401
|
Park EJ, Kim BA, Won YJ. The Complete Mitochondrial Genome of Dendronephthya gigantea (Anthozoa: Octocorallia: Nephtheidae). ANIMAL SYSTEMATICS, EVOLUTION AND DIVERSITY 2010. [DOI: 10.5635/kjsz.2010.26.3.197] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
|
402
|
Gotzek D, Clarke J, Shoemaker D. Mitochondrial genome evolution in fire ants (Hymenoptera: Formicidae). BMC Evol Biol 2010; 10:300. [PMID: 20929580 PMCID: PMC2958920 DOI: 10.1186/1471-2148-10-300] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2009] [Accepted: 10/07/2010] [Indexed: 01/02/2023] Open
Abstract
Background Complete mitochondrial genome sequences have become important tools for the study of genome architecture, phylogeny, and molecular evolution. Despite the rapid increase in available mitogenomes, the taxonomic sampling often poorly reflects phylogenetic diversity and is often also biased to represent deeper (family-level) evolutionary relationships. Results We present the first fully sequenced ant (Hymenoptera: Formicidae) mitochondrial genomes. We sampled four mitogenomes from three species of fire ants, genus Solenopsis, which represent various evolutionary depths. Overall, ant mitogenomes appear to be typical of hymenopteran mitogenomes, displaying a general A+T-bias. The Solenopsis mitogenomes are slightly more compact than other hymentoperan mitogenomes (~15.5 kb), retaining all protein coding genes, ribosomal, and transfer RNAs. We also present evidence of recombination between the mitogenomes of the two conspecific Solenopsis mitogenomes. Finally, we discuss potential ways to improve the estimation of phylogenies using complete mitochondrial genome sequences. Conclusions The ant mitogenome presents an important addition to the continued efforts in studying hymenopteran mitogenome architecture, evolution, and phylogenetics. We provide further evidence that the sampling across many taxonomic levels (including conspecifics and congeners) is useful and important to gain detailed insights into mitogenome evolution. We also discuss ways that may help improve the use of mitogenomes in phylogenetic analyses by accounting for non-stationary and non-homogeneous evolution among branches.
Collapse
Affiliation(s)
- Dietrich Gotzek
- Department of Ecology and Evolution, University of Lausanne, 1015 Lausanne, Switzerland.
| | | | | |
Collapse
|
403
|
Douglas KC, Halbert ND, Kolenda C, Childers C, Hunter DL, Derr JN. Complete mitochondrial DNA sequence analysis of Bison bison and bison-cattle hybrids: function and phylogeny. Mitochondrion 2010; 11:166-75. [PMID: 20870040 DOI: 10.1016/j.mito.2010.09.005] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2010] [Revised: 09/05/2010] [Accepted: 09/14/2010] [Indexed: 01/15/2023]
Abstract
Complete mitochondrial DNA (mtDNA) genomes from 43 bison and bison-cattle hybrids were sequenced and compared with other bovids. Selected animals reflect the historical range and current taxonomic structure of bison. This study identified regions of potential nuclear-mitochondrial incompatibilities in hybrids, provided a complete mtDNA phylogenetic tree for this species, and uncovered evidence of bison population substructure. Seventeen bison haplotypes defined by 66 polymorphic sites were discovered, whereas 728 fixed differences and 86 non-synonymous mutations were identified between bison and bison-cattle hybrid sequences. The potential roles of the mtDNA genome in the function of hybrid animals and bison taxonomy are discussed.
Collapse
Affiliation(s)
- Kory C Douglas
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX 77843-4458, USA.
| | | | | | | | | | | |
Collapse
|
404
|
Milbury CA, Lee JC, Cannone JJ, Gaffney PM, Gutell RR. Fragmentation of the large subunit ribosomal RNA gene in oyster mitochondrial genomes. BMC Genomics 2010; 11:485. [PMID: 20813041 PMCID: PMC2996981 DOI: 10.1186/1471-2164-11-485] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2009] [Accepted: 09/02/2010] [Indexed: 12/03/2022] Open
Abstract
Background Discontinuous genes have been observed in bacteria, archaea, and eukaryotic nuclei, mitochondria and chloroplasts. Gene discontinuity occurs in multiple forms: the two most frequent forms result from introns that are spliced out of the RNA and the resulting exons are spliced together to form a single transcript, and fragmented gene transcripts that are not covalently attached post-transcriptionally. Within the past few years, fragmented ribosomal RNA (rRNA) genes have been discovered in bilateral metazoan mitochondria, all within a group of related oysters. Results In this study, we have characterized this fragmentation with comparative analysis and experimentation. We present secondary structures, modeled using comparative sequence analysis of the discontinuous mitochondrial large subunit rRNA genes of the cupped oysters C. virginica, C. gigas, and C. hongkongensis. Comparative structure models for the large subunit rRNA in each of the three oyster species are generally similar to those for other bilateral metazoans. We also used RT-PCR and analyzed ESTs to determine if the two fragmented LSU rRNAs are spliced together. The two segments are transcribed separately, and not spliced together although they still form functional rRNAs and ribosomes. Conclusions Although many examples of discontinuous ribosomal genes have been documented in bacteria and archaea, as well as the nuclei, chloroplasts, and mitochondria of eukaryotes, oysters are some of the first characterized examples of fragmented bilateral animal mitochondrial rRNA genes. The secondary structures of the oyster LSU rRNA fragments have been predicted on the basis of previous comparative metazoan mitochondrial LSU rRNA structure models.
