401
|
Agostinetto E, Eiger D, Punie K, de Azambuja E. Emerging Therapeutics for Patients with Triple-Negative Breast Cancer. Curr Oncol Rep 2021; 23:57. [PMID: 33763756 DOI: 10.1007/s11912-021-01038-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/12/2021] [Indexed: 02/08/2023]
Abstract
PURPOSE OF REVIEW Triple negative breast cancer (TNBC) accounts for approximately 10-15% of all breast cancers and it is associated with a poor prognosis. However, recent new effective treatment strategies have improved its outcomes. The aim of this review is to provide an overview on the emerging therapeutics for TNBC, describing both previously approved therapies that are currently being repurposed, as well as new target therapies that may improve patient outcomes. RECENT FINDINGS Emerging therapies are forthcoming in TNBC's treatment landscape, including new post-neoadjuvant chemotherapy strategies, PARP inhibitors, immune checkpoint inhibitors, and antibody-drug conjugates. Combination of different therapies such as AKT/PI3K/mTOR-inhibitors, other immunotherapeutic agents, CDK-inhibitors, antiandrogens, antiangiogenics, and histone deacetylase inhibitors is under clinical investigation. The treatment landscape for TNBC is gradually evolving towards a more personalized approach with promising expectations.
Collapse
Affiliation(s)
- Elisa Agostinetto
- Academic Trials Promoting Team, Institut Jules Bordet and l'Université Libre de Bruxelles (U.L.B), Rue Héger-Bordet 1, 1000, Brussels, Belgium.,Department of Medical Oncology and Hematology, Humanitas Clinical and Research Center - IRCCS, Humanitas Cancer Center, via Manzoni 56, 20089, Rozzano, Milan, Italy
| | - Daniel Eiger
- Academic Trials Promoting Team, Institut Jules Bordet and l'Université Libre de Bruxelles (U.L.B), Rue Héger-Bordet 1, 1000, Brussels, Belgium
| | - Kevin Punie
- Department of General Medical Oncology and Multidisciplinary Breast Centre, Leuven Cancer Institute, University Hospitals Leuven, Leuven, Belgium
| | - Evandro de Azambuja
- Academic Trials Promoting Team, Institut Jules Bordet and l'Université Libre de Bruxelles (U.L.B), Rue Héger-Bordet 1, 1000, Brussels, Belgium.
| |
Collapse
|
402
|
O'Reilly D, Sendi MA, Kelly CM. Overview of recent advances in metastatic triple negative breast cancer. World J Clin Oncol 2021; 12:164-182. [PMID: 33767972 PMCID: PMC7968109 DOI: 10.5306/wjco.v12.i3.164] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 01/02/2021] [Accepted: 03/01/2021] [Indexed: 02/06/2023] Open
Abstract
Metastatic triple negative breast cancer (TNBC) has an aggressive phenotype with a predilection for visceral organs and brain. Best responses to chemotherapy are predominately in the first line. Recent studies have demonstrated improved progression free survival with the combination of atezolizumab/pembrolizumab and chemotherapy in programmed death-ligand 1 positive metastatic TNBC. However, a recent trial in a similar population showed no benefit for atezoli-zumab and paclitaxel which led to a Food and Drug Administration alert. Two phase III trials (OLYMPIAD and BROCADE3) demonstrated a benefit in progression free survival (PFS) but not overall survival in patients with BRCA-associated metastatic TNBC treated with Olaparib or Talazoparib respectively. For those treated with Talazoparib, the time to deterioration in health related-quality of life was also longer compared to chemotherapy. The BROCADE3 trial demonstrated that the combination of a platinum and veliparib increased PFS in first-line metastatic TNBC but at the cost of increased toxicity. There are no head-to-head comparisons of a poly (adenosine diphosphate-ribose) polymerase inhibitors (PARPi) and platinums. There are unanswered questions regarding the role of PARPi maintenance after platinum therapy as is standard of care in BRCA-associated ovarian cancer. Other areas of therapeutic interest include targeting aberrations in the phosphoinositide 3-kinase pathway, protein kinase B, mammalian target of rapamycin or utilising antibody drug conjugates. This review focusses on recent and emerging therapeutic options in metastatic TNBC. We searched PubMed, clinicaltrials.gov and recent international meetings from American Society of Clinical Oncology, San Antonio Breast Cancer Conference and the European Society of Medical Oncology.
Collapse
Affiliation(s)
- David O'Reilly
- Department of Medical Oncology, Mater Misericordiae University Hospital, Dublin 1, Ireland
| | - Maha Al Sendi
- Department of Medical Oncology, Mater Misericordiae University Hospital, Dublin 1, Ireland
| | - Catherine M Kelly
- Department of Medical Oncology, Mater Misericordiae University Hospital, Dublin 1, Ireland
| |
Collapse
|
403
|
Cao X, Li B, Chen J, Dang J, Chen S, Gunes EG, Xu B, Tian L, Muend S, Raoof M, Querfeld C, Yu J, Rosen ST, Wang Y, Feng M. Effect of cabazitaxel on macrophages improves CD47-targeted immunotherapy for triple-negative breast cancer. J Immunother Cancer 2021; 9:jitc-2020-002022. [PMID: 33753567 PMCID: PMC7986678 DOI: 10.1136/jitc-2020-002022] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/04/2021] [Indexed: 12/12/2022] Open
Abstract
Background Limited therapeutic options are available for triple-negative breast cancer (TNBC), emphasizing an urgent need for more effective treatment approaches. The development of strategies by targeting tumor-associated macrophages (TAMs) to stimulate their ability of Programmed Cell Removal (PrCR) provides a promising new immunotherapy for TNBC treatment. Methods CD47 is a critical self-protective “don’t eat me” signal on multiple human cancers against macrophage immunosurveillance. Using human and mouse TNBC preclinical models, we evaluated the efficacy of PrCR-based immunotherapy by blocking CD47. We performed high-throughput screens on FDA-approved anti-cancer small molecule compounds for agents potentiating PrCR and enhancing the efficacy of CD47-targeted therapy for TNBC treatment. Results We showed that CD47 was widely expressed on TNBC cells and TAMs represented the most abundant immune cell population in TNBC tumors. Blockade of CD47 enabled PrCR of TNBC cells, but the efficacy was not satisfactory. Our high-throughput screens identified cabazitaxel in enhancing PrCR-based immunotherapy. A combination of CD47 blockade and cabazitaxel treatment yielded a highly effective treatment strategy, promoting PrCR of TNBC cells and inhibiting tumor development and metastasis in preclinical models. We demonstrated that cabazitaxel potentiated PrCR by activating macrophages, independent of its cytotoxicity toward cancer cells. When treated with cabazitaxel, the molecular and phenotypic signatures of macrophages were polarized toward M1 state, and the NF-kB signaling pathway became activated. Conclusion The combination of CD47 blockade and macrophage activation by cabazitaxel synergizes to vastly enhance the elimination of TNBC cells. Our results show that targeting macrophages is a promising and effective strategy for TNBC treatment.
Collapse
Affiliation(s)
- Xu Cao
- Department of Immuno-Oncology, Beckman Research Institute, City of Hope, Duarte, California, USA
| | - Bolei Li
- Department of Immuno-Oncology, Beckman Research Institute, City of Hope, Duarte, California, USA
| | - Jing Chen
- Department of Immuno-Oncology, Beckman Research Institute, City of Hope, Duarte, California, USA
| | - Jessica Dang
- Department of Immuno-Oncology, Beckman Research Institute, City of Hope, Duarte, California, USA
| | - Siqi Chen
- Department of Immuno-Oncology, Beckman Research Institute, City of Hope, Duarte, California, USA
| | - E Gulsen Gunes
- Department of Immuno-Oncology, Beckman Research Institute, City of Hope, Duarte, California, USA.,Department of Hematology and Hematopoietic Cell Transplantation, City of Hope, Duarte, California, USA
| | - Bo Xu
- Department of Immuno-Oncology, Beckman Research Institute, City of Hope, Duarte, California, USA.,Department of Hematology and Hematopoietic Cell Transplantation, City of Hope, Duarte, California, USA
| | - Lei Tian
- Department of Immuno-Oncology, Beckman Research Institute, City of Hope, Duarte, California, USA.,Department of Hematology and Hematopoietic Cell Transplantation, City of Hope, Duarte, California, USA
| | - Sabina Muend
- Department of Immuno-Oncology, Beckman Research Institute, City of Hope, Duarte, California, USA
| | - Mustafa Raoof
- Department of Surgery, City of Hope, Duarte, California, USA
| | - Christiane Querfeld
- Department of Immuno-Oncology, Beckman Research Institute, City of Hope, Duarte, California, USA.,Department of Hematology and Hematopoietic Cell Transplantation, City of Hope, Duarte, California, USA.,Division of Dermatology, City of Hope, Duarte, California, USA.,Department of Pathology, City of Hope, Duarte, California, USA
| | - Jianhua Yu
- Department of Immuno-Oncology, Beckman Research Institute, City of Hope, Duarte, California, USA.,Department of Hematology and Hematopoietic Cell Transplantation, City of Hope, Duarte, California, USA.,Hematologic Malignancies and Stem Cell Transplantation Institute, City of Hope, Duarte, California, USA
| | - Steven T Rosen
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope, Duarte, California, USA.,Beckman Research Institute, City of Hope, Duarte, California, USA
| | - Yingyu Wang
- Center for Informatics, City of Hope, Duarte, California, USA
| | - Mingye Feng
- Department of Immuno-Oncology, Beckman Research Institute, City of Hope, Duarte, California, USA
| |
Collapse
|
404
|
Abstract
PURPOSE OF REVIEW Breast cancer is a relative latecomer in the success story of immuno-oncology. In this review, we focus on the preclinical and clinical lines of evidence to justify the evaluation of immune checkpoint inhibition (ICI) for the curative-intent treatment of breast cancer, the latest and ongoing trials of (neo)adjuvant immunotherapy, and practical considerations in clinical practice associated with this new treatment paradigm. RECENT FINDINGS Insights from the immunobiology of breast cancer have paved the way for the new frontier of immunotherapy in this malignancy, starting from advanced stages and moving onto curable cases. Tumor-infiltrating lymphocyte quantification and PD-L1 immunohistochemistry are forerunners of predictive biomarkers for sensitivity to ICI in breast cancers. Preliminary results from phase III trials of combinatorial immunochemotherapy to treat early high-risk or locally advanced triple-negative breast cancer are encouraging for pathological complete response. Additional efficacy and patient-reported outcomes of (neo)adjuvant immunochemotherapy trials are awaited. SUMMARY The prospect of integrating ICI in the treatment of early-stage breast cancer is promising. Questions regarding patient selection, the choice of ICI agent and combination partner in escalation strategies, sequencing and duration of treatments, cost-effectiveness and mechanisms of resistance remain to be answered by future research.
Collapse
|
405
|
Salemme V, Centonze G, Cavallo F, Defilippi P, Conti L. The Crosstalk Between Tumor Cells and the Immune Microenvironment in Breast Cancer: Implications for Immunotherapy. Front Oncol 2021; 11:610303. [PMID: 33777750 PMCID: PMC7991834 DOI: 10.3389/fonc.2021.610303] [Citation(s) in RCA: 161] [Impact Index Per Article: 40.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 01/22/2021] [Indexed: 12/12/2022] Open
Abstract
Breast cancer progression is a complex process controlled by genetic and epigenetic factors that coordinate the crosstalk between tumor cells and the components of tumor microenvironment (TME). Among those, the immune cells play a dual role during cancer onset and progression, as they can protect from tumor progression by killing immunogenic neoplastic cells, but in the meanwhile can also shape tumor immunogenicity, contributing to tumor escape. The complex interplay between cancer and the immune TME influences the outcome of immunotherapy and of many other anti-cancer therapies. Herein, we present an updated view of the pro- and anti-tumor activities of the main immune cell populations present in breast TME, such as T and NK cells, myeloid cells, innate lymphoid cells, mast cells and eosinophils, and of the underlying cytokine-, cell–cell contact- and microvesicle-based mechanisms. Moreover, current and novel therapeutic options that can revert the immunosuppressive activity of breast TME will be discussed. To this end, clinical trials assessing the efficacy of CAR-T and CAR-NK cells, cancer vaccination, immunogenic cell death-inducing chemotherapy, DNA methyl transferase and histone deacetylase inhibitors, cytokines or their inhibitors and other immunotherapies in breast cancer patients will be reviewed. The knowledge of the complex interplay that elapses between tumor and immune cells, and of the experimental therapies targeting it, would help to develop new combination treatments able to overcome tumor immune evasion mechanisms and optimize clinical benefit of current immunotherapies.
Collapse
Affiliation(s)
- Vincenzo Salemme
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
| | - Giorgia Centonze
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
| | - Federica Cavallo
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
| | - Paola Defilippi
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
| | - Laura Conti
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
| |
Collapse
|
406
|
Pembrolizumab monotherapy in metastatic triple-negative breast cancer. Lancet Oncol 2021; 22:415-417. [PMID: 33676605 DOI: 10.1016/s1470-2045(21)00019-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 01/07/2021] [Indexed: 01/22/2023]
|
407
|
Prognostic significance of PD-L1-positive cancer-associated fibroblasts in patients with triple-negative breast cancer. BMC Cancer 2021; 21:239. [PMID: 33676425 PMCID: PMC7937297 DOI: 10.1186/s12885-021-07970-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 02/24/2021] [Indexed: 12/31/2022] Open
Abstract
Background Cancer-associated fibroblasts (CAFs) are some of the most abundant components of the tumour microenvironment. A recent study suggested that in some cancers, CAFs express programmed death ligand 1 (PD-L1), which can act as a prognostic marker. The aim of this study was to investigate the clinicopathological significance of CAF PD-L1 expression in patients with triple-negative breast cancer (TNBC) and to identify the most suitable primary antibody for immunostaining for CAF PD-L1. Methods Immunohistochemical staining (primary antibodies of 73–10, SP142, and E1L3N) and tissue microarrays were used to analyse the expression profiles of PD-L1 in CAF in 61 patients with TNBC who underwent surgery. Overall survival (OS) was compared based on CAF PD-L1 expression, and the risk factors for OS were analysed. The relationship between clinicopathological parameters and survival was also examined. Results Thirty-four (55.7%) patients were positive for CAF PD-L1 (73–10) expression. Compared with CAF PD-L1 negativity, there was a significant correlation between CAF PD-L1 positivity and better OS (p = 0.029). CAF PD-L1 expression, evaluated using SP-142 or E1L3N, did not correlate with OS. CAF PD-L1-positivity (73–10) correlated significantly with better prognosis in multivariate analyses (hazard ratio: 0.198; 95% confidence interval: 0.044–0.891; p = 0.035). Conclusions CAF PD-L1 expression is a novel marker for a better prognosis of patients with TNBC, and the 73–10 assay may be suitable for immunostaining CAF PD-L1.
Collapse
|
408
|
Chisaki Y, Kuwada Y, Matsumura C, Yano Y. Cost-effectiveness Analysis of Atezolizumab Plus Nab-Paclitaxel for Advanced PD-L1 Positive Triple-Negative Breast Cancer in Japan. Clin Drug Investig 2021; 41:381-389. [PMID: 33674955 DOI: 10.1007/s40261-021-01017-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/18/2021] [Indexed: 10/22/2022]
Abstract
BACKGROUND AND OBJECTIVES Atezolizumab is an anti-programmed death ligand 1 (PD-L1) antibody that shows good safety and efficacy for patients with PD-L1-positive triple-negative breast cancer (TNBC). The cost of atezolizumab therapy is expensive, and its economic burden is an important problem. In this study, we evaluated the cost effectiveness of atezolizumab plus nab-paclitaxel therapy (AnP) compared with nab-paclitaxel monotherapy (nP) for PD-L1-positive TNBC under Japanese medical conditions and environments using a Markov model. METHODS The medical information was collected from data published by the IMpassion130 trial. A Markov model was established to simulate the number of patients in each disease state after AnP or nP therapy during each time period. As indices for cost effectiveness, total cost, quality-adjusted life years (QALYs), and incremental cost-effectiveness ratios (ICER) were calculated. Probabilistic sensitivity analysis (PSA) was used to assess the uncertainty of the model using 10,000 Monte Carlo simulations with difference parameters. RESULTS The QALYs for AnP treatment were longer than for nP treatment (1.12 vs 0.82 QALYs), but the total cost of AnP treatment was more expensive than that of nP treatment (¥11,070,143 vs ¥2,056,164). The ICER values comparing AnP treatment with nP treatment were ¥30,208,143/QALY. The ICER/QALY was more expensive than the willingness-to-pay (WTP) of ¥15,000,000 per QALY. To achieve a 50% cost-effective probability with a WTP threshold, the price of the atezolizumab should be reduced by 55.1%. CONCLUSIONS AnP was not cost effective compared to nP for PD-L1-positive inoperable TNBC under the Japanese condition.
