401
|
Abstract
This is a review of the growing scientific interest in the developmental plasticity and therapeutic potential of stromal cells isolated from adipose tissue. Adipose-derived stem/stromal cells (ASCs) are multipotent somatic stem cells that are abundant in fat tissue. It has been shown that ASCs can differentiate into several lineages, including adipose cells, chondrocytes, osteoblasts, neuronal cells, endothelial cells, and cardiomyocytes. At the same time, adipose tissue can be harvested by a minimally invasive procedure, which makes it a promising source of adult stem cells. Therefore, it is believed that ASCs may become an alternative to the currently available adult stem cells (e.g. bone marrow stromal cells) for potential use in regenerative medicine. In this review, we present the basic information about the field of adipose-derived stem cells and their potential use in various applications.
Collapse
|
402
|
Technau A, Froelich K, Hagen R, Kleinsasser N. Adipose tissue-derived stem cells show both immunogenic and immunosuppressive properties after chondrogenic differentiation. Cytotherapy 2011; 13:310-7. [DOI: 10.3109/14653249.2010.504769] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
403
|
PACHÓN-PEÑA G, YU G, TUCKER A, WU X, VENDRELL J, BUNNELL B, GIMBLE J. Stromal stem cells from adipose tissue and bone marrow of age-matched female donors display distinct immunophenotypic profiles. J Cell Physiol 2011; 226:843-51. [PMID: 20857424 PMCID: PMC4340690 DOI: 10.1002/jcp.22408] [Citation(s) in RCA: 379] [Impact Index Per Article: 27.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Adipose tissue is composed of lipid-filled mature adipocytes and a heterogeneous stromal vascular fraction (SVF) population of cells. Similarly, the bone marrow (BM) is composed of multiple cell types including adipocytes, hematopoietic, osteoprogenitor, and stromal cells necessary to support hematopoiesis. Both adipose and BM contain a population of mesenchymal stromal/stem cells with the potential to differentiate into multiple lineages, including adipogenic, chondrogenic, and osteogenic cells, depending on the culture conditions. In this study we have shown that human adipose-derived stem cells (ASCs) and bone marrow mesenchymal stem cells (BMSCs) populations display a common expression profile for many surface antigens, including CD29, CD49c, CD147, CD166, and HLA-abc. Nevertheless, significant differences were noted in the expression of CD34 and its related protein, PODXL, CD36, CD 49f, CD106, and CD146. Furthermore, ASCs displayed more pronounced adipogenic differentiation capability relative to BMSC based on Oil Red staining (7-fold vs. 2.85-fold induction). In contrast, no difference between the stem cell types was detected for osteogenic differentiation based on Alizarin Red staining. Analysis by RT-PCR demonstrated that both the ASC and BMSC differentiated adipocytes and osteoblast displayed a significant upregulation of lineage-specific mRNAs relative to the undifferentiated cell populations; no significant differences in fold mRNA induction was noted between ASCs and BMSCs. In conclusion, these results demonstrate human ASCs and BMSCs display distinct immunophenotypes based on surface positivity and expression intensity as well as differences in adipogenic differentiation. The findings support the use of both human ASCs and BMSCs for clinical regenerative medicine.
Collapse
Affiliation(s)
- G. PACHÓN-PEÑA
- CIBERDEM, University Hospital of Tarragona Joan XXIII, IISPV, Rovira i Virgili University, Tarragona, Spain
| | - G. YU
- Stem Cell Biology Laboratory, Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, Louisiana
| | - A. TUCKER
- Center for Stem Cell Research and Regenerative Medicine, Tulane University School of Medicine, New Orleans, Louisiana
| | - X. WU
- Stem Cell Biology Laboratory, Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, Louisiana
| | - J. VENDRELL
- CIBERDEM, University Hospital of Tarragona Joan XXIII, IISPV, Rovira i Virgili University, Tarragona, Spain
| | - B.A. BUNNELL
- Center for Stem Cell Research and Regenerative Medicine, Tulane University School of Medicine, New Orleans, Louisiana
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, Louisiana
| | - J.M. GIMBLE
- Stem Cell Biology Laboratory, Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, Louisiana
| |
Collapse
|
404
|
Gene Expression Differences between Enriched Normal and Chronic Myelogenous Leukemia Quiescent Stem/Progenitor Cells and Correlations with Biological Abnormalities. JOURNAL OF ONCOLOGY 2011; 2011:798592. [PMID: 21436996 PMCID: PMC3062978 DOI: 10.1155/2011/798592] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2010] [Revised: 11/17/2010] [Accepted: 12/07/2010] [Indexed: 11/17/2022]
Abstract
In comparing gene expression of normal and CML CD34+ quiescent (G0) cell, 292 genes were downregulated and 192 genes upregulated in the CML/G0 Cells. The differentially expressed genes were grouped according to their reported functions, and correlations were sought with biological differences previously observed between the same groups. The most relevant findings include the following. (i) CML G0 cells are in a more advanced stage of development and more poised to proliferate than normal G0 cells. (ii) When CML G0 cells are stimulated to proliferate, they differentiate and mature more rapidly than normal counterpart. (iii) Whereas normal G0 cells form only granulocyte/monocyte colonies when stimulated by cytokines, CML G0 cells form a combination of the above and erythroid clusters and colonies. (iv) Prominin-1 is the gene most downregulated in CML G0 cells, and this appears to be associated with the spontaneous formation of erythroid colonies by CML progenitors without EPO.
Collapse
|
405
|
Kuhbier JW, Weyand B, Sorg H, Radtke C, Vogt PM, Reimers K. [Stem cells from fatty tissue : A new resource for regenerative medicine?]. Chirurg 2011; 81:826-32. [PMID: 20830547 DOI: 10.1007/s00104-010-1962-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
While stem cells derived from the bone marrow are well-known in clinical medicine, fatty tissue as a source of mesenchymal stem cells is still the subject of recent research. However, adipose-derived stem cells (ASC) are not only harvested less invasively, i.e. via minimally invasive liposuction, but also yield higher numbers of multipotent stem cells.Due to cell-cell interactions and also because of the very favorable secretion profile of growth factors and cytokines ASCs displayed an extraordinary regenerative potential in recent preclinical and clinical applications and achieved a significantly better healing in ischemic muscle, heart, and brain insults and in impaired wound healing. ASCs enhanced regeneration in skeletal tissues such as cartilage or bone. They also revealed immunomodulatory effects and improved the clinical status in immunological diseases.In conclusion ASCs are comparable to bone marrow-derived stem cells concerning possible applications in clinical medicine.
Collapse
Affiliation(s)
- J W Kuhbier
- Klinik für Plastische, Hand- und Wiederherstellungschirurgie, Medizinische Hochschule Hannover, Deutschland
| | | | | | | | | | | |
Collapse
|
406
|
Skalnikova H, Motlik J, Gadher SJ, Kovarova H. Mapping of the secretome of primary isolates of mammalian cells, stem cells and derived cell lines. Proteomics 2011; 11:691-708. [PMID: 21241017 DOI: 10.1002/pmic.201000402] [Citation(s) in RCA: 151] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2010] [Revised: 09/14/2010] [Accepted: 09/20/2010] [Indexed: 01/09/2023]
Abstract
Within a mammalian organism, the interaction among cells both at short and long distances is mediated by soluble factors released by cells into the extracellular environment. The secreted proteins may involve extracellular matrix proteins, proteinases, growth factors, protein hormones, immunoregulatory cytokines, chemokines or other bioactive molecules that have a direct impact on target cell phenotype. Stem cells of mesenchymal, adipose, neural and embryonic origin, fibroblast feeder cells as well as primary isolates of astrocytes, endothelial and muscle cells have recently become targets of intensive secretome profiling with the search for proteins regulating cell survival, proliferation, differentiation or inflammatory response. Recent advances and challenges of the stem cell and primary cell secretome analysis together with the most relevant results are discussed in this review.
Collapse
Affiliation(s)
- Helena Skalnikova
- Institute of Animal Physiology and Genetics, Academy of Sciences of the Czech Republic, Libechov, Czech Republic
| | | | | | | |
Collapse
|
407
|
Brown SA, Levi B, Lequex C, Wong VW, Mojallal A, Longaker MT. Basic science review on adipose tissue for clinicians. Plast Reconstr Surg 2011; 126:1936-1946. [PMID: 21124133 DOI: 10.1097/prs.0b013e3181f44790] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The recognition that fat contains stem cells has driven further examination into the potential uses of fat and adipose-derived stem cells in a wide number of clinical situations. New information about the harvesting, isolation, and subsequent differentiation properties of isolated adipose-derived stem cells has led to new research into novel tissue-engineered constructs and the transformation of adipose-derived stem cells to induced pluripotent stem cells. Clinically, use of fat grafts and adipose-derived stem cells worldwide and in the United States has dramatically increased in parallel to questions concerning the safety and efficacy of adipose-derived stem cell-based treatments. Currently, the U.S. Food and Drug Administration has not approved the use of isolated adipose-derived stem cells for medical indications.
