401
|
Scheel JR, Ray J, Gage FH, Barlow C. Quantitative analysis of gene expression in living adult neural stem cells by gene trapping. Nat Methods 2005; 2:363-70. [PMID: 15846364 DOI: 10.1038/nmeth755] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2005] [Accepted: 03/21/2005] [Indexed: 12/27/2022]
Abstract
The potential of neural stem cells (NSCs) for the treatment of neurodegenerative diseases makes the identification and characterization of genes involved in neural stem cell responses therapeutically important. Although technologies exist for measuring gene expression in cells, they often provide only a representative expression profile specific to a stimulus and time. We developed a complementary technology based on a retroviral-vector gene-trap approach that uses beta-lactamase-induced disruption of fluorescence resonance energy transfer in the fluorophore CCF-2/AM. A library of 'tagged' adult rat NSCs was generated by transduction with gene-trap virus produced from a single-integrant packaging cell line that allowed us to quantitatively analyze dynamic gene expression changes in real time in living NSCs. Using this library we identified previously unknown genes regulated by oxidative stress, indomethacin and factors that induce differentiation, and show that one of the trapped genes, Sox6, is sufficient to induce astrocytic differentiation when overexpressed.
Collapse
Affiliation(s)
- John R Scheel
- Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, California 92037, USA
| | | | | | | |
Collapse
|
402
|
Yoon BS, Ovchinnikov DA, Yoshii I, Mishina Y, Behringer RR, Lyons KM. Bmpr1a and Bmpr1b have overlapping functions and are essential for chondrogenesis in vivo. Proc Natl Acad Sci U S A 2005; 102:5062-7. [PMID: 15781876 PMCID: PMC555995 DOI: 10.1073/pnas.0500031102] [Citation(s) in RCA: 328] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2005] [Indexed: 11/18/2022] Open
Abstract
Previous studies have demonstrated the ability of bone morphogenetic proteins (BMPs) to promote chondrogenic differentiation in vitro. However, the in vivo role of BMP signaling during chondrogenesis has been unclear. We report here that BMP signaling is essential for multiple aspects of early chondrogenesis. Whereas mice deficient in type 1 receptors Bmpr1a or Bmpr1b in cartilage are able to form intact cartilaginous elements, double mutants develop a severe generalized chondrodysplasia. The majority of skeletal elements that form through endochondral ossification are absent, and the ones that form are rudimentary. The few cartilage condensations that form in double mutants are delayed in the prechondrocytic state and never form an organized growth plate. The reduced size of mutant condensations results from increased apoptosis and decreased proliferation. Moreover, the expression of cartilage-specific extracellular matrix proteins is severely reduced in mutant elements. We demonstrate that this defect in chondrocytic differentiation can be attributed to lack of Sox9, L-Sox5, and Sox6 expression in precartilaginous condensations in double mutants. In summary, our study demonstrates that BMPR1A and BMPR1B are functionally redundant during early chondrogenesis and that BMP signaling is required for chondrocyte proliferation, survival, and differentiation in vivo.
Collapse
Affiliation(s)
- Byeong S Yoon
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, CA 90095, USA
| | | | | | | | | | | |
Collapse
|
403
|
Sekiya I, Larson BL, Vuoristo JT, Reger RL, Prockop DJ. Comparison of effect of BMP-2, -4, and -6 on in vitro cartilage formation of human adult stem cells from bone marrow stroma. Cell Tissue Res 2005; 320:269-76. [PMID: 15778851 DOI: 10.1007/s00441-004-1075-3] [Citation(s) in RCA: 225] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2004] [Accepted: 12/15/2004] [Indexed: 12/13/2022]
Abstract
The human adult stem cells from bone marrow stroma referred to as mesenchymal stem cells or marrow stromal cells (MSCs) are of interest because they are easily isolated and expanded and are capable of multipotential differentiation. Here, we examined the ability of recombinant human bone morphogenetic protein (BMP)-2, -4, and -6 to enhance in vitro cartilage formation of MSCs. Human MSCs were isolated from bone marrow taken from normal adult donors. The cells were pelleted and cultured for 21 days in chondrogenic medium containing transforming growth factor beta3 and dexamethasone with or without BMP-2, -4, or -6. All the BMPs tested increased chondrogenic differentiation as assayed by immunohistochemistry and by the size and weight of the cartilage synthesized. However, BMP-2 was the most effective. Microarray analyses of approximately 12,000 genes and reverse transcription-polymerase chain reaction assays established that the critical genes for cartilage synthesis were expressed in the expected time sequence in response to BMP-2. The tissue engineering of autologous cartilage derived from MSCs in vitro for transplantation will be a future alternative for patients with cartilage injuries. To obtain large amounts of cartilage rich in proteoglycans, the use of BMP-2 is recommended, instead of BMP-4 or -6.
Collapse
Affiliation(s)
- Ichiro Sekiya
- Center for Gene Therapy, Tulane University Health Sciences Center, New Orleans, LA 70112-2699, USA
| | | | | | | | | |
Collapse
|
404
|
Rhee DK, Marcelino J, Baker M, Gong Y, Smits P, Lefebvre V, Jay GD, Stewart M, Wang H, Warman ML, Carpten JD. The secreted glycoprotein lubricin protects cartilage surfaces and inhibits synovial cell overgrowth. J Clin Invest 2005; 115:622-31. [PMID: 15719068 PMCID: PMC548698 DOI: 10.1172/jci22263] [Citation(s) in RCA: 220] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2004] [Accepted: 01/11/2005] [Indexed: 11/17/2022] Open
Abstract
The long-term integrity of an articulating joint is dependent upon the nourishment of its cartilage component and the protection of the cartilage surface from friction-induced wear. Loss-of-function mutations in lubricin (a secreted glycoprotein encoded by the gene PRG4) cause the human autosomal recessive disorder camptodactyly-arthropathy-coxa vara-pericarditis syndrome (CACP). A major feature of CACP is precocious joint failure. In order to delineate the mechanism by which lubricin protects joints, we studied the expression of Prg4 mRNA during mouse joint development, and we created lubricin-mutant mice. Prg4 began to be expressed in surface chondrocytes and synoviocytes after joint cavitation had occurred and remained strongly expressed by these cells postnatally. Mice lacking lubricin were viable and fertile. In the newborn period, their joints appeared normal. As the mice aged, we observed abnormal protein deposits on the cartilage surface and disappearance of underlying superficial zone chondrocytes. In addition to cartilage surface changes and subsequent cartilage deterioration, intimal cells in the synovium surrounding the joint space became hyperplastic, which further contributed to joint failure. Purified or recombinant lubricin inhibited the growth of these synoviocytes in vitro. Tendon and tendon sheath involvement was present in the ankle joints, where morphologic changes and abnormal calcification of these structures were observed. We conclude that lubricin has multiple functions in articulating joints and tendons that include the protection of surfaces and the control of synovial cell growth.
Collapse
Affiliation(s)
- David K Rhee
- Department of Genetics, Center for Human Genetics, Case Western Reserve University School of Medicine and University Hospitals of Cleveland, Cleveland, Ohio 44106, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
405
|
Provot S, Schipani E. Molecular mechanisms of endochondral bone development. Biochem Biophys Res Commun 2005; 328:658-65. [PMID: 15694399 DOI: 10.1016/j.bbrc.2004.11.068] [Citation(s) in RCA: 271] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2004] [Indexed: 10/26/2022]
Abstract
Endochondral bone development is a complex process in which undifferentiated mesenchymal cells differentiate into chondrocytes, which then undergo well-ordered and controlled phases of proliferation, hypertrophic differentiation, death, blood vessel invasion, and finally replacement of cartilage with bone. The process recapitulates basic and fundamental mechanisms of cell biology with a highly specific spatial and temporal pattern, and it thus constitutes an excellent model for the analysis of such mechanisms. In recent years, the tools provided by modern genetic both in mice and men have been instrumental in the process of identifying and dissecting basic molecular mechanisms of endochondral bone formation. This review is a brief summary of the current knowledge about some of the crucial factors involved in growth plate development.
Collapse
Affiliation(s)
- Sylvain Provot
- Endocrine Unit, MGH-Harvard Medical School, Boston, MA 02114, USA
| | | |
Collapse
|
406
|
Abstract
Regulation of gene expression by transcription factors is one of the major mechanisms for controlling cellular functions. Recent advances in genetic manipulation of model animals has allowed the study of the roles of various genes and their products in physiological settings and has demonstrated the importance of specific transcription factors in bone development. Three lineages of bone cells, chondrocytes, osteoblasts, and osteoclasts, develop and differentiate according to their distinct developmental programs. These cells go through multiple differentiation stages, which are often regulated by specific transcription factors. In this minireview, we will discuss selected transcription factors that have been demonstrated to critically affect bone cell development. Further study of these molecules will lead to deeper understanding in mechanisms that govern development of bone.
Collapse
Affiliation(s)
- Tatsuya Kobayashi
- Endocrine Unit, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114, USA
| | | |
Collapse
|
407
|
Abstract
The ability of bone morphogenetic proteins (BMPs) to promote chondrogenesis has been investigated extensively over the past two decades. Although BMPs promote almost every aspect of chondrogenesis, from commitment to terminal differentiation is well known, the mechanisms of BMP action in discrete aspects of endochondral bone formation have only recently begun to be investigated. In this review, we focus on in vivo studies that have identified interactions between BMP signaling pathways and key downstream targets of BMP action in chondrogenesis. We also discuss evidence regarding the potential roles of BMP receptors in mediating distinct aspects of chondrogenesis, and studies investigating the intersection of BMP pathways with other pathways known to coordinate the progression of chondrocytes through the growth plate. These studies indicate that both Smad-dependent and -independent BMP pathways are required for chondrogenesis, and that BMPs exert essential roles via regulation of the Indian hedgehog (IHH)/parathyroid hormone-related protein (PTHrP) and fibroblast growth factor (FGF) pathways in the growth plate.
Collapse
Affiliation(s)
- Byeong S Yoon
- Department of Molecular, Cell & Developmental Biology, University of California, Los Angeles, California 90095, USA
| | | |
Collapse
|
408
|
Yan YL, Willoughby J, Liu D, Crump JG, Wilson C, Miller CT, Singer A, Kimmel C, Westerfield M, Postlethwait JH. A pair of Sox: distinct and overlapping functions of zebrafish sox9 co-orthologs in craniofacial and pectoral fin development. Development 2005; 132:1069-83. [PMID: 15689370 DOI: 10.1242/dev.01674] [Citation(s) in RCA: 271] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Understanding how developmental systems evolve after genome amplification is important for discerning the origins of vertebrate novelties, including neural crest, placodes, cartilage and bone. Sox9 is important for the development of these features, and zebrafish has two co-orthologs of tetrapod SOX9 stemming from an ancient genome duplication event in the lineage of ray-fin fish. We have used a genotype-driven screen to isolate a mutation deleting sox9b function, and investigated its phenotype and genetic interactions with a sox9a null mutation. Analysis of mutant phenotypes strongly supports the interpretation that ancestral gene functions partitioned spatially and temporally between Sox9 co-orthologs. Distinct subsets of the craniofacial skeleton, otic placode and pectoral appendage express each gene, and are defective in each single mutant. The double mutant phenotype is additive or synergistic. Ears are somewhat reduced in each single mutant but are mostly absent in the double mutant. Loss-of-function animals from mutations and morpholino injections, and gain-of-function animals injected with sox9a and sox9b mRNAs showed that sox9 helps regulate other early crest genes, including foxd3, sox10, snai1b and crestin, as well as the cartilage gene col2a1 and the bone gene runx2a; however, tfap2a was nearly unchanged in mutants. Chondrocytes failed to stack in sox9a mutants, failed to attain proper numbers in sox9b mutants and failed in both morphogenetic processes in double mutants. Pleiotropy can cause mutations in single copy tetrapod genes, such as Sox9, to block development early and obscure later gene functions. By contrast, subfunction partitioning between zebrafish co-orthologs of tetrapod genes, such as sox9a and sox9b, can relax pleiotropy and reveal both early and late developmental gene functions.