Collapse
Affiliation(s)
- Yugo Chisaki
- Education and Research Center for Clinical Pharmacy, Kyoto Pharmaceutical University, 5-Nakauchi-cho, Misasagi, Yamashina-ku, Kyoto, 607-8414, Japan.
| | - Yoshiki Kuwada
- Education and Research Center for Clinical Pharmacy, Kyoto Pharmaceutical University, 5-Nakauchi-cho, Misasagi, Yamashina-ku, Kyoto, 607-8414, Japan
| | - Chikako Matsumura
- Education and Research Center for Clinical Pharmacy, Kyoto Pharmaceutical University, 5-Nakauchi-cho, Misasagi, Yamashina-ku, Kyoto, 607-8414, Japan
| | - Yoshitaka Yano
- Education and Research Center for Clinical Pharmacy, Kyoto Pharmaceutical University, 5-Nakauchi-cho, Misasagi, Yamashina-ku, Kyoto, 607-8414, Japan
| |
Collapse
|
409
|
Noske A, Ammann JU, Wagner DC, Denkert C, Lebeau A, Sinn P, Kreipe HH, Sommer U, Baretton G, Steiger K, Kiechle M, Hieke-Schulz S, Flores M, Roth W, Weichert W. A multicentre analytical comparison study of inter-reader and inter-assay agreement of four programmed death-ligand 1 immunohistochemistry assays for scoring in triple-negative breast cancer. Histopathology 2021; 78:567-577. [PMID: 32936950 DOI: 10.1111/his.14254] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 09/09/2020] [Indexed: 12/17/2022]
Abstract
AIMS Studies in various cancer types have demonstrated discordance between results from different programmed death-ligand 1 (PD-L1) assays. Here, we compare the reproducibility and analytical concordance of four clinically developed assays for assessing PD-L1-positivity in tumour-infiltrating immune cells in the tumour area (PD-L1-IC-positivity) in triple-negative breast cancer (TNBC). METHODS AND RESULTS Primary TNBC resection specimens (n = 30) were selected based on their PD-L1-IC-positivity per VENTANA SP142 (<1%: 15 cases; 1-5%: seven cases; >5%: eight cases). Serial histological sections were stained for PD-L1 using VENTANA SP142, VENTANA SP263, DAKO 22C3 and DAKO 28-8. PD-L1-IC-positivity and tumour cell expression (≥1 versus <1%) were scored by trained readers from seven sites using online virtual microscopy. The adjusted mean of PD-L1-IC-positivity for SP263 (7.8%) was significantly higher than those for the other three assays (3.7-4.9%). Differences in adjusted means were statistically significant between SP263 and the other three assays (P < 0.0001) but not between the three remaining assays when excluding SP263 (P = 0.0961-0.6522). Intra-class correlation coefficients revealed moderate-to-strong inter-reader agreement for each assay (0.460-0.805) and poor-to-strong inter-assay agreement for each reader (0.298-0.678) on PD-L1-IC-positivity. CONCLUSIONS In this first multicentre study of different PD-L1 assays in TNBC, we show that PD-L1-IC-positivity for SP142, 22C3 and 28-8 was reproducible and analytically concordant, indicating that these three assays may be analytically interchangeable. The relevance of the higher PD-L1-IC-positivity for SP263 should be further investigated.
Collapse
Affiliation(s)
- Aurelia Noske
- Technical University of Munich, Institute of Pathology, Munich, Germany
| | | | - Daniel-Christoph Wagner
- Institute of Pathology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Carsten Denkert
- Institute of Pathology, Philipps-University Marburg and University Hospital of Giessen and Marburg, Marburg, Germany
| | - Annette Lebeau
- Private Group Practice for Pathology Lübeck, Lübeck, Germany
- Department of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Peter Sinn
- Division of Gynecopathology, University Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany
| | | | - Ulrich Sommer
- Institute of Pathology, University Hospital Carl Gustav Carus Dresden, Technical University of Dresden, Dresden, Germany
| | - Gustavo Baretton
- Institute of Pathology, University Hospital Carl Gustav Carus Dresden, Technical University of Dresden, Dresden, Germany
| | - Katja Steiger
- Technical University of Munich, Institute of Pathology, Munich, Germany
| | - Marion Kiechle
- Department of Gynecology and Obstetrics, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | | | - Mike Flores
- Ventana Medical Systems, Inc., Tucson, AZ, USA
| | - Wilfried Roth
- Institute of Pathology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Wilko Weichert
- Technical University of Munich, Institute of Pathology, Munich, Germany
| |
Collapse
|
410
|
Regen-Tuero HC, Ward RC, Sikov WM, Littrup PJ. Cryoablation and Immunotherapy for Breast Cancer: Overview and Rationale for Combined Therapy. Radiol Imaging Cancer 2021; 3:e200134. [PMID: 33817653 DOI: 10.1148/rycan.2021200134] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 11/17/2020] [Accepted: 12/10/2020] [Indexed: 12/20/2022]
Abstract
Cryoablation is a well-tolerated outpatient procedure that has been used to treat metastatic sites as well as small breast cancers in patients who are considered poor candidates for surgery. Recent studies suggest that cell disruption caused by cryoablation may increase the expression and immunogenicity of tumor neoantigens, which could enhance the ability of the immune system to recognize and attack cancer cells at both local and distant sites. Such an approach might broaden the role of immunotherapy for the treatment of breast cancer, which has previously demonstrated limited response to these agents, likely owing to the modest immunogenicity of most breast cancer subtypes. If cryoablation can induce a systemic tumor-specific response, it could enhance tumor susceptibility to immunotherapy agents. This review briefly summarizes the necessary components for generating an immune response against tumor cells, reviews the tumor microenvironment of breast cancer, describes the rationale for and limitations of immune checkpoint inhibition, highlights the potential for cryoablation to induce a systemic tumor-specific immune response, and describes the rationale for combining cryoablation and immune checkpoint inhibitors for the treatment of breast cancer. Keywords: Ablation Techniques, Breast, Neoplasms-Primary, Percutaneous, Tumor Microenvironment, Tumor Response, Ultrasonography © RSNA, 2021.
Collapse
Affiliation(s)
- Helaina C Regen-Tuero
- Department of Diagnostic Imaging, Warren Alpert Medical School of Brown University, Rhode Island Hospital, 593 Eddy St, Providence, RI 02903 (H.C.R.T., R.C.W.); Department of Diagnostic Imaging, Women and Infants Hospital of Rhode Island, Providence, RI (R.C.W.); Program in Women's Oncology, Warren Alpert Medical School of Brown University, Women and Infants Hospital of Rhode Island, Providence, RI (W.M.S.); and Department of Diagnostic Radiology, Wayne State University, Ascension Providence Rochester Hospital, Rochester Hills, Mich (P.J.L.)
| | - Robert C Ward
- Department of Diagnostic Imaging, Warren Alpert Medical School of Brown University, Rhode Island Hospital, 593 Eddy St, Providence, RI 02903 (H.C.R.T., R.C.W.); Department of Diagnostic Imaging, Women and Infants Hospital of Rhode Island, Providence, RI (R.C.W.); Program in Women's Oncology, Warren Alpert Medical School of Brown University, Women and Infants Hospital of Rhode Island, Providence, RI (W.M.S.); and Department of Diagnostic Radiology, Wayne State University, Ascension Providence Rochester Hospital, Rochester Hills, Mich (P.J.L.)
| | - William M Sikov
- Department of Diagnostic Imaging, Warren Alpert Medical School of Brown University, Rhode Island Hospital, 593 Eddy St, Providence, RI 02903 (H.C.R.T., R.C.W.); Department of Diagnostic Imaging, Women and Infants Hospital of Rhode Island, Providence, RI (R.C.W.); Program in Women's Oncology, Warren Alpert Medical School of Brown University, Women and Infants Hospital of Rhode Island, Providence, RI (W.M.S.); and Department of Diagnostic Radiology, Wayne State University, Ascension Providence Rochester Hospital, Rochester Hills, Mich (P.J.L.)
| | - Peter J Littrup
- Department of Diagnostic Imaging, Warren Alpert Medical School of Brown University, Rhode Island Hospital, 593 Eddy St, Providence, RI 02903 (H.C.R.T., R.C.W.); Department of Diagnostic Imaging, Women and Infants Hospital of Rhode Island, Providence, RI (R.C.W.); Program in Women's Oncology, Warren Alpert Medical School of Brown University, Women and Infants Hospital of Rhode Island, Providence, RI (W.M.S.); and Department of Diagnostic Radiology, Wayne State University, Ascension Providence Rochester Hospital, Rochester Hills, Mich (P.J.L.)
| |
Collapse
|
411
|
Thomas R, Al-Khadairi G, Decock J. Immune Checkpoint Inhibitors in Triple Negative Breast Cancer Treatment: Promising Future Prospects. Front Oncol 2021; 10:600573. [PMID: 33718107 PMCID: PMC7947906 DOI: 10.3389/fonc.2020.600573] [Citation(s) in RCA: 100] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Accepted: 12/30/2020] [Indexed: 12/15/2022] Open
Abstract
Immunotherapy has emerged as the fifth pillar of cancer treatment alongside surgery, radiotherapy, chemotherapy, and targeted therapy. Immune checkpoint inhibitors are the current superheroes of immunotherapy, unleashing a patient's own immune cells to kill tumors and revolutionizing cancer treatment in a variety of cancers. Although breast cancer was historically believed to be immunologically silent, treatment with immune checkpoint inhibitors has been shown to induce modest responses in metastatic breast cancer. Given the inherent heterogeneity of breast tumors, this raised the question whether certain breast tumors might benefit more from immune-based interventions and which cancer cell-intrinsic and/or microenvironmental factors define the likelihood of inducing a potent and durable anti-tumor immune response. In this review, we will focus on triple negative breast cancer as immunogenic breast cancer subtype, and specifically discuss the relevance of tumor mutational burden, the plethora and diversity of tumor infiltrating immune cells in addition to the immunoscore, the presence of immune checkpoint expression, and the microbiome in defining immune checkpoint blockade response. We will highlight the current immune checkpoint inhibitor treatment options, either as monotherapy or in combination with standard-of-care treatment modalities such as chemotherapy and targeted therapy. In addition, we will look into the potential of immunotherapy-based combination strategies using immune checkpoint inhibitors to enhance both innate and adaptive immune responses, or to establish a more immune favorable environment for cancer vaccines. Finally, the review will address the need for unambiguous predictive biomarkers as one of the main challenges of immune checkpoint blockade. To conclude, the potential of immune checkpoint blockade for triple negative breast cancer treatment could be enhanced by exploration of aforementioned factors and treatment strategies thereby providing promising future prospects.
Collapse
Affiliation(s)
- Remy Thomas
- Cancer Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), Doha, Qatar
| | - Ghaneya Al-Khadairi
- Cancer Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), Doha, Qatar
- College of Health and Life Sciences (CHLS), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), Doha, Qatar
| | - Julie Decock
- Cancer Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), Doha, Qatar
- College of Health and Life Sciences (CHLS), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), Doha, Qatar
| |
Collapse
|
412
|
Liu J, Li Y, Li Q, Liang D, Wang Q, Liu Q. Biomarkers of response to camrelizumab combined with apatinib: an analysis from a phase II trial in advanced triple-negative breast cancer patients. Breast Cancer Res Treat 2021; 186:687-697. [PMID: 33634417 DOI: 10.1007/s10549-021-06128-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 02/03/2021] [Indexed: 02/05/2023]
Abstract
PURPOSE We recently reported results of a phase II trial that camrelizumab plus apatinib induced an objective response rate (ORR) at 43.3% in advanced triple-negative breast cancer (TNBC). This study presents analysis of potential biomarkers. METHODS TILs, CD8+ T cells and PD-1/PD-L1 expression were evaluated in tumor samples by immunohistochemistry. 59 Cytokines/chemokines, growth factors, or checkpoint-related proteins, blood immune cell subpopulations were analyzed in blood samples by multiplexed bead immunoassays or flow cytometry. Correlation between biomarkers and clinical outcomes including ORR, progression-free survival (PFS), and overall survival (OS) was analyzed. RESULTS 28 Patients had biopsies and blood collected. Baseline TILs were significantly associated with longer PFS (P = 0.035). An increase of tumor-infiltrating CD8+ T cells > 15% during therapy was associated with higher ORR (P = 0.040). Patients with lower baseline plasma levels of HGF or IL-8 were more likely to respond to treatment (P = 0.005 or 0.001, respectively), and showed a longer PFS and OS. Patients with a decrease of IL-8, or an increase of TIM-3 or CD152 during treatment responded more to treatment (P = 0.008, 0.040, or 0.014, respectively). Responders had a higher baseline CD4+ T cells and B cell proportions in blood than non-responders (P = 0.002 and 0.030, respectively). CONCLUSION Higher baseline TILs or a greater increase of tumor-infiltrating CD8+ T cells during therapy, lower baseline plasma HGF/IL-8, a decrease of plasma IL-8, an increase of plasma TIM-3/CD152 during therapy, higher baseline CD4+ T cells or B cells proportion in blood are potential biomarkers for combinational anti-angiogenesis and immunotherapy in advanced TNBC patients.
Collapse
Affiliation(s)
- Jieqiong Liu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Breast Tumor Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Yanjiang West Road 107#, Guangzhou, 510120, China.
| | - Ying Li
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Breast Tumor Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Yanjiang West Road 107#, Guangzhou, 510120, China
| | - Qian Li
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Breast Tumor Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Yanjiang West Road 107#, Guangzhou, 510120, China
| | - Dandan Liang
- Genecast Precision Medicine Technology Institute, Beijing, China
| | - Quanren Wang
- Jiangsu Hengrui Medicine Co., Ltd., Lianyungang, Jiangsu, China
| | - Qiang Liu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Breast Tumor Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Yanjiang West Road 107#, Guangzhou, 510120, China.
| |
Collapse
|
413
|
Siraj AK, Parvathareddy SK, Annaiyappanaidu P, Siraj N, Al-Rasheed M, Al-Badawi IA, Al-Dayel F, Al-Kuraya KS. PD-L1 Expression Is an Independent Marker for Lymph Node Metastasis in Middle Eastern Endometrial Cancer. Diagnostics (Basel) 2021; 11:diagnostics11030394. [PMID: 33669153 PMCID: PMC7996603 DOI: 10.3390/diagnostics11030394] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 02/20/2021] [Accepted: 02/23/2021] [Indexed: 12/13/2022] Open
Abstract
Programmed death ligand 1 (PD-L1) expression in endometrial cancer (EC) tumor cells have been reported in several studies with inconsistent results. Furthermore, there is scarcity of data on the prevalence and prognostic significance of PD-L1 expression in EC from Middle Eastern ethnicity. We aimed to assess PD-L1 expression in a large cohort of Middle Eastern EC and to correlate this with clinico-pathological factors, as well as mismatch repair (MMR) protein status and patients’ outcome. PD-L1 expression was investigated using immunohistochemistry on tissue microarray in an unselected cohort of 440 EC. Kaplan–Meier and logistic regression analysis were used to compare the outcome and prognostic factors. PD-L1 expression in tumor tissue was detected in 18.9% (83/440) EC cases with no impact on survival. When stratified for MMR protein status, PD-L1 expression was similar for both MMR deficient and MMR proficient ECs. However, the expression of PD-L1 in tumor cells was significantly associated with type II (non-endometrioid) histology (p = 0.0005) and lymph node metastasis (p = 0.0172). Multivariate analysis showed PD-L1 expression to be an independent risk factor for lymph node metastasis (odds ratio: 2.94; 95% CI: 1.26–6.84; p = 0.0123). In conclusion, PD-L1 was strongly associated with non-endometrioid EC and was an independent prognostic marker of lymph node metastasis.
