351
|
SAP expression in invariant NKT cells is required for cognate help to support B-cell responses. Blood 2012; 120:122-9. [PMID: 22613797 DOI: 10.1182/blood-2011-11-395913] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
One of the manifestations of X-linked lymphoproliferative disease (XLP) is progressive agammaglobulinemia, caused by the absence of a functional signaling lymphocyte activation molecule (SLAM)-associated protein (SAP) in T, invariant natural killer T (NKT) cells and NK cells. Here we report that α-galactosylceramide (αGalCer) activated NKT cells positively regulate antibody responses to haptenated protein antigens at multiple checkpoints, including germinal center formation and affinity maturation. Whereas NKT cell-dependent B cell responses were absent in SAP(-/-).B6 mice that completely lack NKT cells, the small number of SAP-deficient NKT cells in SAP(-/-).BALB/c mice adjuvated antibody production, but not the germinal center reaction. To test the hypothesis that SAP-deficient NKT cells can facilitate humoral immunity, SAP was deleted after development in SAP(fl/fl).tgCreERT2.B6 mice. We find that NKT cell intrinsic expression of SAP is dispensable for noncognate helper functions, but is critical for providing cognate help to antigen-specific B cells. These results demonstrate that SLAM-family receptor-regulated cell-cell interactions are not limited to T-B cell conjugates. We conclude that in the absence of SAP, several routes of NKT cell-mediated antibody production are still accessible. The latter suggests that residual NKT cells in XLP patients might contribute to variations in dysgammaglobulinemia.
Collapse
|
352
|
Wang G, Abadía-Molina AC, Berger SB, Romero X, O'Keeffe MS, Rojas-Barros DI, Aleman M, Liao G, Maganto-García E, Fresno M, Wang N, Detre C, Terhorst C. Cutting edge: Slamf8 is a negative regulator of Nox2 activity in macrophages. THE JOURNAL OF IMMUNOLOGY 2012; 188:5829-32. [PMID: 22593622 DOI: 10.4049/jimmunol.1102620] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Slamf8 (CD353) is a cell surface receptor that is expressed upon activation of macrophages (MΦs) by IFN-γ or bacteria. In this article, we report that a very high NADPH oxidase (Nox2) enzyme activity was found in Slamf8(-/-) MΦs in response to Escherichia coli or Staphylococcus aureus, as well as to PMA. The elevated Nox2 activity in Slamf8(-/-) MΦs was also demonstrated in E. coli or S. aureus phagosomes by using a pH indicator system and was further confirmed by a reduction in the enzyme activity after transfection of the receptor into Slamf8-deficient primary MΦs or RAW 264.7 cells. Upon exposure to bacteria or PMA, protein kinase C activity in Slamf8(-/-) MΦs is increased. This results in an enhanced phosphorylation of p40phox, one key component of the Nox2 enzyme complex, which, in turn, leads to greater Nox2 activity. Taken together, the data show that, in response to inflammation-associated stimuli, the inducible receptor Slamf8 negatively regulates inflammatory responses.
Collapse
Affiliation(s)
- Guoxing Wang
- Division of Immunology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
353
|
Garrett JPD, Fung I, Rupon J, Knight A, Mizesko M, Paessler M, Orange JS. Presentation of hemophagocytic lymphohistiocytosis due to a novel MUNC 13-4 mutation masked by partial therapeutic immunosuppression. Pediatr Rheumatol Online J 2012; 10:13. [PMID: 22554126 PMCID: PMC3503647 DOI: 10.1186/1546-0096-10-13] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2011] [Accepted: 04/05/2012] [Indexed: 11/10/2022] Open
Abstract
Hemophagocytic lymphohistiocytosis is a potentially fatal disease characterized by excessive macrophage and lymphocyte activity. Patients can be affected following immune activation after an oncologic, autoimmune or infectious trigger. An associated gene mutation may be found which impairs cytolytic lymphocyte function. We describe a pediatric case of hemophagocytic lymphohistiocytosis with a novel mutation of MUNC 13-4 whose diagnosis was confounded by concurrent immunosuppression. Clinical reassessment for hemophagocytic lymphohistiocytosis is necessary in persistently febrile patients with laboratory derangements in the setting of immunosuppressive agent exposure.