Collapse
Affiliation(s)
- Yi-Lin Yan
- Institute of Neuroscience, University of Oregon, Eugene, OR 97403, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
409
|
Brent AE, Braun T, Tabin CJ. Genetic analysis of interactions between the somitic muscle, cartilage and tendon cell lineages during mouse development. Development 2005; 132:515-28. [PMID: 15634692 DOI: 10.1242/dev.01605] [Citation(s) in RCA: 121] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Proper formation of the musculoskeletal system requires the coordinated development of the muscle, cartilage and tendon lineages arising from the somitic mesoderm. During early somite development, muscle and cartilage emerge from two distinct compartments, the myotome and sclerotome, in response to signals secreted from surrounding tissues. As the somite matures, the tendon lineage is established within the dorsolateral sclerotome, adjacent to and beneath the myotome. We examine interactions between the three lineages by observing tendon development in mouse mutants with genetically disrupted muscle or cartilage development. Through analysis of embryos carrying null mutations in Myf5 and Myod1, hence lacking both muscle progenitors and differentiated muscle, we identify an essential role for the specified myotome in axial tendon development, and suggest that absence of tendon formation in Myf5/Myod1 mutants results from loss of the myotomal FGF proteins, which depend upon Myf5 and Myod1 for their expression, and are required, in turn, for induction of the tendon progenitor markers. Our analysis of Sox5/Sox6 double mutants, in which the chondroprogenitors are unable to differentiate into cartilage,reveals that the two cell fates arising from the sclerotome, axial tendon and cartilage are alternative lineages, and that cartilage differentiation is required to actively repress tendon development in the dorsolateral sclerotome.
Collapse
Affiliation(s)
- Ava E Brent
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | | | | |
Collapse
|
410
|
Moro T, Ogasawara T, Chikuda H, Ikeda T, Ogata N, Maruyama Z, Komori T, Hoshi K, Chung UI, Nakamura K, Okayama H, Kawaguchi H. Inhibition of Cdk6 expression through p38 MAP kinase is involved in differentiation of mouse prechondrocyte ATDC5. J Cell Physiol 2005; 204:927-33. [PMID: 15795936 DOI: 10.1002/jcp.20350] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Because a temporal arrest in the G1-phase of the cell cycle is a prerequisite for cell differentiation, this study investigated the involvement of cell cycle factors in the differentiation of cultured mouse prechondrocyte cell line ATDC5. Among the G1 cell cycle factors examined, both protein and mRNA levels of cyclin-dependent kinase (Cdk6) were downregulated during the culture in a differentiation medium. The protein degradation of Cdk6 was not involved in this downregulation because proteasome inhibitors did not reverse the protein level. When inhibitors of p38 MAPK, ERK-1/2, and PI3K/Akt were added to the culture, only a p38 MAPK inhibitor SB203580 blocked the decrease in the Cdk6 protein level by the differentiation medium, indicating that the Cdk6 inhibition was mediated by p38 MAPK pathway. In fact, p38 MAPK was confirmed to be phosphorylated during differentiation of ATDC5 cells. Enforced expression of Cdk6 in ATDC5 cells blocked the chondrocyte differentiation and inhibited Sox5 and Sox6 expressions. However, the Cdk6 overexpression did not affect the proliferation or the cell cycle progression, suggesting that the inhibitory effect of Cdk6 on the differentiation was exerted by a mechanism largely independent of its cell cycle regulation. These results indicate that Cdk6 may be a regulator of chondrocyte differentiation and that its p38-mediated downregulation is involved in the efficient differentiation.
Collapse
Affiliation(s)
- Toru Moro
- Department of Sensory and Motor System Medicine, Faculty of Medicine, University of Tokyo, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
411
|
Gao S, Zhang T, Zhou X, Zhao Y, Li Q, Guo Y, Cheng H, Zhou R. Molecular cloning, expression ofSox5 and its down-regulation ofDmrt1 transcription in Zebrafish. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2005; 304:476-83. [PMID: 15981199 DOI: 10.1002/jez.b.21053] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The doublesex and mab-3-related transcription factor 1 (Dmrt1) is the founding member of a family of DM domain genes, involved in gonadogenesis. Here we report the cloning of zebrafish Sox5 and use real time PCR to show that its expression increases while expression of Dmrt1 decreases during embryogenesis. Characterization of the proximal promoter of zebrafish Dmrt1 revealed two positive and two negative regulatory regions and a Sox5-binding site. Co-transfection of dmrt1 (with or without the Sox-binding site), driving an EGFP reporter and Sox5 showed further that Sox5 bound the Dmrt1 promoter and inhibited Dmrt1 expression. This antagonistic partnership between Dmrt1 and Sox5 suggests a potential transcriptional regulatory mechanism for Dmrt1 in early embryogenesis.
Collapse
Affiliation(s)
- Shang Gao
- Department of Genetics and Center for Developmental Biology, College of Life Sciences, Wuhan University, Wuhan 430072, P.R. China
| | | | | | | | | | | | | | | |
Collapse
|
412
|
Abstract
Chondrogenesis is an essential process in vertebrates. It leads to the formation of cartilage growth plates, which drive body growth and have primary roles in endochondral ossification. It also leads to the formation of permanent cartilaginous tissues that provide major structural support in the articular joints and respiratory and auditory tracts throughout life. Defects in chondrogenesis cause chondrodysostoses and chondrodysplasias. These skeletal malformation diseases account for a significant proportion of birth defects in humans and can dramatically affect a person's expectancy and quality of life. Chondrogenesis occurs when pluripotent mesenchymal cells commit to the chondrocyte lineage, and through a series of differentiation steps build and eventually remodel cartilage. This review summarizes and discusses our current knowledge and lack of knowledge about the chondrocyte differentiation pathway, from mesenchymal cells to growth plate and articular chondrocytes, with a main focus on how it is controlled by tissue patterning and cell differentiation transcription factors, such as, but not limited to, Pax1 and Pax9, Nkx3.1 and Nkx3.2, Sox9, Sox5 and Sox6, Runx2 and Runx3, and c-Maf.
Collapse
Affiliation(s)
- Véronique Lefebvre
- Department of Biomedical Engineering and Orthopaedic Research Center, Cleveland Clinic Foundation, Cleveland, Ohio 44195, USA.
| | | |
Collapse
|
413
|
Tew SR, Li Y, Pothacharoen P, Tweats LM, Hawkins RE, Hardingham TE. Retroviral transduction with SOX9 enhances re-expression of the chondrocyte phenotype in passaged osteoarthritic human articular chondrocytes. Osteoarthritis Cartilage 2005; 13:80-9. [PMID: 15639641 DOI: 10.1016/j.joca.2004.10.011] [Citation(s) in RCA: 144] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2004] [Accepted: 10/05/2004] [Indexed: 02/02/2023]
Abstract
OBJECTIVES Articular chondrocytes proliferate in monolayer culture, but the expression of the transcription factor SOX9 falls and the ability of the cells to reform cartilage tissue declines. We have investigated whether retroviral SOX9 expression in extensively passaged human articular chondrocytes from osteoarthritic (OA) joints enables the cells to regain a cartilage matrix forming phenotype in pellet culture. DESIGN Chondrocytes from normal and OA joints were retrovirally transduced with SOX9 and grown to passages 7-10 before being cultured as pellets of 500,000 cells for 14 days. Pellets were analysed by real time polymerase chain reaction, histology, immunohistochemistry and 1,9-dimethylmethylene blue assay. RESULTS Chondrocytes from OA joints displayed higher expression of COL2A1 gene when transduced with SOX9 and cultured as pellets with 10% serum, but glycosaminoglycan (GAG) synthesis was low. Addition of transforming growth factor beta-3 and insulin like growth factor-1 increased collagen II expression and GAG synthesis in these SOX9 transduced cell pellets. The cells adopted a rounded morphology and there was increased deposition of collagen II protein compared to control green fluorescent protein transduced cell pellets. Similar results were seen with transduced chondrocytes from OA or healthy cartilage. SOX9 transduced human dermal fibroblasts did not show any chondrogenic response. DISCUSSION Transduction with SOX9 primed the passaged articular chondrocytes to regain a chondrocytic phenotype in pellet culture and to form a cartilaginous matrix, which was enhanced by growth factors. Following transduction, chondrocytes from OA joints showed a similar capacity for chondrogenic recovery as those from healthy joints, which suggested that OA does not permanently compromise the chondrocyte phenotype.
Collapse
Affiliation(s)
- Simon R Tew
- UK Centre for Tissue Engineering at The Wellcome Trust Centre for Cell-Matrix Research, Faculty of Life Sciences, University of Manchester, Manchester, UK
| | | | | | | | | | | |
Collapse
|
414
|
Ikeda T, Kawaguchi H, Kamekura S, Ogata N, Mori Y, Nakamura K, Ikegawa S, Chung UI. Distinct roles of Sox5, Sox6, and Sox9 in different stages of chondrogenic differentiation. J Bone Miner Metab 2005; 23:337-40. [PMID: 16133682 DOI: 10.1007/s00774-005-0610-y] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2005] [Accepted: 04/03/2005] [Indexed: 11/29/2022]
Affiliation(s)
- Toshiyuki Ikeda
- Division of Tissue Engineering, University of Tokyo Hospital, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | | | | | | | | | | | | | | |
Collapse
|
415
|
Abstract
Chondrogenesis is the earliest phase of skeletal development, involving mesenchymal cell recruitment and migration, condensation of progenitors, and chondrocyte differentiation, and maturation and resulting in the formation of cartilage and bone during endochondral ossification. This process is controlled exquisitely by cellular interactions with the surrounding matrix, growth and differentiation factors, and other environmental factors that initiate or suppress cellular signaling pathways and transcription of specific genes in a temporal-spatial manner. Vertebrate limb development is controlled by interacting patterning systems involving prominently the fibroblast growth factor (FGF), bone morphogenetic protein (BMP), and hedgehog pathways. Both positive and negative signaling kinases and transcription factors, such as Sox9 and Runx2, and interactions among them determine whether the differentiated chondrocytes remain within cartilage elements in articular joints or undergo hypertrophic maturation prior to ossification. The latter process requires extracellular matrix remodeling and vascularization controlled by mechanisms that are not understood completely. Recent work has revealed novel roles for mediators such as GADD45beta, transcription factors of the Dlx, bHLH, leucine zipper, and AP-1 families, and the Wnt/beta-catenin pathway that interact at different stages during chondrogenesis.
