401
|
Morse D, Sassone-Corsi P. Time after time: inputs to and outputs from the mammalian circadian oscillators. Trends Neurosci 2002; 25:632-7. [PMID: 12446131 DOI: 10.1016/s0166-2236(02)02274-9] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Oscillating levels of clock gene transcripts in the suprachiasmatic nucleus (SCN) are essential components of the mammalian circadian pacemaker. Their synchronization with daily light cycles involves neural connections from light-sensitive photoreceptor-containing retinal ganglion cells. This clock orchestrates rhythmic expression for approximately 10% of the SCN gene transcripts, of which only 10% are also rhythmically expressed in other tissues. Many of the transcripts expressed rhythmically only in the SCN are involved in neurosecretion, and their secreted products could mediate SCN control over physiological rhythms by coordinating rhythmicity in other nuclei within the brain. The coordination of clock gene transcript oscillations in peripheral tissues could be controlled directly by specific signals or indirectly by rhythmic behavior such as feeding.
Collapse
Affiliation(s)
- David Morse
- Dept des Sciences Biologiques, Université de Montréal, 4101 Sherbrooke est, Montréal Quebec, Canada H1X 2B2
| | | |
Collapse
|
402
|
Helena CVV, Franci CR, Anselmo-Franci JA. Luteinizing hormone and luteinizing hormone-releasing hormone secretion is under locus coeruleus control in female rats. Brain Res 2002; 955:245-52. [PMID: 12419543 DOI: 10.1016/s0006-8993(02)03471-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
It has been suggested that norepinephrine (NE) from the locus coeruleus (LC) plays an important role in triggering the preovulatory surge of gonadotropins. This work intended to study the role of LC in luteinizing hormone (LH) secretion during the estrous cycle and in ovariectomized rats treated with estradiol and progesterone (OVXE(2)P) and to correlate it with LH releasing hormone (LHRH) content in the medial preoptic area (MPOA) and median eminence (ME). Female rats on each day of the estrous cycle and OVXE(2)P were submitted to jugular cannulation and LC electrolytic lesion or sham-operation, at 09:00 h. Blood samples were collected hourly from 11:00 to 18:00 h, when animals were decapitated and their brains removed to analyze LC lesion and punch out the MPOA and ME. Plasma LH levels and LHRH content of MPOA and ME were determined by radioimmunoassay. During metestrus, diestrus and estrus, LC lesion did not modify either LH plasma concentrations or LHRH content, but completely abolished the preovulatory LH surge during proestrus and the surge of OVXE(2)P. These blockades were accompanied by an increased content of LHRH in the MPOA and ME. The results suggest that: (1). LC does not participate in the control of basal LH secretion but its activation is essential to trigger spontaneous or induced LH surges, and (2). the increased content of LHRH in the MPOA and ME may be due to a decreased NE input to these areas. Thus, LC activation may be required for depolarization of LHRH neurons and consequent LH surges.
Collapse
|
403
|
Overeem S, van Vliet JA, Lammers GJ, Zitman FG, Swaab DF, Ferrari MD. The hypothalamus in episodic brain disorders. Lancet Neurol 2002; 1:437-44. [PMID: 12849366 DOI: 10.1016/s1474-4422(02)00191-6] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Episodic brain disorders (EBD) form an intriguing group of neurological diseases in which at least some of the symptoms occur in attacks. The hypothalamus integrates many brain functions, including endocrine and autonomic control, and governs various body rhythms. It seems a likely site in which the initiation of attacks of EBD can be modulated. Indeed, the hypothalamus has a crucial role in EBD such as narcolepsy and cluster headache. The same may be true for migraine and depression. Here we summarise the evidence supporting an important role for the hypothalamus in the initiation of disease episodes in various EBD. Study of the various pathophysiological concepts of EBD within the context of the hypothalamus may prove a fruitful example of cross-fertilisation between various research areas.