Collapse
Affiliation(s)
- Coren A Milbury
- College of Earth, Ocean, and Environment, University of Delaware, Lewes, DE, USA.
| | | | | | | | | |
Collapse
|
405
|
Rato C, Carranza S, Perera A, Carretero M, Harris D. Conflicting patterns of nucleotide diversity between mtDNA and nDNA in the Moorish gecko, Tarentola mauritanica. Mol Phylogenet Evol 2010; 56:962-71. [DOI: 10.1016/j.ympev.2010.04.033] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2009] [Revised: 04/16/2010] [Accepted: 04/23/2010] [Indexed: 10/19/2022]
|
406
|
Tsagkogeorga G, Turon X, Galtier N, Douzery EJP, Delsuc F. Accelerated evolutionary rate of housekeeping genes in tunicates. J Mol Evol 2010; 71:153-67. [PMID: 20697701 DOI: 10.1007/s00239-010-9372-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2010] [Accepted: 07/16/2010] [Indexed: 01/11/2023]
Abstract
Phylogenomics has recently revealed that tunicates represent the sister-group of vertebrates in the newly defined clade Olfactores. However, phylogenomic and comparative genomic studies have also suggested that tunicates are characterized by an elevated rate of molecular evolution and a high degree of genomic divergence. Despite the recurrent interest in the group, the picture of tunicate peculiar evolutionary dynamics is still fragmentary, as it mainly lies in studies focusing on only a few model species. In order to expand the available genomic data for the group, we used the high-throughput 454 technology to sequence the partial transcriptome of a previously unsampled tunicate, Microcosmus squamiger. This allowed us to get further insights into tunicate-accelerated evolution through a comparative analysis based on pertinent phylogenetic markers, i.e., a core of 35 housekeeping genes conserved across bilaterians. Our results showed that tunicates evolved on average about two times faster than the other chordates, yet the degree of this acceleration varied extensively upon genes and upon lineages. Appendicularia and Aplousobranchia were detected as the most divergent groups which were also characterized by highly heterogeneous substitution rates across genes. Finally, an estimation of the d (N)/d (S) ratio in three pairs of closely related taxa within Olfactores did not reveal strong differences between the tunicate and vertebrate lineages suggesting that for this set of housekeeping genes, the accelerated evolution of tunicates is plausibly due to an elevated mutation rate rather than to particular selective effects.
Collapse
Affiliation(s)
- Georgia Tsagkogeorga
- Université Montpellier 2 and CNRS, Institut des Sciences de l'Evolution (UMR 5554), CC064, Place Eugène Bataillon, 34095, Montpellier Cedex 05, France
| | | | | | | | | |
Collapse
|
407
|
Rawlings TA, MacInnis MJ, Bieler R, Boore JL, Collins TM. Sessile snails, dynamic genomes: gene rearrangements within the mitochondrial genome of a family of caenogastropod molluscs. BMC Genomics 2010; 11:440. [PMID: 20642828 PMCID: PMC3091637 DOI: 10.1186/1471-2164-11-440] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2010] [Accepted: 07/19/2010] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Widespread sampling of vertebrates, which comprise the majority of published animal mitochondrial genomes, has led to the view that mitochondrial gene rearrangements are relatively rare, and that gene orders are typically stable across major taxonomic groups. In contrast, more limited sampling within the Phylum Mollusca has revealed an unusually high number of gene order arrangements. Here we provide evidence that the lability of the molluscan mitochondrial genome extends to the family level by describing extensive gene order changes that have occurred within the Vermetidae, a family of sessile marine gastropods that radiated from a basal caenogastropod stock during the Cenozoic Era. RESULTS Major mitochondrial gene rearrangements have occurred within this family at a scale unexpected for such an evolutionarily young group and unprecedented for any caenogastropod examined to date. We determined the complete mitochondrial genomes of four species (Dendropoma maximum, D. gregarium, Eualetes tulipa, and Thylacodes squamigerus) and the partial mitochondrial genomes of two others (Vermetus erectus and Thylaeodus sp.). Each of the six vermetid gastropods assayed possessed a unique gene order. In addition to the typical mitochondrial genome complement of 37 genes, additional tRNA genes were evident in D. gregarium (trnK) and Thylacodes squamigerus (trnV, trnLUUR). Three pseudogenes and additional tRNAs found within the genome of Thylacodes squamigerus provide evidence of a past duplication event in this taxon. Likewise, high sequence similarities between isoaccepting leucine tRNAs in Thylacodes, Eualetes, and Thylaeodus suggest that tRNA remolding has been rife within this family. While vermetids exhibit gene arrangements diagnostic of this family, they also share arrangements with littorinimorph caenogastropods, with which they have been linked based on sperm morphology and primary sequence-based phylogenies. CONCLUSIONS We have uncovered major changes in gene order within a family of caenogastropod molluscs that are indicative of a highly dynamic mitochondrial genome. Studies of mitochondrial genomes at such low taxonomic levels should help to illuminate the dynamics of gene order change, since the telltale vestiges of gene duplication, translocation, and remolding have not yet been erased entirely. Likewise, gene order characters may improve phylogenetic hypotheses at finer taxonomic levels than once anticipated and aid in investigating the conditions under which sequence-based phylogenies lack resolution or prove misleading.