Collapse
Affiliation(s)
- Abdul K. Siraj
- Human Cancer Genomic Research, Research Center, King Faisal Specialist Hospital and Research Center, P.O. Box 3354, Riyadh 11211, Saudi Arabia; (A.K.S.); (S.K.P.); (P.A.); (N.S.); (M.A.-R.)
| | - Sandeep Kumar Parvathareddy
- Human Cancer Genomic Research, Research Center, King Faisal Specialist Hospital and Research Center, P.O. Box 3354, Riyadh 11211, Saudi Arabia; (A.K.S.); (S.K.P.); (P.A.); (N.S.); (M.A.-R.)
| | - Padmanaban Annaiyappanaidu
- Human Cancer Genomic Research, Research Center, King Faisal Specialist Hospital and Research Center, P.O. Box 3354, Riyadh 11211, Saudi Arabia; (A.K.S.); (S.K.P.); (P.A.); (N.S.); (M.A.-R.)
| | - Nabil Siraj
- Human Cancer Genomic Research, Research Center, King Faisal Specialist Hospital and Research Center, P.O. Box 3354, Riyadh 11211, Saudi Arabia; (A.K.S.); (S.K.P.); (P.A.); (N.S.); (M.A.-R.)
| | - Maha Al-Rasheed
- Human Cancer Genomic Research, Research Center, King Faisal Specialist Hospital and Research Center, P.O. Box 3354, Riyadh 11211, Saudi Arabia; (A.K.S.); (S.K.P.); (P.A.); (N.S.); (M.A.-R.)
| | - Ismail A. Al-Badawi
- Department of Obstetrics-Gynecology, King Faisal Specialist Hospital and Research Center, P.O. Box 3354, Riyadh 11211, Saudi Arabia;
| | - Fouad Al-Dayel
- Department of Pathology, King Faisal Specialist Hospital and Research Centre, P.O. Box 3354, Riyadh 11211, Saudi Arabia;
| | - Khawla S. Al-Kuraya
- Human Cancer Genomic Research, Research Center, King Faisal Specialist Hospital and Research Center, P.O. Box 3354, Riyadh 11211, Saudi Arabia; (A.K.S.); (S.K.P.); (P.A.); (N.S.); (M.A.-R.)
- Correspondence: ; Tel.: +966-1-205-5167
| |
Collapse
|
414
|
Chang CM, Lam HYP, Hsu HJ, Jiang SJ. Interleukin-10: A double-edged sword in breast cancer. Tzu Chi Med J 2021; 33:203-211. [PMID: 34386356 PMCID: PMC8323643 DOI: 10.4103/tcmj.tcmj_162_20] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 08/01/2020] [Accepted: 08/31/2020] [Indexed: 02/06/2023] Open
Abstract
Breast cancer (BC) is a frequently diagnosed cancer among women worldwide. Currently, BC can be divided into different subgroups according to the presence of the following hormone receptors: estrogen receptor, progesterone receptor, and human epidermal growth factor receptor 2. Each of these subgroups has different treatment strategies. However, the presence of new metastatic lesions and patient deterioration suggest resistance to a given treatment. Various lines of evidence had shown that cytokines are one of the important mediators of tumor growth, invasion, metastasis, and treatment resistance. Interleukin-10 (IL-10) is an immunoregulatory cytokine, and acts as a poor prognostic marker in many cancers. The anti-inflammatory IL-10 blocks certain effects of inflammatory cytokines. It also antagonizes the co-stimulatory molecules on the antigen-presenting cells. Here, we review the current knowledge on the function and molecular mechanism of IL-10, and recent findings on how IL-10 contributes to the progression of BC.
Collapse
Affiliation(s)
- Chun-Ming Chang
- Department of General Surgery, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan.,Institute of Medical Sciences, Tzu Chi University, Hualien, Taiwan
| | - Ho Yin Pekkle Lam
- Institute of Medical Sciences, Tzu Chi University, Hualien, Taiwan.,Department of Biochemistry, School of Medicine, Tzu Chi University, Hualien, Taiwan
| | - Hao-Jen Hsu
- Department of Biochemistry, School of Medicine, Tzu Chi University, Hualien, Taiwan.,Department of Life Sciences, College of Medicine, Tzu Chi University, Hualien, Taiwan
| | - Shinn-Jong Jiang
- Department of Biochemistry, School of Medicine, Tzu Chi University, Hualien, Taiwan
| |
Collapse
|
415
|
Wu S, Shi X, Wang J, Wang X, Liu Y, Luo Y, Mao F, Zeng X. Triple-Negative Breast Cancer: Intact Mismatch Repair and Partial Co-Expression of PD-L1 and LAG-3. Front Immunol 2021; 12:561793. [PMID: 33717059 PMCID: PMC7943629 DOI: 10.3389/fimmu.2021.561793] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 01/11/2021] [Indexed: 12/15/2022] Open
Abstract
Background and Aim Poor response to immune checkpoint inhibitors (ICIs) has been observed in most triple-negative breast cancer (TNBC) cases (around 80%). Our aim was to investigate the status of mismatch repair (MMR), microsatellite instability (MSI), programmed death-ligand 1 (PD-L1), and lymphocyte-activation gene 3 (LAG-3) in TNBC. Methods A total of 74 TNBC samples were retrospectively analyzed. MMR and MSI were evaluated by immunohistochemistry (IHC) and polymerase chain reaction (PCR) using Promega 1.2 and NCI panels, respectively. PD-L1, LAG-3, and CD8 expression was assessed by IHC. Results None of the cases demonstrated deficient MMR (dMMR) or MSI. In total, 43/74 cases (58.1%) were PD-L1+, including 1 tumor PD-L1+, 25 tumor-infiltrating lymphocytes (TILs) PD-L1+, and 17 cases involving concurrence of tumor and TIL PD-L1+. The rate of TIL PD-L1+ was remarkably higher than that of tumor PD-L1+ (P<0.001). We identified 20 LAG-3+ cases (27.0%, 20/74), all of which were PD-L1+. Co-expression of PD-L1 and LAG-3 was noted in 46.5% (20/43) of the PD-L1+ population. In the LAG-3+ subtype (co-expression of PD-L1 and LAG-3), high correlation between TILs PD-L1+ and LAG-3+ was observed (P<0.01). A high frequency of CD8+ (98.6%, 73/74) was observed. Conclusion dMMR/MSI characteristics may not be a practical predictive marker for ICIs in TNBC. PD-L1+ is more common in TILs than in tumors. In the PD-L1+ population, approximately half of the cases showed LAG-3 co-expression. For patients with a poor response to PD-1(L1) mono ICI, dual blockade of PD-1(L1) and LAG-3 may be a viable option for the management of TNBC.
Collapse
Affiliation(s)
- Shafei Wu
- Department of Pathology, Peking Union Medical College Hospital, Molecular Pathology Research Center, Chinese Academy of Medical Sciences, Beijing, China
| | - Xiaohua Shi
- Department of Pathology, Peking Union Medical College Hospital, Molecular Pathology Research Center, Chinese Academy of Medical Sciences, Beijing, China
| | - Jing Wang
- Department of Pathology, Peking Union Medical College Hospital, Molecular Pathology Research Center, Chinese Academy of Medical Sciences, Beijing, China
| | - Xuefei Wang
- Department of Breast Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Yuanyuan Liu
- Department of Pathology, Peking Union Medical College Hospital, Molecular Pathology Research Center, Chinese Academy of Medical Sciences, Beijing, China
| | - Yufeng Luo
- Department of Pathology, Peking Union Medical College Hospital, Molecular Pathology Research Center, Chinese Academy of Medical Sciences, Beijing, China
| | - Feng Mao
- Department of Breast Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Xuan Zeng
- Department of Pathology, Peking Union Medical College Hospital, Molecular Pathology Research Center, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
416
|
Telli ML, Nagata H, Wapnir I, Acharya CR, Zablotsky K, Fox BA, Bifulco CB, Jensen SM, Ballesteros-Merino C, Le MH, Pierce RH, Browning E, Hermiz R, Svenson L, Bannavong D, Jaffe K, Sell J, Foerter KM, Canton DA, Twitty CG, Osada T, Lyerly HK, Crosby EJ. Intratumoral Plasmid IL12 Expands CD8 + T Cells and Induces a CXCR3 Gene Signature in Triple-negative Breast Tumors that Sensitizes Patients to Anti-PD-1 Therapy. Clin Cancer Res 2021; 27:2481-2493. [PMID: 33593880 DOI: 10.1158/1078-0432.ccr-20-3944] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 01/08/2021] [Accepted: 02/10/2021] [Indexed: 11/16/2022]
Abstract
PURPOSE Triple-negative breast cancer (TNBC) is an aggressive disease with limited therapeutic options. Antibodies targeting programmed cell death protein 1 (PD-1)/PD-1 ligand 1 (PD-L1) have entered the therapeutic landscape in TNBC, but only a minority of patients benefit. A way to reliably enhance immunogenicity, T-cell infiltration, and predict responsiveness is critically needed. PATIENTS AND METHODS Using mouse models of TNBC, we evaluate immune activation and tumor targeting of intratumoral IL12 plasmid followed by electroporation (tavokinogene telseplasmid; Tavo). We further present a single-arm, prospective clinical trial of Tavo monotherapy in patients with treatment refractory, advanced TNBC (OMS-I140). Finally, we expand these findings using publicly available breast cancer and melanoma datasets. RESULTS Single-cell RNA sequencing of murine tumors identified a CXCR3 gene signature (CXCR3-GS) following Tavo treatment associated with enhanced antigen presentation, T-cell infiltration and expansion, and PD-1/PD-L1 expression. Assessment of pretreatment and posttreatment tissue from patients confirms enrichment of this CXCR3-GS in tumors from patients that exhibited an enhancement of CD8+ T-cell infiltration following treatment. One patient, previously unresponsive to anti-PD-L1 therapy, but who exhibited an increased CXCR3-GS after Tavo treatment, went on to receive additional anti-PD-1 therapy as their immediate next treatment after OMS-I140, and demonstrated a significant clinical response. CONCLUSIONS These data show a safe, effective intratumoral therapy that can enhance antigen presentation and recruit CD8 T cells, which are required for the antitumor efficacy. We identify a Tavo treatment-related gene signature associated with improved outcomes and conversion of nonresponsive tumors, potentially even beyond TNBC.
Collapse
Affiliation(s)
- Melinda L Telli
- Department of Medicine, Stanford University School of Medicine, Stanford, California.
| | - Hiroshi Nagata
- Department of Surgery, Duke University, Durham, North Carolina
| | - Irene Wapnir
- Department of Surgery, Stanford University School of Medicine, Stanford, California
| | | | - Kaitlin Zablotsky
- Department of Medicine, Stanford University School of Medicine, Stanford, California
| | - Bernard A Fox
- Earle A. Chiles Research Institute, Providence Portland Medical Center, Portland, Oregon
| | - Carlo B Bifulco
- Earle A. Chiles Research Institute, Providence Portland Medical Center, Portland, Oregon
| | - Shawn M Jensen
- Earle A. Chiles Research Institute, Providence Portland Medical Center, Portland, Oregon
| | | | - Mai Hope Le
- OncoSec Medical Incorporated, San Diego, California
| | | | | | | | | | | | - Kim Jaffe
- OncoSec Medical Incorporated, San Diego, California
| | - Jendy Sell
- OncoSec Medical Incorporated, San Diego, California
| | | | | | | | - Takuya Osada
- Department of Surgery, Duke University, Durham, North Carolina
| | - H Kim Lyerly
- Department of Surgery, Duke University, Durham, North Carolina.,Department of Immunology, Duke University, Durham, North Carolina.,Department of Pathology, Duke University, Durham, North Carolina
| | - Erika J Crosby
- Department of Surgery, Duke University, Durham, North Carolina.
| |
Collapse
|
417
|
Wang H, Ma H, Sové RJ, Emens LA, Popel AS. Quantitative systems pharmacology model predictions for efficacy of atezolizumab and nab-paclitaxel in triple-negative breast cancer. J Immunother Cancer 2021; 9:jitc-2020-002100. [PMID: 33579739 PMCID: PMC7883871 DOI: 10.1136/jitc-2020-002100] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/03/2021] [Indexed: 12/18/2022] Open
Abstract
Background Immune checkpoint blockade therapy has clearly shown clinical activity in patients with triple-negative breast cancer, but less than half of the patients benefit from the treatments. While a number of ongoing clinical trials are investigating different combinations of checkpoint inhibitors and chemotherapeutic agents, predictive biomarkers that identify patients most likely to benefit remains one of the major challenges. Here we present a modular quantitative systems pharmacology (QSP) platform for immuno-oncology that incorporates detailed mechanisms of immune–cancer cell interactions to make efficacy predictions and identify predictive biomarkers for treatments using atezolizumab and nab-paclitaxel. Methods A QSP model was developed based on published data of triple-negative breast cancer. With the model, we generated a virtual patient cohort to conduct in silico virtual clinical trials and make retrospective analyses of the pivotal IMpassion130 trial that led to the accelerated approval of atezolizumab and nab-paclitaxel for patients with programmed death-ligand 1 (PD-L1) positive triple-negative breast cancer. Available data from clinical trials were used for model calibration and validation. Results With the calibrated virtual patient cohort based on clinical data from the placebo comparator arm of the IMpassion130 trial, we made efficacy predictions and identified potential predictive biomarkers for the experimental arm of the trial using the proposed QSP model. The model predictions are consistent with clinically reported efficacy endpoints and correlated immune biomarkers. We further performed a series of virtual clinical trials to compare different doses and schedules of the two drugs for simulated therapeutic optimization. Conclusions This study provides a QSP platform, which can be used to generate virtual patient cohorts and conduct virtual clinical trials. Our findings demonstrate its potential for making efficacy predictions for immunotherapies and chemotherapies, identifying predictive biomarkers, and guiding future clinical trial designs.
