401
|
Wen W, Yu J, Pan L, Wei Z, Weng J, Wang W, Ong YS, Tran THT, Hong W, Zhang M. Lipid-Induced conformational switch controls fusion activity of longin domain SNARE Ykt6. Mol Cell 2010; 37:383-95. [PMID: 20159557 DOI: 10.1016/j.molcel.2010.01.024] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2009] [Revised: 05/01/2009] [Accepted: 12/29/2009] [Indexed: 11/26/2022]
Abstract
While most SNAREs are permanently anchored to membranes by their transmembrane domains, the dually lipidated SNARE Ykt6 is found both on intracellular membranes and in the cytosol. The cytosolic Ykt6 is inactive due to the autoinhibition of the SNARE core by its longin domain, although the molecular basis of this inhibition is unknown. Here, we demonstrate that unlipidated Ykt6 adopts multiple conformations, with a small population in the closed state. The structure of Ykt6 in complex with a fatty acid suggests that, upon farnesylation, the Ykt6 SNARE core forms four alpha helices that wrap around the longin domain, forming a dominantly closed conformation. The fatty acid, buried in a hydrophobic groove formed between the longin domain and its SNARE core, is essential for maintaining the autoinhibited conformation of Ykt6. Our study reveals that the posttranslationally attached farnesyl group can actively regulate Ykt6 fusion activity in addition to its anticipated membrane-anchoring role.
Collapse
Affiliation(s)
- Wenyu Wen
- Institutes of Biomedical Sciences, Fudan University, Shanghai, P.R. China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
402
|
Abstract
A family of 23 DHHC (Asp-His-His-Cys) proteins that function as mammalian S-acyltransferases has been identified, reinvigorating the study of protein S-acylation. Recent studies have continued to reveal how S-acylation affects target proteins, and have provided glimpses of how DHHC-substrate specificity might be achieved.
Collapse
|
403
|
Fukata Y, Fukata M. Protein palmitoylation in neuronal development and synaptic plasticity. Nat Rev Neurosci 2010; 11:161-75. [PMID: 20168314 DOI: 10.1038/nrn2788] [Citation(s) in RCA: 460] [Impact Index Per Article: 32.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Protein palmitoylation, a classical and common lipid modification, regulates diverse aspects of neuronal protein trafficking and function. The reversible nature of palmitoylation provides a potential general mechanism for protein shuttling between intracellular compartments. The recent discovery of palmitoylating enzymes--a large DHHC (Asp-His-His-Cys) protein family--and the development of new proteomic and imaging methods have accelerated palmitoylation analysis. It is becoming clear that individual DHHC enzymes generate and maintain the specialized compartmentalization of substrates in polarized neurons. Here, we discuss the regulatory mechanisms for dynamic protein palmitoylation and the emerging roles of protein palmitoylation in various aspects of pathophysiology, including neuronal development and synaptic plasticity.
Collapse
Affiliation(s)
- Yuko Fukata
- Division of Membrane Physiology, Department of Cell Physiology, National Institute for Physiological Sciences, Okazaki, Aichi, Japan.
| | | |
Collapse
|
404
|
Abstract
The SNARE (soluble N-ethylmaleimide-sensitive fusion protein-attachment protein receptor) protein SNAP-25 (25 kDa synaptosome-associated protein) is essential for regulated exocytosis in neuronal and neuroendocrine cells. Whereas the majority of SNARE proteins contain transmembrane domains, SNAP-25 is instead anchored to membranes by the palmitoylation of a central cysteine-rich region. In this review, we discuss the mechanisms of SNAP-25 palmitoylation and how this modification regulates the intracellular trafficking and exocytotic function of this essential protein.
Collapse
|
405
|
Wright MH, Heal WP, Mann DJ, Tate EW. Protein myristoylation in health and disease. J Chem Biol 2010; 3:19-35. [PMID: 19898886 PMCID: PMC2816741 DOI: 10.1007/s12154-009-0032-8] [Citation(s) in RCA: 185] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2009] [Revised: 10/05/2009] [Accepted: 10/19/2009] [Indexed: 02/07/2023] Open
Abstract
N-myristoylation is the attachment of a 14-carbon fatty acid, myristate, onto the N-terminal glycine residue of target proteins, catalysed by N-myristoyltransferase (NMT), a ubiquitous and essential enzyme in eukaryotes. Many of the target proteins of NMT are crucial components of signalling pathways, and myristoylation typically promotes membrane binding that is essential for proper protein localisation or biological function. NMT is a validated therapeutic target in opportunistic infections of humans by fungi or parasitic protozoa. Additionally, NMT is implicated in carcinogenesis, particularly colon cancer, where there is evidence for its upregulation in the early stages of tumour formation. However, the study of myristoylation in all organisms has until recently been hindered by a lack of techniques for detection and identification of myristoylated proteins. Here we introduce the chemistry and biology of N-myristoylation and NMT, and discuss new developments in chemical proteomic technologies that are meeting the challenge of studying this important co-translational modification in living systems.