Collapse
Affiliation(s)
- Spencer A Brown
- Dallas, Texas; and Stanford, Calif. From the Department of Plastic Surgery, University of Texas Southwestern Medical Center, and the Department of Surgery, Division of Plastic Surgery, Stanford University School of Medicine
| | | | | | | | | | | |
Collapse
|
408
|
Gimble JM, Grayson W, Guilak F, Lopez MJ, Vunjak-Novakovic G. Adipose tissue as a stem cell source for musculoskeletal regeneration. Front Biosci (Schol Ed) 2011; 3:69-81. [PMID: 21196358 DOI: 10.2741/s133] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Adipose tissue is an abundant, easily accessible, and reproducible cell source for musculo-skeletal regenerative medicine applications. Initial derivation steps yield a heterogeneous population of cells of stromal vascular fraction (SVF) cells. Subsequent adherent selection of the SVF results in a relatively homogeneous population of adipose-derived stromal/stem cells (ASCs) capable of adipogenic, chondrogenic, myogenic, and osteogenic differentiation in vitro on scaffolds in bioreactors and in vivo in pre-clinical animal models. Unlike hematopoietic cells, ASCs do not elicit a robust lymphocyte reaction and instead release immunosuppressive factors, such as prostaglandin E2. These immunomodulatory features suggest that allogeneic and autologous ASCs will engraft successfully for tissue regeneration purposes. The differentiation and expansion potential of ASCs can be modified by growth factors, bio-inductive scaffolds, and bioreactors providing environmental control and biophysical stimulation. Gene therapy approaches using lentiviral transduction can be used to direct differentiation of ASCs to particular lineages. We discuss the utility of ASCs for musculo-skeletal tissue repair and some of the technologies that can be implemented to unlock the full regenerative potential of these highly valuable cells.
Collapse
Affiliation(s)
- Jeffrey M Gimble
- Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA, USA.
| | | | | | | | | |
Collapse
|
409
|
Sleep variability, health-related practices, and inflammatory markers in a community dwelling sample of older adults. Psychosom Med 2011; 73:142-50. [PMID: 21097658 PMCID: PMC3106426 DOI: 10.1097/psy.0b013e3182020d08] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
OBJECTIVE To explore relationships between wake- and sleep-related health behaviors and circulating concentrations of inflammatory markers (interleukin [IL]-6 and tumor necrosis factor [TNF]-α) in a cohort of community dwelling older adults. Low-grade chronic inflammation is an important risk factor for age-related morbidity. Health behaviors, including average aggregate measures of sleep, have been linked to increased inflammation in older adults. Variability in sleep timing may also be associated with increased inflammation. METHOD Participants were community dwelling older adults ≥ 60 years (n = 222: 39 bereaved, 55 caregivers, 52 with insomnia, and 76 good sleepers). Mean values and intraindividual variability in sleep, as well as caffeine and alcohol use, exercise, and daytime napping, were assessed by sleep diaries. Blood samples were obtained in the morning. RESULTS Several interactions were noted between sleep behaviors, inflammatory markers, and participant group. Greater variability in wake time and time in bed was associated with higher IL-6 among good sleepers relative to caregivers and older adults with insomnia. Good sleepers who consumed moderate amounts of alcohol had the lowest concentrations of IL-6 compared with the other three groups who consumed alcohol. Insomnia subjects, but not good sleepers, showed increased concentrations of IL-6 associated with caffeine use. Caregivers showed increased concentrations of TNF-α with alcohol use relative to good sleepers. Greater variability in bedtime, later wake times, and longer time in bed was associated with higher TNF-α regardless of group. CONCLUSIONS Moderation and regularity in the practice of certain health behaviors, including sleep practices, were associated with lower plasma levels of inflammatory markers in older adults. Life circumstances and specific sleep disorders may modify these associations.
Collapse
|
410
|
Freisinger E, Cramer C, Xia X, Murthy SN, Slakey DP, Chiu E, Newsome ER, Alt EU, Izadpanah R. Characterization of hematopoietic potential of mesenchymal stem cells. J Cell Physiol 2010; 225:888-97. [DOI: 10.1002/jcp.22299] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
411
|
Ruiz JC, Ludlow JW, Sherwood S, Yu G, Wu X, Gimble JM. Differentiated human adipose-derived stem cells exhibit hepatogenic capability in vitro and in vivo. J Cell Physiol 2010; 225:429-36. [PMID: 20458738 DOI: 10.1002/jcp.22216] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The availability of suitable human livers for transplantation falls short of the number of potential patients. In addition, the availability of primary human hepatocytes for cell-therapy and drug development applications is significantly limited; less than 700 livers per year are available for such studies. However, the majority of these organs cannot be utilized due to pathological infections (e.g., HepB, HepC, or HIV) or excessive levels of steatosis. Thus, the number of cells needed for cell therapy applications far exceeds the number of cells available from donated livers. The ability to implant progenitor cell populations that can form liver tissue in situ, or can be differentiated in vitro would be a major advance in current cell-based therapies. In addition, and importantly for this application, the ability to utilize a non-hepatic progenitor cell to mimic hepatocytes in vitro would enable the scale-up production of cells for bioartifical liver assist devices, cell-therapy and drug discovery applications. We demonstrate the feasibility of inducing adipose-derived stromal (ASC) cells to express several features of human hepatocytes such as glycogen storage and expression of liver specific genes. Importantly, we also show that undifferentiated ASCs and ASC-derived hepatic cells engraft robustly into the liver in a mouse model of toxic injury. These data indicate a significant potential for the use of undifferentiated ASCs and ASC-derived hepatic cells as novel and valuable products for cell therapy.
Collapse
Affiliation(s)
- Joseph C Ruiz
- Vesta Therapeutics, Inc, Durham, North Carolina, USA.
| | | | | | | | | | | |
Collapse
|
412
|
Lindroos B, Aho KL, Kuokkanen H, Räty S, Huhtala H, Lemponen R, Yli-Harja O, Suuronen R, Miettinen S. Differential gene expression in adipose stem cells cultured in allogeneic human serum versus fetal bovine serum. Tissue Eng Part A 2010; 16:2281-94. [PMID: 20184435 DOI: 10.1089/ten.tea.2009.0621] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
In preclinical studies, human adipose stem cells (ASCs) have been shown to have therapeutic applicability, but standard expansion methods for clinical applications remain yet to be established. ASCs are typically expanded in the medium containing fetal bovine serum (FBS). However, sera and other animal-derived culture reagents stage safety issues in clinical therapy, including possible infections and severe immune reactions. By expanding ASCs in the medium containing human serum (HS), the problem can be eliminated. To define how allogeneic HS (alloHS) performs in ASC expansion compared to FBS, a comparative in vitro study in both serum supplements was performed. The choice of serum had a significant effect on ASCs. First, to reach cell proliferation levels comparable with 10% FBS, at least 15% alloHS was required. Second, while genes of the cell cycle pathway were overexpressed in alloHS, genes of the bone morphogenetic protein receptor-mediated signaling on the transforming growth factor beta signaling pathway regulating, for example, osteoblast differentiation, were overexpressed in FBS. The result was further supported by differentiation analysis, where early osteogenic differentiation was significantly enhanced in FBS. The data presented here underscore the importance of thorough investigation of ASCs for utilization in cell therapies. This study is a step forward in the understanding of these potential cells.
Collapse
Affiliation(s)
- Bettina Lindroos
- Regea-Institute for Regenerative Medicine, University of Tampere and Tampere University Hospital, Tampere, Finland.
| | | | | | | | | | | | | | | | | |
Collapse
|
413
|
Shabbir A, Zisa D, Lin H, Mastri M, Roloff G, Suzuki G, Lee T. Activation of host tissue trophic factors through JAK-STAT3 signaling: a mechanism of mesenchymal stem cell-mediated cardiac repair. Am J Physiol Heart Circ Physiol 2010; 299:H1428-38. [PMID: 20852053 DOI: 10.1152/ajpheart.00488.2010] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
We recently demonstrated a cardiac therapeutic regimen based on injection of bone marrow mesenchymal stem cells (MSCs) into the skeletal muscle. Although the injected MSCs were trapped in the local musculature, the extracardiac cell delivery approach repaired the failing hamster heart. This finding uncovers a tissue repair mechanism mediated by trophic factors derived from the injected MSCs and local musculature that can be explored for minimally invasive stem cell therapy. However, the trophic factors involved in cardiac repair and their actions remain largely undefined. We demonstrate here a role of MSC-derived IL-6-type cytokines in cardiac repair through engagement of the skeletal muscle JAK-STAT3 axis. The MSC IL-6-type cytokines activated JAK-STAT3 signaling in cultured C2C12 skeletal myocytes and caused increased expression of the STAT3 target genes hepatocyte growth factor (HGF) and VEGF, which was inhibited by glycoprotein 130 (gp130) blockade. These in vitro findings were corroborated by in vivo studies, showing that the MSC-injected hamstrings exhibited activated JAK-STAT3 signaling and increased growth factor/cytokine production. Elevated host tissue growth factor levels were also detected in quadriceps, liver, and brain, suggesting a possible global trophic effect. Paracrine actions of these host tissue-derived factors activated the endogenous cardiac repair mechanisms in the diseased heart mediated by Akt, ERK, and JAK-STAT3. Administration of the cell-permeable JAK-STAT inhibitor WP1066 abrogated MSC-mediated host tissue growth factor expression and functional improvement. The study illustrates that the host tissue trophic factor network can be activated by MSC-mediated JAK-STAT3 signaling for tissue repair.