Collapse
Affiliation(s)
- Mary B Goldring
- Department of Medicine, Division of Rheumatology, Beth Israel Deaconess Medical Center, New England Baptist Bone and Joint Institute and Harvard Medical School, Boston, MA 02115, USA.
| | | | | |
Collapse
|
416
|
Eames BF, Sharpe PT, Helms JA. Hierarchy revealed in the specification of three skeletal fates by Sox9 and Runx2. Dev Biol 2004; 274:188-200. [PMID: 15355797 DOI: 10.1016/j.ydbio.2004.07.006] [Citation(s) in RCA: 99] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2004] [Revised: 06/02/2004] [Accepted: 07/05/2004] [Indexed: 12/31/2022]
Abstract
Across vertebrates, there are three principal skeletal tissues: bone, persistent cartilage, and replacement cartilage. Although each tissue has a different evolutionary history and functional morphology, they also share many features. For example, they function as structural supports, they are comprised of cells embedded in collagen-rich extracellular matrix, and they derive from a common embryonic stem cell, the osteochondroprogenitor. Occasionally, homologous skeletal elements can change tissue type through phylogeny. Together, these observations raise the possibility that skeletal tissue identity is determined by a shared set of genes. Here, we show that misexpression of either Sox9 or Runx2 can substitute bone with replacement cartilage or can convert persistent cartilage into replacement cartilage and vice versa. Our data also suggest that these transcription factors function in a molecular hierarchy in which chondrogenic factors dominate. We propose a binary molecular code that determines whether skeletal tissues form as bone, persistent cartilage, or replacement cartilage. Finally, these data provide insights into the roles that master regulatory genes play during evolutionary change of the vertebrate skeleton.
Collapse
Affiliation(s)
- B Frank Eames
- UCSF Orthopaedic Surgery, San Francisco, CA 94143-0514, USA
| | | | | |
Collapse
|
417
|
Rountree RB, Schoor M, Chen H, Marks ME, Harley V, Mishina Y, Kingsley DM. BMP receptor signaling is required for postnatal maintenance of articular cartilage. PLoS Biol 2004; 2:e355. [PMID: 15492776 PMCID: PMC523229 DOI: 10.1371/journal.pbio.0020355] [Citation(s) in RCA: 215] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2004] [Accepted: 08/19/2004] [Indexed: 11/19/2022] Open
Abstract
Articular cartilage plays an essential role in health and mobility, but is frequently damaged or lost in millions of people that develop arthritis. The molecular mechanisms that create and maintain this thin layer of cartilage that covers the surface of bones in joint regions are poorly understood, in part because tools to manipulate gene expression specifically in this tissue have not been available. Here we use regulatory information from the mouse Gdf5 gene (a bone morphogenetic protein [BMP] family member) to develop new mouse lines that can be used to either activate or inactivate genes specifically in developing joints. Expression of Cre recombinase from Gdf5 bacterial artificial chromosome clones leads to specific activation or inactivation of floxed target genes in developing joints, including early joint interzones, adult articular cartilage, and the joint capsule. We have used this system to test the role of BMP receptor signaling in joint development. Mice with null mutations in Bmpr1a are known to die early in embryogenesis with multiple defects. However, combining a floxed Bmpr1a allele with the Gdf5-Cre driver bypasses this embryonic lethality, and leads to birth and postnatal development of mice missing the Bmpr1a gene in articular regions. Most joints in the body form normally in the absence of Bmpr1a receptor function. However, articular cartilage within the joints gradually wears away in receptor-deficient mice after birth in a process resembling human osteoarthritis. Gdf5-Cre mice provide a general system that can be used to test the role of genes in articular regions. BMP receptor signaling is required not only for early development and creation of multiple tissues, but also for ongoing maintenance of articular cartilage after birth. Genetic variation in the strength of BMP receptor signaling may be an important risk factor in human osteoarthritis, and treatments that mimic or augment BMP receptor signaling should be investigated as a possible therapeutic strategy for maintaining the health of joint linings.
Collapse
MESH Headings
- Alleles
- Animals
- Apoptosis
- Bone Morphogenetic Protein Receptors/metabolism
- Bone Morphogenetic Protein Receptors, Type I/genetics
- Bone Morphogenetic Proteins/genetics
- Cartilage/metabolism
- Cartilage/pathology
- Cartilage, Articular/embryology
- Cartilage, Articular/growth & development
- Cartilage, Articular/metabolism
- Cell Proliferation
- Chromosomes, Artificial, Bacterial/metabolism
- Gene Expression Regulation, Developmental
- Genetic Variation
- Growth Differentiation Factor 5
- Inflammation
- Integrases/metabolism
- Joints/embryology
- Mice
- Mice, Inbred C57BL
- Mice, Transgenic
- Molecular Sequence Data
- Mutation
- Osteoarthritis/metabolism
- Phenotype
- Recombination, Genetic
- Risk Factors
- Signal Transduction
- Synovial Membrane/embryology
- Time Factors
Collapse
Affiliation(s)
- Ryan B Rountree
- 1Department of Developmental Biology and Howard Hughes Medical Institute, Stanford University School of MedicineStanford, CaliforniaUnited States of America
| | - Michael Schoor
- 1Department of Developmental Biology and Howard Hughes Medical Institute, Stanford University School of MedicineStanford, CaliforniaUnited States of America
| | - Hao Chen
- 1Department of Developmental Biology and Howard Hughes Medical Institute, Stanford University School of MedicineStanford, CaliforniaUnited States of America
| | - Melissa E Marks
- 1Department of Developmental Biology and Howard Hughes Medical Institute, Stanford University School of MedicineStanford, CaliforniaUnited States of America
| | - Vincent Harley
- 2Prince Henry's Institute of Medical Research, Monash Medical CentreClayton, VictoriaAustralia
| | - Yuji Mishina
- 3National Institute of Environmental Health Sciences, National Institutes of HealthResearch Triangle Park, North CarolinaUnited States of America
| | - David M Kingsley
- 1Department of Developmental Biology and Howard Hughes Medical Institute, Stanford University School of MedicineStanford, CaliforniaUnited States of America
| |
Collapse
|
418
|
Lee HJ, Göring W, Ochs M, Mühlfeld C, Steding G, Paprotta I, Engel W, Adham IM. Sox15 is required for skeletal muscle regeneration. Mol Cell Biol 2004; 24:8428-36. [PMID: 15367664 PMCID: PMC516755 DOI: 10.1128/mcb.24.19.8428-8436.2004] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Sox genes define a family of transcription factors that play a key role in the determination of cell fate during development. The preferential expression of the Sox15 in the myogenic precursor cells led us to suggest that the Sox15 is involved in the specification of myogenic cell lineages or in the regulation of the fusion of myoblasts to form myotubes during the development and regeneration of skeletal muscle. To identify the physiological function of Sox15 in mice, we disrupted the Sox15 by homologous recombination in mice. Sox15-deficient mice were born at expected ratios, were healthy and fertile, and displayed normal long-term survival rates. Histological analysis revealed the normal ultrastructure of myofibers and the presence of comparable amounts of satellite cells in the skeletal muscles of Sox15(-/-) animals compared to wild-type animals. These results exclude the role of Sox15 in the development of satellite cells. However, cultured Sox15(-/-) myoblasts displayed a marked delay in differentiation potential in vitro. Moreover, skeletal muscle regeneration in Sox15(-/-) mice was attenuated after application of a crush injury. These results suggest a requirement for Sox15 in the myogenic program. Expression analyses of the early myogenic regulated factors MyoD and Myf5 showed the downregulation of the MyoD and upregulation of the Myf5 in Sox15(-/-) myoblasts. These results show an increased proportion of the Myf5-positive cells and suggest a role for Sox15 in determining the early myogenic cell lineages during skeletal muscle development.
Collapse
Affiliation(s)
- Heon-Jin Lee
- Institute of Human Genetics, University of Göttingen, Germany
| | | | | | | | | | | | | | | |
Collapse
|
419
|
Ikeda T, Kamekura S, Mabuchi A, Kou I, Seki S, Takato T, Nakamura K, Kawaguchi H, Ikegawa S, Chung UI. The combination of SOX5, SOX6, and SOX9 (the SOX trio) provides signals sufficient for induction of permanent cartilage. ACTA ACUST UNITED AC 2004; 50:3561-73. [PMID: 15529345 DOI: 10.1002/art.20611] [Citation(s) in RCA: 274] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
OBJECTIVE To regenerate permanent cartilage, it is crucial to know not only the necessary conditions for chondrogenesis, but also the sufficient conditions. The objective of this study was to determine the signal sufficient for chondrogenesis. METHODS Embryonic stem cells that had been engineered to fluoresce upon chondrocyte differentiation were treated with combinations of factors necessary for chondrogenesis, and chondrocyte differentiation was detected as fluorescence. We screened for the combination that could induce fluorescence within 3 days. Then, primary mesenchymal stem cells, nonchondrogenic immortalized cell lines, and primary dermal fibroblasts were treated with the combination, and the induction of chondrocyte differentiation was assessed by detecting the expression of the cartilage marker genes and the accumulation of proteoglycan-rich matrix. The effects of monolayer, spheroid, and 3-dimensional culture systems on induction by combinations of transcription factors were compared. The effects of the combination on hypertrophic and osteoblastic differentiation were evaluated by detecting the expression of the characteristic marker genes. RESULTS No single factor induced fluorescence. Among various combinations examined, only the SOX5, SOX6, and SOX9 combination (the SOX trio) induced fluorescence within 3 days. The SOX trio successfully induced chondrocyte differentiation in all cell types tested, including nonchondrogenic types, and the induction occurred regardless of the culture system used. Contrary to the conventional chondrogenic techniques, the SOX trio suppressed hypertrophic and osteogenic differentiation at the same time. CONCLUSION These data strongly suggest that the SOX trio provides signals sufficient for the induction of permanent cartilage.
Collapse
Affiliation(s)
- Toshiyuki Ikeda
- Laboratory for Bone & Joint Diseases, SNP Research Center, RIKEN (The Institute of Physical and Chemical Research), University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
420
|
Abstract
Extracellular matrix metabolism plays a central role in development of skeletal tissues and in most orthopaedic diseases and trauma such as fracture or osteotomy repair, arthritis, cartilage repair, and congenital skeletal deformity. During development or disease, specific genes must be expressed in order to make or repair appropriate extracellular matrix. For example, specific gene expression patterns are characteristic of bone and cartilage. The precise expression pattern depends on a balance of positive and negative transcription factors, proteins that control the synthesis of mRNA from the specific gene. In cartilage, a number of studies indicate that Sox transcription factors are critical positive regulators in genes such as COL2A1, COL9A2, COL11A2, aggrecan, and CD-RAP. In addition, negative regulators are also essential to fine tune gene regulation in chondrocytes and to turn off gene expression in noncartilaginous tissues. Negative transcription factors in cartilage include partial differentialEF-1, snail/slug, CYRBP1, NT2, and C/EBP. Runx2 and osterix are critical transcription factors for osteogenesis but also have some influence on chondrogenesis. The availability of cis-regulatory sites in specific genes combined with the availability of transcription factors in the nucleus determines the level of gene expression.
