal enzymes, Humicola grisea Cel12A, Hypocrea jecorina Cel12A and Hypocrea schweinitzii Cel12A, and one bacterial, Streptomyces sp. 11AG8 Cel12A. We have also determined the three-dimensional structures of the two most stable H. jecorina Cel12A variants. In addition, four ligand-complex structures of the wild-type H. grisea Cel12A enzyme have been solved and have made it possible to characterize some of the interactions between substrate and enzyme. The structural and biochemical studies of these related GH 12 enzymes, and their variants, have provided insight on how specific residues contribute to protein thermal stability and enzyme activity. This knowledge can serve as a structural toolbox for the design of Cel12A enzymes with specific properties and features suited to existing or new applications.
Collapse
Affiliation(s)
- Mats Sandgren
- Department of Cell and Molecular Biology, Uppsala University, Biomedical Center, Husargatan 3, Box 596, SE-751 24 Uppsala, Sweden.
| | | | | |
Collapse
|
386
|
Maloney AP, Callan SM, Murray PG, Tuohy MG. Mitochondrial malate dehydrogenase from the thermophilic, filamentous fungus Talaromyces emersonii. ACTA ACUST UNITED AC 2004; 271:3115-26. [PMID: 15265031 DOI: 10.1111/j.1432-1033.2004.04230.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Mitochondrial malate dehydrogenase (m-MDH; EC 1.1.1.37), from mycelial extracts of the thermophilic, aerobic fungus Talaromyces emersonii, was purified to homogeneity by sequential hydrophobic interaction and biospecific affinity chromatography steps. Native m-MDH was a dimer with an apparent monomer mass of 35 kDa and was most active at pH 7.5 and 52 degrees C in the oxaloacetate reductase direction. Substrate specificity and kinetic studies demonstrated the strict specificity of this enzyme, and its closer similarity to vertebrate m-MDHs than homologs from invertebrate or mesophilic fungal sources. The full-length m-MDH gene and its corresponding cDNA were cloned using degenerate primers derived from the N-terminal amino acid sequence of the native protein and multiple sequence alignments from conserved regions of other m-MDH genes. The m-MDH gene is the first oxidoreductase gene cloned from T. emersonii and is the first full-length m-MDH gene isolated from a filamentous fungal species and a thermophilic eukaryote. Recombinant m-MDH was expressed in Escherichia coli, as a His-tagged protein and was purified to apparent homogeneity by metal chelate chromatography on an Ni2+-nitrilotriacetic acid matrix, at a yield of 250 mg pure protein per liter of culture. The recombinant enzyme behaved as a dimer under nondenaturing conditions. Expression of the recombinant protein was confirmed by Western blot analysis using an antibody against the His-tag. Thermal stability studies were performed with the recombinant protein to investigate if results were consistent with those obtained for the native enzyme.
Collapse
Affiliation(s)
- Alan P Maloney
- Molecular Glycobiotechnology Group, Department of Biochemistry, National University of Ireland, Galway, Ireland
| | | | | | | |
Collapse
|
387
|
Badhan A, Chadha B, Sonia K, Saini H, Bhat M. Functionally diverse multiple xylanases of thermophilic fungus Myceliophthora sp. IMI 387099. Enzyme Microb Technol 2004. [DOI: 10.1016/j.enzmictec.2004.07.002] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
388
|
Chang YC, Tsai HF, Karos M, Kwon-Chung KJ. THTA, a thermotolerance gene of Aspergillus fumigatus. Fungal Genet Biol 2004; 41:888-96. [PMID: 15338574 DOI: 10.1016/j.fgb.2004.06.004] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Aspergillus fumigatus grows optimally from 37 to 42 degrees C but can grow at temperatures up to 55 degrees C. To study the genetic basis of thermotolerance and its role in virulence of A. fumigatus, temperature sensitive mutants were isolated. One of the mutants that grew at 42 degrees C but not at 48 degrees C was complemented and the gene, THTA, was identified. Deletion of THTA showed the same temperature sensitivity as the original mutant. THTA encodes a putative protein of 141 kDa with unknown function and the HA-tagged ThtAp accumulated to similar levels in cultures grown at either 37 or 48 degrees C. Southern blot analysis and database searches revealed the presence of THTA-related sequences in several other ascomycetous fungi. No difference in virulence was observed between the deltathtA and wild-type strains. Thus, THTA is essential for growth of A. fumigatus at high temperatures but does not contribute to the pathogenicity of the species.