Collapse
Affiliation(s)
- Timothy A Rawlings
- Cape Breton University, 1250 Grand Lake Road, Sydney, NS B1P 6L2, Canada.
| | | | | | | | | |
Collapse
|
408
|
Meyer A, Todt C, Mikkelsen NT, Lieb B. Fast evolving 18S rRNA sequences from Solenogastres (Mollusca) resist standard PCR amplification and give new insights into mollusk substitution rate heterogeneity. BMC Evol Biol 2010; 10:70. [PMID: 20214780 PMCID: PMC2841657 DOI: 10.1186/1471-2148-10-70] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2009] [Accepted: 03/09/2010] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The 18S rRNA gene is one of the most important molecular markers, used in diverse applications such as molecular phylogenetic analyses and biodiversity screening. The Mollusca is the second largest phylum within the animal kingdom and mollusks show an outstanding high diversity in body plans and ecological adaptations. Although an enormous amount of 18S data is available for higher mollusks, data on some early branching lineages are still limited. Despite of some partial success in obtaining these data from Solenogastres, by some regarded to be the most "basal" mollusks, this taxon still remained problematic due to contamination with food organisms and general amplification difficulties. RESULTS We report here the first authentic 18S genes of three Solenogastres species (Mollusca), each possessing a unique sequence composition with regions conspicuously rich in guanine and cytosine. For these GC-rich regions we calculated strong secondary structures. The observed high intra-molecular forces hamper standard amplification and appear to increase formation of chimerical sequences caused by contaminating foreign DNAs from potential prey organisms. In our analyses, contamination was avoided by using RNA as a template. Indication for contamination of previously published Solenogastres sequences is presented. Detailed phylogenetic analyses were conducted using RNA specific models that account for compensatory substitutions in stem regions. CONCLUSIONS The extreme morphological diversity of mollusks is mirrored in the molecular 18S data and shows elevated substitution rates mainly in three higher taxa: true limpets (Patellogastropoda), Cephalopoda and Solenogastres. Our phylogenetic tree based on 123 species, including representatives of all mollusk classes, shows limited resolution at the class level but illustrates the pitfalls of artificial groupings formed due to shared biased sequence composition.
Collapse
Affiliation(s)
- Achim Meyer
- Institute of Zoology, Johannes Gutenberg University, Müllerweg 6, 55099 Mainz, Germany
| | - Christiane Todt
- Department of Biology, University of Bergen, Thormøhlens gate 53a, 5008 Bergen, Norway
| | - Nina T Mikkelsen
- The Natural History Collections, Bergen Museum, University of Bergen, Muséplass 3, 5007 Bergen, Norway
| | - Bernhard Lieb
- Institute of Zoology, Johannes Gutenberg University, Müllerweg 6, 55099 Mainz, Germany
| |
Collapse
|
409
|
MitoZoa: A curated mitochondrial genome database of metazoans for comparative genomics studies. Mitochondrion 2010; 10:192-9. [DOI: 10.1016/j.mito.2010.01.004] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2009] [Revised: 12/14/2009] [Accepted: 01/08/2010] [Indexed: 11/23/2022]
|
410
|
Doucet-Beaupré H, Breton S, Chapman EG, Blier PU, Bogan AE, Stewart DT, Hoeh WR. Mitochondrial phylogenomics of the Bivalvia (Mollusca): searching for the origin and mitogenomic correlates of doubly uniparental inheritance of mtDNA. BMC Evol Biol 2010; 10:50. [PMID: 20167078 PMCID: PMC2834691 DOI: 10.1186/1471-2148-10-50] [Citation(s) in RCA: 118] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2009] [Accepted: 02/18/2010] [Indexed: 11/10/2022] Open
Abstract
Background Doubly uniparental inheritance (DUI) is an atypical system of animal mtDNA inheritance found only in some bivalves. Under DUI, maternally (F genome) and paternally (M genome) transmitted mtDNAs yield two distinct gender-associated mtDNA lineages. The oldest distinct M and F genomes are found in freshwater mussels (order Unionoida). Comparative analyses of unionoid mitochondrial genomes and a robust phylogenetic framework are necessary to elucidate the origin, function and molecular evolutionary consequences of DUI. Herein, F and M genomes from three unionoid species, Venustaconcha ellipsiformis, Pyganodon grandis and Quadrula quadrula have been sequenced. Comparative genomic analyses were carried out on these six genomes along with two F and one M unionoid genomes from GenBank (F and M genomes of Inversidens japanensis and F genome of Lampsilis ornata). Results Compared to their unionoid F counterparts, the M genomes contain some unique features including a novel localization of the trnH gene, an inversion of the atp8-trnD genes and a unique 3'coding extension of the cytochrome c oxidase subunit II gene. One or more of these unique M genome features could be causally associated with paternal transmission. Unionoid bivalves are characterized by extreme intraspecific sequence divergences between gender-associated mtDNAs with an average of 50% for V. ellipsiformis, 50% for I. japanensis, 51% for P. grandis and 52% for Q. quadrula (uncorrected amino acid p-distances). Phylogenetic analyses of 12 protein-coding genes from 29 bivalve and five outgroup mt genomes robustly indicate bivalve monophyly and the following branching order within the autolamellibranch bivalves: ((Pteriomorphia, Veneroida) Unionoida). Conclusion The basal nature of the Unionoida within the autolamellibranch bivalves and the previously hypothesized single origin of DUI suggest that (1) DUI arose in the ancestral autolamellibranch bivalve lineage and was subsequently lost in multiple descendant lineages and (2) the mitochondrial genome characteristics observed in unionoid bivalves could more closely resemble the DUI ancestral condition. Descriptions and comparisons presented in this paper are fundamental to a more complete understanding regarding the origins and consequences of DUI.