Collapse
Affiliation(s)
- Ken Okazaki
- Department of Orthopaedic Surgery, Washington University School of Medicine at Barnes-Jewish Hospital, St. Louis, MO 63110, USA
| | | |
Collapse
|
421
|
Smits P, Dy P, Mitra S, Lefebvre V. Sox5 and Sox6 are needed to develop and maintain source, columnar, and hypertrophic chondrocytes in the cartilage growth plate. ACTA ACUST UNITED AC 2004; 164:747-58. [PMID: 14993235 PMCID: PMC2172159 DOI: 10.1083/jcb.200312045] [Citation(s) in RCA: 132] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Sox5 and Sox6 encode Sry-related transcription factors that redundantly promote early chondroblast differentiation. Using mouse embryos with three or four null alleles of Sox5 and Sox6, we show that they are also essential and redundant in major steps of growth plate chondrocyte differentiation. Sox5 and Sox6 promote the development of a highly proliferating pool of chondroblasts between the epiphyses and metaphyses of future long bones. This pool is the likely cellular source of growth plates. Sox5 and Sox6 permit formation of growth plate columnar zones by keeping chondroblasts proliferating and by delaying chondrocyte prehypertrophy. They allow induction of chondrocyte hypertrophy and permit formation of prehypertrophic and hypertrophic zones by delaying chondrocyte terminal differentiation induced by ossification fronts. They act, at least in part, by down-regulating Ihh signaling, Fgfr3, and Runx2 and by up-regulating Bmp6. In conclusion, Sox5 and Sox6 are needed for the establishment of multilayered growth plates, and thereby for proper and timely development of endochondral bones.
Collapse
MESH Headings
- Animals
- Animals, Newborn
- Bone Development/physiology
- Bone Morphogenetic Protein 6
- Bone Morphogenetic Proteins/genetics
- Bone Morphogenetic Proteins/metabolism
- Bone and Bones/abnormalities
- Bone and Bones/anatomy & histology
- Bone and Bones/embryology
- Cartilage/cytology
- Cartilage/embryology
- Cartilage/pathology
- Cell Differentiation/physiology
- Cell Division/physiology
- Chondrocytes/cytology
- Chondrocytes/metabolism
- Core Binding Factor Alpha 1 Subunit
- DNA-Binding Proteins/genetics
- DNA-Binding Proteins/metabolism
- Embryo, Mammalian/anatomy & histology
- Embryo, Mammalian/physiology
- Female
- Gestational Age
- Growth Plate/cytology
- Growth Plate/pathology
- Growth Plate/physiology
- Hedgehog Proteins
- High Mobility Group Proteins/genetics
- High Mobility Group Proteins/metabolism
- Hypertrophy/metabolism
- Intracellular Signaling Peptides and Proteins
- Membrane Proteins
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Neoplasm Proteins/genetics
- Neoplasm Proteins/metabolism
- Nuclear Proteins/genetics
- Nuclear Proteins/metabolism
- Parathyroid Hormone-Related Protein/genetics
- Parathyroid Hormone-Related Protein/metabolism
- Patched Receptors
- Pregnancy
- Protein-Tyrosine Kinases/genetics
- Protein-Tyrosine Kinases/metabolism
- Proteins/genetics
- Proteins/metabolism
- Receptor, Fibroblast Growth Factor, Type 3
- Receptors, Cell Surface
- Receptors, Fibroblast Growth Factor/genetics
- Receptors, Fibroblast Growth Factor/metabolism
- SOXD Transcription Factors
- Trans-Activators/genetics
- Trans-Activators/metabolism
- Transcription Factors/genetics
- Transcription Factors/metabolism
Collapse
Affiliation(s)
- Patrick Smits
- Dept. of Biomedical Engineering, Lerner Research Institute, The Cleveland Clinic Foundation, 9500 Euclid Ave., ND-20, Cleveland, OH 44195, USA
| | | | | | | |
Collapse
|
422
|
Niimi T, Hayashi Y, Futaki S, Sekiguchi K. SOX7 and SOX17 Regulate the Parietal Endoderm-specific Enhancer Activity of Mouse Laminin α1 Gene. J Biol Chem 2004; 279:38055-61. [PMID: 15220343 DOI: 10.1074/jbc.m403724200] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Laminin-1 is the major component of embryonic basement membrane and consists of alpha1, beta1, and gamma1 chains. The expression of laminin-1 is induced in mouse F9 embryonal carcinoma cells upon differentiation into parietal endoderm cells. We recently identified a parietal endoderm-specific enhancer in the mouse laminin alpha1 (Lama1) gene and showed that Sp1/Sp3 and YY1 transcription factors were involved in the enhancer activity. Although here we identified that NF-Y binds to the enhancer sequence between Sp1/Sp3- and YY1-binding sites, all these transcription factors are ubiquitously expressed and thus are not sufficient to explain parietal endoderm-specific enhancer activity. In the present study, we further showed that SOX7 and SOX17 are involved in the regulation of parietal endoderm-specific enhancer activity of the mouse Lama1 gene. Northern blot analysis revealed that the steady-state levels of mouse Sox7 and Sox17 mRNAs increased in parallel with that of Lama1 mRNA during the differentiation of F9 cells. Both SOX7 and SOX17 markedly trans-activated the transcription of the Lama1 enhancer-reporter construct in undifferentiated F9 cells in a manner dependent on high mobility group box-mediated DNA binding. Electrophoretic mobility shift assays and mutational analyses revealed that SOX7 and SOX17 bound specifically to two SOX-binding sites within the Lama1 enhancer, and that these SOX-binding sites functioned synergistically to confer the trans-activation by SOX7 and SOX17. Furthermore, this trans-activation was dependent on the integrity of the binding sites for Sp1/Sp3 and NF-Y located at upstream of the two SOX-binding sites. These results indicate that the transcription of the mouse Lama1 gene during the differentiation of F9 cells is controlled by a combination of the actions of the ubiquitous factors, Sp1/Sp3 and NF-Y, and the parietal endoderm-specific factors, SOX7 and SOX17.
Collapse
Affiliation(s)
- Tomoaki Niimi
- Sekiguchi Biomatrix Signaling Project, ERATO, Japan Science and Technology Agency, Aichi Medical University, Karimata, Yazako, Nagakute, Aichi 480-1195, Japan
| | | | | | | |
Collapse
|
423
|
Perez-Alcala S, Nieto MA, Barbas JA. LSox5 regulates RhoB expression in the neural tube and promotes generation of the neural crest. Development 2004; 131:4455-65. [PMID: 15306568 DOI: 10.1242/dev.01329] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Members of the Sox family of transcription factors are involved in a number of crucial developmental processes, including sex determination, neurogenesis and skeletal development. LSox5 is a member of the group D Sox factors that, in conjunction with Sox6 and Sox9, promotes chondrogenesis by activating the expression of cartilage-specific extracellular matrix molecules. We have cloned the chicken homologue of LSox5 and found that it is initially expressed in the premigratory and migratory neural crest after Slug and FoxD3. Subsequently, the expression of LSox5 is maintained in cephalic crest derivatives, and it appears to be required for the development of the glial lineage, the Schwann cells and satellite glia in cranial ganglia. Misexpression of LSox5 in the cephalic neural tube activated RhoB expression throughout the dorsoventral axis. Furthermore, the prolonged forced expression of LSox5 enlarged the dorsal territory in which the neural crest is generated, extended the 'temporal window' of neural crest segregation, and led to an overproduction of neural crest cells in cephalic regions. In addition to HNK-1, the additional neural crest cells expressed putative upstream markers (Slug, FoxD3) indicating that a regulatory feedback mechanism may operate during neural crest generation. Thus, our data show that in addition to the SoxE genes (Sox9 and Sox10) a SoxD gene (Sox5) also participates in neural crest development and that a cooperative interaction may operate during neural crest generation, as seen during the formation of cartilage.
Collapse
|
424
|
Fujita T, Azuma Y, Fukuyama R, Hattori Y, Yoshida C, Koida M, Ogita K, Komori T. Runx2 induces osteoblast and chondrocyte differentiation and enhances their migration by coupling with PI3K-Akt signaling. ACTA ACUST UNITED AC 2004; 166:85-95. [PMID: 15226309 PMCID: PMC2172136 DOI: 10.1083/jcb.200401138] [Citation(s) in RCA: 353] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Runx2 and phosphatidylinositol 3-kinase (PI3K)–Akt signaling play important roles in osteoblast and chondrocyte differentiation. We investigated the relationship between Runx2 and PI3K-Akt signaling. Forced expression of Runx2 enhanced osteoblastic differentiation of C3H10T1/2 and MC3T3-E1 cells and enhanced chondrogenic differentiation of ATDC5 cells, whereas these effects were blocked by treatment with IGF-I antibody or LY294002 or adenoviral introduction of dominant-negative (dn)–Akt. Forced expression of Runx2 or dn-Runx2 enhanced or inhibited cell migration, respectively, whereas the enhancement by Runx2 was abolished by treatment with LY294002 or adenoviral introduction of dn-Akt. Runx2 up-regulated PI3K subunits (p85 and p110β) and Akt, and their expression patterns were similar to that of Runx2 in growth plates. Treatment with LY294002 or introduction of dn-Akt severely diminished DNA binding of Runx2 and Runx2-dependent transcription, whereas forced expression of myrAkt enhanced them. These findings demonstrate that Runx2 and PI3K-Akt signaling are mutually dependent on each other in the regulation of osteoblast and chondrocyte differentiation and their migration.
Collapse
Affiliation(s)
- Takashi Fujita
- Department of Pharmacology, Setsunan University, Hirakata, Japan
| | | | | | | | | | | | | | | |
Collapse
|
425
|
Akiyama H, Lyons JP, Mori-Akiyama Y, Yang X, Zhang R, Zhang Z, Deng JM, Taketo MM, Nakamura T, Behringer RR, McCrea PD, de Crombrugghe B. Interactions between Sox9 and beta-catenin control chondrocyte differentiation. Genes Dev 2004; 18:1072-87. [PMID: 15132997 PMCID: PMC406296 DOI: 10.1101/gad.1171104] [Citation(s) in RCA: 600] [Impact Index Per Article: 28.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Chondrogenesis is a multistep process that is essential for endochondral bone formation. Previous results have indicated a role for beta-catenin and Wnt signaling in this pathway. Here we show the existence of physical and functional interactions between beta-catenin and Sox9, a transcription factor that is required in successive steps of chondrogenesis. In vivo, either overexpression of Sox9 or inactivation of beta-catenin in chondrocytes of mouse embryos produces a similar phenotype of dwarfism with decreased chondrocyte proliferation, delayed hypertrophic chondrocyte differentiation, and endochondral bone formation. Furthermore, either inactivation of Sox9 or stabilization of beta-catenin in chondrocytes also produces a similar phenotype of severe chondrodysplasia. Sox9 markedly inhibits activation of beta-catenin-dependent promoters and stimulates degradation of beta-catenin by the ubiquitination/proteasome pathway. Likewise, Sox9 inhibits beta-catenin-mediated secondary axis induction in Xenopus embryos. Beta-catenin physically interacts through its Armadillo repeats with the C-terminal transactivation domain of Sox9. We hypothesize that the inhibitory activity of Sox9 is caused by its ability to compete with Tcf/Lef for binding to beta-catenin, followed by degradation of beta-catenin. Our results strongly suggest that chondrogenesis is controlled by interactions between Sox9 and the Wnt/beta-catenin signaling pathway.