Collapse
Affiliation(s)
- Yun C Chang
- Laboratory of Clinical Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | |
Collapse
|
389
|
Bhabhra R, Miley MD, Mylonakis E, Boettner D, Fortwendel J, Panepinto JC, Postow M, Rhodes JC, Askew DS. Disruption of the Aspergillus fumigatus gene encoding nucleolar protein CgrA impairs thermotolerant growth and reduces virulence. Infect Immun 2004; 72:4731-40. [PMID: 15271935 PMCID: PMC470587 DOI: 10.1128/iai.72.8.4731-4740.2004] [Citation(s) in RCA: 103] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Aspergillus fumigatus CgrA is the ortholog of a yeast nucleolar protein that functions in ribosome synthesis. To determine how CgrA contributes to the virulence of A. fumigatus, a Delta cgrA mutant was constructed by targeted gene disruption, and the mutant was reconstituted to wild type by homologous introduction of a functional cgrA gene. The Delta cgrA mutant had the same growth rate as the wild type at room temperature. However, when the cultures were incubated at 37 degrees C, a condition that increased the growth rate of the wild-type and reconstituted strains approximately threefold, the Delta cgrA mutant was unable to increase its growth rate. The absence of cgrA function caused a delay in both the onset and rate of germination at 37 degrees C but had little effect on germination at room temperature. The Delta cgrA mutant was significantly less virulent than the wild-type or reconstituted strain in immunosuppressed mice and was associated with smaller fungal colonies in lung tissue. However, this difference was less pronounced in a Drosophila infection model at 25 degrees C, which correlated with the comparable growth rates of the two strains at this temperature. To determine the intracellular localization of CgrA, the protein was tagged at the C terminus with green fluorescent protein, and costaining with propidium iodide revealed a predominantly nucleolar localization of the fusion protein in living hyphae. Together, these findings establish the intracellular localization of CgrA in A. fumigatus and demonstrate that cgrA is required for thermotolerant growth and wild-type virulence of the organism.
Collapse
Affiliation(s)
- Ruchi Bhabhra
- Department of Pathology and Laboratory Medicine, University of Cincinnati College of Medicine, 231 Bethesda Ave., OH 45267-0529, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
390
|
Sandgren M, Gualfetti PJ, Paech C, Paech S, Shaw A, Gross LS, Saldajeno M, Berglund GI, Jones TA, Mitchinson C. The Humicola grisea Cel12A enzyme structure at 1.2 A resolution and the impact of its free cysteine residues on thermal stability. Protein Sci 2004; 12:2782-93. [PMID: 14627738 PMCID: PMC2366986 DOI: 10.1110/ps.03220403] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
As part of a program to discover improved glycoside hydrolase family 12 (GH 12) endoglucanases, we have extended our previous work on the structural and biochemical diversity of GH 12 homologs to include the most stable fungal GH 12 found, Humicola grisea Cel12A. The H. grisea enzyme was much more stable to irreversible thermal denaturation than the Trichoderma reesei enzyme. It had an apparent denaturation midpoint (T(m)) of 68.7 degrees C, 14.3 degrees C higher than the T. reesei enzyme. There are an additional three cysteines found in the H. grisea Cel12A enzyme. To determine their importance for thermal stability, we constructed three H. grisea Cel12A single mutants in which these cysteines were exchanged with the corresponding residues in the T. reesei enzyme. We also introduced these cysteine residues into the T. reesei enzyme. The thermal stability of these variants was determined. Substitutions at any of the three positions affected stability, with the largest effect seen in H. grisea C206P, which has a T(m) 9.1 degrees C lower than that of the wild type. The T. reesei cysteine variant that gave the largest increase in stability, with a T(m) 3.9 degrees C higher than wild type, was the P201C mutation, the converse of the destabilizing C206P mutation in H. grisea. To help rationalize the results, we have determined the crystal structure of the H. grisea enzyme and of the most stable T. reesei cysteine variant, P201C. The three cysteines in H. grisea Cel12A play an important role in the thermal stability of this protein, although they are not involved in a disulfide bond.