Collapse
Affiliation(s)
- Jackie P-D Garrett
- Division of Allergy and Immunology, The Children's Hospital of Philadelphia, 3550 Market Street, Philadelphia, PA 19104-4399, USA.
| | - Irene Fung
- Division of Allergy and Immunology, The Children’s Hospital of Philadelphia, 3550 Market Street, Philadelphia, PA 19104-4399, USA
| | - Jeremy Rupon
- Divisions of Hematology and Oncology, The Children’s Hospital of Philadelphia, 34th and Civic Center Boulevard, Philadelphia, PA 19104, USA
| | - Andrea Knight
- Division of Rheumatology, The Children’s Hospital of Philadelphia, 34th and Civic Center Boulevard, Philadelphia, PA 19104, USA
| | - Melissa Mizesko
- Division of Rheumatology, The Children’s Hospital of Philadelphia, 34th and Civic Center Boulevard, Philadelphia, PA 19104, USA
| | - Michelle Paessler
- Department of Pathology and Laboratory Medicine, The Children’s Hospital of Philadelphia, 34th and Civic Center Boulevard, University of Pennsylvania School of Medicine, Philadelphia, PA, 19104, USA
| | - Jordan S Orange
- Division of Allergy and Immunology, The Children’s Hospital of Philadelphia, 3550 Market Street, Philadelphia, PA 19104-4399, USA
| |
Collapse
|
354
|
Qi H. From SAP-less T cells to helpless B cells and back: dynamic T-B cell interactions underlie germinal center development and function. Immunol Rev 2012; 247:24-35. [DOI: 10.1111/j.1600-065x.2012.01119.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
355
|
Palendira U, Low C, Bell AI, Ma CS, Abbott RJM, Phan TG, Riminton DS, Choo S, Smart JM, Lougaris V, Giliani S, Buckley RH, Grimbacher B, Alvaro F, Klion AD, Nichols KE, Adelstein S, Rickinson AB, Tangye SG. Expansion of somatically reverted memory CD8+ T cells in patients with X-linked lymphoproliferative disease caused by selective pressure from Epstein-Barr virus. ACTA ACUST UNITED AC 2012; 209:913-24. [PMID: 22493517 PMCID: PMC3348103 DOI: 10.1084/jem.20112391] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
In patients with XLP, a primary immunodeficiency caused by mutations in SH2D1A, EBV infection can lead to somatic reversion of the disease-causing mutation selectively in effector memory CD8 T cells; reverted CD8 cells are better able to respond to and kill EBV-infected cells. Patients with the primary immunodeficiency X-linked lymphoproliferative disease (XLP), which is caused by mutations in SH2D1A, are highly susceptible to Epstein-Barr virus (EBV) infection. Nonetheless, some XLP patients demonstrate less severe clinical manifestations after primary infection. SH2D1A encodes the adaptor molecule SLAM-associated protein (SAP), which is expressed in T and natural killer cells and is required for cytotoxicity against B cells, the reservoir for EBV. It is not known why the clinical presentation of XLP is so variable. In this study, we report for the first time the occurrence of somatic reversion in XLP. Reverted SAP-expressing cells resided exclusively within the CD8+ T cell subset, displayed a CD45RA−CCR7− effector memory phenotype, and were maintained at a stable level over time. Importantly, revertant CD8+ SAP+ T cells, but not SAP− cells, proliferated in response to EBV and killed EBV-infected B cells. As somatic reversion correlated with EBV infection, we propose that the virus exerts a selective pressure on the reverted cells, resulting in their expansion in vivo and host protection against ongoing infection.