Collapse
Affiliation(s)
- Megan H. Wright
- Chemical Biology Centre, Imperial College London, Exhibition Rd., London, SW72AZ UK
- Department of Chemistry, Imperial College London, Exhibition Rd., London, SW72AZ UK
- Department of Life Sciences, Imperial College London, Exhibition Rd., London, SW72AZ UK
| | - William P. Heal
- Department of Chemistry, Imperial College London, Exhibition Rd., London, SW72AZ UK
- Department of Life Sciences, Imperial College London, Exhibition Rd., London, SW72AZ UK
| | - David J. Mann
- Chemical Biology Centre, Imperial College London, Exhibition Rd., London, SW72AZ UK
- Department of Life Sciences, Imperial College London, Exhibition Rd., London, SW72AZ UK
| | - Edward W. Tate
- Chemical Biology Centre, Imperial College London, Exhibition Rd., London, SW72AZ UK
- Department of Chemistry, Imperial College London, Exhibition Rd., London, SW72AZ UK
| |
Collapse
|
406
|
Banerjee S, Neveu P, Kosik KS. A coordinated local translational control point at the synapse involving relief from silencing and MOV10 degradation. Neuron 2010; 64:871-84. [PMID: 20064393 DOI: 10.1016/j.neuron.2009.11.023] [Citation(s) in RCA: 184] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/20/2009] [Indexed: 12/21/2022]
Abstract
Persistent changes in synaptic strength are locally regulated by both protein degradation and synthesis; however, the coordination of these opposing limbs is poorly understood. Here, we found that the RISC protein MOV10 was present at synapses and was rapidly degraded by the proteasome in an NMDA-receptor-mediated activity-dependent manner. We designed a translational trap to capture those mRNAs whose spatiotemporal translation is regulated by MOV10. When MOV10 was suppressed, a set of mRNAs--including alpha-CaMKII, Limk1, and the depalmitoylating enzyme lysophospholipase1 (Lypla1)--selectively entered the polysome compartment. We also observed that Lypla1 mRNA is associated with the brain-enriched microRNA miR-138. Using a photoconvertible translation reporter, Kaede, we analyzed the activity-dependent protein synthesis driven by Lypla1 and alpha-CaMKII 3'UTRs. We established this protein synthesis to be MOV10 and proteasome dependent. These results suggest a unifying picture of a local translational regulatory mechanism during synaptic plasticity.
Collapse
Affiliation(s)
- Sourav Banerjee
- Neuroscience Research Institute and Department of Cellular Molecular and Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
| | | | | |
Collapse
|
407
|
Li Y, Hu J, Höfer K, Wong AMS, Cooper JD, Birnbaum SG, Hammer RE, Hofmann SL. DHHC5 interacts with PDZ domain 3 of post-synaptic density-95 (PSD-95) protein and plays a role in learning and memory. J Biol Chem 2010; 285:13022-31. [PMID: 20178993 DOI: 10.1074/jbc.m109.079426] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A family of integral membrane proteins containing a signature DHHC motif has been shown to display protein S-acyltransferase activity, modifying cysteine residues in proteins with fatty acids. The physiological roles of these proteins have largely been unexplored. Here we report that mice homozygous for a hypomorphic allele of a previously uncharacterized member, DHHC5, are born at half the expected rate, and survivors show a marked deficit in contextual fear conditioning, an indicator of defective hippocampal-dependent learning. DHHC5 is highly enriched in a post-synaptic density preparation and co-immunoprecipitates with post-synaptic density protein-95 (PSD-95), an interaction that is mediated through binding of the carboxyl terminus of DHHC5 and the PDZ3 domain of PSD-95. Immunohistochemistry demonstrated that DHHC5 is expressed in the CA3 and dentate gyrus in the hippocampus. These findings point to a previously unsuspected role for DHHC5 in post-synaptic function affecting learning and memory.
