401
|
Vanden Berghe T, Kaiser WJ, Bertrand MJ, Vandenabeele P. Molecular crosstalk between apoptosis, necroptosis, and survival signaling. Mol Cell Oncol 2015; 2:e975093. [PMID: 27308513 PMCID: PMC4905361 DOI: 10.4161/23723556.2014.975093] [Citation(s) in RCA: 128] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Revised: 09/24/2014] [Accepted: 09/25/2014] [Indexed: 02/07/2023]
Abstract
Our current knowledge of the molecular mechanisms regulating the signaling pathways leading to cell survival, cell death, and inflammation has shed light on the tight mutual interplays between these processes. Moreover, the fact that both apoptosis and necrosis can be molecularly controlled has greatly increased our interest in the roles that these types of cell death play in the control of general processes such as development, homeostasis, and inflammation. In this review, we provide a brief update on the different cell death modalities and describe in more detail the intracellular crosstalk between survival, apoptotic, necroptotic, and inflammatory pathways that are activated downstream of death receptors. An important concept is that the different cell death processes modulate each other by mutual inhibitory mechanisms, serve as alternative back-up death routes in the case of a defect in the first-line cell death response, and are controlled by multiple feedback loops. We conclude by discussing future perspectives and challenges in the field of cell death and inflammation research.
Collapse
Affiliation(s)
- Tom Vanden Berghe
- Inflammation Research Center; VIB; Ghent, Belgium; Department of Biomedical Molecular Biological; Ghent University; Ghent, Belgium
| | - William J Kaiser
- Department of Microbiology and Immunology; Emory Vaccine Center; Emory University School of Medicine ; Atlanta, GA, USA
| | - Mathieu Jm Bertrand
- Inflammation Research Center; VIB; Ghent, Belgium; Department of Biomedical Molecular Biological; Ghent University; Ghent, Belgium
| | - Peter Vandenabeele
- Inflammation Research Center; VIB; Ghent, Belgium; Department of Biomedical Molecular Biological; Ghent University; Ghent, Belgium; Methusalem Program; Ghent University; Ghent, Belgium
| |
Collapse
|
402
|
Guo H, Kaiser WJ, Mocarski ES. Manipulation of apoptosis and necroptosis signaling by herpesviruses. Med Microbiol Immunol 2015; 204:439-48. [PMID: 25828583 DOI: 10.1007/s00430-015-0410-5] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2015] [Accepted: 03/17/2015] [Indexed: 12/18/2022]
Abstract
Like apoptosis, necroptosis is an innate immune mechanism that eliminates pathogen-infected cells. Receptor-interacting protein kinase (RIP)3 (also called RIPK3) mediates necrotic death by phosphorylating an executioner protein, MLKL, leading to plasma membrane leakage. The pathway is triggered against viruses that block caspase 8. In murine CMV, the viral inhibitor of caspase 8 activation prevents extrinsic apoptosis but also has the potential to unleash necroptosis. This virus encodes the viral inhibitor of RIP activation to prevent RIP homotypic interaction motif (RHIM)-dependent signal transduction and necroptosis. Recent investigations reveal a similar mechanism at play in the human alpha-herpesviruses, herpes simplex virus (HSV)1 and HSV2, where RHIM competitor function and caspase 8 suppression are carried out by the virus-encoded large subunit of ribonucleotide reductase (R1). In human cells, R1 inhibition of caspase 8 prevents TNF-induced apoptosis, but sensitizes to TNF-induced necroptosis. The RHIM and caspase 8 interaction domains of R1 collaborate to prevent RIP3-dependent steps and enable both herpesviruses to deflect host cell death machinery that would cut short infection. In mouse cells, HSV1 infection by itself triggers necroptosis by driving RIP3 protein kinase activity. HSV1 R1 contributes to the activation of RIP3 adaptor function in mice, a popular host animal for experimental infection. Based on these studies, infection of RIP3-kinase inactive mice should be explored in models of pathogenesis and latency. The necrotic death pathway that is suppressed during infection in the natural host becomes a cross-species barrier to infection in a non-natural host.