Collapse
Affiliation(s)
- Umaimainthan Palendira
- Immunology Research Program, Garvan Institute of Medical Research, Darlinghurst, New South Wales 2010, Australia.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
356
|
Kroenke MA, Eto D, Locci M, Cho M, Davidson T, Haddad EK, Crotty S. Bcl6 and Maf cooperate to instruct human follicular helper CD4 T cell differentiation. THE JOURNAL OF IMMUNOLOGY 2012; 188:3734-44. [PMID: 22427637 DOI: 10.4049/jimmunol.1103246] [Citation(s) in RCA: 271] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Follicular helper CD4 T (Tfh) cells provide B cells with signals that are important for the generation of high-affinity Abs and immunological memory and, therefore, are critical for the protective immunity elicited by most human vaccines. Transcriptional regulators of human Tfh cell differentiation are poorly understood. In this article, we demonstrate that Bcl6 controls specific gene modules for human Tfh cell differentiation. The introduction of Bcl6 expression in primary human CD4 T cells resulted in the regulation of a core set of migration genes that enable trafficking to germinal centers: CXCR4, CXCR5, CCR7, and EBI2. Bcl6 expression also induced a module of protein expression critical for T-B interactions, including SAP, CD40L, PD-1, ICOS, and CXCL13. This constitutes direct evidence for Bcl6 control of most of these functions and includes three genes known to be loci of severe human genetic immunodeficiencies (CD40L, SH2D1A, and ICOS). Introduction of Bcl6 did not alter the expression of IL-21 or IL-4, the primary cytokines of human Tfh cells. We show in this article that introduction of Maf (c-Maf) does induce the capacity to express IL-21. Surprisingly, Maf also induced CXCR5 expression. Coexpression of Bcl6 and Maf revealed that Bcl6 and Maf cooperate in the induction of CXCR4, PD-1, and ICOS. Altogether, these findings reveal that Bcl6 and Maf collaborate to orchestrate a suite of genes that define core characteristics of human Tfh cell biology.
Collapse
Affiliation(s)
- Mark A Kroenke
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037, USA
| | | | | | | | | | | | | |
Collapse
|
357
|
Dutta M, Schwartzberg PL. Characterization of Ly108 in the thymus: evidence for distinct properties of a novel form of Ly108. THE JOURNAL OF IMMUNOLOGY 2012; 188:3031-41. [PMID: 22393150 DOI: 10.4049/jimmunol.1103226] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Ly108 (CD352) is a member of the signaling lymphocyte activation molecule (SLAM) family of receptors that signals through SLAM-associated protein (SAP), an SH2 domain protein that can function by the recruitment of Src family kinases or by competition with phosphatases. Ly108 is expressed on a variety of hematopoietic cells, with especially high levels on developing thymocytes. We find that Ly108 is constitutively tyrosine phosphorylated in murine thymi in a SAP- and Fyn kinase-dependent manner. Phosphorylation of Ly108 is rapidly lost after thymocyte disaggregation, suggesting dynamic contact-mediated regulation of Ly108. Similar to recent reports, we find at least three isoforms of Ly108 mRNA and protein in the thymus, which are differentially expressed in the thymi of C57BL/6 and 129S6 mice that express the lupus-resistant and lupus-prone haplotypes of Ly108, respectively. Notably, the recently described novel isoform Ly108-H1 is not expressed in mice having the lupus-prone haplotype of Ly108, but is expressed in C57BL/6 mice. We further provide evidence for differential phosphorylation of these isoforms; the novel Ly108-H1does not undergo tyrosine phosphorylation, suggesting that it functions as a decoy isoform that contributes to the reduced overall phosphorylation of Ly108 seen in C57BL/6 mice. Our study suggests that Ly108 is dynamically regulated in the thymus, shedding light on Ly108 isoform expression and phosphorylation.
Collapse
Affiliation(s)
- Mala Dutta
- Institute of Biomedical Sciences, The George Washington University, Washington, DC 20052, USA
| | | |
Collapse
|
358
|
Abstract
Natural killer (NK) cells are innate lymphocytes that play an important role against viral infections and cancer. This effect is achieved through a complex mosaic of inhibitory and activating receptors expressed by NK cells that ultimately determine the magnitude of the NK-cell response. The T-cell immunoglobulin- and mucin domain-containing (Tim)-3 receptor was initially identified as a T-helper 1-specific type I membrane protein involved in regulating T-cell responses. Human NK cells transcribe the highest amounts of Tim-3 among lymphocytes. Tim-3 protein is expressed on essentially all mature CD56(dim)CD16(+) NK cells and is expressed heterogeneously in the immature CD56(bright)CD16(-) NK-cell subset in blood from healthy adults and in cord blood. Tim-3 expression was induced on CD56(bright)CD16(-) NK cells after stimulation with IL-15 or IL-12 and IL-18 in vitro, suggesting that Tim-3 is a maturation marker on NK cells. Whereas Tim-3 has been used to identify dysfunctional T cells, NK cells expressing high amounts of Tim-3 are fully responsive with respect to cytokine production and cytotoxicity. However, when Tim-3 was cross-linked with antibodies it suppressed NK cell-mediated cytotoxicity. These findings suggest that NK-cell responses may be negatively regulated when NK cells encounter target cells expressing cognate ligands of Tim-3.