Collapse
Affiliation(s)
- Yi Li
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas 75390-8593, USA
| | | | | | | | | | | | | | | |
Collapse
|
408
|
Zhao Y, Jensen ON. Modification-specific proteomics: strategies for characterization of post-translational modifications using enrichment techniques. Proteomics 2010; 9:4632-41. [PMID: 19743430 DOI: 10.1002/pmic.200900398] [Citation(s) in RCA: 267] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
More than 300 different types of protein post-translational modifications (PTMs) have been described, many of which are known to have pivotal roles in cellular physiology and disease. Nevertheless, only a handful of PTMs have been extensively investigated at the proteome level. Knowledge of protein substrates and their PTM sites is key to dissection of PTM-mediated cellular processes. The past several years have seen a tremendous progress in developing MS-based proteomics technologies for global PTM analysis, including numerous studies of yeast and other microbes. Modification-specific enrichment techniques combined with advanced MS/MS methods and computational data analysis have revealed a surprisingly large extent of PTMs in proteins, including multi-site, cooperative modifications in individual proteins. We review some of the current strategies employed for enrichment and detection of PTMs in modification-specific proteomics.
Collapse
Affiliation(s)
- Yingming Zhao
- The Ben May Department for Cancer Research, The University of Chicago, Chicago, IL, USA.
| | | |
Collapse
|
409
|
Kostiuk MA, Keller BO, Berthiaume LG. Palmitoylation of ketogenic enzyme HMGCS2 enhances its interaction with PPARalpha and transcription at the Hmgcs2 PPRE. FASEB J 2010; 24:1914-24. [PMID: 20124434 DOI: 10.1096/fj.09-149765] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Excessive liver production of ketone bodies is one of many metabolic complications that can arise from diabetes, and in severe untreated cases, it can result in ketoacidosis, coma, and death. Mitochondrial HMG-CoA synthase (HMGCS2), the rate-limiting enzyme in ketogenesis, has been shown to interact with PPARalpha and act as a coactivator to up-regulate transcription from the PPRE of its own gene. Although protein palmitoylation is typically a cytosolic process that promotes membrane association, we recently identified 21 palmitoylated proteins in rat liver mitochondria, including HMGCS2. Herein, our data support a mechanism whereby palmitate is first added onto HMGCS2 active site Cys166 and then transacylated to Cys305. Palmitoylation promotes the HMGCS2/PPARalpha interaction, resulting in transcriptional activation from the Hmgcs2 PPRE. These results, together with the fact that 8 of the 21 palmitoylated mitochondrial proteins that we previously identified have nuclear receptor interacting motifs, demonstrate a novel--and perhaps ubiquitous--role for palmitoylation as a modulator of transcription.
Collapse
Affiliation(s)
- Morris A Kostiuk
- Department of Cell Biology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | | | | |
Collapse
|
410
|
Madsen KL, Bhatia VK, Gether U, Stamou D. BAR domains, amphipathic helices and membrane-anchored proteins use the same mechanism to sense membrane curvature. FEBS Lett 2010; 584:1848-55. [PMID: 20122931 DOI: 10.1016/j.febslet.2010.01.053] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2010] [Accepted: 01/26/2010] [Indexed: 12/24/2022]
Abstract
The internal membranes of eukaryotic cells are all twists and bends characterized by high curvature. During recent years it has become clear that specific proteins sustain these curvatures while others simply recognize membrane shape and use it as "molecular information" to organize cellular processes in space and time. Here we discuss this new important recognition process termed membrane curvature sensing (MCS). First, we review a new fluorescence-based experimental method that allows characterization of MCS using measurements on single vesicles and compare it to sensing assays that use bulk/ensemble liposome samples of different mean diameter. Next, we describe two different MCS protein motifs (amphipathic helices and BAR domains) and suggest that in both cases curvature sensitive membrane binding results from asymmetric insertion of hydrophobic amino acids in the lipid membrane. This mechanism can be extended to include the insertion of alkyl chain in the lipid membrane and consequently palmitoylated and myristoylated proteins are predicted to display similar curvature sensitive binding. Surprisingly, in all the aforementioned cases, MCS is predominantly mediated by a higher density of binding sites on curved membranes instead of higher affinity as assumed so far. Finally, we integrate these new insights into the debate about which motifs are involved in sensing versus induction of membrane curvature and what role MCS proteins may play in biology.
Collapse
Affiliation(s)
- K L Madsen
- Molecular Neuropharmacology Group, Department of Neuroscience and Pharmacology, The Panum Institute, University of Copenhagen, Copenhagen, Denmark.