Collapse
Affiliation(s)
- Haruhiko Akiyama
- Department of Molecular Genetics, The University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
426
|
Akiyama H, Chaboissier MC, Behringer RR, Rowitch DH, Schedl A, Epstein JA, de Crombrugghe B. Essential role of Sox9 in the pathway that controls formation of cardiac valves and septa. Proc Natl Acad Sci U S A 2004; 101:6502-7. [PMID: 15096597 PMCID: PMC404074 DOI: 10.1073/pnas.0401711101] [Citation(s) in RCA: 212] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Epithelial-mesenchymal transformation is a critical developmental process reiterated in multiple organs throughout embryogenesis. Formation of endocardial cushions, primordia of valves and septa, is a classic example of epithelial-mesenchymal transformation. Several gene mutations are known to affect cardiac valve formation. Sox9 is activated when endocardial endothelial cells undergo mesenchymal transformation and migrate into an extracellular matrix, called cardiac jelly, to form endocardial cushions. In Sox9-null mutants, endocardial cushions are markedly hypoplastic. In these mutants, Nfatc1 is ectopically expressed and no longer restricted to endothelial cells. Further, Sox9-deficient endocardial mesenchymal cells fail to express ErbB3, which is required for endocardial cushion cell differentiation and proliferation. Our results reveal a succession of molecular steps in the pathway of endocardial cushion development. We propose that loss of Sox9 inhibits epithelial-mesenchymal transformation after delamination and initial migration, but before definitive mesenchymal transformation.
Collapse
Affiliation(s)
- Haruhiko Akiyama
- Department of Molecular Genetics, University of Texas M. D. Anderson Cancer Center, Houston, TX 77030, USA
| | | | | | | | | | | | | |
Collapse
|
427
|
van der Kraan PM, van de Loo FAJ, van den Berg WB. Role of gene therapy in tissue engineering procedures in rheumatology: the use of animal models. Biomaterials 2004; 25:1497-504. [PMID: 14697852 DOI: 10.1016/s0142-9612(03)00493-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Tissue engineering is not only the application of cells and scaffolds to generate a new tissue but should also bring into play biological principles to guide cellular behavior. A way to modify cellular behavior is genetic modification of the cells used for tissue engineering (gene therapy). In the field of rheumatic diseases, cellular modification by overexpressing anabolic factors, such as insulin-like growth factor-I or transforming growth factor beta, or inhibitors of catabolic cytokines or proteolytic enzymes can protect tissues form further destruction and stimulate tissue repair. To test the effect of transgenes on tissue engineering adequate test systems have to be available. Initial testing can be done in simple in vitro systems. However, animal models are unavoidable to study the interaction between the environment and tissue engineering. Optimal models to study gene therapy in combination with tissue engineering in the field of rheumatology are not available at this moment. Arthritis models are mainly developed in small animals while high-quality tissue engineering experiments ask for a large animal model. Development of animal models that can be used for tissue engineering experiments and mimic end stage arthritic diseases is needed.
Collapse
Affiliation(s)
- Peter M van der Kraan
- Experimental Rheumatology and Advanced Therapeutics, Nijmegen Center for Molecular Life Sciences, University Medical Center Nijmegen, Geert Grooteplein 26-28, GA 6525, Nijmegen, The Netherlands.
| | | | | |
Collapse
|
428
|
Cohen-Barak O, Yi Z, Hagiwara N, Monzen K, Komuro I, Brilliant MH. Sox6 regulation of cardiac myocyte development. Nucleic Acids Res 2004; 31:5941-8. [PMID: 14530442 PMCID: PMC219484 DOI: 10.1093/nar/gkg807] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
A mouse mutation (p100H/p100H) has been identified that is associated with cardioskeletal myopathy, heart block, delayed growth and early postnatal death. The gene that is disrupted in this mutation encodes the transcription factor Sox6. P19CL6 cells were used as an in vitro cardiomyocyte differentiation system and revealed that Sox6 is expressed exclusively when the cells are committed to differentiate to beating cardiac myocytes. We used the yeast two-hybrid system to identify the Prtb (Proline-rich transcript of the brain) protein as a Sox6 interactor, and subsequently confirmed the interaction by co-immunoprecipitation. Prtb expression in P19CL6 cells increased with differentiation to beating cardiomyocytes. Using the P19CL6 cells stably transfected with noggin, an antagonist of BMP (Bone Morphogenic Protein), we found that BMP expression is required for Sox6 expression in cardiomyocyte differentiation. Surprisingly, the expression of the alpha1c-subunit gene of the L-type Ca2+ channel decreased in P19CL6 cells as they differentiated to beating cardiac cells. Ectopic expression of Sox6 or Prtb alone in P19CL6 cells caused down-regulation of L-type Ca2+ alpha1c expression, but when Sox6 and Prtb were co-transfected to the cells, L-type Ca2+ alpha1c remained at basal levels. A similar relationship of Sox6 and L-type Ca2+ alpha1c expression was seen in vivo (comparing wild-type and p(100H)/p(100H) mutant mice). Thus, Sox6 is within the BMP pathway in cardiac differentiation, interacts with Prtb and may play a critical role in the regulation of a cardiac L-type Ca2+ channel.
Collapse
Affiliation(s)
- Orit Cohen-Barak
- Department of Pediatrics, The University of Arizona College of Medicine, Steele Memorial Children's Research Center 1501 N. Campbell Avenue, Tucson, AZ 85724, USA
| | | | | | | | | | | |
Collapse
|
429
|
Huang Z, Xu H, Sandell L. Negative regulation of chondrocyte differentiation by transcription factor AP-2alpha. J Bone Miner Res 2004; 19:245-55. [PMID: 14969394 DOI: 10.1359/jbmr.2004.19.2.245] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2003] [Revised: 09/08/2003] [Accepted: 09/17/2003] [Indexed: 11/18/2022]
Abstract
UNLABELLED This study investigated the role of transcription factor AP-2alpha in chondrocyte differentiation in vitro. AP-2alpha mRNA declined during differentiation, and overexpression of AP-2alpha inhibited differentiation. The results demonstrated that AP-2alpha plays a negative role in chondrocyte differentiation. INTRODUCTION Transcription factor AP-2alpha has been detected in growth plate and articular chondrocytes and has been shown to regulate cartilage matrix gene expression in vitro. However, the precise functional role of AP-2alpha in chondrocyte differentiation is not known. In this study, we assessed the expression and the function of AP-2alpha in chondrocyte differentiation of ATDC5 cells. MATERIALS AND METHODS Chondrocyte differentiation of ATDC5 cells was induced with insulin or transforming growth factor beta (TGF-beta). Proteoglycan production was assessed by alcian blue staining, and expression levels of chondrocyte marker genes and AP-2 gene family were determined by quantitative real time reverse transcriptase-polymerase chain reaction (RT-PCR). Overexpression of AP-2alpha in ATDC5 cells was accomplished by retroviral infection. Infected cells were selected for G418 resistance and pooled for further analysis. RESULTS AND CONCLUSIONS Quantitative real time RT-PCR analysis showed that among the four members of the AP-2 gene family, AP-2alpha mRNA was the most abundant. AP-2alpha mRNA levels progressively declined during the differentiation induced by either insulin or TGF-beta treatment. Retroviral expression of AP-2alpha in ATDC5 cells prevented the formation of cartilage nodules, suppressed the proteoglycan production, and inhibited the expression of type II collagen, aggrecan, and type X collagen. Expression profile analysis of key transcription factors involved in chondrogenesis showed that overexpression of AP-2alpha maintained the expression of Sox9 but suppressed the expression of SoxS and Sox6. Taken together, we provide, for the first time, molecular and cellular evidence suggesting that AP-2alpha is a negative regulator of chondrocyte differentiation.
Collapse
Affiliation(s)
- Zhengmin Huang
- Department of Orthopaedic Surgery, Washington University School of Medicine, St Louis, Missouri 63110, USA.
| | | | | |
Collapse
|
430
|
Karcagi I, Rauch T, Hiripi L, Rentsendorj O, Nagy A, Bõsze Z, Kiss I. Functional analysis of the regulatory regions of the matrilin-1 gene in transgenic mice reveals modular arrangement of tissue-specific control elements. Matrix Biol 2004; 22:605-18. [PMID: 15062854 DOI: 10.1016/j.matbio.2003.11.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2003] [Revised: 11/17/2003] [Accepted: 11/18/2003] [Indexed: 11/28/2022]
Abstract
Matrilin-1 is a non-collagenous protein, which functions in the organization of the extracellular matrix by forming collagen-dependent and -independent filamentous networks. It is secreted primarily by chondrocytes in a characteristic spatial, temporal and developmental stage-specific pattern during skeletogenesis. As a first step to define the tissue- and site-specific regulatory regions of the chicken matrilin-1 gene in vivo, we generated transgenic mice harboring various promoter and intronic fragments fused to the LacZ reporter gene. Histological analysis of the transgene expression pattern during ontogenic development revealed specific X-gal staining in most primordial elements of endochondral bones of transgenic mouse lines carrying either the long promoter between -2011 and +67 or the intronic fragment with a short promoter between -338 and +1819. The cartilage-specific activity of the latter transgene, however, was accompanied with variable ectopic expression pattern in neural and other tissues depending on the site of integration. The presence of both promoter upstream and intronic elements was necessary for the high level transgene activity in all chondrogenic tissues and for the extraskeletal transgene expression pattern resembling the most to that of the chicken matrilin-1 gene, e.g. expression in the eye, and lack of expression in the diminishing notochord and nucleus pulposus. The activity of the transgenes was restricted to the columnar proliferating and pre-hypertrophic chondrocytes visualized by BrdU incorporation and distribution of phosphorylated Sox9, respectively. DNA elements between -2011 and -338 also mediated ectopic LacZ expression in cells of neural crest origin. These results suggest that an interplay of modularly arranged cartilage- and neural crest-specific DNA elements control the expression of the matrilin-1 gene. The dispersal of cartilage-specific elements in the promoter upstream and intronic regions shows similarity to the transcriptional regulation of the Col11a2 gene.