Collapse
Affiliation(s)
- Hanwen Wang
- Department of Biomedical Engineering, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Huilin Ma
- Department of Biomedical Engineering, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Richard J Sové
- Department of Biomedical Engineering, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Leisha A Emens
- Department of Medicine, University of Pittsburgh Medical Center, Hillman Cancer Center, Pittsburgh, Pennsylvania, USA
| | - Aleksander S Popel
- Department of Biomedical Engineering, Johns Hopkins School of Medicine, Baltimore, Maryland, USA.,Department of Oncology, Johns Hopkins Medicine Sidney Kimmel Comprehensive Cancer Center, Baltimore, Maryland, USA
| |
Collapse
|
418
|
Emens LA, Molinero L, Loi S, Rugo HS, Schneeweiss A, Diéras V, Iwata H, Barrios CH, Nechaeva M, Nguyen-Duc A, Chui SY, Husain A, Winer EP, Adams S, Schmid P. Atezolizumab and nab-Paclitaxel in Advanced Triple-Negative Breast Cancer: Biomarker Evaluation of the IMpassion130 Study. J Natl Cancer Inst 2021; 113:1005-1016. [PMID: 33523233 PMCID: PMC8328980 DOI: 10.1093/jnci/djab004] [Citation(s) in RCA: 213] [Impact Index Per Article: 53.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 11/04/2020] [Accepted: 01/26/2021] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Understanding the impact of the tumor immune microenvironment and BRCA1/2-related DNA repair deficiencies on the clinical activity of immune checkpoint inhibitors may help optimize both patient and treatment selection in metastatic triple-negative breast cancer. In this substudy from the phase 3 IMpassion130 trial, immune biomarkers and BRCA1/2 alterations were evaluated for association with clinical benefit with atezolizumab and nab-paclitaxel (A+nP) vs placebo and nP in unresectable (P+nP) locally advanced or metastatic triple-negative breast cancer. METHODS Patients were randomly assigned 1:1 to nab-paclitaxel 100 mg/m2 (days 1, 8, and 15 of a 28-day cycle) and atezolizumab 840 mg every 2 weeks or placebo until progression or toxicity. Progression-free survival and overall survival were evaluated based on programmed death-ligand 1 (PD-L1) expression on immune cells (IC) and tumor cells, intratumoral CD8, stromal tumor-infiltrating lymphocytes, and BRCA1/2 mutations. RESULTS PD-L1 IC+ in either primary or metastatic tumor tissue was linked to progression-free survival and overall survival benefit with A+nP. PD-L1 IC+ low (26.9%; 243 of 902 patients) and high (13.9%; 125 of 902 patients) populations had improved outcomes that were comparable. Intratumoral CD8 and stromal tumor-infiltrating lymphocytes positivity (sTIL+) were associated with PD-L1 IC+ status; improved outcomes were observed with A+nP vs P+nP only in CD8+ and sTIL+ patients who were also PD-L1 IC+. BRCA1/2 mutations (occurring in 14.5% [89 of 612 patients]) were not associated with PD-L1 IC status, and PD-L1 IC+ patients benefited from A+nP regardless of BRCA1/2 mutation status. CONCLUSIONS Although A+nP was more efficacious in patients with richer tumor immune microenvironment, clinical benefit was only observed in patients whose tumors were PD-L1 IC+.
Collapse
Affiliation(s)
- Leisha A Emens
- University of Pittsburgh Medical Center, Hillman Cancer Center/Magee Women's Hospital, Pittsburgh, PA, USA
| | - Luciana Molinero
- Oncology Biomarkers Development, Genentech, Inc, South San Francisco, CA, USA
| | - Sherene Loi
- Peter MacCallum Cancer Centre and University of Melbourne, Melbourne, Victoria, Australia
| | - Hope S Rugo
- Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Andreas Schneeweiss
- National Center for Tumor Diseases, Heidelberg University Hospital and German Cancer Research Center, Heidelberg, Germany
| | - Véronique Diéras
- Department of Medical Oncology, Institut Curie, Paris, and Centre Eugene Marquis, Rennes, France
| | - Hiroji Iwata
- Breast Oncology, Aichi Cancer Center Hospital, Nagoya, Japan
| | - Carlos H Barrios
- Centro de Pesquisa em Oncologia, Hospital São Lucas, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Marina Nechaeva
- Oncology, Arkhangelsk Regional Clinical Oncology Dispensary, Arkhangelsk, Russia
| | | | - Stephen Y Chui
- Product Development, Genentech, Inc, South San Francisco, CA, USA
| | - Amreen Husain
- Product Development, Genentech, Inc, South San Francisco, CA, USA
| | | | - Sylvia Adams
- Perlmutter Cancer Center, New York University School of Medicine, New York, NY, USA
| | - Peter Schmid
- Centre for Experimental Cancer Medicine, Barts Cancer Institute, Queen Mary University of London, London, UK
| |
Collapse
|
419
|
Kuznetsova OA, Zavalishina LE, Andreeva YY, Vinogradov MI, Shomova MV, Frank GA. [Immunohistochemical study of MSI markers in breast cancer]. Arkh Patol 2021; 83:12-17. [PMID: 33512122 DOI: 10.17116/patol20218301112] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
OBJECTIVE To investigate the expression of microsatellite instability (MSI) markers, which is detected by an immunohistochemical technique, and to compare the expression with the PD-L1 status in luminal B, HER2-negative and triple-negative breast cancer. MATERIAL AND METHODS The investigation included tumors from 40 patients with triple-negative and luminal B, HER2-negative subtypes. Immunohistochemical study was performed using Ventana antibodies: anti-MLH1 (clone M1), anti-MSH2 (clone G219-1129), anti-PMS2 (clone A16-4), and anti-MSH6 (clone SP93). MSI was assessed according to the standard criteria. RESULTS The PD-L1-positive status was present in 14 (35%) of the 40 patients. Moreover, MSI-H was detected in only 1 (2.50%) case. The two-year survival rate was 87.5%; it should be noted that the median survival rate was not reached either in the study sample or in the groups divided according to PD-L1 and MSI statuses. The overall survival rate for patients with MSI was 75% (3/4). CONCLUSION The first comparative study of the expression of PD-L1 and immunohistochemical MSI markers, which has been conducted on a small sample, fails to draw unambiguous conclusions, but shows the need to investigate this phenomenon on large samples and by using genetic methods.
Collapse
Affiliation(s)
- O A Kuznetsova
- Russian Medical Academy of Continuous Professional Education of the Ministry of Health of Russia, Moscow, Russia
| | - L E Zavalishina
- Russian Medical Academy of Continuous Professional Education of the Ministry of Health of Russia, Moscow, Russia
| | - Yu Yu Andreeva
- Russian Medical Academy of Continuous Professional Education of the Ministry of Health of Russia, Moscow, Russia
| | | | - M V Shomova
- Regional Clinical Oncology Dispensary, Ryazan, Russia
| | - G A Frank
- Russian Medical Academy of Continuous Professional Education of the Ministry of Health of Russia, Moscow, Russia
| |
Collapse
|
420
|
PD-L1 Protein Expression in Middle Eastern Breast Cancer Predicts Favorable Outcome in Triple-Negative Breast Cancer. Cells 2021; 10:cells10020229. [PMID: 33503961 PMCID: PMC7910988 DOI: 10.3390/cells10020229] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 01/20/2021] [Accepted: 01/20/2021] [Indexed: 12/14/2022] Open
Abstract
Programmed cell-death ligand 1 (PD-L1) has been shown to induce potent T-cell mediated anti-tumoral immunity. The significance of PD-L1 expression in the prognosis of breast cancer (BC) remains controversial and its prevalence and prognostic value in breast cancer from Middle Eastern ethnicity is lacking. A total of 1003 unselected Middle Eastern breast cancers were analyzed for PD-L1 expression using immunohistochemistry. PD-L1 expression, seen in 32.8% (329/1003) of cases, was significantly associated with poor prognostic indicators such as younger patients, high-grade tumors, estrogen-receptor (ER)-negative, progesterone-receptor (PR)-negative, and triple-negative breast cancers (TNBC) as well as high Ki-67 index. We also found a significant association between PD-L1 expression and deficient mismatch repair protein expression. No association was found between PD-L1 expression and clinical outcome. However, on further subgroup analysis, PD-L1 expression was found to be an independent marker for favorable overall survival and recurrence-free survival in TNBC. In conclusion, we demonstrated strong association between PD-L1 and mismatch repair deficiency in Middle Eastern BC patients and that PD-L1 overexpression in tumor cells was an independent prognostic marker in TNBCs from Middle Eastern ethnicity. Overall, these findings might help in the development of more appropriate treatment strategies for BC in Middle Eastern population.
Collapse
|
421
|
Abstract
ABSTRACT Triple-negative breast cancer (TNBC) is an aggressive subtype of mammary carcinoma. A subset of TNBC is immune activated, suggesting that immunotherapy may be a viable treatment strategy. Phase III clinical trials have shown that atezolizumab or pembrolizumab is well-tolerated in combination with chemotherapy, with progression-free survival benefit in metastatic programmed death ligand-1 (PD-L1)-positive TNBC patients treated first line. Based on IMpassion130, the combination of atezolizumab and nab-paclitaxel is now considered a standard of care for the treatment of PD-L1-positive advanced TNBC. In early TNBC, pembrolizumab and atezolizumab have been tested in combination with standard neoadjuvant chemotherapy, resulting in a higher complete pathologic response rate than standard neoadjuvant chemotherapy alone, regardless of disease PD-L1 status. These findings establish proof of principle for immunotherapy in both early and advanced TNBC. High priorities for the field include developing more active immunotherapy combination regimens and more refined biomarkers that optimally identify patients most likely to benefit from immunotherapy.
Collapse
|
422
|
Durvalumab compared to maintenance chemotherapy in metastatic breast cancer: the randomized phase II SAFIR02-BREAST IMMUNO trial. Nat Med 2021; 27:250-255. [PMID: 33462450 DOI: 10.1038/s41591-020-01189-2] [Citation(s) in RCA: 109] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 11/20/2020] [Indexed: 02/06/2023]
Abstract
The impact of single-agent antibodies against programmed death-ligand 1 (PD-L1) as maintenance therapy is unknown in patients with metastatic breast cancer. The SAFIR02-BREAST IMMUNO substudy included patients with human epidermal growth factor receptor type 2 (Her2)-negative metastatic breast cancer whose disease did not progress after six to eight cycles of chemotherapy. Patients (n = 199) were randomized to either durvalumab (10 mg kg-1 every 2 weeks) or maintenance chemotherapy. In the overall population, durvalumab did not improve progression-free survival (adjusted hazard ratio (HR): 1.40, 95% confidence interval (CI): 1.00-1.96; P = 0.047) or overall survival (OS; adjusted HR: 0.84, 95% CI: 0.54-1.29; P = 0.423). In an exploratory subgroup analysis, durvalumab improved OS in patients with triple-negative breast cancer (TNBC; n = 82; HR: 0.54, 95% CI: 0.30-0.97, P = 0.0377). Exploratory analysis showed that the HR of death was 0.37 (95% CI: 0.12-1.13) for patients with PD-L1+ TNBC (n = 32) and 0.49 (95% CI: 0.18-1.34) for those with PD-L1- TNBC (n = 29). In patients with TNBC, exploratory analyses showed that the HR for durvalumab efficacy (OS) was 0.18 (95% CI: 0.05-0.71; log-rank test, P = 0.0059) in patients with CD274 gain/amplification (n = 23) and 1.12 (95% CI: 0.42-2.99; log-rank test, P = 0.8139) in patients with CD274 normal/loss (n = 32). Tumor infiltration by lymphocytes (CD8, FoxP3 and CD103 expressions) and homologous recombination deficiency did not predict sensitivity to durvalumab in exploratory analyses. This latter finding should be interpreted with caution since only one patient presented a germline BRCA mutation. The present study provides a rationale to evaluate single-agent durvalumab in maintenance therapy in patients with TNBC. Exploratory analyses identified CD274 amplification as a potential biomarker of sensitivity. Maintenance chemotherapy was more effective than durvalumab in patients with hormone receptor-positive and Her2-negative disease.
Collapse
|
423
|
Nederlof I, Horlings HM, Curtis C, Kok M. A High-Dimensional Window into the Micro-Environment of Triple Negative Breast Cancer. Cancers (Basel) 2021; 13:316. [PMID: 33467084 PMCID: PMC7830085 DOI: 10.3390/cancers13020316] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/08/2021] [Accepted: 01/12/2021] [Indexed: 12/14/2022] Open
Abstract
Providing effective personalized immunotherapy for triple negative breast cancer (TNBC) patients requires a detailed understanding of the composition of the tumor microenvironment. Both the tumor cell and non-tumor components of TNBC can exhibit tremendous heterogeneity in individual patients and change over time. Delineating cellular phenotypes and spatial topographies associated with distinct immunological states and the impact of chemotherapy will be necessary to optimally time immunotherapy. The clinical successes in immunotherapy have intensified research on the tumor microenvironment, aided by a plethora of high-dimensional technologies to define cellular phenotypes. These high-dimensional technologies include, but are not limited to, single cell RNA sequencing, spatial transcriptomics, T cell repertoire analyses, advanced flow cytometry, imaging mass cytometry, and their integration. In this review, we discuss the cellular phenotypes and spatial patterns of the lymphoid-, myeloid-, and stromal cells in the TNBC microenvironment and the potential value of mapping these features onto tumor cell genotypes.
Collapse
Affiliation(s)
- Iris Nederlof
- Department of Tumor Biology and Immunology, The Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands;
| | - Hugo M. Horlings
- Department of Pathology, The Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands;
| | - Christina Curtis
- Division of Oncology, Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA;
| | - Marleen Kok
- Departments of Medical Oncology and Tumor Biology and Immunology, The Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands
| |
Collapse
|
424
|
Setordzi P, Chang X, Liu Z, Wu Y, Zuo D. The recent advances of PD-1 and PD-L1 checkpoint signaling inhibition for breast cancer immunotherapy. Eur J Pharmacol 2021; 895:173867. [PMID: 33460617 DOI: 10.1016/j.ejphar.2021.173867] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 12/14/2020] [Accepted: 01/11/2021] [Indexed: 12/31/2022]
Abstract
Over the past decade, there has been sustained research activity on programmed death-1/programmed death-ligand 1 (PD-1/PD-L1) immune checkpoint inhibitors for breast cancer (BC) immunotherapy. Several clinical studies have demonstrated the anti-tumor efficacy of monotherapy drugs targeting PD-1 and PD-L1 checkpoint signaling in BC. Besides, the combination of anti-PD-1/PD-L1 agents with other inhibitors, including poly-adenosine diphosphate-ribose polymerase (PARP) inhibitors, vaccines, mitogen-activated protein kinase (MEK) inhibitors, and cytotoxic T lymphocyte-associated antigen-4 (CTLA-4) inhibitors are being investigated to improve drug efficacy. These trials have performed well and have shown better and more sustainable therapeutic responses. As follows, the purpose of this review is to discuss the recent advances in BC immunotherapy targeting the inhibition of PD-1/PD-L1 immune checkpoint signaling, when recommended as a monotherapy or in conjunction with other treatments. We look forward to providing new insights into the current state of BC research and the future direction of PD-1/PD-L1 immune checkpoint signaling.
Collapse
Affiliation(s)
- Patience Setordzi
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, China
| | - Xing Chang
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, China
| | - Zi Liu
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, China
| | - Yingliang Wu
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, China
| | - Daiying Zuo
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, China.
| |
Collapse
|
425
|
Decreased levels of circulating cytokines VEGF, TNF-β and IL-15 indicate PD-L1 overexpression in tumours of primary breast cancer patients. Sci Rep 2021; 11:1294. [PMID: 33446741 PMCID: PMC7809365 DOI: 10.1038/s41598-020-80351-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Accepted: 12/18/2020] [Indexed: 12/13/2022] Open
Abstract
Programmed death ligand 1 (PD-L1) overexpression has been associated with poor clinical outcomes in several human cancers whose increased malignant behaviour might be related to PD-L1 mediated systemic immunological tolerance. This study aims to verify if circulating cytokines may serve as a proxy for non-invasive identification of sensitive prognostic biomarkers reflecting tumour and its microenvironment. Immunohistochemistry was used to measure PD-L1 expression in tumour tissue sections of 148 chemonaïve breast cancer (BC) patients. The panel of 51 cytokines was analysed using multiplex bead arrays. High PD-L1 expression in tumours was associated with shorter progression-free survival (HR 3.25; 95% CI 1.39–7.61; P = 0.006) and low circulating levels of three multifunctional molecules; VEGF, TNF-β and IL-15 (P = 0.001). In multivariate analysis, patients with low VEGF had 4.6-fold increased risk of PD-L1 overexpression (P = 0.008), present in 76.5% of patients with all these three cytokines below the median (vs. 35.6% among the others; P = 0.002). The area under the curve value of 0.722 (95% CI 0.59–0.85; P = 0.004) shows that this combination of cytokines has a moderate ability to discriminate between PD-L1 high vs. PD-L1 low patients. Plasma cytokines, therefore, could serve as potential non-invasive biomarkers for the identification of high-risk BC cases.