| | | | | | | |
Collapse
|
411
|
Baumgart F, Corral-Escariz M, Pérez-Gil J, Rodríguez-Crespo I. Palmitoylation of R-Ras by human DHHC19, a palmitoyl transferase with a CaaX box. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2010; 1798:592-604. [PMID: 20074548 DOI: 10.1016/j.bbamem.2010.01.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2009] [Revised: 12/17/2009] [Accepted: 01/04/2010] [Indexed: 11/24/2022]
Abstract
Mammalian proteins that contain an aspartate-histidine-histidine-cysteine-(DHHC) motif have been recently identified as a group of membrane-associated palmitoyl acyltransferases (PATs). Among the several protein substrates known to become palmitoylated by DHHC PATs are small GTPases prenylated at their carboxy-terminal end, such as H-Ras or N-Ras, eNOS, kinases myristoylated at their N-terminal end, such as Lck, and many transmembrane proteins and channels. We have focused our studies on the product of the human gene DHHC19, a putative palmitoyl transferase that, interestingly, displays a conserved CaaX box at its carboxy-terminal end. We show herein that the amino acid sequence present at the carboxy-terminus of DHHC19 is able to exclude a green fluorescent protein (GFP) reporter from the nucleus and direct it towards perinuclear regions. Transfection of full-length DHHC19 in COS7 cells reveals a perinuclear distribution, in analogy to other palmitoyl transferases, with a strong colocalization with the trans-Golgi markers Gal-T and TGN38. We have tested several small GTPases that are known to be palmitoylated as possible substrates of DHHC19. Although DHHC19 failed to increase the palmitoylation of H-Ras, N-Ras, K-Ras4A, RhoB or Rap2 it increased the palmitoylation of R-Ras approximately two-fold. The increased palmitoylation of R-Ras cotransfected with DHHC19 is accompanied by an augmented association with membranes as well as with rafts/caveolae. Finally, using both wild-type and an activated GTP bound form of R-Ras (G38V), we also show that the increased palmitoylation of R-Ras due to DHHC19 coexpression is accompanied by an enhanced viability of the transfected cells.
Collapse
Affiliation(s)
- Florian Baumgart
- Departamento de Bioquímica y Biología Molecular, Universidad Complutense, Madrid 28040, Spain
| | | | | | | |
Collapse
|
412
|
Heal WP, Tate EW. Getting a chemical handle on proteinpost-translational modification. Org Biomol Chem 2010; 8:731-8. [DOI: 10.1039/b917894e] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
413
|
Hines RM, Kang R, Goytain A, Quamme GA. Golgi-specific DHHC zinc finger protein GODZ mediates membrane Ca2+ transport. J Biol Chem 2009; 285:4621-8. [PMID: 19955568 DOI: 10.1074/jbc.m109.069849] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The Golgi-specific zinc finger protein GODZ (palmitoyl acyltransferase/DHHC-3) mediates the palmitoylation and post-translational modification of many protein substrates that regulate membrane-protein interactions. Here, we show that GODZ also mediates Ca(2+) transport in expressing Xenopus laevis oocytes. Two-electrode voltage-clamp, fluorescence, and (45)Ca(2+) isotopic uptake determinations demonstrated voltage- and concentration-dependent, saturable, and substrate-inhibitable Ca(2+) transport in oocytes expressing GODZ cRNA but not in oocytes injected with water alone. Moreover, we show that GODZ-mediated Ca(2+) transport is regulated by palmitoylation, as the palmitoyl acyltransferase inhibitor 2-bromopalmitate or alteration of the acyltransferase DHHC motif (GODZ-DHHS) diminished GODZ-mediated Ca(2+) transport by approximately 80%. The GODZ mutation V61R abolished Ca(2+) transport but did not affect palmitoyl acyltransferase activity. Coexpression of GODZ-V61R with GODZ-DHHS restored GODZ-DHHS-mediated Ca(2+) uptake to values observed with wild-type GODZ, excluding an endogenous effect of palmitoylation. Coexpression of an independent palmitoyl acyltransferase (HIP14) with the GODZ-DHHS mutant also rescued Ca(2+) transport. HIP14 did not mediate Ca(2+) transport when expressed alone. Immunocytochemistry studies showed that GODZ and HIP14 co-localized to the Golgi and the same post-Golgi vesicles, suggesting that heteropalmitoylation might play a physiological role in addition to a biochemical function. We conclude that GODZ encodes a Ca(2+) transport protein in addition to its ability to palmitoylate protein substrates.