Collapse
|
359
|
Tangye SG, Deenick EK, Palendira U, Ma CS. T cell-B cell interactions in primary immunodeficiencies. Ann N Y Acad Sci 2012; 1250:1-13. [PMID: 22288566 DOI: 10.1111/j.1749-6632.2011.06361.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Regulated interactions between cells of the immune system facilitate the generation of successful immune responses, thereby enabling efficient neutralization and clearance of pathogens and the establishment of both cell- and humoral-mediated immunological memory. The corollary of this is that impediments to efficient cell-cell interactions, normally necessary for differentiation and effector functions of immune cells, underly the clinical features and disease pathogenesis of primary immunodeficiencies. In affected individuals, these defects manifest as impaired long-term humoral immunity and susceptibility to infection by specific pathogens. In this review, we discuss the importance of, and requirements for, effective interactions between B cells and T cells during the formation of CD4(+) T follicular helper cells and the elicitation of cytotoxic function of virus-specific CD8(+) T cells, as well as how these processes are abrogated in primary immunodeficiencies due to loss-of-function mutations in defined genes.
Collapse
Affiliation(s)
- Stuart G Tangye
- Garvan Institute of Medical Research, Darlinghurst, NSW, Australia.
| | | | | | | |
Collapse
|
360
|
Zeissig S, Blumberg RS. Primary immunodeficiency associated with defects in CD1 and CD1-restricted T cells. Ann N Y Acad Sci 2012; 1250:14-24. [PMID: 22276638 DOI: 10.1111/j.1749-6632.2011.06380.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
CD1 is a family of atypical MHC class I molecules that present various endogenous and exogenous lipid antigens to CD1-restricted T cells. While little is known about the function of CD1a-, CD1b-, and CD1c-restricted lipid-reactive T cells due to their absence in mice, CD1d-restricted natural killer T (NKT) cells have been extensively studied since their description almost 20 years ago. NKT cells, effector memory cells that share characteristics of innate and adaptive lymphocytes, are among the earliest responders in immune reactions and have broad effects on the activation of other immune cell lineages, including NK cells, T cells, and B cells. Accordingly, studies in mice have revealed critical roles of NKT cells in infectious, malignant, and autoimmune diseases. The recent description of primary immunodeficiencies associated with defects in CD1 and CD1-restricted T cells has provided a unique opportunity to study the biological role of lipid antigen presentation in human disease. Intriguingly, these studies revealed that defects in lipid immunity are associated with susceptibility to selected infectious and malignant diseases but not with broad immunodeficiency.
Collapse
Affiliation(s)
- Sebastian Zeissig
- Division of Gastroenterology, Hepatology, and Endoscopy, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | |
Collapse
|
361
|
Takeda M, Tahara M, Nagata N, Seki F. Wild-Type Measles Virus is Intrinsically Dual-Tropic. Front Microbiol 2012; 2:279. [PMID: 22347873 PMCID: PMC3276359 DOI: 10.3389/fmicb.2011.00279] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2011] [Accepted: 12/26/2011] [Indexed: 01/30/2023] Open
Abstract
Measles is a highly contagious disease that causes temporary and severe immunosuppression in patients. Signaling lymphocyte activation molecule (SLAM) expressed on cells of the immune system functions as a receptor for measles virus (MV). In addition to SLAM, vaccine strains of MV also use a ubiquitously expressed complement regulatory protein, CD46, as a receptor, whereas wild-type (wt) MV strains do not use this receptor. However, recent studies have indicated that SLAM is not the sole receptor for wt MV strains. These strains have an intrinsic ability to enter both immune and epithelial cells using distinct receptor binding sites in their hemagglutinin (H) protein. Recently, a clear answer was obtained through the identification of an epithelial MV receptor, nectin4, expressed at adherens junctions, thereby greatly improving our knowledge of MV receptors. It is now clear that MV specifically targets two cell types, immune cells and epithelial cells, using SLAM and nectin4, respectively. MV loses the ability to use either SLAM or nectin4 when it possesses specific mutations in the H protein. However, nectin4-blind MV still infects SLAM-positive immune cells efficiently (SLAM-tropic), and conversely, SLAM-blind MV infects nectin4-positive epithelial cells efficiently (nectin4-tropic). In this regard, MV is intrinsically dual-tropic to immune cells and epithelial cells. Although many aspects and molecular mechanisms underlying immunosuppressive effects and a highly contagious nature of MV still remain to be elucidated, analyses of physiological functions of these two receptors would provide deep insights into MV pathogenesis.