Collapse
Affiliation(s)
- Sebastiaan Overeem
- Narcolepsy Research Group, Department of Neurology, Leiden University Medical Centre, Leiden, The Netherlands
| | | | | | | | | | | |
Collapse
|
404
|
Abstract
The hypocretins (orexins) are two novel neuropeptides (Hcrt-1 and Hcrt-2), derived from the same precursor gene, that are synthesized by neurons located exclusively in the lateral, posterior, and perifornical hypothalamus. Hypocretin-containing neurons have widespread projections throughout the CNS with particularly dense excitatory projections to monoaminergic centers such as the noradrenergic locus coeruleus, histaminergic tuberomammillary nucleus, serotoninergic raphe nucleus, and dopaminergic ventral tegmental area. The hypocretins were originally believed to be primarily important in the regulation of appetite; however, a major function emerging from research on these neuropeptides is the regulation of sleep and wakefulness. Deficiency in hypocretin neurotransmission results in the sleep disorder narcolepsy in mice, dogs, and humans. The hypocretins are also uniquely positioned to link sleep, appetite, and neuroendocrine control. The aim of this review is to describe and discuss the current knowledge regarding the hypocretin neurotransmitter system in narcolepsy and normal sleep.
Collapse
Affiliation(s)
- Shahrad Taheri
- Stanford University Center for Narcolepsy, 701 Welch Road B, Basement, Palo Alto, California 94304-5742, USA.
| | | | | |
Collapse
|
405
|
Pace-Schott EF, Hobson JA. The neurobiology of sleep: genetics, cellular physiology and subcortical networks. Nat Rev Neurosci 2002; 3:591-605. [PMID: 12154361 DOI: 10.1038/nrn895] [Citation(s) in RCA: 543] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Edward F Pace-Schott
- Laboratory of Neurophysiology, Department of Psychiatry, Harvard Medical School, Massachusetts Mental Health Center, 74 Fenwood Road, Boston, Massachusetts 02115, USA.
| | | |
Collapse
|
406
|
Abstract
Noradrenaline release in areas within the forebrain occurs following activation of noradrenergic cells in the locus coeruleus (LoC). Release of noradrenaline by attentional/arousal/vigilance factors appears to be essential for learning and is responsible for the consolidation of memory. Noradrenaline can activate any of nine different adrenoceptor (AR) subtypes in the brain and selectivity of action may be achieved by the spatial location and relative density of the AR subtypes, by different affinities of the different subtypes and by temporal selectivity in terms of when the different ARs are activated in the memory formation process. This review examines the use of selective agonists and antagonists to determine the roles of the AR subtypes in the one-trial discriminated avoidance learning paradigm in the chick. A model is developed that integrates noradrenergic activity in basal ganglia (lobus parolfactorius (LPO)) and association cortex (intermediate medial hyperstriatum ventrale (IMHV)) leading to the consolidation of memory 30 min after training. There is evidence that beta(2)- and beta(3)-ARs are important in the association area but require input from alpha(2)-AR stimulated activity in the basal ganglia for consolidation. On the other hand, alpha(1)-AR activation in the IMHV is inhibitory and prevents consolidation. While there is no role for beta(1)-ARs in memory consolidation, they play a role in short-term memory (STM). The use of the precocial chick has clear advantages in having a temporally discrete learning task which allows for discrimination memory and whose development can be followed at discrete intervals after learning. These studies reveal clear roles for AR subtypes in the formation and consolidation of memory in the chick, which have allowed the development of a model that can now be tested in mammalian systems.
Collapse
Affiliation(s)
- Marie E Gibbs
- Department of Pharmacology, Monash University, PO Box 13E, 3800 3800, Vic, Clayton, Australia.
| | | |
Collapse
|
407
|
Pando MP, Morse D, Cermakian N, Sassone-Corsi P. Phenotypic rescue of a peripheral clock genetic defect via SCN hierarchical dominance. Cell 2002; 110:107-17. [PMID: 12151001 DOI: 10.1016/s0092-8674(02)00803-6] [Citation(s) in RCA: 140] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The mammalian circadian system contains both central and peripheral oscillators. To understand the communication pathways between them, we have studied the rhythmic behavior of mouse embryo fibroblasts (MEFs) surgically implanted in mice of different genotypes. MEFs from Per1(-/-) mice have a much shorter period in culture than do tissues in the intact animal. When implanted back into mice, however, the Per1(-/-) MEF take on the rhythmic characteristics of the host. A functioning clock is required for oscillations in the target tissues, as arrhythmic clock(c/c) MEFs remain arrhythmic in implants. These results demonstrate that SCN hierarchical dominance can compensate for severe intrinsic genetic defects in peripheral clocks, but cannot induce rhythmicity in clock-defective tissues.