Collapse
Affiliation(s)
- Rochelle M Hines
- Department of Psychiatry, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | | | | | | |
Collapse
|
414
|
Mill P, Lee AWS, Fukata Y, Tsutsumi R, Fukata M, Keighren M, Porter RM, McKie L, Smyth I, Jackson IJ. Palmitoylation regulates epidermal homeostasis and hair follicle differentiation. PLoS Genet 2009; 5:e1000748. [PMID: 19956733 PMCID: PMC2776530 DOI: 10.1371/journal.pgen.1000748] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2009] [Accepted: 10/30/2009] [Indexed: 11/18/2022] Open
Abstract
Palmitoylation is a key post-translational modification mediated by a family of DHHC-containing palmitoyl acyl-transferases (PATs). Unlike other lipid modifications, palmitoylation is reversible and thus often regulates dynamic protein interactions. We find that the mouse hair loss mutant, depilated, (dep) is due to a single amino acid deletion in the PAT, Zdhhc21, resulting in protein mislocalization and loss of palmitoylation activity. We examined expression of Zdhhc21 protein in skin and find it restricted to specific hair lineages. Loss of Zdhhc21 function results in delayed hair shaft differentiation, at the site of expression of the gene, but also leads to hyperplasia of the interfollicular epidermis (IFE) and sebaceous glands, distant from the expression site. The specific delay in follicle differentiation is associated with attenuated anagen propagation and is reflected by decreased levels of Lef1, nuclear beta-catenin, and Foxn1 in hair shaft progenitors. In the thickened basal compartment of mutant IFE, phospho-ERK and cell proliferation are increased, suggesting increased signaling through EGFR or integrin-related receptors, with a parallel reduction in expression of the key differentiation factor Gata3. We show that the Src-family kinase, Fyn, involved in keratinocyte differentiation, is a direct palmitoylation target of Zdhhc21 and is mislocalized in mutant follicles. This study is the first to demonstrate a key role for palmitoylation in regulating developmental signals in mammalian tissue homeostasis.
Collapse
Affiliation(s)
- Pleasantine Mill
- Medical Research Council, Human Genetics Unit, Edinburgh, United Kingdom
| | - Angela W. S. Lee
- Medical Research Council, Human Genetics Unit, Edinburgh, United Kingdom
| | - Yuko Fukata
- National Institute for Physiological Sciences, National Institutes of Natural Sciences, Okazaki, Japan
- Precursory Research for Embryonic Science and Technology, Japan Science and Technology Agency, Chiyoda, Tokyo, Japan
| | - Ryouhei Tsutsumi
- National Institute for Physiological Sciences, National Institutes of Natural Sciences, Okazaki, Japan
| | - Masaki Fukata
- National Institute for Physiological Sciences, National Institutes of Natural Sciences, Okazaki, Japan
- Precursory Research for Embryonic Science and Technology, Japan Science and Technology Agency, Chiyoda, Tokyo, Japan
| | - Margaret Keighren
- Medical Research Council, Human Genetics Unit, Edinburgh, United Kingdom
| | - Rebecca M. Porter
- Department of Dermatology, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Lisa McKie
- Medical Research Council, Human Genetics Unit, Edinburgh, United Kingdom
| | - Ian Smyth
- Medical Research Council, Human Genetics Unit, Edinburgh, United Kingdom
- Cutaneous Developmental Biology Lab, Department of Biochemistry and Molecular Biology, Department of Anatomy and Developmental Biology, Monash University, Melbourne, Australia
| | - Ian J. Jackson
- Medical Research Council, Human Genetics Unit, Edinburgh, United Kingdom
- * E-mail:
| |
Collapse
|
415
|
Shmueli A, Segal M, Sapir T, Tsutsumi R, Noritake J, Bar A, Sapoznik S, Fukata Y, Orr I, Fukata M, Reiner O. Ndel1 palmitoylation: a new mean to regulate cytoplasmic dynein activity. EMBO J 2009; 29:107-19. [PMID: 19927128 DOI: 10.1038/emboj.2009.325] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2009] [Accepted: 10/09/2009] [Indexed: 11/09/2022] Open
Abstract
Regulated activity of the retrograde molecular motor, cytoplasmic dynein, is crucial for multiple biological activities, and failure to regulate this activity can result in neuronal migration retardation or neuronal degeneration. The activity of dynein is controlled by the LIS1-Ndel1-Nde1 protein complex that participates in intracellular transport, mitosis, and neuronal migration. These biological processes are subject to tight multilevel modes of regulation. Palmitoylation is a reversible posttranslational lipid modification, which can dynamically regulate protein trafficking. We found that both Ndel1 and Nde1 undergo palmitoylation in vivo and in transfected cells by specific palmitoylation enzymes. Unpalmitoylated Ndel1 interacts better with dynein, whereas the interaction between Nde1 and cytoplasmic dynein is unaffected by palmitoylation. Furthermore, palmitoylated Ndel1 reduced cytoplasmic dynein activity as judged by Golgi distribution, VSVG and short microtubule trafficking, transport of endogenous Ndel1 and LIS1 from neurite tips to the cell body, retrograde trafficking of dynein puncta, and neuronal migration. Our findings indicate, to the best of our knowledge, for the first time that Ndel1 palmitoylation is a new mean for fine-tuning the activity of the retrograde motor cytoplasmic dynein.