Collapse
Affiliation(s)
- Makoto Takeda
- Department of Virology 3, National Institute of Infectious Diseases Tokyo, Japan
| | | | | | | |
Collapse
|
362
|
Sieni E, Cetica V, Mastrodicasa E, Pende D, Moretta L, Griffiths G, Aricò M. Familial hemophagocytic lymphohistiocytosis: a model for understanding the human machinery of cellular cytotoxicity. Cell Mol Life Sci 2012; 69:29-40. [PMID: 21990010 PMCID: PMC11114696 DOI: 10.1007/s00018-011-0835-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2011] [Revised: 09/13/2011] [Accepted: 09/13/2011] [Indexed: 02/03/2023]
Abstract
Cytotoxic T lymphocytes, natural killer cells, and NKT cells are effector cells able to kill infected cells. In some inherited human disorders, a defect in selected proteins involved in the cellular cytotoxicity mechanism results in specific clinical syndromes, grouped under the name of familial hemophagocytic lymphohistiocytosis. Recent advances in genetic studies of these patients has allowed the identification of different genetic subsets. Additional genetic immune deficiencies may also induce a similar clinical picture. International cooperation and prospective trials resulted in refining the diagnostic and therapeutic approach to these rare diseases with improved outcome but also with improved knowledge of the mechanisms underlying granule-mediated cellular cytotoxicity in humans.
Collapse
Affiliation(s)
- Elena Sieni
- Dipartimento Oncoematologia Pediatrica e Cure Domiciliari, Azienda Ospedaliero-Universitaria Meyer, Viale Pieraccini, 24, 50139 Florence, Italy
| | - Valentina Cetica
- Dipartimento Oncoematologia Pediatrica e Cure Domiciliari, Azienda Ospedaliero-Universitaria Meyer, Viale Pieraccini, 24, 50139 Florence, Italy
| | - Elena Mastrodicasa
- S.C. di Oncoematologia Pediatrica con Trapianto di CSE, Ospedale “S.M. della Misericordia” A.O, Perugia, Italy
| | - Daniela Pende
- A.O.U. San Martino-IST, Istituto Nazionale Ricerca sul Cancro, Genoa, Italy
| | | | - Gillian Griffiths
- Cambridge Institute for Medical Research, Addenbrooke’s Hospital, Cambridge, CB2 0XY UK
| | - Maurizio Aricò
- Dipartimento Oncoematologia Pediatrica e Cure Domiciliari, Azienda Ospedaliero-Universitaria Meyer, Viale Pieraccini, 24, 50139 Florence, Italy
| |
Collapse
|
363
|
Álvarez-Errico D, Oliver-Vila I, Aínsua-Enrich E, Gilfillan AM, Picado C, Sayós J, Martín M. CD84 negatively regulates IgE high-affinity receptor signaling in human mast cells. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2011; 187:5577-86. [PMID: 22068234 PMCID: PMC3233232 DOI: 10.4049/jimmunol.1101626] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
CD84 is a self-binding receptor from the CD150 (or signaling lymphocyte activation molecule [SLAM]) family that is broadly expressed in hematopoietic cells. It has been described that the adaptors SLAM-associated protein (SAP) and EWS-FLI1-activated transcript 2 (EAT-2) are critical for CD150 family members' signaling and function. We observed that human mast cells express CD84 but lack SAP or EAT-2, that CD84 is tyrosine phosphorylated upon FcεRI engagement, and that the release of granule contents is reduced when FcεRI is coengaged with CD84 in LAD2 and human CD34(+)-derived mast cells. In addition, we observed that the release of IL-8 and GM-CSF was also reduced in FcεRI/CD84-costimulated cells as compared with FcεRI/Ig control. To understand how CD84 downregulates FcεRI-mediated function, we analyzed signaling pathways affected by CD84 in human mast cells. Our results showed that CD84 dampens FcεRI-mediated calcium mobilization after its co-cross-linking with the receptor. Furthermore, FcεRI-mediated Syk-linker for activation of T cells-phospholipase C-γ1 axis activity is downregulated after CD84 stimulation, compared with FcεRI/Ig control. The inhibitory kinase Fes phosphorylates mainly the inhibitory motif for CD84. Moreover, Fes, which has been described to become phosphorylated after substrate binding, also gets phosphorylated when coexpressed with CD84. Consistently, Fes was observed to be more phosphorylated after CD84 and FcεRI co-cross-linking. The phosphorylation of the protein phosphatase Src homology region 2 domain-containing phosphatase-1 also increases after CD84 and FcεRI coengagement. Taken together, our results show that CD84 is highly expressed in mast cells and that it contributes to the regulation of FcεRI signaling in SAP- and EAT-2-independent and Fes- and Src homology region 2 domain-containing phosphatase-1-dependent mechanisms.