Collapse
Affiliation(s)
- Hélène Doucet-Beaupré
- Département de Biologie, Université du Québec à Rimouski, Rimouski, Québec, G5L 3A1, Canada .
| | | | | | | | | | | | | |
Collapse
|
411
|
Breton S, Stewart DT, Hoeh WR. Characterization of a mitochondrial ORF from the gender-associated mtDNAs of Mytilus spp. (Bivalvia: Mytilidae): identification of the "missing" ATPase 8 gene. Mar Genomics 2010; 3:11-8. [PMID: 21798192 DOI: 10.1016/j.margen.2010.01.001] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2009] [Revised: 12/17/2009] [Accepted: 01/11/2010] [Indexed: 02/08/2023]
Abstract
Bivalve species are characterized by extraordinary variability in terms of mitochondrial (mt) genome size, gene arrangement and tRNA gene number. Many species are thought to lack the mitochondrial protein-coding gene atp8. Of these species, the Mytilidae appears to be the only known taxon with doubly uniparental inheritance of mtDNA that does not possess the atp8 gene. This raises the question as to whether mytilids have completely lost the ATP8 protein, whether the gene has been transferred to the nucleus or whether they possess a highly modified version of the gene/protein that has led to its lack of annotation. In the present study, we re-investigated all complete (or nearly complete) F and M mytilid mt genomes previously sequenced for the presence of conserved open reading frames (ORFs) that might code for ATP8 and/or have other functional importance in these bivalves. We also revised the annotations of all available complete mitochondrial genomes of bivalves and nematodes that are thought to lack atp8 in an attempt to detect it. Our results indicate that a novel mytilid ORF of significant length (i.e., the ORF is >85 amino acids in length), with complete start and stop codons, is a candidate for the atp8 gene: (1) it possesses a pattern of evolution expected for a protein-coding gene evolving under purifying selection (i.e., the 3rd>1st>2nd codon pattern of evolution), (2) it is actively transcribed in Mytilus species, (3) it has one predicted transmembrane helix (as do other metazoan ATP8 proteins), (4) it has conserved functional motifs and (5), comparisons of its amino acid sequence with ATP8 sequences of other molluscan or bivalve species reveal similar hydropathy profiles. Furthermore, our revised annotations also confirmed the mt presence of atp8 in almost all bivalve species and in one nematode species. Our results thus support recognizing the presence of ATPase 8 in most bivalves mt genomes (if not all) rather than the continued characterization of these genomes as lacking this gene.
Collapse
Affiliation(s)
- Sophie Breton
- Department of Biological Sciences, Kent State University, OH 44240 USA.
| | | | | |
Collapse
|
412
|
Howe DK, Baer CF, Denver DR. High rate of large deletions in Caenorhabditis briggsae mitochondrial genome mutation processes. Genome Biol Evol 2009; 2:29-38. [PMID: 20333220 PMCID: PMC2839355 DOI: 10.1093/gbe/evp055] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/19/2009] [Indexed: 11/14/2022] Open
Abstract
Mitochondrial DNA (mtDNA) mutations underlie a variety of human genetic disorders and are associated with the aging process. mtDNA polymorphisms are widely used in a variety of evolutionary applications. Although mtDNA mutation spectra are known to differ between distantly related model organisms, the extent to which mtDNA mutation processes vary between more closely related species and within species remains enigmatic. We analyzed mtDNA divergence in two sets of 250-generation Caenorhabditis briggsae mutation-accumulation (MA) lines, each derived from a different natural isolate progenitor: strain HK104 from Okayama, Japan, and strain PB800 from Ohio, United States. Both sets of C. briggsae MA lines accumulated numerous large heteroplasmic mtDNA deletions, whereas only one similar event was observed in a previous analysis of Caenorhabditis elegans MA line mtDNA. Homopolymer length change mutations were frequent in both sets of C. briggsae MA lines and occurred in both intergenic and protein-coding gene regions. The spectrum of C. briggsae mtDNA base substitution mutations differed from the spectrum previously observed in C. elegans. In C. briggsae, the HK104 MA lines experienced many different base substitution types, whereas the PB800 lines displayed only C:G --> T:A transitions, although the difference was not significant. Over half of the mtDNA base substitutions detected in the C. briggsae MA lines were in a heteroplasmic state, whereas all those previously characterized in C. elegans MA line mtDNA were fixed changes, indicating a narrower mtDNA bottleneck in C. elegans as compared with C. briggsae. Our results show that C. briggsae mtDNA is highly susceptible to large deletions and that the mitochondrial mutation process varies between Caenorhabditis nematode species.