Collapse
Affiliation(s)
- Matthew P Pando
- Institute de Génétique et de Biologie Moléculaire et Cellulaire, CNRS-INSERM-ULP, 1 rue Laurent Fries, 67404 Illkirch, Strasbourg, France
| | | | | | | |
Collapse
|
408
|
Meyer-Spasche A, Reed HE, Piggins HD. Neurotensin phase-shifts the firing rate rhythm of neurons in the rat suprachiasmatic nuclei in vitro. Eur J Neurosci 2002; 16:339-44. [PMID: 12169114 DOI: 10.1046/j.1460-9568.2002.02067.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The suprachiasmatic nuclei (SCN) of the hypothalamus house the main mammalian circadian pacemaker. Cell bodies in the rat SCN contain the neuropeptide neurotensin (NT), and two NT receptor types, NTS1 and nts2. Because the role of NT in the circadian rhythm processes is unknown, we studied the phase-shifting effects of NT on the firing rate rhythm of rat SCN neurons in vitro. Additionally, the NT receptor antagonists SR142948a and SR48692 were used to try and block any NT-induced phase shifts. To elucidate the second messenger pathway responsible for mediating the phase-resetting actions of NT, we utilized the phospholipase C (PLC) and protein kinase A (PKA) inhibitors U-73122 and KT5720, respectively. Application of NT during the projected day resulted in a large advance in the time of peak in FRR, whereas treatments during the projected night had no effect. Both NT receptor antagonists blocked the NT-induced phase shifts, as did the PLC inhibitor U-73122. The PKA inhibitor KT5720 had no influence on the magnitude of the phase shift caused by NT during the middle of the projected day. These results provide the first evidence that NT may play a role in regulating the rat circadian pacemaker, using NTS1 and nts2 receptors presumably coupled to PLC.
Collapse
Affiliation(s)
- Alert Meyer-Spasche
- School of Biological Sciences, University of Manchester, Manchester M13 9PT, UK
| | | | | |
Collapse
|
409
|
Intravitreal injection of the attenuated pseudorabies virus PRV Bartha results in infection of the hamster suprachiasmatic nucleus only by retrograde transsynaptic transport via autonomic circuits. J Neurosci 2002. [PMID: 11923435 DOI: 10.1523/jneurosci.22-07-02701.2002] [Citation(s) in RCA: 100] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Intravitreal injection of the attenuated strain of pseudorabies virus (PRV Bartha) results in transneuronal spread of virus to a restricted set of central nuclei in the rat and mouse. We examined the pattern of central infection in the golden hamster after intravitreal inoculation with a recombinant strain of PRV Bartha constructed to express enhanced green fluorescent protein (PRV 152). Neurons in a subset of retinorecipient nuclei [i.e., suprachiasmatic nucleus (SCN), intergeniculate leaflet, olivary pretectal nucleus (OPN), and lateral terminal nucleus] and autonomic nuclei [i.e., paraventricular hypothalamic nucleus and Edinger-Westphal nucleus (EW)] are labeled by late stages of infection. Infection of the EW precedes infection in retinorecipient structures, raising the possibility that the SCN becomes infected by retrograde transsynaptic infection via autonomic (i.e., EW) circuits. We tested this hypothesis in two ways: (1) by removing the infected eye 24 hr after PRV 152 inoculation, well before viral infection first appears in the SCN; and (2) by examining central infection after intravitreal PRV 152 injection in animals with ablation of the EW. The pattern and time course of central infection were unchanged after enucleation, whereas EW ablation before intravitreal inoculation eliminated viral infection in the SCN. The results of EW lesions along with known connections between EW, OPN, and SCN indicate that intravitreal injection of PRV Bartha produces a retrograde infection of the autonomic innervation of the eye, which subsequently labels a restricted set of retinorecipient nuclei via retrograde trans-synaptic infection. These results, taken together with other genetic data, indicate that the mutations in PRV Bartha render the virus incapable of anterograde transport. PRV Bartha is thus a retrograde transsynaptic marker in the CNS.