Collapse
Affiliation(s)
- Hongyan Guo
- Department of Microbiology and Immunology, Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | | | | |
Collapse
|
403
|
Mocarski ES, Guo H, Kaiser WJ. Necroptosis: The Trojan horse in cell autonomous antiviral host defense. Virology 2015; 479-480:160-6. [PMID: 25819165 DOI: 10.1016/j.virol.2015.03.016] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Revised: 02/12/2015] [Accepted: 03/02/2015] [Indexed: 12/14/2022]
Abstract
Herpesviruses suppress cell death to assure sustained infection in their natural hosts. Murine cytomegalovirus (MCMV) encodes suppressors of apoptosis as well as M45-encoded viral inhibitor of RIP activation (vIRA) to block RIP homotypic interaction motif (RHIM)-signaling and recruitment of RIP3 (also called RIPK3), to prevent necroptosis. MCMV and human cytomegalovirus encode a viral inhibitor of caspase (Casp)8 activation to block apoptosis, an activity that unleashes necroptosis. Herpes simplex virus (HSV)1 and HSV2 incorporate both RHIM and Casp8 suppression strategies within UL39-encoded ICP6 and ICP10, respectively, which are herpesvirus-conserved homologs of MCMV M45. Both HSV proteins sensitize human cells to necroptosis by blocking Casp8 activity while preventing RHIM-dependent RIP3 activation and death. In mouse cells, HSV1 ICP6 interacts with RIP3 and, surprisingly, drives necroptosis. Thus, herpesviruses have illuminated the contribution of necoptosis to host defense in the natural host as well as its potential to restrict cross-species infections in nonnatural hosts.
Collapse
Affiliation(s)
- Edward S Mocarski
- Department of Microbiology and Immunology, Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA 30322, USA.
| | - Hongyan Guo
- Department of Microbiology and Immunology, Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - William J Kaiser
- Department of Microbiology and Immunology, Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA 30322, USA
| |
Collapse
|
404
|
Silke J, Vaux DL. IAP gene deletion and conditional knockout models. Semin Cell Dev Biol 2015; 39:97-105. [DOI: 10.1016/j.semcdb.2014.12.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Revised: 12/17/2014] [Accepted: 12/19/2014] [Indexed: 01/10/2023]
|
405
|
Dowling JP, Nair A, Zhang J. A novel function of RIP1 in postnatal development and immune homeostasis by protecting against RIP3-dependent necroptosis and FADD-mediated apoptosis. Front Cell Dev Biol 2015; 3:12. [PMID: 25767797 PMCID: PMC4341114 DOI: 10.3389/fcell.2015.00012] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Accepted: 02/10/2015] [Indexed: 01/10/2023] Open
Abstract
RIP1 is an adaptor kinase originally identified as being able to associate with TNFR1 and Fas, and is later shown to be involved in signaling induced by TLRs. Major signaling pathways regulated by RIP1 include necroptosis, apoptosis, and pro-survival/inflammation NF-κB activation. Previous studies show that RIP1 deficiency has no effect on mouse embryogenesis, but blocks postnatal development. This phenotype could not readily be explained, since mice lacking TNFR1, Fas, or TLRs show no apparent developmental defect. Certain types of RIP1-deficient cells are hypersensitive to TNF-induced apoptosis. However, in our previous study, deletion of the apoptotic adaptor protein, FADD, provides marginal improvement of postnatal development of rip1−/− mice. Remarkably, the current data shows that haploid insufficiency of RIP3, a known mediator of necroptosis, allowed survival of rip1−/−fadd−/− mice beyond weaning age, although the resulting rip1−/−fadd−/− rip3+/− mice were significant smaller in size and weight. Moreover, complete absence of RIP3 further improved postnatal development of the resulting rip1−/−fadd−/−rip3−/− mice, which display normal size and weight. In such triple knockout (TKO) mice, lymphocytes underwent normal development, but progressively accumulated as mice age. This lymphoproliferative (lpr) disease in TKO mice is, however, less severe than that of fadd−/−rip3−/− double knockout mice. In total, the data show that the postnatal developmental defect in rip1−/− mice is due in part to FADD-mediated apoptosis as well as RIP3-dependent necroptosis. Moreover, the function of RIP1 contributes to development of lpr diseases.