Collapse
Affiliation(s)
- Mats Sandgren
- Department of Cell and Molecular Biology, Uppsala University, Biomedical Center, S-751 24 Uppsala, Sweden
| | | | | | | | | | | | | | | | | | | |
Collapse
|
391
|
Zanoelo FF, Polizeli Md MDLTDM, Terenzi HF, Jorge JA. Purification and biochemical properties of a thermostable xylose-tolerant β-D-xylosidase from Scytalidium thermophilum. J Ind Microbiol Biotechnol 2004; 31:170-6. [PMID: 15160297 DOI: 10.1007/s10295-004-0129-6] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2003] [Accepted: 03/17/2004] [Indexed: 10/26/2022]
Abstract
The thermophilic fungus Scytalidium thermophilum produced large amounts of periplasmic beta- D-xylosidase activity when grown on xylan as carbon source. The presence of glucose in the fresh culture medium drastically reduced the level of beta- D-xylosidase activity, while cycloheximide prevented induction of the enzyme by xylan. The mycelial beta-xylosidase induced by xylan was purified using a procedure that included heating at 50 degrees C, ammonium sulfate fractioning (30-75%), and chromatography on Sephadex G-100 and DEAE-Sephadex A-50. The purified beta- D-xylosidase is a monomer with an estimated molecular mass of 45 kDa (SDS-PAGE) or 38 kDa (gel filtration). The enzyme is a neutral protein (pI 7.1), with a carbohydrate content of 12% and optima of temperature and pH of 60 degrees C and 5.0, respectively. beta- D-Xylosidase activity is strongly stimulated and protected against heat inactivation by calcium ions. In the absence of substrate, the enzyme is stable for 1 h at 60 degrees C and has half-lives of 11 and 30 min at 65 degrees C in the absence or presence of calcium, respectively. The purified beta- D-xylosidase hydrolyzed p-nitrophenol-beta- D-xylopyranoside and p-nitrophenol-beta- D-glucopyranoside, exhibiting apparent K(m) and V(max) values of 1.3 mM, 88 micromol min(-1) protein(-1) and 0.5 mM, 20 micromol min(-1) protein(-1), respectively. The purified enzyme hydrolyzed xylobiose, xylotriose, and xylotetraose, and is therefore a true beta- D-xylosidase. Enzyme activity was completely insensitive to xylose, which inhibits most beta-xylosidases, at concentrations up to 200 mM. Its thermal stability and high xylose tolerance qualify this enzyme for industrial applications. The high tolerance of S. thermophilum beta-xylosidase to xylose inhibition is a positive characteristic that distinguishes this enzyme from all others described in the literature.