Collapse
Affiliation(s)
- Anat Shmueli
- Department of Molecular Genetics, The Weizmann Institute of Science, Rehovot, Israel
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
416
|
Hayashi T, Thomas GM, Huganir RL. Dual palmitoylation of NR2 subunits regulates NMDA receptor trafficking. Neuron 2009; 64:213-26. [PMID: 19874789 DOI: 10.1016/j.neuron.2009.08.017] [Citation(s) in RCA: 183] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2009] [Revised: 08/18/2009] [Accepted: 08/21/2009] [Indexed: 11/15/2022]
Abstract
Modification of NMDA receptor function and trafficking contributes to the regulation of synaptic transmission and is important for several forms of synaptic plasticity. Here, we report that NMDA receptor subunits NR2A and NR2B have two distinct clusters of palmitoylation sites in their C-terminal region. Palmitoylation within the first cluster on a membrane-proximal region increases tyrosine phosphorylation of tyrosine-based internalization motifs by Src family protein tyrosine kinases, leading to enhanced stable surface expression of NMDA receptors. In addition, palmitoylation of these sites regulates constitutive internalization of the NMDA receptor in developing neurons. In marked contrast, palmitoylation of the second cluster in the middle of C terminus by distinct palmitoyl transferases causes receptors to accumulate in the Golgi apparatus and reduces receptor surface expression. These data suggest that regulated palmitoylation of NR2 subunits differentially modulates receptor trafficking and might be important for NMDA-receptor-dependent synaptic plasticity.
Collapse
Affiliation(s)
- Takashi Hayashi
- Howard Hughes Medical Institute, Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | | | | |
Collapse
|
417
|
Saneyoshi T, Fortin DA, Soderling TR. Regulation of spine and synapse formation by activity-dependent intracellular signaling pathways. Curr Opin Neurobiol 2009; 20:108-15. [PMID: 19896363 DOI: 10.1016/j.conb.2009.09.013] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2009] [Revised: 09/28/2009] [Accepted: 09/30/2009] [Indexed: 12/26/2022]
Abstract
Formation of the human brain during embryonic and postnatal development is an extraordinarily complex process resulting at maturity in billions of neurons with trillions of specialized connections called synapses. These synapses, composed of a varicosity or bouton from a presynaptic neuron that communicates with a dendritic spine of the postsynaptic neuron, comprise the neural network that is essential for complex behavioral phenomena and cognition. Inappropriate synapse formation or structure is thought to underlie several developmental neuropathologies. Even in the mature CNS, alterations in synapse structure and function continues to be a very dynamic process that is foundational to learning and memory as well as other adaptive abilities of the brain. This synaptic plasticity in mature neurons, which is often triggered by certain patterns of neural activity, is again multifaceted and involves post-translational modifications (e.g. phosphorylation) and subcellular relocalization or trafficking (endocytosis/exocytosis) of existing synaptic proteins, initiation of protein synthesis from existing mRNAs localized in dendrites or spines, and triggering of new gene transcription in the nucleus. These various cellular processes support varying temporal components of synaptic plasticity that begin within 1-2 min but can persist for hours to days. This review will give a critical assessment of activity-dependent molecular modulations of synapses reported over the past couple years. Owing to space limitations, it will focus on mammalian excitatory (i.e. glutamatergic) synapses and will not consider several activity-independent signaling pathways (e.g. ephrinB receptor) that also modulate spine and synapse formation.
Collapse
Affiliation(s)
- Takeo Saneyoshi
- Brain Science Institute, RIKEN, Hirosawa 2-1, Wako, Saitama 351-0198, Japan
| | | | | |
Collapse
|
418
|
Betley JN, Wright CVE, Kawaguchi Y, Erdélyi F, Szabó G, Jessell TM, Kaltschmidt JA. Stringent specificity in the construction of a GABAergic presynaptic inhibitory circuit. Cell 2009; 139:161-74. [PMID: 19804761 DOI: 10.1016/j.cell.2009.08.027] [Citation(s) in RCA: 162] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2009] [Revised: 06/12/2009] [Accepted: 08/12/2009] [Indexed: 11/25/2022]
Abstract
GABAergic interneurons are key elements in neural coding, but the mechanisms that assemble inhibitory circuits remain unclear. In the spinal cord, the transfer of sensory signals to motor neurons is filtered by GABAergic interneurons that act presynaptically to inhibit sensory transmitter release and postsynaptically to inhibit motor neuron excitability. We show here that the connectivity and synaptic differentiation of GABAergic interneurons that mediate presynaptic inhibition is directed by their sensory targets. In the absence of sensory terminals these GABAergic neurons shun other available targets, fail to undergo presynaptic differentiation, and withdraw axons from the ventral spinal cord. A sensory-specific source of brain derived neurotrophic factor induces synaptic expression of the GABA synthetic enzyme GAD65--a defining biochemical feature of this set of interneurons. The organization of a GABAergic circuit that mediates presynaptic inhibition in the mammalian CNS is therefore controlled by a stringent program of sensory recognition and signaling.