Collapse
Affiliation(s)
- John P Dowling
- Department of Microbiology and Immunology, Sidney Kimmel Cancer Center, Sidney Kimmel Medical College, Thomas Jefferson University Philadelphia, PA, USA
| | - Anirudh Nair
- Department of Microbiology and Immunology, Sidney Kimmel Cancer Center, Sidney Kimmel Medical College, Thomas Jefferson University Philadelphia, PA, USA
| | - Jianke Zhang
- Department of Microbiology and Immunology, Sidney Kimmel Cancer Center, Sidney Kimmel Medical College, Thomas Jefferson University Philadelphia, PA, USA
| |
Collapse
|
406
|
White MJ, McArthur K, Metcalf D, Lane RM, Cambier JC, Herold MJ, van Delft MF, Bedoui S, Lessene G, Ritchie ME, Huang DCS, Kile BT. Apoptotic caspases suppress mtDNA-induced STING-mediated type I IFN production. Cell 2015; 159:1549-62. [PMID: 25525874 DOI: 10.1016/j.cell.2014.11.036] [Citation(s) in RCA: 695] [Impact Index Per Article: 77.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2014] [Revised: 09/22/2014] [Accepted: 11/10/2014] [Indexed: 02/07/2023]
Abstract
Activated caspases are a hallmark of apoptosis induced by the intrinsic pathway, but they are dispensable for cell death and the apoptotic clearance of cells in vivo. This has led to the suggestion that caspases are activated not just to kill but to prevent dying cells from triggering a host immune response. Here, we show that the caspase cascade suppresses type I interferon (IFN) production by cells undergoing Bak/Bax-mediated apoptosis. Bak and Bax trigger the release of mitochondrial DNA. This is recognized by the cGAS/STING-dependent DNA sensing pathway, which initiates IFN production. Activated caspases attenuate this response. Pharmacological caspase inhibition or genetic deletion of caspase-9, Apaf-1, or caspase-3/7 causes dying cells to secrete IFN-β. In vivo, this precipitates an elevation in IFN-β levels and consequent hematopoietic stem cell dysfunction, which is corrected by loss of Bak and Bax. Thus, the apoptotic caspase cascade functions to render mitochondrial apoptosis immunologically silent.
Collapse
Affiliation(s)
- Michael J White
- ACRF Chemical Biology Division, The Walter and Eliza Hall Institute of Medical Research, Parkville 3052, Australia; Department of Medical Biology, The University of Melbourne, Parkville 3010, Australia.