Collapse
Affiliation(s)
- Fabiana Fonseca Zanoelo
- Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, 14040-901, Ribeirão Preto, SP, Brasil
| | | | | | | |
Collapse
|
392
|
Chadha BS, Ajay BK, Mellon F, Bhat MK. Two endoxylanases active and stable at alkaline pH from the newly isolated thermophilic fungus, Myceliophthora sp. IMI 387099. J Biotechnol 2004; 109:227-37. [PMID: 15066760 DOI: 10.1016/j.jbiotec.2003.12.010] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2003] [Revised: 12/04/2003] [Accepted: 12/18/2003] [Indexed: 11/17/2022]
Abstract
Two extra-cellular endoxylanases (Xyl Ia and Ib) were purified to homogeneity from the newly isolated thermophilic fungus, Myceliophthora sp. IMI 387099. Xyl Ia and Ib, having a molecular mass of approximately 53 kDa and pI of 5.2 and 4.8, respectively, were optimally active at 75 degrees C and at pH 6.0. They were stable at pH 9.2 at 60 degrees C for 2 h, but less stable at pH 6.0 and above 50 degrees C. Mg+2, Zn+2, Ca+2, Co+2 and DTT increased their activity by 1.5-3.0-folds, while SDS and NBS completely inhibited their activity. Both xylanases were active on pNPX and pNPC, but their activity on pNPC was three times higher than that on pNPX. Xyl Ia was more active than Xyl Ib on pNP-alpha-L-Arap, while the latter preferred pNP-alpha-L-Araf. Both xylanases showed two to four times higher activity on rye and wheat arabinoxylans than on birchwood xylan, but Xyl Ib was more active than Xyl Ia on oat spelt xylan. Wheat insoluble pentosan was a good substrate for Xyl Ia, while Xyl Ib preferred wheat soluble arabinoxylan. Xyl Ia had lower Km and higher kcat/Km ratios than Xyl Ib towards all three xylans tested. Both xylanases degraded X4-X6 in an endo-fashion and catalysed hydrolysis and trans-xylosylation reactions. HPLC and LC/MS analysis showed that Xyl Ia and Ib released the unsubstituted X2-X6 as well as mono and di-methyl glucuronic acid substituted X3 and X2 from arabinoxylans.
Collapse
Affiliation(s)
- Bhupinder S Chadha
- Food Materials Science Division, Institute of Food Research, Norwich Research Park, Colney, Norwich, UK
| | | | | | | |
Collapse
|
393
|
Li DC, Lu M, Li YL, Lu J. Purification and characterization of an endocellulase from the thermophilic fungus Chaetomium thermophilum CT2. Enzyme Microb Technol 2003. [DOI: 10.1016/s0141-0229(03)00245-x] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
394
|
Aquino ACMM, Jorge JA, Terenzi HF, Polizeli MLTM. Studies on a thermostable alpha-amylase from the thermophilic fungus Scytalidium thermophilum. Appl Microbiol Biotechnol 2003; 61:323-8. [PMID: 12743761 DOI: 10.1007/s00253-003-1290-y] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2002] [Revised: 02/11/2003] [Accepted: 02/21/2003] [Indexed: 10/25/2022]
Abstract
An alpha-amylase produced by Scytalidium thermophilum was purified using DEAE-cellulose and CM-cellulose ion exchange chromatography and Sepharose 6B gel filtration. The purified protein migrated as a single band in 6% PAGE and 7% SDS-PAGE. The estimated molecular mass was 36 kDa (SDS-PAGE) and 49 kDa (Sepharose 6B). Optima of pH and temperature were 6.0 and 60 degrees C, respectively. In the absence of substrate the purified alpha-amylase was stable for 1 h at 50 degrees C and had a half-life of 12 min at 60 degrees C, but was fully stable in the presence of starch. The enzyme was not activated by several metal ions tested, including Ca(2+) (up to 10 mM), but HgCl(2 )and CuCl(2) inhibited its activity. The alpha-amylase produced by S. thermophilum preferentially hydrolyzed starch, and to a lesser extent amylopectin, maltose, amylose and glycogen in that order. The products of starch hydrolysis (up to 6 h of reaction) analyzed by thin layer chromatography, showed oligosaccharides such as maltotrioses, maltotetraoses and maltopentaoses. Maltose and traces of glucose were formed only after 3 h of reaction. These results confirm the character of the enzyme studied to be an alpha-amylase (1,4-alpha-glucan glucanohydrolase).