Collapse
Affiliation(s)
- Arsalan Shabbir
- Department of Biochemistry and Center for Research in Cardiovascular Medicine, University at Buffalo, New York 14214, USA
| | | | | | | | | | | | | |
Collapse
|
414
|
Hovey RC, Aimo L. Diverse and active roles for adipocytes during mammary gland growth and function. J Mammary Gland Biol Neoplasia 2010; 15:279-90. [PMID: 20717712 PMCID: PMC2941079 DOI: 10.1007/s10911-010-9187-8] [Citation(s) in RCA: 122] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2010] [Accepted: 08/06/2010] [Indexed: 12/18/2022] Open
Abstract
The mammary gland is unique in its requirement to develop in close association with a depot of adipose tissue that is commonly referred to as the mammary fat pad. As discussed throughout this issue, the mammary fat pad represents a complex stromal microenvironment that includes a variety of cell types. In this article we focus on adipocytes as local regulators of epithelial cell growth and their function during lactation. Several important considerations arise from such a discussion. There is a clear and close interrelationship between different stromal tissue types within the mammary fat pad and its adipocytes. Furthermore, these relationships are both stage- and species-dependent, although many questions remain unanswered regarding their roles in these different states. Several lines of evidence also suggest that adipocytes within the mammary fat pad may function differently from those in other fat depots. Finally, past and future technologies present a variety of opportunities to model these complexities in order to more precisely delineate the many potential functions of adipocytes within the mammary glands. A thorough understanding of the role for this cell type in the mammary glands could present numerous opportunities to modify both breast cancer risk and lactation performance.
Collapse
Affiliation(s)
- Russell C Hovey
- Department of Animal Science, University of California-Davis, One Shields Avenue, Davis, CA 95616, USA.
| | | |
Collapse
|
415
|
Nie C, Yang D, Xu J, Si Z, Jin X, Zhang J. Locally administered adipose-derived stem cells accelerate wound healing through differentiation and vasculogenesis. Cell Transplant 2010; 20:205-16. [PMID: 20719083 DOI: 10.3727/096368910x520065] [Citation(s) in RCA: 262] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Despite advances in wound closure techniques and devices, there is still a critical need for new methods of enhancing the healing process to achieve optimal outcomes. Recently, stem cell therapy has emerged as a new approach to accelerate wound healing. Adipose-derived stem cells (ASCs) hold great promise for wound healing, because they are multipotential stem cells capable of differentiation into various cell lineages and secretion of angiogenic growth factors. The aim of this study was to evaluate the benefit of ASCs on wound healing and then investigate the probable mechanisms. ASCs characterized by flow cytometry were successfully isolated and cultured. An excisional wound healing model in rat was used to determine the effects of locally administered ASCs. The gross and histological results showed that ASCs significantly accelerated wound closure in normal and diabetic rat, including increased epithelialization and granulation tissue deposition. Furthermore, we applied GFP-labeled ASCs on wounds to determine whether ASCs could differentiate along multiple lineages of tissue regeneration in the specific microenvironment. Immunofluorescent analysis indicated that GFP-expressing ASCs were costained with pan-cytokeratin and CD31, respectively, indicating spontaneous site-specific differentiation into epithelial and endothelial lineages. These data suggest that ASCs not only contribute to cutaneous regeneration, but also participate in new vessels formation. Moreover, ASCs were found to secret angiogenic cytokines in vitro and in vivo, including VEGF, HGF, and FGF2, which increase neovascularization and enhance wound healing in injured tissues. In conclusion, our results demonstrate that ASC therapy could accelerate wound healing through differentiation and vasculogenesis and might represent a novel therapeutic approach in cutaneous wounds.
Collapse
Affiliation(s)
- Chunlei Nie
- Department of Head and Neck Surgery, The Third Affiliated Hospital of Harbin Medical University, Harbin, China
| | | | | | | | | | | |
Collapse
|
416
|
Amos PJ, Kapur SK, Stapor PC, Shang H, Bekiranov S, Khurgel M, Rodeheaver GT, Peirce SM, Katz AJ. Human adipose-derived stromal cells accelerate diabetic wound healing: impact of cell formulation and delivery. Tissue Eng Part A 2010; 16:1595-606. [PMID: 20038211 DOI: 10.1089/ten.tea.2009.0616] [Citation(s) in RCA: 154] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Human adipose-derived stromal cells (ASCs) have been shown to possess therapeutic potential in a variety of settings, including cutaneous wound healing; however, it is unknown whether the regenerative properties of this cell type can be applied to diabetic ulcers. ASCs collected from elective surgical procedures were used to treat full-thickness dermal wounds in leptin receptor-deficient (db/db) mice. Cells were delivered either as multicellular aggregates or as cell suspensions to determine the impact of cell formulation and delivery methods on biological activity and in vivo therapeutic effect. After treatment with ASCs that were formulated as multicellular aggregates, diabetic wounds experienced a significant increase in the rate of wound closure compared to wounds treated with an equal number of ASCs delivered in suspension. Analysis of culture supernatant and gene arrays indicated that ASCs formulated as three-dimensional aggregates produce significantly more extracellular matrix proteins (e.g., tenascin C, collagen VI alpha3, and fibronectin) and secreted soluble factors (e.g., hepatocyte growth factor, matrix metalloproteinase-2, and matrix metalloproteinase-14) compared to monolayer culture. From these results, it is clear that cell culture, formulation, and delivery method have a large impact on the in vitro and in vivo biology of ASCs.
Collapse
Affiliation(s)
- Peter J Amos
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
417
|
Hahn YK, Vo P, Fitting S, Block ML, Hauser KF, Knapp PE. beta-Chemokine production by neural and glial progenitor cells is enhanced by HIV-1 Tat: effects on microglial migration. J Neurochem 2010; 114:97-109. [PMID: 20403075 PMCID: PMC2992981 DOI: 10.1111/j.1471-4159.2010.06744.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Human immunodeficiency virus (HIV)-1 neuropathology results from collective effects of viral proteins and inflammatory mediators on several cell types. Significant damage is mediated indirectly through inflammatory conditions promulgated by glial cells, including microglia that are productively infected by HIV-1, and astroglia. Neural and glial progenitors exist in both developing and adult brains. To determine whether progenitors are targets of HIV-1, a multi-plex assay was performed to assess chemokine/cytokine expression after treatment with viral proteins transactivator of transcription (Tat) or glycoprotein 120 (gp120). In the initial screen, ten analytes were basally released by murine striatal progenitors. The beta-chemokines CCL5/regulated upon activation, normal T cell expressed and secreted, CCL3/macrophage inflammatory protein-1alpha, and CCL4/macrophage inflammatory protein-1beta were increased by 12-h exposure to HIV-1 Tat. Secreted factors from Tat-treated progenitors were chemoattractive towards microglia, an effect blocked by 2D7 anti-CCR5 antibody pre-treatment. Tat and opiates have interactive effects on astroglial chemokine secretion, but this interaction did not occur in progenitors. gp120 did not affect chemokine/cytokine release, although both CCR5 and CXCR4, which serve as gp120 co-receptors, were detected in progenitors. We postulate that chemokine production by progenitors may be a normal, adaptive process that encourages immune inspection of newly generated cells. Pathogens such as HIV might usurp this function to create a maladaptive state, especially during development or regeneration, when progenitors are numerous.
Collapse
Affiliation(s)
- Yun Kyung Hahn
- Department of Anatomy and Neurobiology, Virginia Commonwealth University, Richmond, VA 23298 USA
| | - Phu Vo
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA 23298 USA
| | - Sylvia Fitting
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA 23298 USA
| | - Michelle L. Block
- Department of Anatomy and Neurobiology, Virginia Commonwealth University, Richmond, VA 23298 USA
| | - Kurt F. Hauser
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA 23298 USA
- Institute for Drug and Alcohol Studies, Virginia Commonwealth University, Richmond, VA 23298 USA
| | - Pamela E. Knapp
- Department of Anatomy and Neurobiology, Virginia Commonwealth University, Richmond, VA 23298 USA
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA 23298 USA
- Institute for Drug and Alcohol Studies, Virginia Commonwealth University, Richmond, VA 23298 USA
| |
Collapse
|
418
|
Penolazzi L, Tavanti E, Vecchiatini R, Lambertini E, Vesce F, Gambari R, Mazzitelli S, Mancuso F, Luca G, Nastruzzi C, Piva R. Encapsulation of mesenchymal stem cells from Wharton's jelly in alginate microbeads. Tissue Eng Part C Methods 2010; 16:141-55. [PMID: 19402785 DOI: 10.1089/ten.tec.2008.0582] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The description of a microencapsulation procedure for Wharton's jelly mesenchymal stem cells (WJMSCs) is reported. The applied method is based on the generation of monodisperse droplets by a vibrational nozzle. An ionic alginate encapsulation procedure was utilized for the microbeads hardening. Different experimental parameters were analyzed, including frequency and amplitude of vibration, polymer pumping rate, and distance between the nozzle and the gelling bath. The produced barium-alginate microbeads were characterized by excellent morphological characteristics as well as a very narrow size distribution. The microencapsulation procedure did not alter the morphology and viability of the encapsulated WJMSCs. In addition, the current paper reports the functional properties in terms of secretive profiles of both free and encapsulated WJMSCs. The analyzed factors were members of the family of interleukins, chemokines, growth factors, and soluble forms of adhesion molecules. These experiments showed that despite encapsulation, most of the proteins analyzed were secreted both by the free and encapsulated cells, even if in a different extent. In conclusion, the described encapsulation procedure represents a promising strategy to utilize WJMSCs for possible in vivo applications in tissue engineering and biomedicine.