Collapse
Affiliation(s)
- Dana K Howe
- Department of Zoology and Center for Genome Research and Biocomputing, Oregon State University, USA
| | | | | |
Collapse
|
413
|
Raboin MJ, Timko AF, Howe DK, Félix MA, Denver DR. Evolution of Caenorhabditis mitochondrial genome pseudogenes and Caenorhabditis briggsae natural isolates. Mol Biol Evol 2009; 27:1087-96. [PMID: 20026478 DOI: 10.1093/molbev/msp318] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Although most metazoan mitochondrial genomes are highly streamlined and encode little noncoding DNA outside of the "AT" region, the accumulation of mitochondrial pseudogenes and other types of noncoding DNA has been observed in a growing number of animal groups. The nematode species Caenorhabditis briggsae harbors two mitochondrial DNA (mtDNA) pseudogenes, named Psinad5-1 and Psinad5-2, presumably derived from the nad5 protein-coding gene. Here, we provide an in-depth analysis of mtDNA pseudogene evolution in C. briggsae natural isolates and related Caenorhabditis species. Mapping the observed presence and absence of the pseudogenes onto phylogenies suggests that Psinad5-1 originated in the ancestor to C. briggsae and its recently discovered outcrossing relative species Caenorhabditis sp. 5 and Caenorhabditis sp. 9. However, Psinad5-1 was not detected in Caenorhabditis sp. 9 natural isolates, suggesting a lineage-specific loss of this pseudogene in this species. Our results corroborated the previous finding that Psinad5-2 originated within C. briggsae. The observed pattern of mitochondrial pseudogene gain and loss in Caenorhabditis was inconsistent with predictions of the tandem duplication-random loss model of mitochondrial genome evolution and suggests that intralineage recombination-like mechanisms might play a major role in Caenorhabditis mtDNA evolution. Natural variation was analyzed at the pseudogenes and flanking mtDNA sequences in 141 geographically diverse C. briggsae natural isolates. Although phylogenetic analysis placed the majority of isolates into the three previously established major intraspecific clades of C. briggsae, two new and unexpected haplotypes fell outside of these conventional groupings. Psinad5-2 copy number variation was observed among C. briggsae isolates collected from the same geographic site. Patterns of nucleotide diversity were analyzed in Psinad5-1 and Psinad5-2, and confidence intervals were found to overlap values from synonymous sites in protein-coding genes, consistent with neutral expectations. Our findings provide new insights into the mode and tempo of mitochondrial genome and pseudogene evolution both within and between Caenorhabditis nematode species.
Collapse
Affiliation(s)
- Michael J Raboin
- Molecular and Cellular Biology Program, Oregon State University, OR, USA
| | | | | | | | | |
Collapse
|
414
|
Lavrov DV. Rapid proliferation of repetitive palindromic elements in mtDNA of the endemic Baikalian sponge Lubomirskia baicalensis. Mol Biol Evol 2009; 27:757-60. [PMID: 20026479 DOI: 10.1093/molbev/msp317] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Animal mitochondrial DNA (mtDNA) is a remarkably compact molecule largely because of the scarcity of noncoding "selfish" DNA. Recently, however, we found that mitochondrial genomes of several phylogenetically diverse species of demosponges contain small repetitive palindromic sequences, interspersed within intergenic regions and fused in protein and ribosomal RNA genes. Here, I report and analyze the proliferation of such elements in the mitochondrial genome of the endemic sponge of Lake Baikal Lubomirskia baicalensis. Because Baikal sponges are closely related to the circumglobally distributed freshwater sponge Ephydatia muelleri with which they shared a common ancestor approximately 3-10 Ma, both the rate of single nucleotide substitutions and the rate of palindromic repeat insertions can be calculated in this system. I found the rate of nucleotide substitutions in mtDNA of freshwater sponges to be extremely low (0.5-1.6 x 10(-9) per site per year), more similar to that in plants than bilaterian animals. By contrast, the per/nucleotide rate of insertions of repetitive elements is at least four times higher. This rapid rate of proliferation combined with the broad phylogenetic distribution of hairpin elements can make them a defining force in the evolution of mitochondrial genomes of demosponges.