Collapse
Affiliation(s)
- Ildikó Karcagi
- Institute of Biochemistry, Biological Research Center of the Hungarian Academy of Sciences, P.O. Box 521, H-6701 Szeged, Hungary
| | | | | | | | | | | | | |
Collapse
|
431
|
Abstract
The mature mRNA always carries nucleotide sequences that faithfully mirror the protein product according to the niles of the genetic code. However, in the chromosome, the nucleotide sequence that represents a certain protein is interrupted by additional sequences. Therefore, most eukaryotic genes are longer than their final mRNA products. The human genome project revealed that only a tiny portion of sequences serves as protein-coding region and almost one quarter of the genome is occupied by non-coding intervening sequences. The elimination of these non-coding regions from the precursor RNA in a process termed splicing must be extremely precise, because even a single nucleotide mistake may cause a fatal error. At present, two types of intervening sequences have been identified in protein-coding genes. One of them, the U2-dependent or major-class is prevalent and represents 99% of known sequences. The other one, the so-called U12-dependent or minor-class of introns, occurs in much lesser amounts in the genome. The basic problem of nuclear splicing concerns i/ the molecular mechanisms, which ensure that the coding regions are correctly recognized and spliced together: ii/ the principles and mechanisms that guarantee the high fidelity of the splicing system; iii/ the differences in the excision mechanisms of the two classes of introns. We are going to present models explaining how intervening sequences are accurately removed and the coding regions correctly juxtaposed. The two splicing mechanisms will also be compared.
Collapse
Affiliation(s)
- T Rauch
- Institute of Biochemistry, Biological Research Center of the Hungarian Academy of Sciences, PO Box 521, H-6701 Szeged, Hungary
| | | |
Collapse
|
432
|
Eames BF, Helms JA. Conserved molecular program regulating cranial and appendicular skeletogenesis. Dev Dyn 2004; 231:4-13. [PMID: 15305282 DOI: 10.1002/dvdy.20134] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The majority of in vivo studies on bone and cartilage differentiation are carried out using the appendicular skeleton as a model system, with the implicit assumption that skeletal formation is equivalent throughout the body. This assumption persists, despite differences in the cellular origins of the skeletogenic precursors. To test the hypothesis that a fundamental set of genes directs skeletal cell differentiation throughout the body, we analyzed cartilage and bone of the chick limb and head during mesenchymal condensation, and when the skeletal tissues had matured. First, we analyzed the expression patterns of transcription factors in early skeletogenic condensations, which revealed similarities among skeletal cell specification in the limb and head. For example, skeletogenic condensations that undergo endochondral ossification had equivalent expression patterns of skeletogenic transcription factors in both limb and head. In the head, many elements also differentiate through intramembranous ossification, or through persistent cartilage formation. Our analyses of these skeletogenic condensations revealed that a unique expression pattern of transcription factors distinguishes among three skeletal tissue fates. The vasculature was excluded from all three skeletogenic condensations, demonstrating that this is not a characteristic unique to endochondral ossification. Second, we compared three different types of more mature cartilage and bone tissue in both the limb and the head, by analyzing a variety of skeletal collagens and signaling molecules. Histological and molecular markers of cartilage and bone generally were conserved between the limb and head skeletons, although we uncovered subtle differences in signaling pathways that might influence cranial and appendicular skeletogenesis.
Collapse
|
433
|
Takada S, Koopman P. Origin and possible roles of the SOX8 transcription factor gene during sexual development. Cytogenet Genome Res 2003; 101:212-8. [PMID: 14689607 DOI: 10.1159/000074339] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/18/2003] [Indexed: 11/19/2022] Open
Abstract
SOX8 is a member of the SOX family of developmental transcription factor genes and is closely related to SOX9, a critical gene involved in mammalian sex determination and differentiation. Both genes encode proteins with the ability to bind similar DNA target sequences, and to activate transcription in in vitro assays. Expression studies indicate that the two genes have largely overlapping patterns of activity during mammalian embryonic development. A knockout of SOX8 in mice has no obvious developmental phenotype, suggesting that the two genes are able to act redundantly in a variety of developmental contexts. In particular, both genes are expressed in the developing Sertoli cell lineage of the developing testes in mice, and both proteins are able to activate transcription of the gene encoding anti-Müllerian hormone (AMH), through synergistic action with steroidogenic factor 1 (SF1). We have hypothesized that SOX8 may substitute for SOX9 in species where SOX9 is expressed too late to be involved in sex determination or regulation of AMH expression. However, our studies involving the red-eared slider turtle indicate that SOX8 is expressed at similar levels in males and females throughout the sex-determining period, suggesting that SOX8 is neither a transcriptional regulator for AMH, nor responsible for sex determination or gonad differentiation in that species. Similarly, SOX8 is not expressed in a sexually dimorphic pattern during gonadogenesis in the chicken. Since a functional role(s) for SOX8 is implied by its conservation during evolution, the significance of SOX8 for sexual and other aspects of development will need to be uncovered through more directed lines of experimentation. Copyright 2003 S. Karger AG, Basel
Collapse
Affiliation(s)
- S Takada
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| | | |
Collapse
|
434
|
Kim DW, Lassar AB. Smad-dependent recruitment of a histone deacetylase/Sin3A complex modulates the bone morphogenetic protein-dependent transcriptional repressor activity of Nkx3.2. Mol Cell Biol 2003; 23:8704-17. [PMID: 14612411 PMCID: PMC262671 DOI: 10.1128/mcb.23.23.8704-8717.2003] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2003] [Revised: 07/17/2003] [Accepted: 08/15/2003] [Indexed: 12/25/2022] Open
Abstract
We have previously shown that Nkx3.2, a transcriptional repressor that is expressed in the sclerotome and developing cartilage, can activate the chondrocyte differentiation program in somitic mesoderm in a bone morphogenetic protein (BMP)-dependent manner. In this work, we elucidate how BMP signaling modulates the transcriptional repressor activity of Nkx3.2. We have found that Nkx3.2 forms a complex, in vivo, with histone deacetylase 1 (HDAC1) and Smad1 and -4 in a BMP-dependent manner. The homeodomain and NK domain of Nkx3.2 support the interaction of this transcription factor with HDAC1 and Smad1, respectively, and both of these domains are required for the transcriptional repressor activity of Nkx3.2. Furthermore, the recruitment of an HDAC/Sin3A complex to Nkx3.2 requires that Nkx3.2 interact with Smad1 and -4. Indeed, Nkx3.2 both fails to associate with the HDAC/Sin3A complex and represses target gene transcription in a cell line lacking Smad4, but it performs these functions if exogenous Smad4 is added to these cells. While prior work has indicated that BMP-dependent Smads can support transcriptional activation, our findings indicate that BMP-dependent Smads can also potentiate transcriptional repression, depending upon the identity of the Smad-interacting transcription factor.
Collapse
Affiliation(s)
- Dae-Won Kim
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | |
Collapse
|
435
|
Mori-Akiyama Y, Akiyama H, Rowitch DH, de Crombrugghe B. Sox9 is required for determination of the chondrogenic cell lineage in the cranial neural crest. Proc Natl Acad Sci U S A 2003; 100:9360-5. [PMID: 12878728 PMCID: PMC170923 DOI: 10.1073/pnas.1631288100] [Citation(s) in RCA: 332] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Sox9 has essential roles in endochondral bone formation during axial and appendicular skeletogenesis. Sox9 is also expressed in neural crest cells, but its function in neural crest remains largely unknown. Because many craniofacial skeletal elements are derived from cranial neural crest (CNC) cells, we asked whether deletion of Sox9 in CNC cells by using the Cre recombinase/loxP recombination system would affect craniofacial development. Inactivation of Sox9 in neural crest resulted in a complete absence of cartilages and endochondral bones derived from the CNC. In contrast, all of the mesodermal skeletal elements and intramembranous bones were essentially conserved. The migration and the localization of Sox9-null mutant CNC cells were normal. Indeed, the size of branchial arches and the frontonasal mass of mutant embryos was comparable to that of WT embryos, and the pattern of expression of Ap2, a marker of migrating CNC cells, was normal. Moreover, in mouse embryo chimeras Sox9-null mutant cells migrated to their correct location in endochondral skeletal elements; however, Sox9-null CNC cells were unable to contribute chondrogenic mesenchymal condensations. In mutant embryos, ectopic expression of osteoblast marker genes, such as Runx2, Osterix, and Col1a1, was found in the locations where the nasal cartilages exist in WT embryos. These results indicate that inactivation of Sox9 causes CNC cells to lose their chondrogenic potential. We hypothesize that these cells change their cell fate and acquire the ability to differentiate into osteoblasts. We conclude that Sox9 is required for the determination of the chondrogenic lineage in CNC cells.
Collapse
Affiliation(s)
- Yuko Mori-Akiyama
- Department of Molecular Genetics, University of Texas M. D. Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA
| | | | | | | |
Collapse
|
436
|
Kim DW, Kempf H, Chen RE, Lassar AB. Characterization of Nkx3.2 DNA binding specificity and its requirement for somitic chondrogenesis. J Biol Chem 2003; 278:27532-9. [PMID: 12746429 DOI: 10.1074/jbc.m301461200] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have previously shown that Nkx3.2, a member of the NK class of homeoproteins, functions as a transcriptional repressor to promote somitic chondrogenesis. However, it has not been addressed whether Nkx3.2 can bind to DNA in a sequence-specific manner and whether DNA binding by Nkx3.2 is required for its biological activity. In this work, we employed a DNA binding site selection assay, which identified TAAGTG as a high affinity Nkx3.2 binding sequence. Sequence-specific binding of Nkx3.2 to the TAAGTG motif in vitro was confirmed by electrophoretic mobility shift assays, and mutagenesis of this sequence revealed that HRAGTG (where H represents A, C, or T, and R represents A or G) comprises the consensus DNA binding site for Nkx3.2. Consistent with these findings, the expression of a reporter gene containing reiterated Nkx3.2 binding sites was repressed in vivo by Nkx3.2 co-expression. In addition, we have generated a DNA nonbinding point mutant of Nkx3.2 (Nkx3.2-N200Q), which contains an asparagine to glutamine missense mutation in the homeodomain. Interestingly, despite being defective in DNA binding, Nkx3.2-N200Q still retains its intrinsic transcriptional repressor function. Finally, we demonstrate that unlike wild-type Nkx3.2, Nkx3.2-N200Q is unable to activate the chondrocyte differentiation program in somitic mesoderm, indicating that DNA binding by Nkx3.2 is critical for this factor to induce somitic chondrogenesis.