Collapse
|
426
|
Lee JS, Yost SE, Yuan Y. Case Report: Significant Response to the Combination of Lenvatinib and Immune Checkpoint Inhibitor in a Patient With Heavily Pretreated Metastatic Triple Negative Breast Cancer. Front Oncol 2021; 10:582185. [PMID: 33505906 PMCID: PMC7830150 DOI: 10.3389/fonc.2020.582185] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 11/25/2020] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Triple negative breast cancer (TNBC) has poor prognosis without targetable mutations. The combination of lenvatinib and pembrolizumab has shown clinical activity in different types of solid tumors. CASE PRESENTATION We report a case of one patient with metastatic TNBC who has been heavily pretreated. The patient had been treated with multiple lines (≥ 8 lines) of chemotherapy without durable clinical responses. Her tumor regressed significantly under the combination of lenvatinib and immune checkpoint inhibitor, and remains stable for 10 months. CONCLUSIONS The combination of lenvatinib and immune checkpoint inhibitor may have significant clinical activity in selective patients with heavily pretreated metastatic TNBC.
Collapse
Affiliation(s)
| | | | - Yuan Yuan
- Department of Medical Oncology & Molecular Therapeutics, City of Hope Comprehensive Cancer Center and Beckman Research Institute, Duarte, CA, United States
| |
Collapse
|
427
|
Determining Factors in the Therapeutic Success of Checkpoint Immunotherapies against PD-L1 in Breast Cancer: A Focus on Epithelial-Mesenchymal Transition Activation. J Immunol Res 2021; 2021:6668573. [PMID: 33506060 PMCID: PMC7808819 DOI: 10.1155/2021/6668573] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 12/17/2020] [Accepted: 12/24/2020] [Indexed: 02/07/2023] Open
Abstract
Breast cancer is the most common neoplasm diagnosed in women around the world. Checkpoint inhibitors, targeting the programmed death receptor-1 or ligand-1 (PD-1/PD-L1) axis, have dramatically changed the outcome of cancer treatment. These therapies have been recently considered as alternatives for treatment of breast cancers, in particular those with the triple-negative phenotype (TNBC). A further understanding of the regulatory mechanisms of PD-L1 expression is required to increase the benefit of PD-L1/PD-1 checkpoint immunotherapy in breast cancer patients. In this review, we will compile the most recent studies evaluating PD-1/PD-L1 checkpoint inhibitors in breast cancer. We review factors that determine the therapeutic success of PD-1/PD-L1 immunotherapies in this pathology. In particular, we focus on pathways that interconnect the epithelial-mesenchymal transition (EMT) with regulation of PD-L1 expression. We also discuss the relationship between cellular metabolic pathways and PD-L1 expression that are involved in the promotion of resistance in TNBC.
Collapse
|
428
|
Ascierto PA, Butterfield LH, Campbell K, Daniele B, Dougan M, Emens LA, Formenti S, Janku F, Khleif SN, Kirchhoff T, Morabito A, Najjar Y, Nathan P, Odunsi K, Patnaik A, Paulos CM, Reinfeld BI, Skinner HD, Timmerman J, Puzanov I. Perspectives in immunotherapy: meeting report from the "Immunotherapy Bridge" (December 4th-5th, 2019, Naples, Italy). J Transl Med 2021; 19:13. [PMID: 33407605 PMCID: PMC7789268 DOI: 10.1186/s12967-020-02627-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Accepted: 11/20/2020] [Indexed: 12/30/2022] Open
Abstract
Over the last few years, numerous clinical trials and real-world experience have provided a large amount of evidence demonstrating the potential for long-term survival with immunotherapy agents across various malignancies, beginning with melanoma and extending to other tumours. The clinical success of immune checkpoint blockade has encouraged increasing development of other immunotherapies. It has been estimated that there are over 3000 immuno-oncology trials ongoing, targeting hundreds of disease and immune pathways. Evolving topics on cancer immunotherapy, including the state of the art of immunotherapy across various malignancies, were the focus of discussions at the Immunotherapy Bridge meeting (4-5 December, 2019, Naples, Italy), and are summarised in this report.
Collapse
Affiliation(s)
- Paolo A Ascierto
- Cancer Unit of Melanoma, Cancer Immunotherapy and Development Therapeutics, Cancer Immunotherapy and Innovative Therapy, Istituto Nazionale Tumori IRCCS "Fondazione G. Pascale", Via Mariano Semmola, 80131, Naples, Italy.
| | - Lisa H Butterfield
- PICI Research & Development, Parker Institute for Cancer Immunotherapy, San Francisco, CA, USA
| | - Katie Campbell
- PICI Research & Development, Parker Institute for Cancer Immunotherapy, San Francisco, CA, USA
| | | | - Michael Dougan
- Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Leisha A Emens
- UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, USA
| | - Silvia Formenti
- Sandra and Edward Meyer Cancer Center, Department of Radiation Oncology, Weill Cornell Medicine, New York, NY, USA
| | - Filip Janku
- Division of Cancer Medicine, Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Samir N Khleif
- The Loop Immuno-Oncology Research Laboratory, Lombardi Cancer Center, Georgetown University, Washington, DC, USA
| | - Tomas Kirchhoff
- Perlmutter Cancer Center, New York University School of Medicine, New York, NY, USA
| | - Alessandro Morabito
- Thoracic Medical Oncology, National Cancer Institute, IRCCS-Fondazione G. Pascale, Naples, Italy
| | - Yana Najjar
- UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, USA
| | | | - Kunle Odunsi
- Center for Immunotherapy and Department of Gynecologic Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Akash Patnaik
- Section of Hematology and Oncology, Department of Medicine, University of Chicago, Chicago, IL, USA
| | | | | | - Heath D Skinner
- Department of Radiation Oncology, UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, USA
| | - John Timmerman
- University of California, Los Angeles, Los Angeles, CA, USA
| | - Igor Puzanov
- Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| |
Collapse
|
429
|
Fang Y, Wang L, Wan C, Sun Y, Van der Jeught K, Zhou Z, Dong T, So KM, Yu T, Li Y, Eyvani H, Colter AB, Dong E, Cao S, Wang J, Schneider BP, Sandusky GE, Liu Y, Zhang C, Lu X, Zhang X. MAL2 drives immune evasion in breast cancer by suppressing tumor antigen presentation. J Clin Invest 2021; 131:140837. [PMID: 32990678 DOI: 10.1172/jci140837] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 09/24/2020] [Indexed: 12/22/2022] Open
Abstract
Immune evasion is a pivotal event in tumor progression. To eliminate human cancer cells, current immune checkpoint therapy is set to boost CD8+ T cell-mediated cytotoxicity. However, this action is eventually dependent on the efficient recognition of tumor-specific antigens via T cell receptors. One primary mechanism by which tumor cells evade immune surveillance is to downregulate their antigen presentation. Little progress has been made toward harnessing potential therapeutic targets for enhancing antigen presentation on the tumor cell. Here, we identified MAL2 as a key player that determines the turnover of the antigen-loaded MHC-I complex and reduces the antigen presentation on tumor cells. MAL2 promotes the endocytosis of tumor antigens via direct interaction with the MHC-I complex and endosome-associated RAB proteins. In preclinical models, depletion of MAL2 in breast tumor cells profoundly enhanced the cytotoxicity of tumor-infiltrating CD8+ T cells and suppressed breast tumor growth, suggesting that MAL2 is a potential therapeutic target for breast cancer immunotherapy.
Collapse
Affiliation(s)
| | - Lifei Wang
- Department of Medical and Molecular Genetics
| | | | - Yifan Sun
- Department of Medical and Molecular Genetics
| | | | | | | | - Ka Man So
- Department of Medical and Molecular Genetics
| | - Tao Yu
- Department of Medical and Molecular Genetics
| | - Yujing Li
- Department of Medical and Molecular Genetics
| | | | | | - Edward Dong
- Department of Medical and Molecular Genetics
| | - Sha Cao
- Department of Biostatistics, Indiana University, School of Medicine, Indianapolis, Indiana, USA
| | - Jin Wang
- Department of Pharmacology and Chemical Biology, Baylor College of Medicine, Houston, Texas, USA
| | - Bryan P Schneider
- Department of Medical and Molecular Genetics.,Melvin and Bren Simon Cancer Center.,Division of Hematology/Oncology, Department of Medicine, and
| | | | - Yunlong Liu
- Department of Medical and Molecular Genetics.,Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Chi Zhang
- Department of Medical and Molecular Genetics.,Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Xiongbin Lu
- Department of Medical and Molecular Genetics.,Melvin and Bren Simon Cancer Center.,Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Xinna Zhang
- Department of Medical and Molecular Genetics.,Melvin and Bren Simon Cancer Center
| |
Collapse
|
430
|
Ali MA, Aiman W, Shah SS, Hussain M, Kashyap R. Efficacy and safety of pembrolizumab based therapies in triple-negative breast cancer: A systematic review of clinical trials. Crit Rev Oncol Hematol 2021; 157:103197. [PMID: 33309890 DOI: 10.1016/j.critrevonc.2020.103197] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 11/02/2020] [Accepted: 12/06/2020] [Indexed: 02/08/2023] Open
Abstract
Breast cancer is the most common cause of cancer-related deaths among women. There are a limited number of targeted therapies available for triple-negative breast cancer (TNBC), and chemotherapy is the mainstay of treatment. Among checkpoint inhibitors, atezolizumab is the only drug approved for PD-L1+ TNBC patients. We performed a systematic review to assess the efficacy and safety of PD-1 inhibitor pembrolizumab in triple-negative breast cancer. We included 15 clinical trials in this review. Pembrolizumab was well tolerated by all patients with triple-negative breast cancer. Pembrolizumab was more effective in the treatment of early-stage TNBC patients as compared to placebo, regardless of PD-L1 status. In advanced-stage breast cancer, pembrolizumab was as effective as single-agent chemotherapy with a better safety profile. Pembrolizumab with chemotherapy showed significantly better median progression free survival as compared to chemotherapy in advanced TNBC.
Collapse
Affiliation(s)
| | | | - Syed S Shah
- Department of Hospital Medicine, University of Kentucky, Lexington, USA.
| | | | | |
Collapse
|
431
|
Deng J, Thennavan A, Shah S, Bagdatlioglu E, Klar N, Heguy A, Marier C, Meyn P, Zhang Y, Labbe K, Almonte C, Krogsgaard M, Perou CM, Wong KK, Adams S. Serial single-cell profiling analysis of metastatic TNBC during Nab-paclitaxel and pembrolizumab treatment. Breast Cancer Res Treat 2021; 185:85-94. [PMID: 32949350 PMCID: PMC8170702 DOI: 10.1007/s10549-020-05936-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 09/08/2020] [Indexed: 01/09/2023]
Abstract
PURPOSE Immunotherapy has recently been shown to improve outcomes for advanced PD-L1-positive triple-negative breast cancer (TNBC) in the Impassion130 trial, leading to FDA approval of the first immune checkpoint inhibitor in combination with taxane chemotherapy. To further develop predictive biomarkers and improve therapeutic efficacy of the combination, interrogation of the tumor immune microenvironment before therapy as well as during each component of treatment is crucial. Here we use single-cell RNA sequencing (scRNA-seq) on tumor biopsies to assess immune cell changes from two patients with advanced TNBC treated in a prospective trial at predefined serial time points, before treatment, on taxane chemotherapy and on chemo-immunotherapy. METHODS Both patients (one responder and one progressor) received the trial therapy, in cycle 1 nab-paclitaxel given as single agent, in cycle 2 nab-paclitaxel in combination with pembrolizumab. Tumor core biopsies were obtained at baseline, 3 weeks (after cycle 1, chemotherapy alone) and 6 weeks (after cycle 2, chemo-immunotherapy). Single-cell RNA sequencing (scRNA-seq) of both cancer cells and infiltrating immune cells isolated were performed from fresh tumor core biopsy specimens by 10 × chromium sequencing. RESULTS ScRNA-seq analysis showed significant baseline heterogeneity of tumor-infiltrating immune cell populations between the two patients as well as modulation of the tumor microenvironment by chemotherapy and immunotherapy. In the responding patient there was a population of PD-1high-expressing T cells which significantly decreased after nab-paclitaxel plus pembrolizumab treatment as well as a presence of tissue-resident memory T cells (TRM). In contrast, tumors from the patient with rapid disease progression showed a prevalent and persistent myeloid compartment. CONCLUSIONS Our study provides a deep cellular analysis of on-treatment changes during chemo-immunotherapy for advanced TNBC, demonstrating not only feasibility of single-cell analyses on serial tumor biopsies but also the heterogeneity of TNBC and differences in on-treatment changes in responder versus progressor.
Collapse
Affiliation(s)
- Jiehui Deng
- Division of Hematology and Medical Oncology, Laura and Isaac Perlmutter Cancer Center, New York University Langone Medical Center, New York, NY, USA
- Laura and Isaac Perlmutter Cancer Center, New York University School of Medicine, New York, NY, USA
| | - Aatish Thennavan
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, USA
| | - Suhagi Shah
- Division of Hematology and Medical Oncology, Laura and Isaac Perlmutter Cancer Center, New York University Langone Medical Center, New York, NY, USA
| | - Ece Bagdatlioglu
- Division of Hematology and Medical Oncology, Laura and Isaac Perlmutter Cancer Center, New York University Langone Medical Center, New York, NY, USA
| | - Natalie Klar
- Division of Hematology and Medical Oncology, Laura and Isaac Perlmutter Cancer Center, New York University Langone Medical Center, New York, NY, USA
- Laura and Isaac Perlmutter Cancer Center, New York University School of Medicine, New York, NY, USA
| | - Adriana Heguy
- Genome Technology Center, Division of Advanced Research Technologies, New York University School of Medicine, New York, NY, USA
| | - Christian Marier
- Genome Technology Center, Division of Advanced Research Technologies, New York University School of Medicine, New York, NY, USA
| | - Peter Meyn
- Genome Technology Center, Division of Advanced Research Technologies, New York University School of Medicine, New York, NY, USA
| | - Yutong Zhang
- Genome Technology Center, Division of Advanced Research Technologies, New York University School of Medicine, New York, NY, USA
| | - Kristen Labbe
- Division of Hematology and Medical Oncology, Laura and Isaac Perlmutter Cancer Center, New York University Langone Medical Center, New York, NY, USA
| | - Christina Almonte
- Division of Hematology and Medical Oncology, Laura and Isaac Perlmutter Cancer Center, New York University Langone Medical Center, New York, NY, USA
| | - Michelle Krogsgaard
- Department of Pathology and Perlmutter Cancer Center, New York University School of Medicine, New York, NY, USA
- Laura and Isaac Perlmutter Cancer Center, New York University School of Medicine, New York, NY, USA
| | - Charles M Perou
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, USA
| | - Kwok-Kin Wong
- Division of Hematology and Medical Oncology, Laura and Isaac Perlmutter Cancer Center, New York University Langone Medical Center, New York, NY, USA.
- Laura and Isaac Perlmutter Cancer Center, New York University School of Medicine, New York, NY, USA.
| | - Sylvia Adams
- Division of Hematology and Medical Oncology, Laura and Isaac Perlmutter Cancer Center, New York University Langone Medical Center, New York, NY, USA.
- Laura and Isaac Perlmutter Cancer Center, New York University School of Medicine, New York, NY, USA.
| |
Collapse
|
432
|
Paver EC, Cooper WA, Colebatch AJ, Ferguson PM, Hill SK, Lum T, Shin JS, O'Toole S, Anderson L, Scolyer RA, Gupta R. Programmed death ligand-1 (PD-L1) as a predictive marker for immunotherapy in solid tumours: a guide to immunohistochemistry implementation and interpretation. Pathology 2020; 53:141-156. [PMID: 33388161 DOI: 10.1016/j.pathol.2020.10.007] [Citation(s) in RCA: 153] [Impact Index Per Article: 30.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Revised: 10/05/2020] [Accepted: 10/08/2020] [Indexed: 12/20/2022]
Abstract
Immunotherapy with checkpoint inhibitors is well established as an effective treatment for non-small cell lung cancer and melanoma. The list of approved indications for treatment with PD-1/PD-L1 checkpoint inhibitors is growing rapidly as clinical trials continue to show their efficacy in patients with a wide range of solid tumours. Clinical trials have used a variety of PD-L1 immunohistochemical assays to evaluate PD-L1 expression on tumour cells, immune cells or both as a potential biomarker to predict response to immunotherapy. Requests to pathologists for PD-L1 testing to guide choice of therapy are rapidly becoming commonplace. Thus, pathologists need to be aware of the different PD-L1 assays, methods of evaluation in different tumour types and the impact of the results on therapeutic decisions. This review discusses the key practical issues relating to the implementation of PD-L1 testing for solid tumours in a pathology laboratory, including evidence for PD-L1 testing, different assay types, the potential interchangeability of PD-L1 antibody clones and staining platforms, scoring criteria for PD-L1, validation, quality assurance, and pitfalls in PD-L1 assessment. This review also explores PD-L1 IHC in solid tumours including non-small cell lung carcinoma, head and neck carcinoma, triple negative breast carcinoma, melanoma, renal cell carcinoma, urothelial carcinoma, gastric and gastroesophageal carcinoma, colorectal carcinoma, hepatocellular carcinoma, and endometrial carcinoma. The review aims to provide pathologists with a practical guide to the implementation and interpretation of PD-L1 testing by immunohistochemistry.