Collapse
Affiliation(s)
- J Nicholas Betley
- Howard Hughes Medical Institute, Kavli Institute of Brain Science, Departments of Neuroscience, Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA
| | | | | | | | | | | | | |
Collapse
|
419
|
Yang W, Di Vizio D, Kirchner M, Steen H, Freeman MR. Proteome scale characterization of human S-acylated proteins in lipid raft-enriched and non-raft membranes. Mol Cell Proteomics 2009; 9:54-70. [PMID: 19801377 DOI: 10.1074/mcp.m800448-mcp200] [Citation(s) in RCA: 222] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Protein S-acylation (palmitoylation), a reversible post-translational modification, is critically involved in regulating protein subcellular localization, activity, stability, and multimeric complex assembly. However, proteome scale characterization of S-acylation has lagged far behind that of phosphorylation, and global analysis of the localization of S-acylated proteins within different membrane domains has not been reported. Here we describe a novel proteomics approach, designated palmitoyl protein identification and site characterization (PalmPISC), for proteome scale enrichment and characterization of S-acylated proteins extracted from lipid raft-enriched and non-raft membranes. In combination with label-free spectral counting quantitation, PalmPISC led to the identification of 67 known and 331 novel candidate S-acylated proteins as well as the localization of 25 known and 143 novel candidate S-acylation sites. Palmitoyl acyltransferases DHHC5, DHHC6, and DHHC8 appear to be S-acylated on three cysteine residues within a novel CCX(7-13)C(S/T) motif downstream of a conserved Asp-His-His-Cys cysteine-rich domain, which may be a potential mechanism for regulating acyltransferase specificity and/or activity. S-Acylation may tether cytoplasmic acyl-protein thioesterase-1 to membranes, thus facilitating its interaction with and deacylation of membrane-associated S-acylated proteins. Our findings also suggest that certain ribosomal proteins may be targeted to lipid rafts via S-acylation, possibly to facilitate regulation of ribosomal protein activity and/or dynamic synthesis of lipid raft proteins in situ. In addition, bioinformatics analysis suggested that S-acylated proteins are highly enriched within core complexes of caveolae and tetraspanin-enriched microdomains, both cholesterol-rich membrane structures. The PalmPISC approach and the large scale human S-acylated protein data set are expected to provide powerful tools to facilitate our understanding of the functions and mechanisms of protein S-acylation.
Collapse
Affiliation(s)
- Wei Yang
- Urological Diseases Research Center, Department of Urology, Children's Hospital Boston, Boston, Massachusetts 02115, USA
| | | | | | | | | |
Collapse
|
420
|
How curved membranes recruit amphipathic helices and protein anchoring motifs. Nat Chem Biol 2009; 5:835-41. [PMID: 19749743 DOI: 10.1038/nchembio.213] [Citation(s) in RCA: 299] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2009] [Accepted: 06/30/2009] [Indexed: 02/06/2023]
Abstract
Lipids and several specialized proteins are thought to be able to sense the curvature of membranes (MC). Here we used quantitative fluorescence microscopy to measure curvature-selective binding of amphipathic motifs on single liposomes 50-700 nm in diameter. Our results revealed that sensing is predominantly mediated by a higher density of binding sites on curved membranes instead of higher affinity. We proposed a model based on curvature-induced defects in lipid packing that related these findings to lipid sorting and accurately predicted the existence of a new ubiquitous class of curvature sensors: membrane-anchored proteins. The fact that unrelated structural motifs such as alpha-helices and alkyl chains sense MC led us to propose that MC sensing is a generic property of curved membranes rather than a property of the anchoring molecules. We therefore anticipate that MC will promote the redistribution of proteins that are anchored in membranes through other types of hydrophobic moieties.