Collapse
Affiliation(s)
- Damiana Álvarez-Errico
- Biochemistry Unit, Faculty of Medicine. University of Barcelona, Casanova 143 Barcelona, 08036, Spain
- Laboratory of Clinic and Experimental Immunoallergy, IDIBAPS, Barcelona, Spain
| | - Irene Oliver-Vila
- Biochemistry Unit, Faculty of Medicine. University of Barcelona, Casanova 143 Barcelona, 08036, Spain
- Networking Research Center on Respiratory Diseases (CIBERES)
| | - Erola Aínsua-Enrich
- Biochemistry Unit, Faculty of Medicine. University of Barcelona, Casanova 143 Barcelona, 08036, Spain
- Laboratory of Clinic and Experimental Immunoallergy, IDIBAPS, Barcelona, Spain
| | - Alasdair M. Gilfillan
- Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - César Picado
- Laboratory of Clinic and Experimental Immunoallergy, IDIBAPS, Barcelona, Spain
- Networking Research Center on Respiratory Diseases (CIBERES)
| | - Joan Sayós
- Immunobiology Group, CIBBIM-Nanomedicine Program, Hospital Universitari Vall d’Hebrón, Institut de Recerca (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Instituto de Salud Carlos III, Barcelona, Spain
| | - Margarita Martín
- Biochemistry Unit, Faculty of Medicine. University of Barcelona, Casanova 143 Barcelona, 08036, Spain
- Laboratory of Clinic and Experimental Immunoallergy, IDIBAPS, Barcelona, Spain
| |
Collapse
|
364
|
Marsh RA, Filipovich AH. Familial hemophagocytic lymphohistiocytosis and X-linked lymphoproliferative disease. Ann N Y Acad Sci 2011; 1238:106-21. [DOI: 10.1111/j.1749-6632.2011.06265.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
365
|
Affiliation(s)
- Carol L Nilsson
- Department of Pharmacology & Toxicology, University of Texas Medical Branch, 301 University Blvd., Galveston, Texas 77555-0617, United States.
| |
Collapse
|
366
|
Choi YS, Kageyama R, Eto D, Escobar TC, Johnston RJ, Monticelli L, Lao C, Crotty S. ICOS receptor instructs T follicular helper cell versus effector cell differentiation via induction of the transcriptional repressor Bcl6. Immunity 2011; 34:932-46. [PMID: 21636296 DOI: 10.1016/j.immuni.2011.03.023] [Citation(s) in RCA: 724] [Impact Index Per Article: 55.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2010] [Revised: 01/29/2011] [Accepted: 03/18/2011] [Indexed: 12/23/2022]
Abstract
The nature of follicular helper CD4(+) T (Tfh) cell differentiation remains controversial, including the minimal signals required for Tfh cell differentiation and the time at which Tfh cell differentiation occurs. Here we determine that Tfh cell development initiates immediately during dendritic cell (DC) priming in vivo. We demonstrate that inducible costimulator (ICOS) provides a critical early signal to induce the transcription factor Bcl6, and Bcl6 then induces CXCR5, the canonical feature of Tfh cells. Strikingly, a bifurcation between Tfh and effector Th cells was measurable by the second cell division of CD4(+) T cells, at day 2 after an acute viral infection: IL2Rα(int) cells expressed Bcl6 and CXCR5 (Tfh cell program), whereas IL2Rα(hi) cells exhibited strong Blimp1 expression that repressed Bcl6 (effector Th cell program). Virtually complete polarization between Bcl6(+) Tfh cells and Blimp1(+) effector Th cell populations developed by 72 hr, even without B cells. Tfh cells were subsequently lost in the absence of B cells, demonstrating a B cell requirement for maintenance of Bcl6 and Tfh cell commitment via sequential ICOS signals.