Collapse
Affiliation(s)
- Dae-Won Kim
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | |
Collapse
|
437
|
Sowa H, Kaji H, Canaff L, Hendy GN, Tsukamoto T, Yamaguchi T, Miyazono K, Sugimoto T, Chihara K. Inactivation of menin, the product of the multiple endocrine neoplasia type 1 gene, inhibits the commitment of multipotential mesenchymal stem cells into the osteoblast lineage. J Biol Chem 2003; 278:21058-69. [PMID: 12649288 DOI: 10.1074/jbc.m302044200] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The physiological roles of menin, the product of the multiple endocrine neoplasia type 1 gene, are not known. Homozygous menin knockout mice exhibit cranial and facial hypoplasia. We, therefore, investigated the role of menin in the regulation of osteoblastic differentiation. Menin antisense oligonucleotides (AS-oligo) reduced endogenous menin expression in the C3H10T1/2 (10T1/2) mouse mesenchymal stem cells and antagonized alkaline phosphatase (ALP) activity and the expression of type I collagen, Runx2/cbfa1 (Runx2), and osteocalcin (OCN) induced by bone morphogenetic protein 2 (BMP-2). AS-oligo did not affect adipogenic markers (Oil red staining and PPARgamma expression) and chondrogenic markers (Alcian blue staining and type IX collagen) induced by BMP-2 in 10T1/2 cells. Menin co-immunoprecipitated with Smad1 and Smad5, and inactivation of menin antagonized BMP-2-induced transcriptional activity of Smad1/5. In osteoblastic MC3T3-E1 cells, AS-oligo affected neither BMP-2-stimulated ALP activity nor the expression of Runx2 and OCN. Stable inactivation of menin in MC3T3-E1 cells increased ALP activity, mineralization, and the expression of type I collagen and OCN. In 21-day cultures of MC3T3-E1 cells and BMP-2-treated 10T1/2 cells, endogenous menin expression increased up to day 14 and declined thereafter. These data indicate that menin inactivation specifically inhibits the commitment of pluripotent mesenchymal stem cells to the osteoblast lineage, mediated by menin and Smad1/5 interactions. Menin is important for both early differentiation of osteoblasts and inhibition of their later differentiation, and it might be crucial for intramembranous ossification.
Collapse
Affiliation(s)
- Hideaki Sowa
- Division of Endocrinology, Department of Clinical Molecular Medicine, Kobe University Graduate School of Medicine, 7-5-2 Kusunoki-Cho, Chuo-ku, Kobe 650-0017, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
438
|
Abstract
Vertebrates do not look like jellyfish because the bones of their skeletons are levers that allow movement and protect vital organs. Bones come in an enormous variety of shapes and sizes to accomplish these goals, but, with few exceptions, use one process--endochondral bone formation--to generate the skeleton. The past few years have seen an enormous increase in understanding of the signalling pathways and the transcription factors that control endochondral bone development.
Collapse
Affiliation(s)
- Henry M Kronenberg
- Endocrine Unit, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114-2696, USA.
| |
Collapse
|
439
|
Abstract
We walk, run, work and play, paying little attention to our bones, their joints and their muscle connections, because the system works. Evolution has refined robust genetic mechanisms for skeletal development and growth that are able to direct the formation of a complex, yet wonderfully adaptable organ system. How is it done? Recent studies of rare genetic diseases have identified many of the critical transcription factors and signalling pathways specifying the normal development of bones, confirming the wisdom of William Harvey when he said: "nature is nowhere accustomed more openly to display her secret mysteries than in cases where she shows traces of her workings apart from the beaten path".
Collapse
Affiliation(s)
- Elazar Zelzer
- Harvard Medical School, Department of Cell Biology, 240 Longwood Avenue, Boston, Massachusetts 02115, USA
| | | |
Collapse
|
440
|
Chimal-Monroy J, Rodriguez-Leon J, Montero JA, Gañan Y, Macias D, Merino R, Hurle JM. Analysis of the molecular cascade responsible for mesodermal limb chondrogenesis: Sox genes and BMP signaling. Dev Biol 2003; 257:292-301. [PMID: 12729559 DOI: 10.1016/s0012-1606(03)00066-6] [Citation(s) in RCA: 171] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Here, we have studied how Sox genes and BMP signaling are functionally coupled during limb chondrogenesis. Using the experimental model of TGFbeta1-induced interdigital digits, we dissect the sequence of morphological and molecular events during in vivo chondrogenesis. Our results show that Sox8 and Sox9 are the most precocious markers of limb cartilage, and their induction is independent and precedes the activation of BMP signaling. Sox10 appears also to cooperate with Sox9 and Sox8 in the establishment of the digit cartilages. In addition, we show that experimental induction of Sox gene expression in the interdigital mesoderm is accompanied by loss of the apoptotic response to exogenous BMPs. L-Sox5 and Sox6 are respectively induced coincident and after the expression of Bmpr1b in the prechondrogenic aggregate, and their activation correlates with the induction of Type II Collagen and Aggrecan genes in the differentiating cartilages. The expression of Bmpr1b precedes the appearance of morphological changes in the prechondrogenic aggregate and establishes a landmark from which the maintenance of the expression of all Sox genes and the progress of cartilage differentiation becomes dependent on BMPs. Moreover, we show that Ventroptin precedes Noggin in the modulation of BMP activity in the developing cartilages. In summary, our findings suggest that Sox8, Sox9, and Sox10 have a cooperative function conferring chondrogenic competence to limb mesoderm in response to BMP signals. In turn, BMPs in concert with Sox9, Sox6, and L-Sox5 would be responsible for the execution and maintenance of the cartilage differentiation program.
Collapse
Affiliation(s)
- J Chimal-Monroy
- Departamento de Biología Celular y Fisiología, Instituto de Investigaciones Biomédicas, UNAM, México DF 04510, México
| | | | | | | | | | | | | |
Collapse
|
441
|
James K, Hosking B, Gardner J, Muscat GEO, Koopman P. Sox18 mutations in the ragged mouse alleles ragged-like and opossum. Genesis 2003; 36:1-6. [PMID: 12748961 DOI: 10.1002/gene.10190] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The ragged (Ra) spontaneous mouse mutant is characterised by abnormalities in its coat and cardiovascular system. Four alleles are known and we have previously described mutations in the transcription factor gene Sox18 in the Ra and Ra(J) alleles. We report here Sox18 mutations in the remaining two ragged alleles, opossum (Ra(op)) and ragged-like (Ragl). The single-base deletions cause a C-terminal frameshift, abolishing transcriptional trans-activation and impairing interaction with the partner protein MEF2C. The nature of these mutations, together with the near-normal phenotype of Sox18-null mice, suggests that the ragged mutant SOX18 proteins act in a dominant-negative fashion. The four ragged mutants represent an allelic series that reveal SOX18 structure-function relationships and implicate related SOX proteins in cardiovascular and hair follicle development.
Collapse
|
442
|
Eames BF, de la Fuente L, Helms JA. Molecular ontogeny of the skeleton. BIRTH DEFECTS RESEARCH. PART C, EMBRYO TODAY : REVIEWS 2003; 69:93-101. [PMID: 12955855 DOI: 10.1002/bdrc.10016] [Citation(s) in RCA: 99] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
From a traditional viewpoint, skeletal elements form by two distinct processes: endochondral ossification, during which a cartilage template is replaced by bone, and intramembranous ossification, whereby mesenchymal cells differentiate directly into osteoblasts. There are inherent difficulties with this historical classification scheme, not the least of which is that bones typically described as endochondral actually form bone through an intramembranous process, and that some membranous bones may have a transient chondrogenic phase. These innate contradictions can be circumvented if molecular and cellular, rather than histogenic, criteria are used to describe the process of skeletal tissue formation. Within the past decade, clinical examinations of human skeletal syndromes have led to the identification and subsequent characterization of regulatory molecules that direct chondrogenesis and osteogenesis in every skeletal element of the body. In this review, we survey these molecules and the tissue interactions that may regulate their expression. What emerges is a new paradigm, by which we can explain and understand the process of normal- and abnormal-skeletal development.
Collapse
Affiliation(s)
- B Frank Eames
- Department of Orthopaedic Surgery, University of California at San Francisco, California, USA
| | | | | |
Collapse
|
443
|
Scheijen B, Bronk M, van der Meer T, Bernards R. Constitutive E2F1 overexpression delays endochondral bone formation by inhibiting chondrocyte differentiation. Mol Cell Biol 2003; 23:3656-68. [PMID: 12724423 PMCID: PMC164752 DOI: 10.1128/mcb.23.10.3656-3668.2003] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2002] [Revised: 09/06/2002] [Accepted: 02/28/2003] [Indexed: 12/28/2022] Open
Abstract
Longitudinal bone growth results from endochondral ossification, a process that requires proliferation and differentiation of chondrocytes. It has been shown that proper endochondral bone formation is critically dependent on the retinoblastoma family members p107 and p130. However, the precise functional roles played by individual E2F proteins remain poorly understood. Using both constitutive and conditional E2F1 transgenic mice, we show that ubiquitous transgene-driven expression of E2F1 during embryonic development results in a dwarf phenotype and significantly reduced postnatal viability. Overexpression of E2F1 disturbs chondrocyte maturation, resulting in delayed endochondral ossification, which is characterized by reduced hypertrophic zones and disorganized growth plates. Employing the chondrogenic cell line ATDC5, we investigated the effects of enforced E2F expression on the different phases of chondrocyte maturation that are normally required for endochondral ossification. Ectopic E2F1 expression strongly inhibits early- and late-phase differentiation of ATDC5 cells, accompanied by diminished cartilage nodule formation as well as decreased type II collagen, type X collagen, and aggrecan gene expression. In contrast, overexpression of E2F2 or E2F3a results in only a marginal delay of chondrocyte maturation, and increased E2F4 levels have no effect. These data are consistent with the notion that E2F1 is a regulator of chondrocyte differentiation.
Collapse
Affiliation(s)
- Blanca Scheijen
- Division of Molecular Carcinogenesis and Center for Biomedical Genetics, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| | | | | | | |
Collapse
|
444
|
Cormier SA, Mello MA, Kappen C. Normal proliferation and differentiation of Hoxc-8 transgenic chondrocytes in vitro. BMC DEVELOPMENTAL BIOLOGY 2003; 3:4. [PMID: 12713673 PMCID: PMC156609 DOI: 10.1186/1471-213x-3-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2002] [Accepted: 04/24/2003] [Indexed: 12/14/2022]
Abstract
BACKGROUND Hox genes encode transcription factors that are involved in pattern formation in the skeleton, and recent evidence suggests that they also play a role in the regulation of endochondral ossification. To analyze the role of Hoxc-8 in this process in more detail, we applied in vitro culture systems, using high density cultures of primary chondrocytes from neonatal mouse ribs. RESULTS Cultured cells were characterized on the basis of morphology (light microscopy) and production of cartilage-specific extracellular matrix (sulfated proteoglycans and type II Collagen). Hypertrophy was demonstrated by increase in cell size, alkaline phosphatase activity and type X Collagen immunohistochemistry. Proliferation was assessed by BrdU uptake and flow cytometry. Unexpectedly, chondrocytes from Hoxc-8 transgenic mice, which exhibit delayed cartilage maturation in vivo 1, were able to proliferate and differentiate normally in our culture systems. This was the case even though freshly isolated Hoxc-8 transgenic chondrocytes exhibited significant molecular differences as measured by real-time quantitative PCR. CONCLUSIONS The results demonstrate that primary rib chondrocytes behave similar to published reports for chondrocytes from other sources, validating in vitro approaches for studies of Hox genes in the regulation of endochondral ossification. Our analysis of cartilage-producing cells from Hoxc-8 transgenic mice provides evidence that the cellular phenotype induced by Hoxc-8 overexpression in vivo is reversible in vitro.