Collapse
|
415
|
Improved tRNA prediction in the American house dust mite reveals widespread occurrence of extremely short minimal tRNAs in acariform mites. BMC Genomics 2009; 10:598. [PMID: 20003349 PMCID: PMC2797822 DOI: 10.1186/1471-2164-10-598] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2009] [Accepted: 12/11/2009] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Atypical tRNAs are functional minimal tRNAs, lacking either the D- or T-arm. They are significantly shorter than typical cloverleaf tRNAs. Widespread occurrence of atypical tRNAs was first demonstrated for secernentean nematodes and later in various arachnids. Evidence started to accumulate that tRNAs of certain acariform mites are even shorter than the minimal tRNAs of nematodes, raising the possibility that tRNAs lacking both D- and T-arms might exist in these organisms. The presence of cloverleaf tRNAs in acariform mites, particularly in the house dust mite genus Dermatophagoides, is still disputed. RESULTS Mitochondrial tRNAs of Dermatophagoides farinae are minimal, atypical tRNAs lacking either the T- or D-arm. The size (49-62, 54.4 +/- 2.86 nt) is significantly (p = 0.019) smaller than in Caenorhabditis elegans (53-63, 56.3 +/- 2.30 nt), a model minimal tRNA taxon. The shortest tRNA (49 nt) in Dermatophagoides is approaching the length of the shortest known tRNAs (45-49 nt) described in other acariform mites. The D-arm is absent in these tRNAs, and the inferred T-stem is small (2-3 bp) and thermodynamically unstable, suggesting that it may not exist in reality. The discriminator nucleotide is probably not encoded and is added postranscriptionally in many Dermatophagoides tRNAs. CONCLUSIONS Mitochondrial tRNAs of acariform mites are largely atypical, non-cloverleaf tRNAs. Among them, the shortest known tRNAs with no D-arm and a short and unstable T-arm can be inferred. While our study confirmed seven tRNAs in Dermatophagoides by limited EST data, further experimental evidence is needed to demonstrate extremely small and unusual tRNAs in acariform mites.
Collapse
|
416
|
Miyamoto H, Machida RJ, Nishida S. Complete mitochondrial genome sequences of the three pelagic chaetognaths Sagitta nagae, Sagitta decipiens and Sagitta enflata. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2009; 5:65-72. [PMID: 20374943 DOI: 10.1016/j.cbd.2009.11.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2009] [Revised: 11/13/2009] [Accepted: 11/16/2009] [Indexed: 11/25/2022]
Abstract
The complete nucleotide sequences of the mitochondrial genomes were determined for the three pelagic chaetognaths, Sagitta nagae, Sagitta decipiens, and Sagitta enflata. The mitochondrial genomes of these species which were 11,459, 11,121, and 12,631bp in length, respectively, contained 14 genes (11 protein-coding genes, one transfer RNA gene, and two ribosomal RNA genes), and were found to have lost 23 genes that are present in the typical metazoan mitochondrial genome. The same mitochondrial genome contents have been reported from the benthic chaetognaths belonging to the family Spadellidae, Paraspadella gotoi and Spadella cephaloptera. Within the phylum Chaetognatha, Sagitta and Spadellidae are distantly related, suggesting that the gene loss occurred in the ancestral species of the phylum. The gene orders of the three Sagitta species are markedly different from those of the other non-Chaetognatha metazoans. In contrast to the region with frequent gene rearrangements, no gene rearrangements were observed in the gene cluster encoding COII-III, ND1-3, srRNA, and tRNA(met). Within this conserved gene cluster, gene rearrangements were not observed in the three Sagitta species or between the Sagitta and Spadellidae species. The gene order of this cluster was also assumed to be the ancestral state of the phylum.
Collapse
Affiliation(s)
- Hiroomi Miyamoto
- Ocean Research Institute, University of Tokyo, Tokyo, 164-8639, Japan.
| | | | | |
Collapse
|
417
|
Singh TR, Tsagkogeorga G, Delsuc F, Blanquart S, Shenkar N, Loya Y, Douzery EJ, Huchon D. Tunicate mitogenomics and phylogenetics: peculiarities of the Herdmania momus mitochondrial genome and support for the new chordate phylogeny. BMC Genomics 2009; 10:534. [PMID: 19922605 PMCID: PMC2785839 DOI: 10.1186/1471-2164-10-534] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2009] [Accepted: 11/17/2009] [Indexed: 11/30/2022] Open
Abstract
Background Tunicates represent a key metazoan group as the sister-group of vertebrates within chordates. The six complete mitochondrial genomes available so far for tunicates have revealed distinctive features. Extensive gene rearrangements and particularly high evolutionary rates have been evidenced with regard to other chordates. This peculiar evolutionary dynamics has hampered the reconstruction of tunicate phylogenetic relationships within chordates based on mitogenomic data. Results In order to further understand the atypical evolutionary dynamics of the mitochondrial genome of tunicates, we determined the complete sequence of the solitary ascidian Herdmania momus. This genome from a stolidobranch ascidian presents the typical tunicate gene content with 13 protein-coding genes, 2 rRNAs and 24 tRNAs which are all encoded on the same strand. However, it also presents a novel gene arrangement, highlighting the extreme plasticity of gene order observed in tunicate mitochondrial genomes. Probabilistic phylogenetic inferences were conducted on the concatenation of the 13 mitochondrial protein-coding genes from representatives of major metazoan phyla. We show that whereas standard homogeneous amino acid models support an artefactual sister position of tunicates relative to all other bilaterians, the CAT and CAT+BP site- and time-heterogeneous mixture models place tunicates as the sister-group of vertebrates within monophyletic chordates. Moreover, the reference phylogeny indicates that tunicate mitochondrial genomes have experienced a drastic acceleration in their evolutionary rate that equally affects protein-coding and ribosomal-RNA genes. Conclusion This is the first mitogenomic study supporting the new chordate phylogeny revealed by recent phylogenomic analyses. It illustrates the beneficial effects of an increased taxon sampling coupled with the use of more realistic amino acid substitution models for the reconstruction of animal phylogeny.