Collapse
Affiliation(s)
- Youn Soo Choi
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037, USA
| | | | | | | | | | | | | | | |
Collapse
|
367
|
Oberbarnscheidt MH, Zecher D, Lakkis FG. The innate immune system in transplantation. Semin Immunol 2011; 23:264-72. [PMID: 21723740 DOI: 10.1016/j.smim.2011.06.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2011] [Accepted: 06/09/2011] [Indexed: 12/31/2022]
Abstract
The vertebrate innate immune system consists of inflammatory cells and soluble mediators that comprise the first line of defense against microbial infection and, importantly, trigger antigen-specific T and B cell responses that lead to lasting immunity. The molecular mechanisms responsible for microbial non-self recognition by the innate immune system have been elucidated for a large number of pathogens. How the innate immune system recognizes non-microbial non-self, such as organ transplants, is less clear. In this review, we approach this question by describing the principal mechanisms of non-self, or 'damaged' self, recognition by the innate immune system (pattern recognition receptors, the missing self theory, and the danger hypothesis) and discussing whether and how these mechanisms apply to allograft rejection.
Collapse
Affiliation(s)
- Martin H Oberbarnscheidt
- Thomas E. Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh, Pittsburgh, PA 15261, USA.
| | | | | |
Collapse
|
368
|
Hu T, Gimferrer I, Alberola-Ila J. Control of early stages in invariant natural killer T-cell development. Immunology 2011; 134:1-7. [PMID: 21718314 DOI: 10.1111/j.1365-2567.2011.03463.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Natural killer T (NKT) cells develop in the thymus from the same precursors as conventional CD4(+) and CD8(+) αβ T cells, CD4(+) CD8(+) double-positive cells. In contrast to conventional αβT cells, which are selected by MHC-peptide complexes presented by thymic epithelial cells, invariant NKT cells are selected by lipid antigens presented by the non-polymorphic, MHC I-like molecule CD1d, present on the surface of other double-positive thymocytes, and require additional signals from the signalling lymphocytic-activation molecule (SLAM) family of receptors. In this review, we provide a discussion of recent findings that have modified our understanding of the NKT cell developmental programme, with an emphasis on events that affect the early stages of this process. This includes factors that control double-positive thymocyte lifespan, and therefore the ability to generate the canonical Vα rearrangements that characterize this lineage, as well as the signal transduction pathways engaged downstream of the T-cell receptor and SLAM molecules.
Collapse
Affiliation(s)
- Taishan Hu
- Immunobiology and Cancer Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | | | | |
Collapse
|
369
|
Zong F, Fthenou E, Mundt F, Szatmári T, Kovalszky I, Szilák L, Brodin D, Tzanakakis G, Hjerpe A, Dobra K. Specific syndecan-1 domains regulate mesenchymal tumor cell adhesion, motility and migration. PLoS One 2011; 6:e14816. [PMID: 21731601 PMCID: PMC3121713 DOI: 10.1371/journal.pone.0014816] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2010] [Accepted: 03/31/2011] [Indexed: 12/25/2022] Open
Abstract
Background Syndecans are proteoglycans whose core proteins have a short cytoplasmic domain, a transmembrane domain and a large N-terminal extracellular domain possessing glycosaminoglycan chains. Syndecans are involved in many important cellular processes. Our recent publications have demonstrated that syndecan-1 translocates into the nucleus and hampers tumor cell proliferation. In the present study, we aimed to investigate the role of syndecan-1 in tumor cell adhesion and migration, with special focus on the importance of its distinct protein domains, to better understand the structure-function relationship of syndecan-1 in tumor progression. Methodology/Principal Findings We utilized two mesenchymal tumor cell lines which were transfected to stably overexpress full-length syndecan-1 or truncated variants: the 78 which lacks the extracellular domain except the DRKE sequence proposed to be essential for oligomerization, the 77 which lacks the whole extracellular domain, and the RMKKK which serves as a nuclear localization signal. The deletion of the RMKKK motif from full-length syndecan-1 abolished the nuclear translocation of this proteoglycan. Various bioassays for cell adhesion, chemotaxis, random movement and wound healing were studied. Furthermore, we performed gene microarray to analyze the global gene expression pattern influenced by syndecan-1. Both full-length and truncated syndecan-1 constructs decrease tumor cell migration and motility, and affect cell adhesion. Distinct protein domains have differential effects, the extracellular domain is more important for promoting cell adhesion, while the transmembrane and cytoplasmic domains are sufficient for inhibition of cell migration. Cell behavior seems to depend also on the nuclear translocation of syndecan-1. Many genes are differentially regulated by syndecan-1 and a number of genes are actually involved in cell adhesion and migration. Conclusions/Significance Our results demonstrate that syndecan-1 regulates mesenchymal tumor cell adhesion and migration, and different domains have differential effects. Our study provides new insights into better understanding of the role of syndecans in tumor progression.