Collapse
Affiliation(s)
- Stephania A Cormier
- Samuel C. Johnson Medical Research Center, Mayo Clinic Scottsdale, Scottdale, AZ 85259, USA
| | - Maria Alice Mello
- Center for Human Molecular Genetics, Munroe-Meyer Institute, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Current address: NIAMS/NIH, Cartilage Biology and Orthopedics Branch, Bethesda, MD 20892-8022, USA
| | - Claudia Kappen
- Samuel C. Johnson Medical Research Center, Mayo Clinic Scottsdale, Scottdale, AZ 85259, USA
- Center for Human Molecular Genetics, Munroe-Meyer Institute, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical School, Omaha, NE 68198, USA
| |
Collapse
|
445
|
Schaefer JF, Millham ML, de Crombrugghe B, Buckbinder L. FGF signaling antagonizes cytokine-mediated repression of Sox9 in SW1353 chondrosarcoma cells. Osteoarthritis Cartilage 2003; 11:233-41. [PMID: 12681949 DOI: 10.1016/s1063-4584(02)00354-0] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
OBJECTIVE The Sox9 transcription factor has emerged as an important determinant of chondrocyte differentiation, including the regulation of type II collagen (Col2) and aggrecan gene expression. We sought to identify a human cell line model that conserves the Sox9 regulatory pathways identified in the mouse. DESIGN The SW1353 chondrosarcoma cell line was considered to be a candidate for Sox9 studies. The activity of a Sox9 regulated Col2a1 enhancer reporter gene was analyzed in response to treating cells with known regulators of murine Sox9 expression/activity. The effect of treatment on expression of the endogenous Sox9 gene was analyzed by real-time PCR and Western blot. RESULTS Col2 enhancer activity was stimulated by fibroblast growth factors (FGF-1 and -2) and repressed by inflammatory cytokines (IL-1beta and TNFalpha) in SW1353 cells. These effects correlated with changes in Sox9 mRNA and protein levels. In addition, FGF-9 was shown to stimulate enhancer activity and Sox9 expression. Cotreatment studies demonstrated that FGFs functionally antagonize the cytokine-mediated repression of Sox9 expression and Col2 enhancer activity. CONCLUSIONS SW1353 cells represent a useful human cell model as they conserve many Sox9 signaling pathways previously demonstrated in mouse chondrocytes. We identify FGF-9 as a particularly potent Sox9 agonist. The antagonism between FGFs and cytokines on Sox9 expression and Col2 enhancer activity suggests that Sox9 integrates the opposing activities of FGFs and cytokines. We also find that SW1353 cells respond to very low doses of IL-1 with Col2 enhancer activation, while increasing doses lead to repression.
Collapse
Affiliation(s)
- J F Schaefer
- Pfizer Global Research and Development, Discovery-Inflammation Biology, Groton, CT 06340-8220, USA
| | | | | | | |
Collapse
|
446
|
Pacifico F, Barone C, Mellone S, Di Jeso B, Consiglio E, Formisano S, Vito P, Leonardi A. Promoter identification of CIKS, a novel NF-kappaB activating gene, and regulation of its expression. Gene 2003; 307:99-109. [PMID: 12706892 DOI: 10.1016/s0378-1119(03)00448-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
We have recently identified a novel gene, named CIKS (Connection to IKK-complex and SAPK), able to activate the transcription factor NF-kappaB, after interaction with the regulatory subunit NEMO/IKKgamma of IKK complex, and the stress-activated protein kinase (SAPK)/JNK. CIKS mRNA is ubiquitously expressed, although its levels differ greatly among different tissues. The aim of this study is to identify and characterize the promoter region of CIKS gene and to analyse the regulation of its expression by different cytokines. The transcription start site of CIKS mRNA was mapped both by primer extension and by a polymerase chain reaction (PCR)-based strategy. The proximal 5'-flanking region of CIKS gene was 'TATA-less', but contained other consensus promoter elements including an initiator (Inr), 'GC' and 'CAAT' boxes. Transfection of luciferase reporter plasmids containing 1.8 kb of the 5'-flanking region increased luciferase activity in epithelial MDCK cells, but not in endothelial HUVEC cells. Deletion analysis identified a sequence from -464 to -220 bp of the 5'-flanking region of CIKS gene essential for basal promoter activity in MDCK cells. Competitive reverse transcriptase-PCR, Northern and Western blot assays showed that different cytokines, such as tumor necrosis factor (TNF)-alpha, Interleukin (IL)-1beta and transforming growth factor (TGF)-beta, dramatically increased CIKS mRNA expression in HeLa cells. We conclude that the proximal 5'-flanking region of CIKS gene contains a functional promoter and binding sites for nuclear proteins leading to its basal transcription. Moreover, we demonstrate that the expression of CIKS is up-regulated by different cytokines.
Collapse
Affiliation(s)
- Francesco Pacifico
- Istituto di Endocrinologia ed Oncologia Sperimentale, CNR, Federico II University of Naples, Naples, Italy
| | | | | | | | | | | | | | | |
Collapse
|
447
|
Smits P, Lefebvre V. Sox5 and Sox6 are required for notochord extracellular matrix sheath formation, notochord cell survival and development of the nucleus pulposus of intervertebral discs. Development 2003; 130:1135-48. [PMID: 12571105 DOI: 10.1242/dev.00331] [Citation(s) in RCA: 131] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The notochord has major roles in vertebral column formation: indirectly by inducing sclerotome cell differentiation; and directly by forming the nucleus pulposus of intervertebral discs. Sox5 and Sox6 encode Sry-related HMG box transcription factors that act redundantly to promote chondroblast differentiation in all cartilages of the mouse embryo. We show that Sox5 and Sox6 are expressed in the notochord cell lineage and required for notochord late development. In Sox5(-/-)/Sox6(-/-) embryos, the notochord formed a typical rod-like structure. It fulfilled its inductive functions, as indicated by expression of sonic hedgehog and sclerotome specification. However, the notochord failed to become surrounded with an extracellular matrix sheath. This phenotype was associated with a downregulation of extracellular matrix genes, including the genes for collagen 2, aggrecan and perlecan in both notochord cells and surrounding chondrocytic cells of presumptive inner annuli and vertebral bodies. The mutant notochord then underwent an aberrant, fatal dismantling after sclerotome cell migration. Its cells became removed first from intervertebral spaces and then from vertebral bodies, and it progressively underwent apoptosis. Meanwhile, the development of inner annuli and vertebral bodies was dramatically impaired. Consequently, the vertebral column of Sox5(-/-)/Sox6(-/-) fetuses consisted of a very deficient cartilage and was devoid of nuclei pulposi. In Sox5(-/-)/Sox6(+/-) and more severely in Sox5(+/-)/Sox6(-/-) embryos, the notochord sheath was thinner, but cells survived. By birth, nuclei pulposi were rudimentary, and its cells poorly swelled and still expressing sonic hedgehog. Hence, Sox5 and Sox6 are required for notochord extracellular matrix sheath formation, notochord cell survival and formation of nuclei pulposi. Through these roles and essential roles in cartilage formation, they are central transcriptional regulators of vertebral column development.
Collapse
Affiliation(s)
- Patrick Smits
- Department of Biomedical Engineering and Orthopaedic Research Center, Cleveland Clinic Foundation, 9500 Euclid Avenue, Cleveland, OH 44195, USA
| | | |
Collapse
|
448
|
Huang W, Lu N, Eberspaecher H, De Crombrugghe B. A new long form of c-Maf cooperates with Sox9 to activate the type II collagen gene. J Biol Chem 2002; 277:50668-75. [PMID: 12381733 DOI: 10.1074/jbc.m206544200] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A new long form of the c-Maf transcription factor (Lc-Maf) was identified and shown to interact specifically with SOX9 in a yeast two-hybrid cDNA library screening. Lc-Maf encodes an extra 10 amino acids at the carboxyl terminus of c-Maf and contains a different 3'-untranslated region compared with c-Maf. The interaction between SOX9 and Lc-Maf was further confirmed by co-immunoprecipitation and glutathione S-transferase pull-down assays, which mapped the interacting domain of SOX9 to the high mobility group box DNA binding domain and that of Lc-Maf to the basic leucine zipper motif. In situ hybridizations showed that Lc-Maf RNA was coexpressed with Sox9 and Col2a1 RNA in areas of precartilaginous mesenchymal condensations during mouse embryo development. A DNA binding site of Lc-Maf was identified at the 5'-end of a 48-bp Col2a1 enhancer element near the high mobility group binding site of SOX9. Lc-Maf and SOX9 synergistically activated a luciferase reporter plasmid containing a Col2a1 enhancer and increased the transcription of the endogenous Col2a1 gene. In summary, Lc-Maf is the first transcription factor shown to interact with Sox9, to be coexpressed with Sox9 during an early step of chondrogenesis and to cooperate with Sox9 in activating a downstream target gene of Sox9.
Collapse
Affiliation(s)
- Wendong Huang
- Department of Molecular Genetics, The University of Texas M. D. Anderson Cancer Center, Houston, Texas 77030, USA
| | | | | | | |
Collapse
|
449
|
Akiyama H, Chaboissier MC, Martin JF, Schedl A, de Crombrugghe B. The transcription factor Sox9 has essential roles in successive steps of the chondrocyte differentiation pathway and is required for expression of Sox5 and Sox6. Genes Dev 2002; 16:2813-28. [PMID: 12414734 PMCID: PMC187468 DOI: 10.1101/gad.1017802] [Citation(s) in RCA: 1349] [Impact Index Per Article: 58.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
To examine whether the transcription factor Sox9 has an essential role during the sequential steps of chondrocyte differentiation, we have used the Cre/loxP recombination system to generate mouse embryos in which either Sox9 is missing from undifferentiated mesenchymal cells of limb buds or the Sox9 gene is inactivated after chondrogenic mesenchymal condensations. Inactivation of Sox9 in limb buds before mesenchymal condensations resulted in a complete absence of both cartilage and bone, but markers for the different axes of limb development showed a normal pattern of expression. Apoptotic domains within the developing limbs were expanded, suggesting that Sox9 suppresses apoptosis. Expression of Sox5 and Sox6, two other Sox genes involved in chondrogenesis, was no longer detected. Moreover, expression of Runx2, a transcription factor needed for osteoblast differentiation, was also abolished. Embryos, in which Sox9 was deleted after mesenchymal condensations, exhibited a severe generalized chondrodysplasia, similar to that in Sox5; Sox6 double-null mutant mice. Most cells were arrested as condensed mesenchymal cells and did not undergo overt differentiation into chondrocytes. Furthermore, chondrocyte proliferation was severely inhibited and joint formation was defective. Although Indian hedgehog, Patched1, parathyroid hormone-related peptide (Pthrp), and Pth/Pthrp receptor were expressed, their expression was down-regulated. Our experiments further suggested that Sox9 is also needed to prevent conversion of proliferating chondrocytes into hypertrophic chondrocytes. We conclude that Sox9 is required during sequential steps of the chondrocyte differentiation pathway.
Collapse
Affiliation(s)
- Haruhiko Akiyama
- Department of Molecular Genetics, The University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030, USA
| | | | | | | | | |
Collapse
|
450
|
|