Collapse
|
410
|
Moore RY, Danchenko RL. Paraventricular-subparaventricular hypothalamic lesions selectively affect circadian function. Chronobiol Int 2002; 19:345-60. [PMID: 12025929 DOI: 10.1081/cbi-120002876] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The circadian timing system has three principal components: (i) entrainment pathways, (ii) pacemakers, and (iii) efferent pathways from the pacemakers that convey the circadian signal to effector systems. The suprachiasmatic nucleus (SCN) of the hypothalamus is the principal mammalian circadian pacemaker and, although we understand the organization of entrainment pathways to the SCN and the pacemaker itself, we know much less about the functional organization of SCN projections mediating control of effector systems. It is unclear, for example, whether specific subsets of SCN projections control specific effector systems. In this study, we analyzed the effects of lesions ablating the paraventricular hypothalamic nucleus (PVH), with variable extension into the subparaventricular zone (SPVZ) and adjacent structures, on nocturnal pineal melatonin production and rhythms in core body temperature (Tb) and rest-activity (R-A). In accordance with prior work, ablation of the PVH abolishes the nocturnal rise in pineal melatonin. Lesions restricted to the PVH do not affect rhythms in Tb and R-A but lesions extending caudally and ventrally into the SPVZ disrupt the R-A rhythm proportionate to the interruption of caudal SCN projections without affecting the rhythm in Tb. We conclude that pacemaker regulation of the circadian rhythms analyzed in this study is mediated by discrete sets of SCN projections: (i) dorsal projections to the PVH control pineal melatonin production; (ii) rostral projections to the anterior hypothalamic/preoptic areas mediate the Tb rhythm; and (iii) caudal projections to the SPVZ and hypothalamic arousal systems located in the posterior and lateral hypothalamic areas control the rhythm in R-A.
Collapse
Affiliation(s)
- Robert Y Moore
- Department of Neurology, University of Pittsburgh, PA 15213, USA.
| | | |
Collapse
|
411
|
Abstract
Overt 24-h rhythmicity is composed of both exogenous and endogenous components, reflecting the product of multiple (periodic) feedback loops with a core pacemaker at their center. Researchers attempting to reveal the endogenous circadian (near 24-h) component of rhythms commonly conduct their experiments under constant environmental conditions. However, even under constant environmental conditions, rhythmic changes in behavior, such as food intake or the sleep-wake cycle, can contribute to observed rhythmicity in many physiological and endocrine variables. Assessment of characteristics of the core circadian pacemaker and its direct contribution to rhythmicity in different variables, including rhythmicity in gene expression, may be more reliable when such periodic behaviors are eliminated or kept constant across all circadian phases. This is relevant for the assessment of the status of the circadian pacemaker in situations in which the sleep-wake cycle or food intake regimes are altered because of external conditions, such as in shift work or jet lag. It is also relevant for situations in which differences in overt rhythmicity could be due to changes in either sleep oscillatory processes or circadian rhythmicity, such as advanced or delayed sleep phase syndromes, in aging, or in particular clinical conditions. Researchers studying human circadian rhythms have developed constant routine protocols to assess the status of the circadian pacemaker in constant behavioral and environmental conditions, whereas this technique is often thought to be unnecessary in the study of animal rhythms. In this short review, the authors summarize constant routine methodology and what has been learned from constant routines and argue that animal and human circadian rhythm researchers should (continue to) use constant routines as a step on the road to getting through to central and peripheral circadian oscillators in the intact organism.
Collapse
Affiliation(s)
- Jeanne F Duffy
- Division of Sleep Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.
| | | |
Collapse
|
412
|
Abstract
The human sleep-wake cycle is generated by a circadian process, originating from the suprachiasmatic nuclei, in interaction with a separate oscillatory process: the sleep homeostat. The sleep-wake cycle is normally timed to occur at a specific phase relative to the external cycle of light-dark exposure. It is also timed at a specific phase relative to internal circadian rhythms, such as the pineal melatonin rhythm, the circadian sleep-wake propensity rhythm, and the rhythm of responsiveness of the circadian pacemaker to light. Variations in these internal and external phase relationships, such as those that occur in blindness, aging, morning and evening, and advanced and delayed sleep-phase syndrome, lead to sleep disruptions and complaints. Changes in ocular circadian photoreception, interindividual variation in the near-24-h intrinsic period of the circadian pacemaker, and sleep homeostasis can contribute to variations in external and internal phase. Recent findings on the physiological and molecular-genetic correlates of circadian sleep disorders suggest that the timing of the sleep-wake cycle and circadian rhythms is closely integrated but is, in part, regulated differentially.
Collapse
Affiliation(s)
- Derk-Jan Dijk
- Centre for Chronobiology, School of Biomedical and Life Sciences, University of Surrey, Guildford GU27XH, United Kingdom.
| | | |
Collapse
|
413
|
Chapter VI Immediate-early gene expression in the analysis of circadian rhythms and sleep. ACTA ACUST UNITED AC 2002. [DOI: 10.1016/s0924-8196(02)80017-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
414
|
Nguyen PV. Unravelling the neural circuitry for circadian regulation of sleep–wake cycles. Trends Neurosci 2001. [DOI: 10.1016/s0166-2236(00)02010-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|