Collapse
Affiliation(s)
- Fang Zong
- Division of Pathology, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
370
|
Cell surface signaling molecules in the control of immune responses: a tide model. Immunity 2011; 34:466-78. [PMID: 21511182 DOI: 10.1016/j.immuni.2011.04.008] [Citation(s) in RCA: 130] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2011] [Indexed: 12/11/2022]
Abstract
A large numbers of cell surface signaling molecules (CSSMs) have been molecularly identified and functionally characterized in recent years and, via these studies, our knowledge in the control of immune response has increased exponentially. Two major lines of evidence emerge. First, the majority of immune cells rely on one or few CSSMs to deliver a primary triggering signal to sense their environment, leading to initiation of an immune response. Second, both costimulatory CSSMs that promote the response, and coinhibitory CSSMs that inhibit the response, are required to control direction and magnitude of a given immune response. With such tight feedback, immune responses are tuned and returned to baseline. These findings extend well beyond our previous observation in the requirement for lymphocyte activation and argue a revisit of the traditional "two-signal model" for activation and tolerance of lymphocytes. Here we propose a "tide" model to accommodate and interpret current experimental findings.
Collapse
|
371
|
Abstract
T cell help to B cells is a fundamental aspect of adaptive immunity and the generation of immunological memory. Follicular helper CD4 T (T(FH)) cells are the specialized providers of B cell help. T(FH) cells depend on expression of the master regulator transcription factor Bcl6. Distinguishing features of T(FH) cells are the expression of CXCR5, PD-1, SAP (SH2D1A), IL-21, and ICOS, among other molecules, and the absence of Blimp-1 (prdm1). T(FH) cells are important for the formation of germinal centers. Once germinal centers are formed, T(FH) cells are needed to maintain them and to regulate germinal center B cell differentiation into plasma cells and memory B cells. This review covers T(FH) differentiation, T(FH) functions, and human T(FH) cells, discussing recent progress and areas of uncertainty or disagreement in the literature, and it debates the developmental relationship between T(FH) cells and other CD4 T cell subsets (Th1, Th2, Th17, iTreg).
Collapse
Affiliation(s)
- Shane Crotty
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, California 92037, USA.
| |
Collapse
|
372
|
Brown DR, Calpe S, Keszei M, Wang N, McArdel S, Terhorst C, Sharpe AH. Cutting edge: an NK cell-independent role for Slamf4 in controlling humoral autoimmunity. THE JOURNAL OF IMMUNOLOGY 2011; 187:21-5. [PMID: 21622868 DOI: 10.4049/jimmunol.1100510] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Several genes within a syntenic region of human and mouse chromosome 1 are associated with predisposition to systemic lupus erythematosus. Analyses of lupus-prone congenic mice have pointed to an important role for the signaling lymphocyte activation molecule family (slamf)6 surface receptor in lupus pathogenesis. In this article, we demonstrate that a second member of the Slamf gene family, Slamf4 (Cd244), contributes to lupus-related autoimmunity. B6.Slamf4(-/-) mice spontaneously develop activated CD4 T cells and B cells and increased numbers of T follicular helper cells and a proportion develop autoantibodies to nuclear Ags. B6.Slamf4(-/-) mice also exhibit markedly increased autoantibody production in the B6.C-H-2bm12/KhEg → B6 transfer model of lupus. Although slamf4 function is best characterized in NK cells, the enhanced humoral autoimmunity of B6.Slamf4(-/-) mice is NK cell independent, as judged by depletion studies. Taken together, our findings reveal that slamf4 has an NK cell-independent negative regulatory role in the pathogenesis of lupus a normally non-autoimmune prone genetic background.
Collapse
Affiliation(s)
- Daniel R Brown
- Department of Pathology, Harvard Medical School and Brigham and Women's Hospital, Boston, MA 02115, USA
| | | | | | | | | | | | | |
Collapse
|
373
|
Germinal center B and follicular helper T cells: siblings, cousins or just good friends? Nat Immunol 2011; 12:472-7. [DOI: 10.1038/ni.2019] [Citation(s) in RCA: 164] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|