Collapse
Affiliation(s)
- Tiratha Raj Singh
- Department of Zoology, George S Wise Faculty of Life Sciences, Tel-Aviv University, Tel Aviv 69978, Israel
| | | | | | | | | | | | | | | |
Collapse
|
418
|
Min GS, Park JK. Eurotatorian paraphyly: Revisiting phylogenetic relationships based on the complete mitochondrial genome sequence of Rotaria rotatoria (Bdelloidea: Rotifera: Syndermata). BMC Genomics 2009; 10:533. [PMID: 19919696 PMCID: PMC2784805 DOI: 10.1186/1471-2164-10-533] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2009] [Accepted: 11/17/2009] [Indexed: 12/02/2022] Open
Abstract
BACKGROUND The Syndermata (Rotifera+Acanthocephala) is one of the best model systems for studying the evolutionary origins and persistence of different life styles because it contains a series of lineage-specific life histories: Monogononta (cyclic parthenogenetic and free-living), Bdelloidea (entirely parthenogenetic and mostly benthic dweller), Seisonidea (exclusively bisexual and epizoic or ectoparasitic), and Acanthocephala (sexual and obligatory endoparasitic). Providing phylogenetic resolution to the question of Eurotatoria (Monogononta and Bdelloidea) monophyly versus paraphyly is a key factor for better understanding the evolution of different life styles, yet this matter is not clearly resolved. In this study, we revisited this issue based on comparative analysis of complete mitochondrial genome information for major groups of the Syndermata. RESULTS We determined the first complete mitochondrial genome sequences (15,319 bp) of a bdelloid rotifer, Rotaria rotatoria. In order to examine the validity of Eurotatoria (Monogononta and Bdelloidea) monophyly/paraphyly, we performed phylogenetic analysis of amino acid sequences for eleven protein-coding genes sampled from a wide variety of bilaterian representatives. The resulting mitochondrial genome trees, inferred using different algorithms, consistently failed to recover Monogononta and Bdelloidea as monophyletic, but instead identified them as a paraphyletic assemblage. Bdelloidea (as represented by R. rotatoria) shares most common ancestry with Acanthocephala (as represented by L. thecatus) rather than with monogonont B. plicatilis, the other representative of Eurotatoria. CONCLUSION Comparisons of inferred amino acid sequence and gene arrangement patterns with those of other metazoan mtDNAs (including those of acanthocephalan L. thecatus and monogonont B. plicatilis) support the hypothesis that Bdelloidea shares most common ancestry with Acanthocephala rather than with Monogononta. From this finding, we suggest that the obligatory asexuality of bdelloideans may have secondarily derived from some other preexisting condition in earlier lineage of rotifers. Providing a more complete assessment of phylogenetic relationships and inferring patterns of evolution of different types of life styles among Syndermata awaits comparisons requiring mitochondrial genome sequencing of Seisonidea.
Collapse
Affiliation(s)
- Gi-Sik Min
- Department of Biological Sciences, Inha University, Incheon 402-751, Republic of Korea
| | - Joong-Ki Park
- Department of Parasitology, College of Medicine, Chungbuk National University, Cheongju 361-763, Republic of Korea
| |
Collapse
|
419
|
Galtier N, Nabholz B, Glémin S, Hurst GDD. Mitochondrial DNA as a marker of molecular diversity: a reappraisal. Mol Ecol 2009; 18:4541-50. [PMID: 19821901 DOI: 10.1111/j.1365-294x.2009.04380.x] [Citation(s) in RCA: 611] [Impact Index Per Article: 40.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- N Galtier
- Institut des Sciences de l'Evolution, Université Montpellier 2, C.N.R.S. UMR 5554, Place E. Bataillon, CC 64, 34195 Montpellier, France.
| | | | | | | |
Collapse
|
420
|
Comparative mitochondrial genomics of freshwater mussels (Bivalvia: Unionoida) with doubly uniparental inheritance of mtDNA: gender-specific open reading frames and putative origins of replication. Genetics 2009; 183:1575-89. [PMID: 19822725 DOI: 10.1534/genetics.109.110700] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Doubly uniparental inheritance (DUI) of mitochondrial DNA in marine mussels (Mytiloida), freshwater mussels (Unionoida), and marine clams (Veneroida) is the only known exception to the general rule of strict maternal transmission of mtDNA in animals. DUI is characterized by the presence of gender-associated mitochondrial DNA lineages that are inherited through males (male-transmitted or M types) or females (female-transmitted or F types), respectively. This unusual system constitutes an excellent model for studying basic aspects of mitochondrial DNA inheritance and the evolution of mtDNA genomes in general. Here we compare published mitochondrial genomes of unionoid bivalve species with DUI, with an emphasis on characterizing unassigned regions, to identify regions of the F and M mtDNA genomes that could (i) play a role in replication or transcription of the mtDNA molecule and/or (ii) determine whether a genome will be transmitted via the female or the male gamete. Our results reveal the presence of one F-specific and one M-specific open reading frames (ORFs), and we hypothesize that they play a role in the transmission and/or gender-specific adaptive functions of the M and F mtDNA genomes in unionoid bivalves. Three major unassigned regions shared among all F and M unionoid genomes have also been identified, and our results indicate that (i) two of them are potential heavy-strand control regions (O(H)) for regulating replication and/or transcription and that (ii) multiple and potentially bidirectional light-strand origins of replication (O(L)) are present in unionoid F and M mitochondrial genomes. We propose that unassigned regions are the most promising candidate sequences in which to find regulatory and/or gender-specific sequences that could determine whether a mitochondrial genome will be maternally or paternally transmitted.