Collapse
Affiliation(s)
- Letizia Penolazzi
- Department of Biochemistry and Molecular Biology, University of Ferrara , Ferrara, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
419
|
A tissue-engineered trachea derived from a framed collagen scaffold, gingival fibroblasts and adipose-derived stem cells. Biomaterials 2010; 31:4855-63. [DOI: 10.1016/j.biomaterials.2010.02.027] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2010] [Accepted: 02/10/2010] [Indexed: 01/15/2023]
|
420
|
Kucerova L, Matuskova M, Hlubinova K, Altanerova V, Altaner C. Tumor cell behaviour modulation by mesenchymal stromal cells. Mol Cancer 2010; 9:129. [PMID: 20509882 PMCID: PMC2890609 DOI: 10.1186/1476-4598-9-129] [Citation(s) in RCA: 152] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2009] [Accepted: 05/28/2010] [Indexed: 12/15/2022] Open
Abstract
Background Human mesenchymal stromal cells (MSC) hold a promise for future cell-based therapies due to their immunomodulatory properties and/or secretory activity. Nevertheless non-neoplastic tumor compartment could also originate from MSC. We aimed to show whether multipotent MSC derived from human adipose tissue (AT-MSC) could create tumor cell-protective milieu and affect tumor cell behaviour in vitro and in vivo. Results Here we have demonstrated tumor-promoting effect of AT-MSC on human melanoma A375 cells. AT-MSC coinjection mediated abrogation of tumor latency and supported subcutaneous xenotransplant growth from very low melanoma cell doses. Tumor incidence was also significantly increased by AT-MSC-derived soluble factors. AT-MSC supported proliferation, suppressed apoptosis and modulated melanoma cell responses to cytotoxic drugs in vitro. Expression and multiplex cytokine assays confirmed synergistic increase in VEGF that contributed to the AT-MSC-mediated support of A375 xenotransplant growth. Production of G-CSF and other factors implicated in formation of supportive proinflammatory tumor cell microenvironment was also confirmed. SDF-1α/CXCR4 signalling contributed to tumor-promoting effect of systemic AT-MSC administration on A375 xenotransplants. However, no support was observed for human glioblastoma cells 8MGBA co-injected along with AT-MSC that did not sustain tumor xenotransplant growth in vivo. Tumor-inhibiting response could be attributed to the synergistic action of multiple cytokines produced by AT-MSC on glioblastoma cells. Conclusions Herein we provide experimental evidence for MSC-mediated protective effect on melanoma A375 cells under nutrient-limiting and hostile environmental conditions resulting from mutual crosstalk between neoplastic and non-malignant cells. This tumor-favouring effect was not observed for the glioblastoma cells 8MGBA. Collectively, our data further strengthen the need for unravelling mechanisms underlying MSC-mediated modulation of tumor behaviour for possible future MSC clinical use in the context of malignant disease.
Collapse
Affiliation(s)
- Lucia Kucerova
- Laboratory of Molecular Oncology, Cancer Research Institute, Slovak Academy of Sciences, Bratislava, Slovakia.
| | | | | | | | | |
Collapse
|
421
|
Mizuno H, Hyakusoku H. Fat grafting to the breast and adipose-derived stem cells: recent scientific consensus and controversy. Aesthet Surg J 2010; 30:381-7. [PMID: 20601560 DOI: 10.1177/1090820x10373063] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Recent technical advances in fat grafting and the development of surgical devices such as liposuction cannulae have made fat grafting a relatively safe and effective procedure. However, new guidelines issued by the American Society of Plastic Surgeons in 2009 announced that fat grafting to the breast is not a strongly recommended procedure, as there are limited scientific data on the safety and efficacy of this particular type of fat transfer. Recent progress by several groups has revealed that multipotent adult stem cells are present in human adipose tissue. This cell population, termed adipose-derived stem cells (ADSC), represents a promising approach to future cell-based therapies, such as tissue engineering and regeneration. In fact, several reports have shown that ADSC play a pivotal role in graft survival through both adipogenesis and angiogenesis. Although tissue augmentation by fat grafting does have several advantages in that it is a noninvasive procedure and results in minimal scarring, it is essential that such a procedure be supported by evidence-based medicine and that further basic scientific and clinical research is conducted to ensure that fat grafting is a safe and effective procedure.
Collapse
Affiliation(s)
- Hiroshi Mizuno
- Department of Plastic and Reconstructive Surgery, Nippon Medical School, 1-1-5 Sendagi Bunkyo-ku, Tokyo, Japan
| | | |
Collapse
|
422
|
Abstract
Stem cells have emerged as a key element of regenerative medicine therapies due to their inherent ability to differentiate into a variety of cell phenotypes, thereby providing numerous potential cell therapies to treat an array of degenerative diseases and traumatic injuries. A recent paradigm shift has emerged suggesting that the beneficial effects of stem cells may not be restricted to cell restoration alone, but also due to their transient paracrine actions. Stem cells can secrete potent combinations of trophic factors that modulate the molecular composition of the environment to evoke responses from resident cells. Based on this new insight, current research directions include efforts to elucidate, augment and harness stem cell paracrine mechanisms for tissue regeneration. This article discusses the existing studies on stem/progenitor cell trophic factor production, implications for tissue regeneration and cancer therapies, and development of novel strategies to use stem cell paracrine delivery for regenerative medicine.
Collapse
Affiliation(s)
- Priya R Baraniak
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | | |
Collapse
|
423
|
Baer PC, Griesche N, Luttmann W, Schubert R, Luttmann A, Geiger H. Human adipose-derived mesenchymal stem cells in vitro: evaluation of an optimal expansion medium preserving stemness. Cytotherapy 2010; 12:96-106. [PMID: 19929458 DOI: 10.3109/14653240903377045] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
BACKGROUND AIMS The potential of cultured adipose-derived stem cells (ASC) in regenerative medicine and new cell therapeutic concepts has been shown recently by many investigations. However, while the method of isolation of ASC from liposuction aspirates depending on plastic adhesion is well established, a standard expansion medium optimally maintaining the undifferentiated state has not been described. METHODS We cultured ASC in five commonly used culture media (two laboratory-made media and three commercially available media) and compared them with a standard medium. We analyzed the effects on cell morphology, proliferation, hepatocyte growth factor (HGF) expression, stem cell marker profile and differentiation potential. Proliferation was measured with a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay and a fluorescent assay. Release of HGF was assessed by an immunoassay. Expression of characteristic stem cell-related transcription factors and markers was evaluated by quantitative polymerase chain reaction (qPCR) (Nanog, Sox-2, Rex-1, nestin and Oct-4) and flow cytometry (CD44, CD73, CD90, CD105 and CD166), and differentiation was shown by adipogenic medium. RESULTS The morphology and expansion of ASC were significantly affected by the media used, whereas none of the media influenced the ASC potential to differentiate into adipocytes. Furthermore, two of the media induced an increase in expression of transcription factors, an increased secretion of HGF and a decrease in CD105 expression. CONCLUSIONS Culture of ASC in one of these two media before using the cells in cell therapeutic approaches may have a benefit on their regenerative potential.
Collapse
Affiliation(s)
- Patrick C Baer
- Division of Nephrology, Department of Internal Medicine III, Goethe University, Frankfurt, Germany.
| | | | | | | | | | | |
Collapse
|
424
|
Shoji T, Ii M, Mifune Y, Matsumoto T, Kawamoto A, Kwon SM, Kuroda T, Kuroda R, Kurosaka M, Asahara T. Local transplantation of human multipotent adipose-derived stem cells accelerates fracture healing via enhanced osteogenesis and angiogenesis. J Transl Med 2010; 90:637-49. [PMID: 20157290 DOI: 10.1038/labinvest.2010.39] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Adipose tissue is one of the promising sources of multipotent stem cells in human. Human multipotent adipose-derived stem (hMADS) cells have recently been isolated and showed differentiation potential into multiple mesenchymal lineages in vitro and in vivo. On the basis of these evidences, we examined the therapeutic efficacy of hMADS cells for fracture healing in an immunodeficient rat femur non-union fracture model. Local transplantation of hMADS cells radiographically and histologically promoted fracture healing with significant improvement of biomechanical function at the fracture sites compared with local transplantation of human fibroblasts (hFB) or PBS administration. Histological capillary density and physiological blood flow by laser Doppler perfusion imaging were significantly greater in hMADS group than hFB and PBS groups. Expressions of intrinsic (rat) bone morphogenetic protein-2 (BMP-2), vascular endothelial growth factor (VEGF) and angiopoietin-1 in peri-fracture tissue were upregulated in hMADS group than other groups. In addition, presence of BMP-2 or VEGF activated the proliferation and migration of hMADS cells in vitro. These results indicate that hMADS cells stimulate the interaction between the transplanted cells and the resident cells stronger than other cells, and they promote fracture healing more effectively. Furthermore, immunohistochemistry for human-specific antibodies revealed direct differentiation of hMADS cells into osteoblasts or endothelial cells in newly formed callus or vasculature, respectively. RT-PCR for human-specific primers for osteogenic/endothelial markers also disclosed osteogenic and vasculogenic plasticity of the transplanted hMADS cells at the early stage of fracture healing. The present results suggest that transplantation of hMADS cells may become a useful strategy for cell-based bone regeneration in the future clinical setting.