Collapse
Affiliation(s)
- A C M M Aquino
- Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Av. Bandeirantes 3900, Brazil
| | | | | | | |
Collapse
|
395
|
Singh S, Madlala AM, Prior BA. Thermomyces lanuginosus: properties of strains and their hemicellulases. FEMS Microbiol Rev 2003; 27:3-16. [PMID: 12697339 DOI: 10.1016/s0168-6445(03)00018-4] [Citation(s) in RCA: 185] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
The non-cellulolytic Thermomyces lanuginosus is a widespread and frequently isolated thermophilic fungus. Several strains of this fungus have been reported to produce high levels of cellulase-free beta-xylanase both in shake-flask and bioreactor cultivations but intraspecies variability in terms of beta-xylanase production is apparent. Furthermore all strains produce low extracellular levels of other hemicellulases involved in hemicellulose hydrolysis. Crude and purified hemicellulases from this fungus are stable at high temperatures in the range of 50-80 degrees C and over a broad pH range (3-12). Various strains are reported to produce a single xylanase with molecular masses varying between 23 and 29 kDa and pI values between 3.7 and 4.1. The gene encoding the T. lanuginosus xylanase has been cloned and sequenced and is shown to be a member of family 11 glycosyl hydrolases. The crystal structure of the xylanase indicates that the enzyme consists of two beta-sheets and one alpha-helix and forms a rigid complex with the three central sugars of xyloheptaose whereas the peripheral sugars might assume different configurations thereby allowing branched xylan chains to be accepted. The presence of an extra disulfide bridge between the beta-strand and the alpha-helix, as well as to an increase in the density of charged residues throughout the xylanase might contribute to the thermostability. The ability of T. lanuginosus to produce high levels of cellulase-free thermostable xylanase has made the fungus an attractive source of thermostable xylanase with potential as a bleach-boosting agent in the pulp and paper industry and as an additive in the baking industry.
Collapse
Affiliation(s)
- Suren Singh
- Department of Biotechnology, Durban Institute of Technology, P.O. Box 1334, Durban 4000, South Africa.
| | | | | |
Collapse
|
396
|
Enzyme Production in Industrial Fungi-Molecular Genetic Strategies for Integrated Strain Improvement. ACTA ACUST UNITED AC 2003. [DOI: 10.1016/s1874-5334(03)80014-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
397
|
Purification and characterisation of amylolytic enzymes from thermophilic fungus Thermomyces lanuginosus strain ATCC 34626. Enzyme Microb Technol 2002. [DOI: 10.1016/s0141-0229(02)00128-x] [Citation(s) in RCA: 115] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
398
|
Hong J, Tamaki H, Akiba S, Yamamoto K, Kumagai H. Cloning of a gene encoding a highly stable endo-β-1,4-glucanase from Aspergillus niger and its expression in yeast. J Biosci Bioeng 2001. [DOI: 10.1016/s1389-1723(01)80292-9] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
399
|
Effect of Media and Temperature on Growth and Preliminary Detection of Ligninolytic and Cellulolysic Activity of Trametes spp. BORNEO JOURNAL OF RESOURCE SCIENCE AND TECHNOLOGY 1970. [DOI: 10.33736/bjrst.271.2012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Effects of media and temperatures on growths of Trametes cervina (Schwein.) Bres., T. ljubarski Pilat, T. orientalis (Yasuda) Imazeki and T. velutina (Pers.) G. Cunn were studied. There was significant different of effect of media on growth of all the Trametes isolates. All of the four Trametes isolates were able to grow on Malt Extract Agar (MEA), Potato Dextrose Agar (PDA), Yeast Malt Agar (YMA) and Corn Meal Agar (CMA), however, no growth of T. cervina was seen on Czapek Dox Agar (CDA). Colony growth rates varied depending on the media and isolate of the fungi. T. orientalis showed the fastest growth while T. cervina showed the slowest growth on all the tested media. Although, T. ljubarski, T. orientalis and T. velutina can grow on CDA, the formation of mycelia was sparsely. There were significant differences of effect of temperature on growth of the Trametes isolates. T. orientalis and T. velutina, both, can grow at temperature up to 40oC, T. ljubarski can growth at temperature up to 35oC while T. cervina at temperature up to 30oC only. The optimum growth temperature for, both, T. orientalis and T. velutina was at 30oC, while for isolate T. ljubarski at 35oC and T. cervina at 25oC. All of the four Trametes isolates showed excellent cellulosic activity, indicated by the formation of clearing zone in the test media. The diameters of the degraded area formed by all of the Trametes isolates were more than 8 cm. T. orientalis and T. ljubarski degraded lignin better than T. cervina or T. velutina
Collapse
|