Collapse
|
421
|
Gissi C, Pesole G, Mastrototaro F, Iannelli F, Guida V, Griggio F. Hypervariability of Ascidian Mitochondrial Gene Order: Exposing the Myth of Deuterostome Organelle Genome Stability. Mol Biol Evol 2009; 27:211-5. [DOI: 10.1093/molbev/msp234] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
422
|
Rand DM. 'Why genomes in pieces?' revisited: sucking lice do their own thing in mtDNA circle game. Genome Res 2009; 19:700-2. [PMID: 19411594 DOI: 10.1101/gr.091132.109] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Affiliation(s)
- David M Rand
- Department of Ecology and Evolutionary Biology, Brown University, Providence, RI 02912, USA.
| |
Collapse
|
423
|
Contrasting evolutionary dynamics between angiosperm and mammalian genomes. Trends Ecol Evol 2009; 24:572-82. [PMID: 19665255 DOI: 10.1016/j.tree.2009.04.010] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2008] [Revised: 04/06/2009] [Accepted: 04/22/2009] [Indexed: 12/23/2022]
Abstract
Continuing advances in genomics are revealing substantial differences between genomes of major eukaryotic lineages. Because most data (in terms of depth and phylogenetic breadth) are available for angiosperms and mammals, we explore differences between these groups and show that angiosperms have less highly compartmentalized and more diverse genomes than mammals. In considering the causes of these differences, four mechanisms are highlighted: polyploidy, recombination, retrotransposition and genome silencing, which have different modes and time scales of activity. Angiosperm genomes are evolutionarily more dynamic and labile, whereas mammalian genomes are more stable at both the sequence and chromosome level. We suggest that fundamentally different life strategies and development feedback on the genome exist, influencing dynamics and evolutionary trajectories at all levels from the gene to the genome.
Collapse
|
424
|
The complete mitochondrial genome of Atelura formicaria (Hexapoda: Zygentoma) and the phylogenetic relationships of basal insects. Gene 2009; 439:25-34. [DOI: 10.1016/j.gene.2009.02.020] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2008] [Revised: 02/18/2009] [Accepted: 02/19/2009] [Indexed: 11/18/2022]
|
425
|
Dowton M, Cameron SL, Dowavic JI, Austin AD, Whiting MF. Characterization of 67 Mitochondrial tRNA Gene Rearrangements in the Hymenoptera Suggests That Mitochondrial tRNA Gene Position Is Selectively Neutral. Mol Biol Evol 2009; 26:1607-17. [DOI: 10.1093/molbev/msp072] [Citation(s) in RCA: 154] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
426
|
Liu SL, Zhuang Y, Zhang P, Adams KL. Comparative analysis of structural diversity and sequence evolution in plant mitochondrial genes transferred to the nucleus. Mol Biol Evol 2009; 26:875-91. [PMID: 19168566 DOI: 10.1093/molbev/msp011] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The transfer of functional mitochondrial genes to the nucleus is an ongoing process during plant evolution that has made a major impact on cytonuclear interactions and mitochondrial genome evolution. Analysis of evolutionarily recent transfers in plants provides insights into the evolutionary dynamics of the process and how transferred genes become functional in the nucleus. Here, we report 42 new transferred genes in various angiosperms, including 9 separate transfers of the succinate dehydrogenase gene sdh3. We performed comparative analyses of gene structures and sequence evolution of 77 genes transferred to the nucleus in various angiosperms, including multiple transfers of 10 genes in different lineages. Many genes contain mitochondrial targeting presequences, and potentially 5' cis-regulatory elements, that were acquired from pre-existing nuclear genes for mitochondrial proteins to create chimeric gene structures. In eight separate cases, the presequence was acquired from either the hsp70 chaperonin gene or the hsp22 chaperonin gene. The most common location of introns is in the presequence, and the least common is in the region transferred from the mitochondrion. Several genes have an intron between the presequence and the core region, or an intron in the 5'UTR (untranslated region) or 3'UTR, suggesting presequence and/or regulatory element acquisition by exon shuffling. Both synonymous and nonsynonymous substitution rates have increased considerably in the transferred genes compared with their mitochondrial counterparts, and the degree of rate acceleration varies by gene, species, and evolutionary timing of transfer. Pairwise and branchwise K(a)/K(s) analysis identified four genes with evidence for positive selection, but positive selection is generally uncommon in transferred genes. This study provides a detailed portrayal of structural and sequence evolution in mitochondrial genes transferred to the nucleus, revealing the frequency of different mechanisms for how presequences and introns are acquired and showing how the sequences of transferred genes evolve after movement between cellular genomes.
Collapse
Affiliation(s)
- Shao-Lun Liu
- UBC Botanical Garden and Centre for Plant Research, and Department of Botany, University of British Columbia, Vancouver, BC, Canada
| | | | | | | |
Collapse
|