Collapse
Affiliation(s)
- Taro Shoji
- Group of Vascular Regeneration Research, Institute of Biomedical Research and Innovation, Kobe, Hyogo, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
425
|
Lindner U, Kramer J, Rohwedel J, Schlenke P. Mesenchymal Stem or Stromal Cells: Toward a Better Understanding of Their Biology? ACTA ACUST UNITED AC 2010; 37:75-83. [PMID: 20737049 DOI: 10.1159/000290897] [Citation(s) in RCA: 113] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2010] [Accepted: 02/24/2010] [Indexed: 01/12/2023]
Abstract
The adult bone marrow has been generally considered to be composed of hematopoietic tissue and the associated supporting stroma. Within the latter compartment, a subset of cells with multipotent differentiation capacity exists, usually referred to as mesenchymal stem cells. Mesenchymal stem cells can easily be expanded ex vivo and induced to differentiate into several cell types, including osteoblasts, adipocytes and chondrocytes. Up to now, mesenchymal stem cells have gained wide popularity. Despite the rapid growth in this field, irritations remain with respect to the defining characteristics of these cells, including their differentiation potency, self-renewal and in vivo properties. As a consequence, there is a growing tendency to challenge the term mesenchymal stem cell, especially with respect to the stem cell characteristics. Here, we revisit the experimental origins of mesenchymal stem cells, their classical differentiation capacity into mesodermal lineages and their immunophenotype in order to assess their stemness and function. Based on these essentials, it has to be revisited if the designation as a stem cell remains an appropriate term.
Collapse
Affiliation(s)
- Ulrich Lindner
- Medical Department I, Division of Nephrology and Transplantation Unit, University of Lübeck, Germany
| | | | | | | |
Collapse
|
426
|
Epidermal growth factor (EGF) treatment on multipotential stromal cells (MSCs). Possible enhancement of therapeutic potential of MSC. J Biomed Biotechnol 2010; 2010:795385. [PMID: 20182548 PMCID: PMC2825653 DOI: 10.1155/2010/795385] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2009] [Revised: 10/25/2009] [Accepted: 11/21/2009] [Indexed: 12/25/2022] Open
Abstract
Adult bone marrow multipotential stromal cells (MSCs) hold great promise in regenerative medicine and tissue engineering. However, due to their low numbers upon harvesting, MSCs need to be expanded in vitro without biasing future differentiation for optimal utility. In this concept paper, we focus on the potential use of epidermal growth factor (EGF), prototypal growth factor for enhancing the harvesting and/or differentiation of MSCs. Soluble EGF was shown to augment MSC proliferation while preserving early progenitors within MSC population, and thus did not induce differentiation. However, tethered form of EGF was shown to promote osteogenic differentiation. Soluble EGF was also shown to increase paracrine secretions including VEGF and HGF from MSC. Thus, soluble EGF can be used not only to expand MSC in vitro, but also to enhance paracrine secretion through drug-releasing MSC-encapsulated scaffolds in vivo. Tethered EGF can also be utilized to direct MSC towards osteogenic lineage both in vitro and in vivo.
Collapse
|
427
|
Kumai Y, Kobler JB, Park H, Galindo M, Herrera VLM, Zeitels SM. Modulation of vocal fold scar fibroblasts by adipose-derived stem/stromal cells. Laryngoscope 2010; 120:330-7. [PMID: 20013848 DOI: 10.1002/lary.20753] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
OBJECTIVES/HYPOTHESIS To explore whether adipose-derived stem/stromal cells (ASCs) have therapeutic potential for treating scarred superficial lamina propria through the effects of secreted hepatocyte growth factor (HGF) on scar fibroblasts. STUDY DESIGN In vitro study using coculture system. METHODS Scar fibroblasts (SFs) were isolated from ferret vocal folds electrocauterized 2 weeks previously. ASCs were isolated from ferret lipoaspirated subcutaneous abdominal fat. For coculture experiments, the two cell types were combined in Transwell plates for 6 days, followed by 1 or 3 days of monoculture after removing the upper chamber. Assays were then performed on cells and media from the bottom chamber. We measured: 1) the production of hyaluronic acid (HA), collagen and HGF via enzyme-linked immunosorbent assays, 2) the expression of alpha-smooth muscle actin (alpha-SMA), 3) cell proliferation, and 4) apoptosis of SFs (2, 3, and 4 via flow cytometry). Other experiments examined the effects of HGF on SFs and the effects of HGF neutralization in the coculture system. RESULTS Coculture led to significant decreases in SF collagen production (P < .05), cell proliferation (P < .05), and alpha-SMA expression (P < .05), whereas HA production increased (P < .05). Coculture also increased HGF secretion from ASCs (P < .05). Neutralization of HGF abolished the inhibitory effects of ASCs on SF collagen synthesis (P < .05). CONCLUSIONS ASCs influence SFs to adopt a less fibrotic profile. It appears that HGF is at least one of the soluble factors responsible for this effect. Implanted ASCs could potentially ameliorate vocal fold scar by acting as long-term, intrinsic sources of HGF.
Collapse
Affiliation(s)
- Yoshihiko Kumai
- Department of Surgery, Harvard Medical School, Center for Laryngeal Surgery and Voice Rehabilitation, Massachusetts General Hospital, Boston, Massachusetts 02114, USA
| | | | | | | | | | | |
Collapse
|
428
|
Hebert TL, Wu X, Yu G, Goh BC, Halvorsen YDC, Wang Z, Moro C, Gimble JM. Culture effects of epidermal growth factor (EGF) and basic fibroblast growth factor (bFGF) on cryopreserved human adipose-derived stromal/stem cell proliferation and adipogenesis. J Tissue Eng Regen Med 2010; 3:553-61. [PMID: 19670348 DOI: 10.1002/term.198] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Previous studies have demonstrated that EGF and bFGF maintain the stem cell properties of proliferating human adipose-derived stromal/stem cells (hASCs) in vitro. While the expansion and cryogenic preservation of isolated hASCs are routine, these manipulations can impact their proliferative and differentiation potential. This study examined cryogenically preserved hASCs (n = 4 donors), with respect to these functions, after culture with basic fibroblast growth factor (bFGF) and epidermal growth factor (EGF) at varying concentrations (0-10 ng/ml). Relative to the control, cells supplemented with EGF and bFGF significantly increased proliferation by up to three-fold over 7-8 days. Furthermore, cryopreserved hASCs expanded in the presence of EGF and bFGF displayed increased oil red O staining following adipogenic induction. This was accompanied by significantly increased levels of several adipogenesis-related mRNAs: aP2, C/EBPalpha, lipoprotein lipase (LPL), PPARgamma and PPARgamma co-activator-1 (PGC1). Adipocytes derived from EGF- and bFGF-cultured hASCs exhibited more robust functionality based on insulin-stimulated glucose uptake and atrial natriuretic peptide (ANP)-stimulated lipolysis. These findings indicate that bFGF and EGF can be used as culture supplements to optimize the proliferative capacity of cryopreserved human ASCs and their adipogenic differentiation potential.
Collapse
Affiliation(s)
- Teddi L Hebert
- Stem Cell Biology Laboratory, Pennington Biomedical Research Center, Baton Rouge, LA, USA
| | | | | | | | | | | | | | | |
Collapse
|
429
|
da Silva CL, Gonçalves R, dos Santos F, Andrade PZ, Almeida-Porada G, Cabral JMS. Dynamic cell-cell interactions between cord blood haematopoietic progenitors and the cellular niche are essential for the expansion of CD34+, CD34+CD38−and early lymphoid CD7+cells. J Tissue Eng Regen Med 2010; 4:149-58. [DOI: 10.1002/term.226] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
430
|
|
431
|
Wang X, Zhang X, Sun L, Subramanian B, Maffini MV, Soto A, Sonnenschein C, Kaplan DL. Preadipocytes stimulate ductal morphogenesis and functional differentiation of human mammary epithelial cells on 3D silk scaffolds. Tissue Eng Part A 2009; 15:3087-98. [PMID: 19338449 DOI: 10.1089/ten.tea.2008.0670] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Epithelial-mesenchymal interactions play an important role in regulating normal tissue development as well as tumor development for the mammary gland, but much is yet to uncover to reach a full understanding of their complexity. To address this issue, the establishment of relevant, surrogate, three-dimensional (3D) human tissue culture models is essential. In the present study, a novel 3D coculture system was developed to study the interactions between human mammary epithelial cells (MCF10A) and adipocytes, a prominent stromal cell type in native breast tissue. The MCF10A cells were cultured within a mixture of Matrigel and collagen in 3D porous silk scaffolds with or without predifferentiated human adipose-derived stem cells (hASCs). The presence of hASCs inhibited MCF10A cell proliferation, induced both alveolar and ductal morphogenesis, and enhanced their functional differentiation as evidenced by histology and functional analysis. The alveolar structures formed by cocultures exhibited proper, immature polarity when compared with native breast tissue. In contrast, only alveolar structures with reverted polarity were observed in the MCF10A monocultures. The effect of ductal morphogenesis in cocultures may correlate to hepatocyte growth factor secreted by the predifferentiated hASCs, based on results from a cytokine blocking assay. Taken together, this in vitro coculture model on silk scaffolds effectively reconstitutes a physiologically relevant 3D microenvironment for epithelial cells and stromal cells and provides a useful system to study tissue organization and epithelial morphogenesis in normal or diseased breast development.