Collapse
Affiliation(s)
- Elizabeth C Paver
- Department of Tissue Pathology and Diagnostic Oncology, Royal Prince Alfred Hospital and NSW Health Pathology, Sydney, NSW, Australia
| | - Wendy A Cooper
- Department of Tissue Pathology and Diagnostic Oncology, Royal Prince Alfred Hospital and NSW Health Pathology, Sydney, NSW, Australia; The University of Sydney, Sydney, NSW, Australia; Western Sydney University, Campbelltown, NSW, Australia
| | - Andrew J Colebatch
- Department of Tissue Pathology and Diagnostic Oncology, Royal Prince Alfred Hospital and NSW Health Pathology, Sydney, NSW, Australia; Melanoma Institute Australia, The University of Sydney, Sydney, NSW, Australia
| | - Peter M Ferguson
- Department of Tissue Pathology and Diagnostic Oncology, Royal Prince Alfred Hospital and NSW Health Pathology, Sydney, NSW, Australia; The University of Sydney, Sydney, NSW, Australia; Melanoma Institute Australia, The University of Sydney, Sydney, NSW, Australia
| | - Sean K Hill
- Gold Coast University Hospital, Southport, Qld, Australia
| | - Trina Lum
- Department of Tissue Pathology and Diagnostic Oncology, Royal Prince Alfred Hospital and NSW Health Pathology, Sydney, NSW, Australia
| | - Joo-Shik Shin
- Department of Tissue Pathology and Diagnostic Oncology, Royal Prince Alfred Hospital and NSW Health Pathology, Sydney, NSW, Australia; The University of Sydney, Sydney, NSW, Australia
| | - Sandra O'Toole
- Department of Tissue Pathology and Diagnostic Oncology, Royal Prince Alfred Hospital and NSW Health Pathology, Sydney, NSW, Australia; The University of Sydney, Sydney, NSW, Australia
| | - Lyndal Anderson
- Department of Tissue Pathology and Diagnostic Oncology, Royal Prince Alfred Hospital and NSW Health Pathology, Sydney, NSW, Australia; The University of Sydney, Sydney, NSW, Australia; Western Sydney University, Campbelltown, NSW, Australia
| | - Richard A Scolyer
- Department of Tissue Pathology and Diagnostic Oncology, Royal Prince Alfred Hospital and NSW Health Pathology, Sydney, NSW, Australia; The University of Sydney, Sydney, NSW, Australia; Melanoma Institute Australia, The University of Sydney, Sydney, NSW, Australia
| | - Ruta Gupta
- Department of Tissue Pathology and Diagnostic Oncology, Royal Prince Alfred Hospital and NSW Health Pathology, Sydney, NSW, Australia; The University of Sydney, Sydney, NSW, Australia.
| |
Collapse
|
433
|
Gupta M, Gupta B. A novel gene expression test method of minimizing breast cancer risk in reduced cost and time by improving SVM-RFE gene selection method combined with LASSO. J Integr Bioinform 2020; 18:139-153. [PMID: 34171941 PMCID: PMC7856389 DOI: 10.1515/jib-2019-0110] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Accepted: 11/12/2020] [Indexed: 01/26/2023] Open
Abstract
Breast cancer is the leading diseases of death in women. It induces by a genetic mutation in breast cancer cells. Genetic testing has become popular to detect the mutation in genes but test cost is relatively expensive for several patients in developing countries like India. Genetic test takes between 2 and 4 weeks to decide the cancer. The time duration suffers the prognosis of genes because some patients have high rate of cancerous cell growth. In the research work, a cost and time efficient method is proposed to predict the gene expression level on the basis of clinical outcomes of the patient by using machine learning techniques. An improved SVM-RFE_MI gene selection technique is proposed to find the most significant genes related to breast cancer afterward explained variance statistical analysis is applied to extract the genes contain high variance. Least Absolute Shrinkage Selector Operator (LASSO) and Ridge regression techniques are used to predict the gene expression level. The proposed method predicts the expression of significant genes with reduced Root Mean Square Error and acceptable adjusted R-square value. As per the study, analysis of these selected genes is beneficial to diagnose the breast cancer at prior stage in reduced cost and time.
Collapse
Affiliation(s)
- Madhuri Gupta
- Department of Computer Engineering and Information Technology, ABES Engineering College, Ghaziabad, Uttar Pradesh, India
| | - Bharat Gupta
- Department of CS&IT, Jaypee Institute of Information Technology, Noida, Uttar Pradesh, India
| |
Collapse
|
434
|
Miglietta F, Cona MS, Dieci MV, Guarneri V, La Verde N. An overview of immune checkpoint inhibitors in breast cancer. EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2020; 1:452-472. [PMID: 36046385 PMCID: PMC9400749 DOI: 10.37349/etat.2020.00029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 12/07/2020] [Indexed: 12/19/2022] Open
Abstract
Although breast cancer is not traditionally considered an immunogenic type of tumor, the combination of immunotherapy and chemotherapy has recently emerged as a novel treatment option in triple-negative subtype in the advanced setting and other similar combinations of immune checkpoint inhibitors with chemotherapy are expected to become part of the neoadjuvant management in the near future. In addition, encouraging results have been observed with the combination of immune checkpoint blockade with diverse biological agents, including anti-HER2 agents, CDK 4/6 inhibitors, PARP-inhibitors. The present review summarized the available evidence coming from clinical trials on the role of immune checkpoint inhibitors in the management of breast cancer, both in advanced and early setting.
Collapse
Affiliation(s)
- Federica Miglietta
- Department of Surgery, Oncology and Gastroenterology, University of Padova, 35122 Padova, Italy
- Division of Oncology 2, Istituto Oncologico Veneto IRCCS, 35128 Padova, Italy
| | - Maria Silvia Cona
- Department of Oncology, Luigi Sacco Hospital, ASST Fatebenefratelli Sacco, Via G.B. Grassi 74, 20157 Milano, Italy
| | - Maria Vittoria Dieci
- Department of Surgery, Oncology and Gastroenterology, University of Padova, 35122 Padova, Italy
- Division of Oncology 2, Istituto Oncologico Veneto IRCCS, 35128 Padova, Italy
| | - Valentina Guarneri
- Department of Surgery, Oncology and Gastroenterology, University of Padova, 35122 Padova, Italy
- Division of Oncology 2, Istituto Oncologico Veneto IRCCS, 35128 Padova, Italy
| | - Nicla La Verde
- Department of Oncology, Luigi Sacco Hospital, ASST Fatebenefratelli Sacco, Via G.B. Grassi 74, 20157 Milano, Italy
| |
Collapse
|
435
|
Immunotherapy for early breast cancer: too soon, too superficial, or just right? Ann Oncol 2020; 32:323-336. [PMID: 33307202 DOI: 10.1016/j.annonc.2020.11.022] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 11/24/2020] [Accepted: 11/29/2020] [Indexed: 01/01/2023] Open
Abstract
Immunotherapy emerged as a new treatment modality for breast cancer, and its use is approved in combination with chemotherapy for first-line therapy in metastatic triple-negative breast cancer overexpressing PD-L1. As immune checkpoint inhibitors alone have modest clinical activity in advanced breast cancer, there is a growing interest in combinatorial modalities, and particularly for their rapid development in the early disease setting. The plethora of ongoing immunotherapy trials in early breast cancer comes at a time when solid data in advanced disease are still imperfect. This review offers a perspective on the efforts to establish the efficacy and safety of immunotherapeutic agents in early breast cancer.
Collapse
|
436
|
Cortes J, Cescon DW, Rugo HS, Nowecki Z, Im SA, Yusof MM, Gallardo C, Lipatov O, Barrios CH, Holgado E, Iwata H, Masuda N, Otero MT, Gokmen E, Loi S, Guo Z, Zhao J, Aktan G, Karantza V, Schmid P. Pembrolizumab plus chemotherapy versus placebo plus chemotherapy for previously untreated locally recurrent inoperable or metastatic triple-negative breast cancer (KEYNOTE-355): a randomised, placebo-controlled, double-blind, phase 3 clinical trial. Lancet 2020; 396:1817-1828. [PMID: 33278935 DOI: 10.1016/s0140-6736(20)32531-9] [Citation(s) in RCA: 1077] [Impact Index Per Article: 215.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 08/25/2020] [Accepted: 09/16/2020] [Indexed: 12/21/2022]
Abstract
BACKGROUND Pembrolizumab monotherapy showed durable antitumour activity and manageable safety in patients with metastatic triple-negative breast cancer. We aimed to examine whether the addition of pembrolizumab would enhance the antitumour activity of chemotherapy in patients with metastatic triple-negative breast cancer. METHODS In this randomised, placebo-controlled, double-blind, phase 3 trial, done in 209 sites in 29 countries, we randomly assigned patients 2:1 with untreated locally recurrent inoperable or metastatic triple-negative breast cancer using a block method (block size of six) and an interactive voice-response system with integrated web-response to pembrolizumab (200 mg) every 3 weeks plus chemotherapy (nab-paclitaxel; paclitaxel; or gemcitabine plus carboplatin) or placebo plus chemotherapy. Randomisation was stratified by type of on-study chemotherapy (taxane or gemcitabine-carboplatin), PD-L1 expression at baseline (combined positive score [CPS] ≥1 or <1), and previous treatment with the same class of chemotherapy in the neoadjuvant or adjuvant setting (yes or no). Eligibility criteria included age at least 18 years, centrally confirmed triple-negative breast cancer; at least one measurable lesion; provision of a newly obtained tumour sample for determination of triple-negative breast cancer status and PD-L1 status by immunohistochemistry at a central laboratory; an Eastern Cooperative Oncology Group performance status score 0 or 1; and adequate organ function. The sponsor, investigators, other study site staff (except for the unmasked pharmacist), and patients were masked to pembrolizumab versus saline placebo administration. In addition, the sponsor, the investigators, other study site staff, and patients were masked to patient-level tumour PD-L1 biomarker results. Dual primary efficacy endpoints were progression-free survival and overall survival assessed in the PD-L1 CPS of 10 or more, CPS of 1 or more, and intention-to-treat populations. The definitive assessment of progression-free survival was done at this interim analysis; follow-up to assess overall survival is continuing. For progression-free survival, a hierarchical testing strategy was used, such that testing was done first in patients with CPS of 10 or more (prespecified statistical criterion was α=0·00411 at this interim analysis), then in patients with CPS of 1 or more (α=0·00111 at this interim analysis, with partial alpha from progression-free survival in patients with CPS of 10 or more passed over), and finally in the intention-to-treat population (α=0·00111 at this interim analysis). This study is registered with ClinicalTrials.gov, NCT02819518, and is ongoing. FINDINGS Between Jan 9, 2017, and June 12, 2018, of 1372 patients screened, 847 were randomly assigned to treatment, with 566 patients in the pembrolizumab-chemotherapy group and 281 patients in the placebo-chemotherapy group. At the second interim analysis (data cutoff, Dec 11, 2019), median follow-up was 25·9 months (IQR 22·8-29·9) in the pembrolizumab-chemotherapy group and 26·3 months (22·7-29·7) in the placebo-chemotherapy group. Among patients with CPS of 10 or more, median progression-free survival was 9·7 months with pembrolizumab-chemotherapy and 5·6 months with placebo-chemotherapy (hazard ratio [HR] for progression or death, 0·65, 95% CI 0·49-0·86; one-sided p=0·0012 [primary objective met]). Median progression-free survival was 7·6 and 5·6 months (HR, 0·74, 0·61-0·90; one-sided p=0·0014 [not significant]) among patients with CPS of 1 or more and 7·5 and 5·6 months (HR, 0·82, 0·69-0·97 [not tested]) among the intention-to-treat population. The pembrolizumab treatment effect increased with PD-L1 enrichment. Grade 3-5 treatment-related adverse event rates were 68% in the pembrolizumab-chemotherapy group and 67% in the placebo-chemotherapy group, including death in <1% in the pembrolizumab-chemotherapy group and 0% in the placebo-chemotherapy group. INTERPRETATION Pembrolizumab-chemotherapy showed a significant and clinically meaningful improvement in progression-free survival versus placebo-chemotherapy among patients with metastatic triple-negative breast cancer with CPS of 10 or more. These findings suggest a role for the addition of pembrolizumab to standard chemotherapy for the first-line treatment of metastatic triple-negative breast cancer. FUNDING Merck Sharp & Dohme Corp, a subsidiary of Merck & Co, Inc.
Collapse
Affiliation(s)
- Javier Cortes
- International Breast Cancer Center, Quiron Group, Madrid and Barcelona, Spain; Vall d'Hebron Institute of Oncology, Barcelona, Spain.
| | | | - Hope S Rugo
- University of California San Francisco Comprehensive Cancer Center, San Francisco, CA, USA
| | - Zbigniew Nowecki
- Maria Sklodowska-Curie Memorial Cancer Centre and Institute of Oncology, Warsaw, Poland
| | - Seock-Ah Im
- Seoul National University Hospital, Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | | | | | - Oleg Lipatov
- Republican Clinical Oncology Dispensary, Republic of Bashkortostan, Russia
| | - Carlos H Barrios
- Oncology Research Unit, Hospital São Lucas, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Esther Holgado
- International Breast Cancer Center, Quiron Group, Madrid and Barcelona, Spain; Vall d'Hebron Institute of Oncology, Barcelona, Spain
| | | | - Norikazu Masuda
- National Hospital Organization, Osaka National Hospital, Osaka, Japan
| | | | | | - Sherene Loi
- Peter McCallum Cancer Centre, Melbourne, VIC, Australia
| | | | | | | | | | - Peter Schmid
- Barts Cancer Institute, Centre for Experimental Cancer Medicine and Queen Mary University of London, London, UK
| |
Collapse
|
437
|
Combinatorial Epigenetic and Immunotherapy in Breast Cancer Management: A Literature Review. EPIGENOMES 2020; 4:epigenomes4040027. [PMID: 34968306 PMCID: PMC8594694 DOI: 10.3390/epigenomes4040027] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 11/25/2020] [Accepted: 11/30/2020] [Indexed: 12/27/2022] Open
Abstract
Breast cancer is one of the leading causes of death among cancer patients worldwide. To date, there are several drugs that have been developed for breast cancer therapy. In the 21st century, immunotherapy is considered a pioneering method for improving the management of malignancies; however, breast cancer is an exception. According to the immunoediting model, many immunosuppressive cells contribute to immunological quiescence. Therefore, there is an urgent need to enhance the therapeutic efficacy of breast cancer treatments. In the last few years, numerous combinatorial therapies involving immune checkpoint blockade have been demonstrated that effectively improve clinical outcomes in breast cancer and combining these with methods of targeting epigenetic regulators is also an innovative strategy. Nevertheless, few studies have discussed the benefits of epi-drugs in non-cancerous cells. In this review, we give a brief overview of ongoing clinical trials involving combinatorial immunotherapy with epi-drugs in breast cancer and discuss the role of epi-drugs in the tumor microenvironment, including the results of recent research.