| | - Kate McArthur
- ACRF Chemical Biology Division, The Walter and Eliza Hall Institute of Medical Research, Parkville 3052, Australia; Department of Medical Biology, The University of Melbourne, Parkville 3010, Australia
| | - Donald Metcalf
- Cancer and Haematology Division, The Walter and Eliza Hall Institute of Medical Research, Parkville 3052, Australia; Department of Medical Biology, The University of Melbourne, Parkville 3010, Australia
| | - Rachael M Lane
- ACRF Chemical Biology Division, The Walter and Eliza Hall Institute of Medical Research, Parkville 3052, Australia
| | - John C Cambier
- Integrated Department of Immunology, University of Colorado Denver School of Medicine and National Jewish Health, Denver, CO 80206, USA
| | - Marco J Herold
- Molecular Genetics of Cancer Division, The Walter and Eliza Hall Institute of Medical Research, Parkville 3052, Australia; Department of Medical Biology, The University of Melbourne, Parkville 3010, Australia
| | - Mark F van Delft
- Cancer and Haematology Division, The Walter and Eliza Hall Institute of Medical Research, Parkville 3052, Australia; Department of Medical Biology, The University of Melbourne, Parkville 3010, Australia
| | - Sammy Bedoui
- Department of Microbiology and Immunology, The University of Melbourne, Parkville 3010, Australia
| | - Guillaume Lessene
- ACRF Chemical Biology Division, The Walter and Eliza Hall Institute of Medical Research, Parkville 3052, Australia; Department of Medical Biology, The University of Melbourne, Parkville 3010, Australia; Department of Pharmacology and Therapeutics, The University of Melbourne, Parkville 3010, Australia
| | - Matthew E Ritchie
- Molecular Medicine Division, The Walter and Eliza Hall Institute of Medical Research, Parkville 3052, Australia; Department of Medical Biology, The University of Melbourne, Parkville 3010, Australia; Department of Mathematics and Statistics, The University of Melbourne, Parkville 3010, Australia
| | - David C S Huang
- Cancer and Haematology Division, The Walter and Eliza Hall Institute of Medical Research, Parkville 3052, Australia; Department of Medical Biology, The University of Melbourne, Parkville 3010, Australia
| | - Benjamin T Kile
- ACRF Chemical Biology Division, The Walter and Eliza Hall Institute of Medical Research, Parkville 3052, Australia; Department of Medical Biology, The University of Melbourne, Parkville 3010, Australia.
| |
Collapse
|
407
|
de Almagro MC, Vucic D. Necroptosis: Pathway diversity and characteristics. Semin Cell Dev Biol 2015; 39:56-62. [PMID: 25683283 DOI: 10.1016/j.semcdb.2015.02.002] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Revised: 01/28/2015] [Accepted: 02/02/2015] [Indexed: 01/09/2023]
Abstract
Regulated cell death is a physiological process that controls organismal homeostasis. Deregulation of cell death can lead to the development of a number of human diseases and tissue damage. Apoptosis is a best-known model of caspase-dependent regulated cell death, but recently necroptosis has garnered a lot of attention as a form of regulated cell death not mediated by caspases. Different stimuli can trigger necroptosis, and all of them converge at the activation of the protein kinase RIP3 (receptor-interacting protein 3) and the pseudokinase MLKL (mixed lineage kinase domain-like). Necroptosis activation relies on the unique protein-interaction motif RHIM (RIP homology interaction motif). Different RHIM-containing proteins (RIP1, DAI and TRIF) transduce necroptotic signals from the cell death trigger to the cell death mediators RIP3-MLKL. RIP1 has a particularly important and complex role in necroptotic cell death regulation ranging from cell death activation to inhibition, often in a cell type and context dependent fashion.
Collapse
Affiliation(s)
| | - Domagoj Vucic
- Early Discovery Biochemistry, Genentech, South San Francisco, CA 94080, USA.
| |
Collapse
|
408
|
Newton K. RIPK1 and RIPK3: critical regulators of inflammation and cell death. Trends Cell Biol 2015; 25:347-53. [PMID: 25662614 DOI: 10.1016/j.tcb.2015.01.001] [Citation(s) in RCA: 243] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Revised: 01/06/2015] [Accepted: 01/09/2015] [Indexed: 12/15/2022]
Abstract
RIPK1 and RIPK3 (receptor-interacting serine/threonine protein kinases 1/3) interact by virtue of their RIP homotypic interaction motifs to mediate a form of cell death called necroptosis, although mice lacking these kinases have very different phenotypes. RIPK1-deficient mice die soon after birth, whereas RIPK3-deficient mice are healthy. Necroptosis involves cell rupture and is triggered by tumor necrosis factor (TNF), Toll-like receptors (TLRs), or the T cell receptor (TCR) when pro-apoptotic caspase-8 is inhibited. Various mouse models of disease are ameliorated by RIPK3 deficiency, suggesting that necroptosis contributes to pathology. Genetic rescue experiments now reveal why RIPK3-deficient are viable but RIPK1-deficient mice are not. These and other experiments indicate unexpected complexity in the regulation of both apoptosis and necroptosis by RIPK1 and RIPK3.