Collapse
Affiliation(s)
- Xiuli Wang
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts 02155, USA
| | | | | | | | | | | | | | | |
Collapse
|
432
|
Perrini S, Cignarelli A, Ficarella R, Laviola L, Giorgino F. Human adipose tissue precursor cells: a new factor linking regulation of fat mass to obesity and type 2 diabetes? Arch Physiol Biochem 2009; 115:218-26. [PMID: 19780715 DOI: 10.1080/13813450903260864] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The current epidemic of obesity has caused a surge of interest in the study of the mechanisms regulating adipose tissue formation. It has been observed that adipose tissue contains a pool of adult stem cells with multipotent properties, which provide for the physiological cell turnover, and can be isolated and potentially utilized for tissue engineering and regenerative medical applications. These "stromal" cells exhibit pre-adipocyte characteristics, can be isolated from adipose tissue of adult subjects, propagated in vitro, and induced to differentiate into adipocytes. Different populations of multi-potent precursor cells can be isolated from human fat fragments. Thus, adipose precursors cells are a heterogeneous cells population, consisting of fibroblast-like multi-potential stem cells generally termed adipose-derived stem cells (ASCs). In this review, we discuss some aspects of ASCs basic biology, the methodology involved in ASCs isolation and culture, and some implications of ASCs availability for the understanding of metabolic diseases in humans.
Collapse
Affiliation(s)
- Sebastio Perrini
- Department of Emergency and Organ Transplantation, Section of Internal Medicine, Endocrinology, Andrology and Metabolic Diseases, University of Bari School of Medicine, Bari, Italy
| | | | | | | | | |
Collapse
|
433
|
Gasparrini M, Rivas D, Elbaz A, Duque G. Differential expression of cytokines in subcutaneous and marrow fat of aging C57BL/6J mice. Exp Gerontol 2009; 44:613-8. [DOI: 10.1016/j.exger.2009.05.009] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2009] [Revised: 03/27/2009] [Accepted: 05/27/2009] [Indexed: 10/20/2022]
|
434
|
Gómez-Aristizábal A, Keating A, Davies JE. Mesenchymal stromal cells as supportive cells for hepatocytes. Mol Ther 2009; 17:1504-8. [PMID: 19584815 PMCID: PMC2835270 DOI: 10.1038/mt.2009.158] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2009] [Accepted: 06/16/2009] [Indexed: 02/07/2023] Open
Abstract
Hepatocytes and hematopoietic stem cells (HSCs) appear to share many of the same requirements for their survival, functionality, and proliferation. This may be due to a shared location during fetal development. Moreover, hepatocytes and HSCs are unable to function, or even survive, without stromal cell support. Bone marrow-derived mesenchymal stromal cells (MSCs) support the proliferation and functionality, not only of HSCs, but also of hepatocytes. Although knowledge of the mechanisms underlying HSCs' support is far more advanced than for hepatocytes, data suggest that many agents important for HSCs also maintain the normal hepatocyte phenotype in vitro. Thus, it is possible that new techniques for the maintenance and expansion of HSCs may also be useful for hepatocytes. Bone marrow-derived MSCs are easily cultured and expanded in vitro, and some data suggest that they are immunoregulatory as well as relatively nonimmunogenic. These observations suggest that allogeneic MSCs may be useful not only in supporting hepatocyte growth and proliferation but also in modulating immune responses such as stellate cell activation.
Collapse
|
435
|
Iwashima S, Ozaki T, Maruyama S, Saka Y, Kobori M, Omae K, Yamaguchi H, Niimi T, Toriyama K, Kamei Y, Torii S, Murohara T, Yuzawa Y, Kitagawa Y, Matsuo S. Novel culture system of mesenchymal stromal cells from human subcutaneous adipose tissue. Stem Cells Dev 2009; 18:533-43. [PMID: 19055360 DOI: 10.1089/scd.2008.0358] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Accumulating evidence suggests that the delivery of human adipose tissue-derived stromal cells (hASCs) has great potential as regenerative therapy. This was performed to develop a method for expanding hASCs by reducing the amount of serum required. We demonstrate that hASCs were able to expand efficiently in media containing 2% serum and fibroblast growth factor-2. These cells, or low serum cultured hASCs (hLASCs), expressed cell surface markers similar to those on bone marrow-derived mesenchymal stem cells, and could be differentiated into cells of mesenchymal lineage. Of interest, hLASCs secreted higher levels of vascular endothelial growth factor (VEGF) and hepatocyte growth factor (HGF) than hASCs cultured in 20% serum (hHASCs). Moreover, hLASC-conditioned media significantly increased endothelial cell (EC) proliferation and decreased EC apoptosis compared to that obtained from hHASCs or control media only. Antibodies against VEGF and HGF virtually negated these effects. When hASCs were administered into the ischemic hindlimbs of nude rats, hLASCs improved blood flow, increased capillary density, and raised the levels of VEGF and HGF in the muscles as compared with hHASCs. In conclusion, we demonstrate a novel low serum culture system for hASCs, which may have great potential in regenerative cell therapy for damaged organs in the clinical setting.
Collapse
Affiliation(s)
- Shigejiro Iwashima
- Department of Nephrology, Nagoya University Graduate School of Medicine, Showaku, Nagoya, Aichi, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
436
|
Baglioni S, Francalanci M, Squecco R, Lombardi A, Cantini G, Angeli R, Gelmini S, Guasti D, Benvenuti S, Annunziato F, Bani D, Liotta F, Francini F, Perigli G, Serio M, Luconi M. Characterization of human adult stem-cell populations isolated from visceral and subcutaneous adipose tissue. FASEB J 2009; 23:3494-505. [PMID: 19584303 DOI: 10.1096/fj.08-126946] [Citation(s) in RCA: 141] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Adipose tissue is a dynamic endocrine organ with a central role in metabolism regulation. Functional differences in adipose tissue seem associated with the regional distribution of fat depots, in particular in subcutaneous and visceral omental pads. Here, we report for the first time the isolation of human adipose-derived adult stem cells from visceral omental and subcutaneous fat (V-ASCs and S-ASCs, respectively) from the same subject. Immunophenotyping shows that plastic culturing selects homogeneous cell populations of V-ASCs and S-ASCs from the corresponding stromal vascular fractions (SVFs), sharing typical markers of mesenchymal stem cells. Electron microscopy and electrophysiological and real-time RT-PCR analyses confirm the mesenchymal stem nature of both V-ASCs and S-ASCs, while no significant differences in a limited pattern of cytokine/chemokine expression can be detected. Similar to S-ASCs, V-ASCs can differentiate in vitro toward adipogenic, osteogenic, chondrogenic, muscular, and neuronal lineages, as demonstrated by histochemical, immunofluorescence, real-time RT-PCR, and electrophysiological analyses, suggesting the multipotency of such adult stem cells. Our data demonstrate that both visceral and subcutaneous adipose tissues are a source of pluripotent stem cells with multigermline potential. However, the visceral rather than the subcutaneous ASC could represent a more appropriate in vitro cell model for investigating the molecular mechanisms implicated in the pathophysiology of metabolic disorders such as obesity.
Collapse
Affiliation(s)
- Silvana Baglioni
- Department of Clinical Physiopathology, University of Florence, Viale Pieraccini 6, 50139 Florence, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
437
|
Kanapuru B, Ershler WB. Inflammation, coagulation, and the pathway to frailty. Am J Med 2009; 122:605-13. [PMID: 19559159 PMCID: PMC5999023 DOI: 10.1016/j.amjmed.2009.01.030] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2008] [Revised: 12/18/2008] [Accepted: 01/18/2009] [Indexed: 12/13/2022]
Abstract
There are inevitable physiologic changes associated with advancing age, yet for some people these changes are exaggerated, and as a result a phenotype emerges recognized as "frailty." Why some people become frail and others do not remains incompletely understood. Although chronic illnesses are common among frail elderly persons, some will develop all of the phenotypic features without a diagnosed underlying disease. It has been recognized that certain proinflammatory cytokines and coagulation factors are elevated to a greater extent in those who are frail than in age-matched nonfrail individuals. In this review, we provide an overview of current research in the biology of frailty with particular emphasis on the role of inflammatory pathways and disordered coagulation in its pathogenesis.
Collapse
Affiliation(s)
- Bindu Kanapuru
- Clinical Research Branch, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | | |
Collapse
|
438
|
Mizuno H. Adipose-derived stem cells for tissue repair and regeneration: ten years of research and a literature review. J NIPPON MED SCH 2009; 76:56-66. [PMID: 19443990 DOI: 10.1272/jnms.76.56] [Citation(s) in RCA: 228] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Stem cell based therapies for the repair and regeneration of various tissues and organs offer a paradigm shift that may provide alternative therapeutic solutions for a number of diseases. Although embryonic stem cells and induced pluripotent stem cells are theoretically highly beneficial, there are various limitations to their use imposed by cell regulations, ethical considerations, and genetic manipulation. Adult stem cells, on the other hand, are more easily available, with neither ethical nor immunoreactive considerations, as long as they are of autologous tissue origin. Much research has focused on mesenchymal stem cells isolated from bone marrow stroma which have been shown to possess adipogenic, osteogenic, chondrogenic, myogenic, and neurogenic potential in vitro. However bone marrow procurement is extremely painful for patients and yields low numbers of harvested cells. When compared with bone marrow-derived mesenchymal stem cells, adipose-derived stem cells are equally capable of differentiating into cells and tissues of mesodermal origin. Because human adipose tissue is ubiquitous and easily obtainable in large quantities under local anesthesia with little patient discomfort, it may provide an alternative source of stem cells for mesenchymal tissue regeneration and engineering. Based on our previous experimental findings, this review highlights the molecular characteristics, the potential for differentiation, the potential for wound healing, and the future role of adipose-derived stem cells in cell-based therapies and tissue engineering.