Collapse
|
438
|
Mediratta K, El-Sahli S, D’Costa V, Wang L. Current Progresses and Challenges of Immunotherapy in Triple-Negative Breast Cancer. Cancers (Basel) 2020; 12:E3529. [PMID: 33256070 PMCID: PMC7761500 DOI: 10.3390/cancers12123529] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 11/23/2020] [Accepted: 11/24/2020] [Indexed: 02/06/2023] Open
Abstract
With improved understanding of the immunogenicity of triple-negative breast cancer (TNBC), immunotherapy has emerged as a promising candidate to treat this lethal disease owing to the lack of specific targets and effective treatments. While immune checkpoint inhibition (ICI) has been effectively used in immunotherapy for several types of solid tumor, monotherapies targeting programmed death 1 (PD-1), its ligand PD-L1, or cytotoxic T lymphocyte-associated protein 4 (CTLA-4) have shown little efficacy for TNBC patients. Over the past few years, various therapeutic candidates have been reviewed, attempting to improve ICI efficacy on TNBC through combinatorial treatment. In this review, we describe the clinical limitations of ICI and illustrate candidates from an immunological, pharmacological, and metabolic perspective that may potentiate therapy to improve the outcomes of TNBC patients.
Collapse
Affiliation(s)
- Karan Mediratta
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON K1H 8M5, Canada; (K.M.); (S.E.-S.)
- Centre for Infection, Immunity and Inflammation, University of Ottawa, 451 Smyth Road, Ottawa, ON K1H 8M5, Canada
- Ottawa Institute of Systems Biology, University of Ottawa, 451 Smyth Road, Ottawa, ON K1H 8M5, Canada
| | - Sara El-Sahli
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON K1H 8M5, Canada; (K.M.); (S.E.-S.)
- Centre for Infection, Immunity and Inflammation, University of Ottawa, 451 Smyth Road, Ottawa, ON K1H 8M5, Canada
- Ottawa Institute of Systems Biology, University of Ottawa, 451 Smyth Road, Ottawa, ON K1H 8M5, Canada
| | - Vanessa D’Costa
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON K1H 8M5, Canada; (K.M.); (S.E.-S.)
- Centre for Infection, Immunity and Inflammation, University of Ottawa, 451 Smyth Road, Ottawa, ON K1H 8M5, Canada
| | - Lisheng Wang
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON K1H 8M5, Canada; (K.M.); (S.E.-S.)
- Centre for Infection, Immunity and Inflammation, University of Ottawa, 451 Smyth Road, Ottawa, ON K1H 8M5, Canada
- Ottawa Institute of Systems Biology, University of Ottawa, 451 Smyth Road, Ottawa, ON K1H 8M5, Canada
| |
Collapse
|
439
|
Park N, Pandey K, Chang SK, Kwon AY, Cho YB, Hur J, Katwal NB, Kim SK, Lee SA, Son GW, Jo JM, Ahn HJ, Moon YW. Preclinical platform for long-term evaluation of immuno-oncology drugs using hCD34+ humanized mouse model. J Immunother Cancer 2020; 8:jitc-2020-001513. [PMID: 33239416 PMCID: PMC7689593 DOI: 10.1136/jitc-2020-001513] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/09/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Well-characterized preclinical models are essential for immune-oncology research. We investigated the feasibility of our humanized mouse model for evaluating the long-term efficacy of immunotherapy and biomarkers. METHODS Humanized mice were generated by injecting human fetal cord blood-derived CD34+ hematopoietic stem cells to NOD-scid IL2rγnull (NSG) mice myeloablated with irradiation or busulfan. The humanization success was defined as a 25% or higher ratio of human CD45+ cells to mice peripheral blood mononuclear cells. RESULTS Busulfan was ultimately selected as the appropriate myeloablative method because it provided a higher success rate of humanization (approximately 80%) and longer survival time (45 weeks). We proved the development of functional T cells by demonstrating the anticancer effect of the programmed cell death-1 (PD-1) inhibitor in our humanized mice but not in non-humanized NSG mice. After confirming the long-lasting humanization state (45 weeks), we further investigated the response durability of the PD-1 inhibitor and biomarkers in our humanized mice. Early increase in serum tumor necrosis factor α levels, late increase in serum interleukin 6 levels and increase in tumor-infiltrating CD8+ T lymphocytes correlated more with a durable response over 60 days than with a non-durable response. CONCLUSIONS Our CD34+ humanized mouse model is the first in vivo platform for testing the long-term efficacy of anticancer immunotherapies and biomarkers, given that none of the preclinical models has ever been evaluated for such a long duration.
Collapse
Affiliation(s)
- Nahee Park
- Hematology and Oncology, Department of Internal Medicine, CHA Bundang Medical Center, Seongnam, South Korea
| | - Kamal Pandey
- Hematology and Oncology, Department of Internal Medicine, CHA Bundang Medical Center, Seongnam, South Korea.,Department of Biomedical Science, CHA Bundang Medical Center, Seongnam, South Korea
| | - Sei Kyung Chang
- Department of Radiation Oncology, CHA Bundang Medical Center, Seongnam, South Korea
| | - Ah-Young Kwon
- Department of Pathology, CHA Bundang Medical Center, Seongnam, South Korea
| | - Young Bin Cho
- Hematology and Oncology, Department of Internal Medicine, CHA Bundang Medical Center, Seongnam, South Korea
| | - Jin Hur
- Hematology and Oncology, Department of Internal Medicine, CHA Bundang Medical Center, Seongnam, South Korea.,Department of Biomedical Science, CHA Bundang Medical Center, Seongnam, South Korea
| | - Nar Bahadur Katwal
- Hematology and Oncology, Department of Internal Medicine, CHA Bundang Medical Center, Seongnam, South Korea.,Department of Biomedical Science, CHA Bundang Medical Center, Seongnam, South Korea
| | - Seung Ki Kim
- Department of Surgery, CHA Bundang Medical Center, Seongnam, South Korea
| | - Seung Ah Lee
- Department of Surgery, CHA Bundang Medical Center, Seongnam, South Korea
| | - Gun Woo Son
- Hematology and Oncology, Department of Internal Medicine, CHA Bundang Medical Center, Seongnam, South Korea
| | - Jong Min Jo
- Hematology and Oncology, Department of Internal Medicine, CHA Bundang Medical Center, Seongnam, South Korea
| | - Hee Jung Ahn
- Department of Pathology, CHA Bundang Medical Center, Seongnam, South Korea
| | - Yong Wha Moon
- Hematology and Oncology, Department of Internal Medicine, CHA Bundang Medical Center, Seongnam, South Korea
| |
Collapse
|
440
|
Mutations in BRCA1 and BRCA2 differentially affect the tumor microenvironment and response to checkpoint blockade immunotherapy. ACTA ACUST UNITED AC 2020; 1:1188-1203. [PMID: 33834176 DOI: 10.1038/s43018-020-00139-8] [Citation(s) in RCA: 134] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Immune checkpoint blockade (ICB) has improved outcomes for patients with advanced cancer, but the determinants of response remain poorly understood. Here we report differential effects of mutations in the homologous recombination genes BRCA1 and BRCA2 on response to ICB in mouse and human tumors, and further show that truncating mutations in BRCA2 are associated with superior response compared to those in BRCA1. Mutations in BRCA1 and BRCA2 result in distinct mutational landscapes and differentially modulate the tumor-immune microenvironment, with gene expression programs related to both adaptive and innate immunity enriched in BRCA2-deficient tumors. Single-cell RNA sequencing further revealed distinct T cell, natural killer, macrophage, and dendritic cell populations enriched in BRCA2-deficient tumors. Taken together, our findings reveal the divergent effects of BRCA1 and BRCA2-deficiency on ICB outcome, and have significant implications for elucidating the genetic and microenvironmental determinants of response to immunotherapy.
Collapse
|
441
|
Nagano M, Saito K, Kozuka Y, Ichishi M, Yuasa H, Noro A, Imai N, Shibusawa M, Kimoto M, Ishitobi M, Tono Y, Oda H, Ishihara M, Mizuno T, Ogawa T, Katayama N. CD204-positive macrophages accumulate in breast cancer tumors with high levels of infiltrating lymphocytes and programmed death ligand-1 expression. Oncol Lett 2020; 21:36. [PMID: 33262828 PMCID: PMC7693484 DOI: 10.3892/ol.2020.12297] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Accepted: 10/06/2020] [Indexed: 12/26/2022] Open
Abstract
Although immunotherapy has been demonstrated to be promising in triple-negative (TN) breast cancer (BC), most BC cases are classified as non-TN. To enrich the responders for immunotherapy regardless of their subtypes, classification based on tumor-infiltrating lymphocyte (TIL) levels and programmed death ligand-1 (PD-L1) status may be useful. However, this classification has not been fully applied to BC. Furthermore, suppressive subsets in the local tumor microenvironment, such as tumor-associated macrophages (TAMs), which promote tumor progression, cannot be ignored to overcome immunotherapy resistance. The aims of the present study were to classify primary BC cases based on the TIL levels and PD-L1 status, and to identify suppressive immune subsets in each categorized group. A retrospective analysis of 73 patients with invasive BC was performed. The frequency of TILs was evaluated in HE-stained slides (10% cutoff), and PD-L1 levels (SP142; 1% cutoff), as well as immune subsets (CD3+, CD8+, FOXP3+, CD20+, CD68+ and CD204+ cells) were assessed using immunohistochemistry. It was revealed that 22% (16/73) of the tumors were categorized as TIL+PD-L1+, of which 69% (11/16) were TN type. By contrast, 66% (48/73) of the tumors were categorized as TIL−PD-L1−, of which 77% (37/48) were HR+ and HER2− types. The number of CD204+ M2-type macrophages was significantly associated with high histological grade (P=0.0246) and high Ki-67 (P=0.0152), whereas CD68+ macrophages were not associated with these factors. Furthermore, CD204+ macrophages and FOXP3+ Tregs accumulated in 88% (14/16) and 63% (10/16) of TIL+PD-L1+ tumors, respectively, compared with 20.8% (10/48) and 27.1% (13/48) of TIL−PD-L1− tumors. In conclusion, 22% of BC tumors were classified as TIL+PD-L1+ (69% were TN), which were enriched with suppressive immune subsets. These cell types may serve as potential novel immunotherapeutic targets.
Collapse
Affiliation(s)
- Mayuko Nagano
- Department of Breast Surgery, Mie University Graduate School of Medicine, Mie 514-8507, Japan
| | - Kanako Saito
- Department of Hematology and Oncology, Mie University Graduate School of Medicine, Mie 514-8507, Japan
| | - Yuji Kozuka
- Department of Pathology, Mie University Hospital, Mie 514-8507, Japan
| | - Masako Ichishi
- Department of Pathology, Mie University Hospital, Mie 514-8507, Japan
| | - Hiroto Yuasa
- Department of Pathology, Mie University Hospital, Mie 514-8507, Japan
| | - Aya Noro
- Department of Breast Surgery, Mie University Graduate School of Medicine, Mie 514-8507, Japan
| | - Nao Imai
- Department of Breast Surgery, Mie University Graduate School of Medicine, Mie 514-8507, Japan
| | - Mai Shibusawa
- Department of Breast Surgery, Mie University Graduate School of Medicine, Mie 514-8507, Japan
| | - Mao Kimoto
- Department of Breast Surgery, Mie University Graduate School of Medicine, Mie 514-8507, Japan
| | - Makoto Ishitobi
- Department of Breast Surgery, Mie University Graduate School of Medicine, Mie 514-8507, Japan
| | - Yasutaka Tono
- Department of Hematology and Oncology, Mie University Graduate School of Medicine, Mie 514-8507, Japan
| | - Hiroyasu Oda
- Department of Hematology and Oncology, Mie University Graduate School of Medicine, Mie 514-8507, Japan
| | - Mikiya Ishihara
- Department of Hematology and Oncology, Mie University Graduate School of Medicine, Mie 514-8507, Japan
| | - Toshiro Mizuno
- Department of Hematology and Oncology, Mie University Graduate School of Medicine, Mie 514-8507, Japan
| | - Tomoko Ogawa
- Department of Breast Surgery, Mie University Graduate School of Medicine, Mie 514-8507, Japan
| | - Naoyuki Katayama
- Department of Hematology and Oncology, Mie University Graduate School of Medicine, Mie 514-8507, Japan
| |
Collapse
|
442
|
Oualla K, Kassem L, Nouiakh L, Amaadour L, Benbrahim Z, Arifi S, Mellas N. Immunotherapeutic Approaches in Triple-Negative Breast Cancer: State of the Art and Future Perspectives. Int J Breast Cancer 2020; 2020:8209173. [PMID: 33204535 PMCID: PMC7661147 DOI: 10.1155/2020/8209173] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 06/16/2020] [Indexed: 12/31/2022] Open
Abstract
Triple-negative breast cancer (TNBC) is characterized by the absence of estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor receptor 2 (HER2). It accounts for 15%-20% of all breast cancers and is associated with an aggressive evolution and poor outcomes with the majority of recurrences and deaths occurring in the first 5 years. Chemotherapy remains the mainstay of treatment in the absence of effective targets, but the good understanding of immune tumor microenvironment, the identification of immune-related targets, and the role of tumor-infiltrating lymphocytes (TILs) in TNBC has allowed to develop promising immunotherapeutic strategies for this unique subset of breast cancer. Recently, immunotherapy is being extensively explored in TNBC and clinical trials have shown promising results. In this article, we tried to explain the rationale and mechanisms of targeting the immune system in TNBC, to report the results from recent clinical trials that put immunotherapy as a new standard of care in TNBC in addition to ongoing trials and future directions in the next decade.
Collapse
Affiliation(s)
- Karima Oualla
- Medical Oncology Department, Hassan II University Hospital, Sidi Mohamed Ben Abdellah University, Fes, Morocco
| | - Loay Kassem
- Clinical Oncology Department, Kasr Al-Ainy School of Medicine, Cairo University, Giza, Egypt
| | - Lamiae Nouiakh
- Medical Oncology Department, Hassan II University Hospital, Sidi Mohamed Ben Abdellah University, Fes, Morocco
| | - Lamiae Amaadour
- Medical Oncology Department, Hassan II University Hospital, Sidi Mohamed Ben Abdellah University, Fes, Morocco
| | - Zineb Benbrahim
- Medical Oncology Department, Hassan II University Hospital, Sidi Mohamed Ben Abdellah University, Fes, Morocco
| | - Samia Arifi
- Medical Oncology Department, Hassan II University Hospital, Sidi Mohamed Ben Abdellah University, Fes, Morocco
| | - Nawfel Mellas
- Medical Oncology Department, Hassan II University Hospital, Sidi Mohamed Ben Abdellah University, Fes, Morocco
| |
Collapse
|
443
|
Chen C, Liu F, Ren Y, Suttner L, Sun Z, Shentu Y, Schmidt EV. Independent drug action and its statistical implications for development of combination therapies. Contemp Clin Trials 2020; 98:106126. [DOI: 10.1016/j.cct.2020.106126] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 08/11/2020] [Accepted: 08/18/2020] [Indexed: 11/24/2022]
|
444
|
Aqbi HF, Coleman C, Zarei M, Manjili SH, Graham L, Koblinski J, Guo C, Xie Y, Guruli G, Bear HD, Idowu MO, Habibi M, Wang XY, Manjili MH. Local and distant tumor dormancy during early stage breast cancer are associated with the predominance of infiltrating T effector subsets. Breast Cancer Res 2020; 22:116. [PMID: 33115528 PMCID: PMC7594332 DOI: 10.1186/s13058-020-01357-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 10/13/2020] [Indexed: 12/30/2022] Open
Abstract
Background Although breast cancer mortality is a result of distant recurrences associated with the establishment of tumor dormancy, current clinical practice guidelines recommend a wait and watch approach for tumor recurrences. This is because of our limited understanding of tumor dormancy and insufficient evidence in support of immunological control of tumor dormancy. Methods We used FVBN202 transgenic mice expressing rat neu oncogene in the mammary glands, and their parental FVB strain lacking neu expression. These models allowed the detection of tumor dormancy at distant sites using the rat neu protein as a tumor marker. We also used Ki67 for the detection of the indolent and quiescent types of tumor dormancy. Multicolor flow cytometry was used to detect dormant tumor cells and T cell subsets. Co-culture studies were performed to determine the role of T cells in preventing regrowth of dormant cells. Results We demonstrated that dormant tumor cells were present at the site of primary breast cancer and at distant sites in the lungs and in the liver very early in the course of early stage breast cancer when no distant metastasis was evident. Dormant tumor cells were characterized as neu expressing Ki67− and Ki67low fractions associated with the induction of local immune responses predominated by CD4+ and CD8+ T effector cell subsets. The presence of neu-autoreactive T cells from FVBN202 mice only prevented regrowth of dormant cells. On the other hand, presence of neu-alloreactive anti-tumor T cells in FVB mice prior to tumor challenge resulted in the protection of mice from the dissemination of dormant tumor cells to distant organs. Conclusion Our results suggest that immunotherapeutic targeting of semi-allogeneic mutant neoantigens during tumor dormancy might prevent distant recurrence of the disease.