Collapse
Affiliation(s)
- Kim Newton
- Physiological Chemistry Department, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA.
| |
Collapse
|
409
|
Pasparakis M, Vandenabeele P. Necroptosis and its role in inflammation. Nature 2015; 517:311-20. [PMID: 25592536 DOI: 10.1038/nature14191] [Citation(s) in RCA: 1470] [Impact Index Per Article: 163.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Accepted: 11/11/2014] [Indexed: 02/07/2023]
Abstract
Regulated cell death has essential functions in development and in adult tissue homeostasis. Necroptosis is a newly discovered pathway of regulated necrosis that requires the proteins RIPK3 and MLKL and is induced by death receptors, interferons, toll-like receptors, intracellular RNA and DNA sensors, and probably other mediators. RIPK1 has important kinase-dependent and scaffolding functions that inhibit or trigger necroptosis and apoptosis. Mouse-model studies have revealed important functions for necroptosis in inflammation and suggested that it could be implicated in the pathogenesis of many human inflammatory diseases. We discuss the mechanisms regulating necroptosis and its potential role in inflammation and disease.
Collapse
Affiliation(s)
- Manolis Pasparakis
- Institute for Genetics, Centre for Molecular Medicine and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, University of Cologne, 50674 Cologne, Germany
| | - Peter Vandenabeele
- 1] VIB Inflammation Research Center, Ghent University, UGhent-VIB Research Building FSVM, 9052 Ghent, Belgium [2] Department of Biomedical Molecular Biology, Ghent University, 9000 Ghent, Belgium. [3] Methusalem program, Ghent University, Technologiepark 927, B-9052 Ghent, Belgium
| |
Collapse
|
410
|
|
411
|
|
412
|
|
413
|
|
414
|
|
415
|
Pasparakis M, Vandenabeele P. Necroptosis and its role in inflammation. Nature 2015. [DOI: 10.1038/nature14191 having 1479=1479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
416
|
|
417
|
|
418
|
|
419
|
|
420
|
|
421
|
Pasparakis M, Vandenabeele P. Necroptosis and its role in inflammation. Nature 2015. [DOI: 10.1038/nature14191 order by 1-- ocnp] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
422
|
|
423
|
Necroptosis and its role in inflammation. Nature 2015. [DOI: 10.1038/nature14191 and 2810=2810-- wbae] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
424
|
Necroptosis and its role in inflammation. Nature 2015. [DOI: 10.1038/nature14191 and make_set(6705=6705,9963)-- tutl] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
425
|
|
426
|
|
427
|
|
428
|
Pasparakis M, Vandenabeele P. Necroptosis and its role in inflammation. Nature 2015. [DOI: 10.1038/nature14191 having 6610=1325-- ftul] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
429
|
Pasparakis M, Vandenabeele P. Necroptosis and its role in inflammation. Nature 2015. [DOI: 10.1038/nature14191 order by 1-- qnpz] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
430
|
|
431
|
|
432
|
|
433
|
|
434
|
Necroptosis and its role in inflammation. Nature 2015. [DOI: 10.1038/nature14191 and 9718=9916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
435
|
|
436
|
|
437
|
|
438
|
|
439
|
|
440
|
|
441
|
|
442
|
|
443
|
|
444
|
|
445
|
|
446
|
|
447
|
Necroptosis and its role in inflammation. Nature 2015. [DOI: 10.1038/nature14191 having 5375=9999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
448
|
Necroptosis and its role in inflammation. Nature 2015. [DOI: 10.1038/nature14191 and make_set(6705=6705,9963)] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
449
|
|
450
|
|