Collapse
Affiliation(s)
- Hiroshi Mizuno
- Department of Plastic, Reconstructive and Regenerative Surgery, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan.
| |
Collapse
|
439
|
Suga H, Eto H, Shigeura T, Inoue K, Aoi N, Kato H, Nishimura S, Manabe I, Gonda K, Yoshimura K. IFATS collection: Fibroblast growth factor-2-induced hepatocyte growth factor secretion by adipose-derived stromal cells inhibits postinjury fibrogenesis through a c-Jun N-terminal kinase-dependent mechanism. Stem Cells 2009; 27:238-49. [PMID: 18772314 DOI: 10.1634/stemcells.2008-0261] [Citation(s) in RCA: 111] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Adipose-derived stem/stromal cells (ASCs) not only function as tissue-specific progenitor cells but also are multipotent and secrete angiogenic growth factors, such as hepatocyte growth factor (HGF), under certain circumstances. However, the biological role and regulatory mechanism of this secretion have not been well studied. We focused on the role of ASCs in the process of adipose tissue injury and repair and found that among injury-associated growth factors, fibroblast growth factor-2 (FGF-2) strongly promoted ASC proliferation and HGF secretion through a c-Jun N-terminal kinase (JNK) signaling pathway. In a mouse model of ischemia-reperfusion injury of adipose tissue, regenerative changes following necrotic and apoptotic changes were seen for 2 weeks. Acute release of FGF-2 by injured adipose tissue was followed by upregulation of HGF. During the adipose tissue remodeling process, adipose-derived 5-bromo-2-deoxyuridine-positive cells were shown to be ASCs (CD31-CD34+). Inhibition of JNK signaling inhibited the activation of ASCs and delayed the remodeling process. In addition, inhibition of FGF-2 or JNK signaling prevented postinjury upregulation of HGF and led to increased fibrogenesis in the injured adipose tissue. Increased fibrogenesis also followed the administration of a neutralizing antibody against HGF. FGF-2 released from injured tissue acts through a JNK signaling pathway to stimulate ASCs to proliferate and secrete HGF, contributing to the regeneration of adipose tissue and suppression of fibrogenesis after injury. This study revealed a functional role for ASCs in the response to injury and provides new insight into the therapeutic potential of ASCs.
Collapse
Affiliation(s)
- Hirotaka Suga
- Department of Plastic Surgery, University of Tokyo, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
440
|
Kim WS, Park BS, Sung JH. The wound-healing and antioxidant effects of adipose-derived stem cells. Expert Opin Biol Ther 2009; 9:879-87. [PMID: 19522555 DOI: 10.1517/14712590903039684] [Citation(s) in RCA: 197] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
441
|
Walter M, Liang S, Ghosh S, Hornsby PJ, Li R. Interleukin 6 secreted from adipose stromal cells promotes migration and invasion of breast cancer cells. Oncogene 2009; 28:2745-55. [PMID: 19483720 PMCID: PMC2806057 DOI: 10.1038/onc.2009.130] [Citation(s) in RCA: 244] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Excessive adiposity has long been associated with increased incidence of breast cancer in post-menopausal women, and with increased mortality from breast cancer, regardless of the menopausal status. Although adipose tissue-derived estrogen contributes to obesity-associated risk for estrogen receptor (ER)-positive breast cancer, the estrogen-independent impact of adipose tissue on tumor invasion and progression needs to be elucidated. Here, we show that adipose stromal cells (ASCs) significantly stimulate migration and invasion of ER-negative breast cancer cells in vitro and tumor invasion in a co-transplant xenograft mouse model. Our study also identifies cofilin-1, a known regulator of actin dynamics, as a determinant of the tumor-promoting activity of ASCs. The cofilin-1-dependent pathway affects the production of interleukin 6 (IL-6) in ASCs. Depletion of IL-6 from the ASC-conditioned medium abrogated the stimulatory effect of ASCs on the migration and invasion of breast tumor cells. Thus, our study uncovers a link between a cytoskeleton-based pathway in ASCs and the stromal impact on breast cancer cells.
Collapse
Affiliation(s)
- M Walter
- Department of Molecular Medicine, Institute of Biotechnology, University of Texas Health Science Center at San Antonio, San Antonio, TX 78245, USA
| | | | | | | | | |
Collapse
|
442
|
Alt E, Pinkernell K, Scharlau M, Coleman M, Fotuhi P, Nabzdyk C, Matthias N, Gehmert S, Song YH. Effect of freshly isolated autologous tissue resident stromal cells on cardiac function and perfusion following acute myocardial infarction. Int J Cardiol 2009; 144:26-35. [PMID: 19443059 DOI: 10.1016/j.ijcard.2009.03.124] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2008] [Revised: 02/11/2009] [Accepted: 03/26/2009] [Indexed: 02/08/2023]
Abstract
BACKGROUND The aim of this study was to investigate the effect of intracoronary administration of freshly isolated, uncultured autologous tissue-derived stromal cells on cardiac function and perfusion after acute infarction in pigs. METHODS A transmural myocardial infarction in a porcine model was induced by occlusion of the mid LAD with an angioplasty balloon for 3 h. Upon reperfusion, freshly isolated, uncultured autologous stromal cells (1.5×10⁶ cells/kg) or control solution was injected into the infarct artery. Cardiac function and area at risk were determined by (99m)Tc-SPECT. RESULTS Eight weeks after infarction, cell treated pigs showed a 20% smaller myocardial perfusion defect compared to control animals (35±9% vs. 44±5% of LV, treated vs. control, respectively, p<0.05). The reduction of the perfusion defect was associated with a significantly higher myocardial salvage index in the cell group as well as a significant increase in ejection fraction compared to control (EF at 8 weeks 43±7% vs. 35±3%, treated vs. control, respectively, p<0.05). This functional improvement was reflected by an increased wall thickness of the infarct and border zone in the treated group (11.2±2.2 mm) compared to control (8.6±1.6 mm, p<0.05) as well as an increased capillary density in the border zone (treated vs. control; 41.6±17.9 vs. 32.9±12.6 capillaries per 0.1 mm², p<0.05). CONCLUSIONS This study demonstrates for the first time that recovery and intracoronary delivery of uncultured autologous tissue derived stromal cells at time of vessel reperfusion is feasible and improves ventricular function.
Collapse
Affiliation(s)
- Eckhard Alt
- Department of Medicine, Section of Cardiology, Tulane University Health Sciences Center, New Orleans, LA 70112, United States.
| | | | | | | | | | | | | | | | | |
Collapse
|
443
|
Carrière A, Ebrahimian TG, Dehez S, Augé N, Joffre C, André M, Arnal S, Duriez M, Barreau C, Arnaud E, Fernandez Y, Planat-Benard V, Lévy B, Pénicaud L, Silvestre JS, Casteilla L. Preconditioning by mitochondrial reactive oxygen species improves the proangiogenic potential of adipose-derived cells-based therapy. Arterioscler Thromb Vasc Biol 2009; 29:1093-9. [PMID: 19423864 DOI: 10.1161/atvbaha.109.188318] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
OBJECTIVE Transplantation of adipose-derived stroma cells (ADSCs) stimulates neovascularization after experimental ischemic injury. ADSC proangiogenic potential is likely mediated by their ability to differentiate into endothelial cells and produce a wide array of angiogenic and antiapoptotic factors. Mitochondrial reactive oxygen species (ROS) have been shown to control ADSC differentiation. We therefore hypothesized that mitochondrial ROS production may change the ADSC proangiogenic properties. METHODS AND RESULTS The use of pharmacological strategies (mitochondrial inhibitors, antimycin, and rotenone, with or without antioxidants) allowed us to specifically and precisely modulate mitochondrial ROS generation in ADSCs. We showed that transient stimulation of mitochondrial ROS generation in ADSCs before their injection in ischemic hindlimb strongly improved revascularization and the number of ADSC-derived CD31-positive cells in ischemic area. Mitochondrial ROS generation increased the secretion of the proangiogenic and antiapoptotic factors, VEGF and HGF, but did not affect ADSC ability to differentiate into endothelial cells, in vitro. Moreover, mitochondrial ROS-induced ADSC preconditioning greatly protect ADSCs against oxidative stress-induced cell death. CONCLUSIONS Our study demonstrates that in vitro preconditioning by moderate mitochondrial ROS generation strongly increases in vivo ADSC proangiogenic properties and emphasizes the crucial role of mitochondrial ROS in ADSC fate.
Collapse
Affiliation(s)
- Audrey Carrière
- Université de Toulouse, UPS, UMR 5241 Métabolisme, Plasticité et Mitochondrie, Toulouse Cedex 4, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
444
|
Yukawa H, Noguchi H, Oishi K, Takagi S, Hamaguchi M, Hamajima N, Hayashi S. Cell Transplantation of Adipose Tissue-Derived Stem Cells in Combination with Heparin Attenuated Acute Liver Failure in Mice. Cell Transplant 2009; 18:611-8. [DOI: 10.1177/096368970901805-617] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The effect of adipose tissue-derived stem cells (ASCs) in combination with heparin transplantation on acute liver failure mice with carbon tetrachloride (CCl4) injection was investigated. CCl4 is a well-known hepatotoxin and induces hepatic necrosis. Heparin did not affect the viability of ASCs for at least 24 h. The injection of heparin into the caudal tail vein decreased slightly the activities of the alanine aminotransferase (ALT), asparate aminotransferase (AST), and lactate dehydrogenase (LDH) in plasma. In the transplantation of ASCs (1 × 106 cells) group, there was a trend toward decreased activities of all markers. However, four out of six mice died of the lung infarction. In the transplantation of ASCs in combination with heparin group, there was also a trend toward decreased activities of all markers. In addition, all mice survived for at least the duration of the study period. In conclusion, the transplantation of ASCs in combination with heparin was thus found to effectively treat acute liver failure.