Collapse
Affiliation(s)
- Hussein F Aqbi
- Department of Microbiology & Immunology, VCU School of Medicine, Richmond, VA, USA.,VCU Massey Cancer Center, 401 College Street, Richmond, VA, 23298, USA.,College of Science, Mustansiriyah University, Baghdad, Iraq
| | - Cara Coleman
- Department of Microbiology & Immunology, VCU School of Medicine, Richmond, VA, USA
| | - Melika Zarei
- Emory University School of Medicine, Atlanta, GA, USA
| | - Saeed H Manjili
- Department of Biomedical Engineering, VCU School of Engineering, Richmond, VA, USA
| | - Laura Graham
- Department of Surgery, VCU School of Medicine, Richmond, VA, USA
| | - Jennifer Koblinski
- VCU Massey Cancer Center, 401 College Street, Richmond, VA, 23298, USA.,Department of Pathology, VCU School of Medicine, Richmond, VA, USA
| | - Chunquing Guo
- Department of Human & Molecular Genetics, VCU School of Medicine, Richmond, VA, USA.,VCU Institute of Molecular Medicine, Richmond, VA, USA
| | - Yibin Xie
- Peking Union Medical College, Beijing, China
| | - Georgi Guruli
- VCU Massey Cancer Center, 401 College Street, Richmond, VA, 23298, USA.,Department of Internal Medicine, VCU School of Medicine, Richmond, VA, USA
| | - Harry D Bear
- VCU Massey Cancer Center, 401 College Street, Richmond, VA, 23298, USA.,Department of Surgery, VCU School of Medicine, Richmond, VA, USA
| | - Michael O Idowu
- VCU Massey Cancer Center, 401 College Street, Richmond, VA, 23298, USA.,Department of Pathology, VCU School of Medicine, Richmond, VA, USA
| | - Mehran Habibi
- Department of Surgery, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Xiang-Yang Wang
- VCU Massey Cancer Center, 401 College Street, Richmond, VA, 23298, USA.,Department of Human & Molecular Genetics, VCU School of Medicine, Richmond, VA, USA.,VCU Institute of Molecular Medicine, Richmond, VA, USA
| | - Masoud H Manjili
- Department of Microbiology & Immunology, VCU School of Medicine, Richmond, VA, USA. .,VCU Massey Cancer Center, 401 College Street, Richmond, VA, 23298, USA. .,Department of Pathology, VCU School of Medicine, Richmond, VA, USA. .,VCU Institute of Molecular Medicine, Richmond, VA, USA.
| |
Collapse
|
445
|
Marra A, Trapani D, Viale G, Criscitiello C, Curigliano G. Practical classification of triple-negative breast cancer: intratumoral heterogeneity, mechanisms of drug resistance, and novel therapies. NPJ Breast Cancer 2020; 6:54. [PMID: 33088912 PMCID: PMC7568552 DOI: 10.1038/s41523-020-00197-2] [Citation(s) in RCA: 190] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 09/17/2020] [Indexed: 02/07/2023] Open
Abstract
Triple-negative breast cancer (TNBC) is not a unique disease, encompassing multiple entities with marked histopathological, transcriptomic and genomic heterogeneity. Despite several efforts, transcriptomic and genomic classifications have remained merely theoretic and most of the patients are being treated with chemotherapy. Driver alterations in potentially targetable genes, including PIK3CA and AKT, have been identified across TNBC subtypes, prompting the implementation of biomarker-driven therapeutic approaches. However, biomarker-based treatments as well as immune checkpoint inhibitor-based immunotherapy have provided contrasting and limited results so far. Accordingly, a better characterization of the genomic and immune contexture underpinning TNBC, as well as the translation of the lessons learnt in the metastatic disease to the early setting would improve patients' outcomes. The application of multi-omics technologies, biocomputational algorithms, assays for minimal residual disease monitoring and novel clinical trial designs are strongly warranted to pave the way toward personalized anticancer treatment for patients with TNBC.
Collapse
Affiliation(s)
- Antonio Marra
- Division of Early Drug Development for Innovative Therapies, IEO, European Institute of Oncology IRCCS, Via Ripamonti, 435, 20141 Milan, Italy
- Department of Oncology and Haemato-Oncology, University of Milano, Via Festa del Perdono, 7, 20122 Milan, Italy
| | - Dario Trapani
- Division of Early Drug Development for Innovative Therapies, IEO, European Institute of Oncology IRCCS, Via Ripamonti, 435, 20141 Milan, Italy
| | - Giulia Viale
- Division of Early Drug Development for Innovative Therapies, IEO, European Institute of Oncology IRCCS, Via Ripamonti, 435, 20141 Milan, Italy
| | - Carmen Criscitiello
- Division of Early Drug Development for Innovative Therapies, IEO, European Institute of Oncology IRCCS, Via Ripamonti, 435, 20141 Milan, Italy
| | - Giuseppe Curigliano
- Division of Early Drug Development for Innovative Therapies, IEO, European Institute of Oncology IRCCS, Via Ripamonti, 435, 20141 Milan, Italy
- Department of Oncology and Haemato-Oncology, University of Milano, Via Festa del Perdono, 7, 20122 Milan, Italy
| |
Collapse
|
446
|
Vidula N, Ellisen LW, Bardia A. Novel Agents for Metastatic Triple-Negative Breast Cancer: Finding the Positive in the Negative. J Natl Compr Canc Netw 2020; 19:1-9. [PMID: 33075745 DOI: 10.6004/jnccn.2020.7600] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 05/28/2020] [Indexed: 11/17/2022]
Abstract
Metastatic triple-negative breast cancer (TNBC) is associated with a poor prognosis, and the development of better therapeutics represents a major unmet clinical need. Although the mainstay of treatment of metastatic TNBC is chemotherapy, advances in genomics and molecular profiling have helped better define subtypes of TNBC with distinct biologic drivers to guide the therapeutic development of targeted therapies, including AKT inhibitors for PI3K/AKT-altered TNBC, checkpoint inhibitors for PD-L1-positive TNBC, and PARP inhibitors for BRCA1/2 mutant TNBC. This progress may ultimately convert TNBC from a disease traditionally defined by the absence of therapeutically actionable receptors to one that is defined by the presence of discrete molecular targets with therapeutic implications. Furthermore, antibody drug conjugates have emerged as an important therapeutic strategy to target genomically complex tumors that lack actionable oncogenes but have overexpressed actionable surface receptors such as trop-2. In this article, we discuss promising novel agents for advanced TNBC, some of which have been incorporated into current clinical practice, and others that will likely change the therapeutic landscape and redefine the TNBC terminology in the near future.
Collapse
Affiliation(s)
- Neelima Vidula
- Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Leif W Ellisen
- Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Aditya Bardia
- Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
447
|
Davis RS. Roles for the FCRL6 Immunoreceptor in Tumor Immunology. Front Immunol 2020; 11:575175. [PMID: 33162991 PMCID: PMC7591390 DOI: 10.3389/fimmu.2020.575175] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 09/01/2020] [Indexed: 01/12/2023] Open
Abstract
Members of the Fc receptor-like (FCRL1-6) gene family encode transmembrane glycoproteins that are preferentially expressed by B cells and generally repress responses via cytoplasmic tyrosine-based regulation. Given their distribution and function, there is a growing appreciation for their roles in lymphoproliferative disorders and as immunotherapeutic targets. In contrast to FCRL1-5, FCRL6 is distinctly expressed outside the B lineage by cytotoxic T and NK lymphocytes. Its restricted expression by these orchestrators of cell-mediated immunity, along with its inhibitory properties and extracellular interactions with MHCII/HLA-DR, represent a newly appreciated axis with relevance in tolerance and cancer defense. The significance of FCRL6 in this arena has been recently demonstrated by its upregulation in HLA-DR+ tumor samples from melanoma, breast, and lung cancer patients who relapsed following PD-1 blockade. These findings imply a potential mechanistic role for FCRL6 in adaptive evasion to immune checkpoint therapy. Here we review these new developments in the FCRL field and identify new evidence for the prognostic significance of FCRL6 in malignancies that collectively indicate its potential as a biomarker and therapeutic target.
Collapse
Affiliation(s)
- Randall S Davis
- Departments of Medicine, Microbiology, and Biochemistry & Molecular Genetics, The Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
448
|
Xu Y, Rogers CJ. Physical Activity and Breast Cancer Prevention: Possible Role of Immune Mediators. Front Nutr 2020; 7:557997. [PMID: 33134306 PMCID: PMC7578403 DOI: 10.3389/fnut.2020.557997] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 08/21/2020] [Indexed: 12/11/2022] Open
Abstract
There is strong evidence that physical activity (PA) reduces risk, recurrence, and mortality from breast cancer. Emerging data suggest that PA induces changes in inflammatory and immune mediators that may contribute to beneficial effects on breast cancer outcomes. Thus, the goal of this review was to evaluate the evidence linking the protective benefit of PA to modulation of immune responses in breast cancer. A literature search was conducted to identify studies that evaluated the impact of PA on tumor and immune outcomes in breast cancer patients and in mammary tumor models. Nineteen studies investigated the effect of PA interventions on cancer immune outcomes using preclinical breast cancer models. Tumor growth was reduced in 11 studies, unchanged in three studies, and increased in one study. Spontaneous metastasis was reduced in two studies and survival was improved in four studies. Frequently assessed immune outcomes include splenic cell number and function, circulating inflammatory cytokines, and intratumoral immune cells and inflammatory markers. Circulating inflammatory cytokine responses were heterogeneous in preclinical models. Within the tumor microenvironment (TME), several studies documented a change in the infiltration of immune cells with an increase in effector cells and a reduction in immune suppressive cells. Twenty-three studies investigated the effect of PA interventions on immune outcomes in breast cancer patients. Thirteen studies used aerobic PA interventions and 10 studies used a combination of aerobic and resistance exercise interventions. Cycling and treadmill activities were the most commonly used PA modalities. Circulating immune cells and inflammatory cytokines were the most frequently assessed immune outcomes in the clinical studies. Among the 19 studies that evaluated a PA intervention during the post treatment period, 10 reported a reduction in the levels of at least one inflammatory cytokine. No inflammatory cytokines were quantified in the three studies that evaluated a PA intervention during treatment with chemotherapy. Immune outcomes within the tumor were assessed in only one study performing a PA intervention prior to surgery. Results from preclinical and clinical studies suggest that PA exerts heterogeneous effects on inflammatory cytokines, but may alter the gene expression profile and immune infiltrates in the tumor which may result in a reduction in immunosuppressive factors. However, additional studies are needed to better understand the effect of PA on immune outcomes in the TME.
Collapse
Affiliation(s)
- Yitong Xu
- Intercollege Graduate Degree Program in Integrative and Biomedical Physiology, Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, United States
| | - Connie J Rogers
- Department of Nutritional Sciences, The Pennsylvania State University, University Park, PA, United States.,Center for Molecular Immunology and Infectious Disease, Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, United States.,Penn State Cancer Institute, Hershey, PA, United States
| |
Collapse
|
449
|
Erber R, Hartmann A. Understanding PD-L1 Testing in Breast Cancer: A Practical Approach. Breast Care (Basel) 2020; 15:481-490. [PMID: 33223991 DOI: 10.1159/000510812] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 08/09/2020] [Indexed: 12/14/2022] Open
Abstract
Background Immune checkpoint inhibitors (ICI) have changed therapy strategies for cancer patients tremendously. Some approved ICI acquire testing of PD-L1 expression on tumor and/or immune cells. However, since PD-L1 testing is a comprehensive issue with various assays, antibody clones, scoring methods, and cut-offs, we aimed to summarize the recommendations and technical and histopathological issues of diagnostic PD-L1 assessment with an emphasis on invasive breast cancer (IBC). Summary Besides other (pre)analytical considerations, selecting the most adequate PD-L1 immunohistochemical assay/antibody clone is important. In-house assay validation, prediagnostic training, and internal and external quality assurance should be implemented. The current most relevant PD-L1 assays and scores will be explained in this review. Moreover, recommendations for PD-L1 testing in IBC are outlined. Key Messages Atezolizumab plus nab-paclitaxel therapy is approved for adult patients with locally advanced or metastatic triple negative breast cancer (mTNBC), if the tumor-associated immune cells express PD-L1. - This PD-L1 immune cell positivity is defined as an immune cell (IC) score, which refers to the area occupied by PD-L1 positive immune cells (lymphocytes, dendritic cells, macrophages, and granulocytes) as a percentage of the whole tumor area. The cut-off is an IC score ≥1%. In the approval study for atezolizumab in mTNBC, IC score was assessed using the Ventana PD-L1 SP142 assay. Other assays or laboratory developed tests may be used depending on country-specific drug approvals. However, harmonization studies have to show whether other PD-L1 tests are reliable and of clinical value to predict the response of breast cancer patients to ICI.
Collapse
Affiliation(s)
- Ramona Erber
- Institute of Pathology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Comprehensive Cancer Center Erlangen-EMN, Erlangen, Germany
| | - Arndt Hartmann
- Institute of Pathology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Comprehensive Cancer Center Erlangen-EMN, Erlangen, Germany
| |
Collapse
|
450
|
Kwapisz D. Pembrolizumab and atezolizumab in triple-negative breast cancer. Cancer Immunol Immunother 2020; 70:607-617. [PMID: 33015734 DOI: 10.1007/s00262-020-02736-z] [Citation(s) in RCA: 161] [Impact Index Per Article: 32.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 09/25/2020] [Indexed: 12/23/2022]
Abstract
Triple-negative breast cancer (TNBC) is defined by a lack of expression of both estrogen (ER) and progesterone (PgR) receptors as well as human epidermal growth factor receptor 2 (HER2) and is associated with poor prognosis. Moreover, the systemic treatment options are limited. However, the TNBC is more likely than other breast cancer subtypes to benefit from immune checkpoint blockade therapy due to its higher immunogenicity, higher enrichment by tumour-infiltrating lymphocytes (TILs), and higher levels of programmed cell death ligand 1 (PD-L1) expression. Thus far, atezolizumab was approved in combination with nab-paclitaxel for patients with unresectable locally advanced or metastatic TNBC whose tumours express PD-L1. Currently, it seems that PD-L1-positive subgroup will potentially benefit the most from the immune checkpoint inhibitor (ICI) treatment. Moreover, it seems that better results are seen when an ICI is given as first-line treatment than when an ICI is given in later lines of treatment for advanced TNBC/metastatic TNBC. Recently, pembrolizumab has demonstrated promising results in early-stage TNBC what can lead in near future to its approval in (neo)adjuvant setting. This review summarizes the development and highlights recent advances of the atezolizumab and pembrolizumab in early and advanced/metastatic TNBC.
Collapse
Affiliation(s)
- Dorota Kwapisz
- Department of Immunology, Transplantology and Internal Diseases, University Clinical Center of the Medical University in Warsaw, Warsaw, Poland.
| |
Collapse
|