Collapse
Affiliation(s)
- Hiroshi Yukawa
- Department of Advanced Medicine in Biotechnology and Robotics, Nagoya University Graduate School of Medicine, Nagoya 461-0047, Japan
| | - Hirofumi Noguchi
- Baylor All Saints Medical Center, Baylor Research Institute, Dallas, TX 75204, USA
| | - Koichi Oishi
- Department of Advanced Medicine in Biotechnology and Robotics, Nagoya University Graduate School of Medicine, Nagoya 461-0047, Japan
| | - Soichi Takagi
- Department of Advanced Medicine in Biotechnology and Robotics, Nagoya University Graduate School of Medicine, Nagoya 461-0047, Japan
| | - Michinari Hamaguchi
- Division of Cancer Biology, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Nobuyuki Hamajima
- Department of Preventive Medicine, Biostatistics and Medical Decision Making, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Shuji Hayashi
- Department of Advanced Medicine in Biotechnology and Robotics, Nagoya University Graduate School of Medicine, Nagoya 461-0047, Japan
| |
Collapse
|
445
|
Current world literature. Curr Opin Organ Transplant 2009; 14:103-11. [PMID: 19337155 DOI: 10.1097/mot.0b013e328323ad31] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
446
|
Angiogenic factors in patients with current major depressive disorder comorbid with borderline personality disorder. Psychoneuroendocrinology 2009; 34:353-7. [PMID: 19062198 DOI: 10.1016/j.psyneuen.2008.09.016] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2007] [Revised: 09/23/2008] [Accepted: 09/24/2008] [Indexed: 01/28/2023]
Abstract
BACKGROUND Major depression has been associated with endocrine and immune alterations, in particular a dysregulation of the hypothalamus-pituitary-adrenal system with subsequent hypercortisolism and an imbalance of pro- and anti-inflammatory cytokines. Recent studies suggest that vascular endothelial growth factor (VEGF), a cytokine involved in angiogenesis and neurogenesis, may also be dysregulated during stress and depression. These observations prompted us to examine VEGF and other angiogenic factors in patients with major depressive disorder. METHODS Twelve medication-free female patients with a major depressive episode in the context of borderline personality disorder (MDD/BPD) and twelve healthy women were included. Concentrations of VEGF, VEGF receptors 1 and 2, basic fibroblast growth factor-2 (FGF-2), hepatocyte growth factor (HGF), angiopoetin-2, interleukin-8 (IL-8) and transforming growth factor-beta1 (TGF-beta1) were determined from serum profiles. RESULTS Increased concentrations of VEGF and FGF-2 were found in MDD/BPD patients compared to the healthy comparator group. No group differences were found concerning the other angiogenic factors examined. CONCLUSION Depressive episodes in the context of borderline personality disorder may be accompanied by increased serum concentrations of VEGF and FGF-2. Similar findings have been observed in patients with major depression without a borderline personality disorder. A dysregulation of angiogenic factors may be another facet of the endocrine and immunologic disturbances frequently seen in patients with depressive episodes.
Collapse
|
447
|
Nie C, Yang D, Morris SF. Local delivery of adipose-derived stem cells via acellular dermal matrix as a scaffold: a new promising strategy to accelerate wound healing. Med Hypotheses 2009; 72:679-82. [PMID: 19243892 DOI: 10.1016/j.mehy.2008.10.033] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2008] [Revised: 10/08/2008] [Accepted: 10/09/2008] [Indexed: 02/08/2023]
Abstract
Wounds, characterized by leading to a loss of integrity of the skin and a major cause of morbidity and mortality, are common challenges encountered in plastic and reconstructive surgery. The primary goals of treatment are rapid closure, restoration of function, and aesthetical satisfaction. Adult stem cells may provide new strategies to treat cutaneous wounds because of their prolonged self-renewal capacity and ability to differentiate into various tissues. In the past five years, some researches discovered bone marrow mesenchymal cells (BMSCs) could accelerate wound healing. However, there exist several disadvantages of BMSCs mainly including the limitation of the obtainable amount and the impairment of their differentiation abilities with the increasing age. Due to the limitation of BMSCs in clinical application, we turn to consider adipose-derived stem cells (ASCs) as seeding cells in tissue repair for their own advantages. ASCs could not only possess capacity to differentiate into various lineages under appropriate conditions, but also release angiogenic factors that stimulate angiogenesis in ischemia injury models. Here we propose the hypothesis that ASCs locally delivered via acellular dermal matrix as a scaffold would enhance wound healing through both differentiation into endothelial and epithelial cells and production of angiogenic growth factors in cutaneous wounds. Furthermore, ASCs seeded acellular scaffold can be believed to offer more benefits for introducing stem cells to the local ischemia environment as it provides a framework for the support of their regenerative capacity. Therefore, if the hypothesis is proved to be practical, it might represent a novel therapeutic approach and enhance cutaneous wound healing more effectively.
Collapse
Affiliation(s)
- Chunlei Nie
- Department of Plastic Surgery, The Second Hospital affiliated Harbin Medical University, Harbin, Heilong Jiang 150086, China
| | | | | |
Collapse
|
448
|
Kim WS, Park BS, Park SH, Kim HK, Sung JH. Antiwrinkle effect of adipose-derived stem cell: Activation of dermal fibroblast by secretory factors. J Dermatol Sci 2009; 53:96-102. [DOI: 10.1016/j.jdermsci.2008.08.007] [Citation(s) in RCA: 207] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2008] [Revised: 06/28/2008] [Accepted: 08/14/2008] [Indexed: 10/21/2022]
|
449
|
Muehlberg FL, Song YH, Krohn A, Pinilla SP, Droll LH, Leng X, Seidensticker M, Ricke J, Altman AM, Devarajan E, Liu W, Arlinghaus RB, Alt EU. Tissue-resident stem cells promote breast cancer growth and metastasis. Carcinogenesis 2009; 30:589-97. [PMID: 19181699 DOI: 10.1093/carcin/bgp036] [Citation(s) in RCA: 235] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Mesenchymal stem cells derived from bone marrow have recently been described to localize to breast carcinomas and to integrate into the tumor-associated stroma. In the present study, we investigated whether adipose tissue-derived stem cells (ASCs) could play a role in tumor growth and invasion. Compared with bone marrow-derived cells, ASCs as tissue-resident stem cells are locally adjacent to breast cancer cells and may interact with tumor cells directly. Here, we demonstrate that ASCs cause the cancer to grow significantly faster when added to a murine breast cancer 4T1 cell line. We further show that breast cancer cells enhance the secretion of stromal cell-derived factor-1 from ASCs, which then acts in a paracrine fashion on the cancer cells to enhance their motility, invasion and metastasis. The tumor-promoting effect of ASCs was abolished by knockdown of the chemokine C-X-C receptor 4 in 4T1 tumor cells. We demonstrated that ASCs home to tumor site and promote tumor growth not only when co-injected locally but also when injected intravenously. Furthermore, we demonstrated that ASCs incorporate into tumor vessels and differentiate into endothelial cells. The tumor-promoting effect of tissue-resident stem cells was also tested and validated using a human breast cancer line MDA-MB-231 cells and human adipose tissue-derived stem cells. Our findings indicate that the interaction of local tissue-resident stem cells with tumor stem cells plays an important role in tumor growth and metastasis.
Collapse
Affiliation(s)
- Fabian L Muehlberg
- Department of Molecular Pathology, University of Texas M. D. Anderson Cancer Center, Houston, TX 77030, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
450
|
Baer PC, Schubert R, Bereiter-Hahn J, Plösser M, Geiger H. Expression of a functional epidermal growth factor receptor on human adipose-derived mesenchymal stem cells and its signaling mechanism. Eur J Cell Biol 2009; 88:273-83. [PMID: 19167776 DOI: 10.1016/j.ejcb.2008.12.001] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2008] [Revised: 12/10/2008] [Accepted: 12/15/2008] [Indexed: 01/12/2023] Open
Abstract
Adult stem cells act as a pluripotent source of regenerative cells during tissue injury. Despite expanded research in stem cell biology, understanding how growth and migration of adipose-derived adult mesenchymal stem cells (ASC) are governed by interactions with growth factors is very limited. One important property of ASC is the presence of the epidermal growth factor (EGF) receptor and the cellular response to soluble EGF. Expression of the EGF receptor was proven by PCR and Western blotting. Signal transduction was analyzed by Western blotting and PhosFlow assay. EGF caused robust phosphorylation of SHC and ERK1/2, which could be inhibited by EGF receptor antagonist AG1478 and MEK inhibitor PD98059. ASC proliferation was determined by MTT assay. Stem cell migration was analyzed in a modified Boyden chamber. Incubation with EGF led to cell proliferation and induced cell migration, but did not change the undifferentiated state of the cells. In the kidney, injured renal tubular cells express high amounts of EGF. Therefore, our results may highlight a mechanism underlying renal regeneration. Thus, future in vivo studies that focus on the effects of EGF on recruitment of ASC to sites of injury are necessary.
Collapse
Affiliation(s)
- Patrick C Baer
- Division of Nephrology, Department of Internal Medicine III, Goethe-University, Frankfurt/Main, Germany.
| | | | | | | | | |
Collapse
|