Collapse
|
421
|
|
422
|
Neuroproteomics: understanding the molecular organization and complexity of the brain. Nat Rev Neurosci 2009; 10:635-46. [DOI: 10.1038/nrn2701] [Citation(s) in RCA: 146] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
423
|
Kvachnina E, Dumuis A, Wlodarczyk J, Renner U, Cochet M, Richter DW, Ponimaskin E. Constitutive Gs-mediated, but not G12-mediated, activity of the 5-hydroxytryptamine 5-HT7(a) receptor is modulated by the palmitoylation of its C-terminal domain. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2009; 1793:1646-55. [PMID: 19715731 DOI: 10.1016/j.bbamcr.2009.08.008] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2008] [Revised: 08/06/2009] [Accepted: 08/18/2009] [Indexed: 10/20/2022]
Abstract
The 5-HT(7) receptor is the most recently described member of the serotonin receptor family. This receptor is mainly expressed in the thalamus, hypothalamus as well as in the hippocampus and cortex. In the present study, we demonstrate that the mouse 5-hydroxytryptamine 5-HT(7(a)) receptor undergoes post-translational modification by the palmitate, which is covalently attached to the protein through a thioester-type bond. Analysis of protein-bound fatty acids revealed that the 5-HT(7(a)) receptor predominantly contains palmitic acid. Labelling experiments performed in the presence of agonists show that the 5-HT(7(a)) receptor is dynamically palmitoylated in an agonist-dependent manner and that previously synthesized receptors may be subjected to repeated cycles of palmitoylation/depalmitoylation. Mutation analysis revealed that cysteine residues 404 and 438/441 located in the C-terminal receptor domain are the main palmitoylation sites responsible for the attachment of 90% of the receptor-bound palmitate. Analysis of acylation-deficient mutants revealed that non-palmitoylated 5-HT(7(a)) receptors were indistinguishable from the wild-type for their ability to interact with G(s)- and G(12)-proteins after agonist stimulation. However, mutation of the proximal palmitoylation site Cys404-Ser (either alone or in combination with Cys438/441-Ser) significantly increased the agonist-independent, G(s)-mediated constitutive 5-HT(7(a)) receptor activity, while the activation of Galpha(12)-protein was not affected. This demonstrates a functional importance of 5-HT(7(a)) dynamic palmitoylation for the fine tuning of receptor-mediated signaling.
Collapse
Affiliation(s)
- Elena Kvachnina
- Department Neuro- and Sensory Physiology, University of Göttingen, Göttingen, Germany
| | | | | | | | | | | | | |
Collapse
|
424
|
Charron G, Wilson J, Hang HC. Chemical tools for understanding protein lipidation in eukaryotes. Curr Opin Chem Biol 2009; 13:382-91. [PMID: 19699139 DOI: 10.1016/j.cbpa.2009.07.010] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2009] [Revised: 07/02/2009] [Accepted: 07/13/2009] [Indexed: 11/29/2022]
Abstract
Lipidation of proteins is an important mechanism to regulate protein trafficking and activity in cell and tissues. The targeting of proteins to membranes by lipidation plays key roles in many physiological processes and when not regulated properly can lead to cancer and neurological disorders. Dissecting the precise roles of protein lipidation in physiology and disease is a major challenge. Recent advances in chemical biology have now enabled the semisynthesis of lipidated proteins for fundamental biochemical and cellular studies. In addition, new chemical reporters of protein lipidation have improved the detection and enabled the proteomic analysis of lipidated proteins. The expanding efforts in chemical biology are therefore providing new tools to dissect the mechanisms and functions of protein lipidation as well as develop therapeutics targeted at protein lipidation pathways in disease.
Collapse
Affiliation(s)
- Guillaume Charron
- The Laboratory of Chemical Biology and Microbial Pathogenesis, The Rockefeller University, New York, NY 10065, USA
| | | | | |
Collapse
|
425
|
Liao L, McClatchy DB, Yates JR. Shotgun proteomics in neuroscience. Neuron 2009; 63:12-26. [PMID: 19607789 DOI: 10.1016/j.neuron.2009.06.011] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2008] [Revised: 06/10/2009] [Accepted: 06/10/2009] [Indexed: 11/27/2022]
Abstract
Mass spectrometry-based proteomics is increasingly used to address basic and clinical questions in biomedical research through studies of differential protein expression, protein-protein interactions, and posttranslational modifications. The complex structural and functional organization of the human brain warrants the application of high-throughput, systematic approaches to understand the functional alterations under normal physiological conditions and the perturbations of neurological diseases. This primer focuses on shotgun-proteomics-based tandem mass spectrometry for the identification of proteins in a complex mixture. It describes the basic concepts of protein differential expression analysis and posttranslational modification analysis and discusses several strategies to improve the coverage of the proteome.
Collapse
Affiliation(s)
- Lujian Liao
- Department of Chemical Physiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | | | | |
Collapse
|
426
|
Rab GTPases as coordinators of vesicle traffic. Nat Rev Mol Cell Biol 2009. [DOI: 10.1038/nrm2728 and 5410=5410-- pmza] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
427
|
|
428
|
|
429
|
|
430
|
|
431
|
|
432
|
|
433
|
|
434
|
|
435
|
|
436
|
|
437
|
|
438
|
Stenmark H. Rab GTPases as coordinators of vesicle traffic. Nat Rev Mol Cell Biol 2009. [DOI: 10.1038/nrm2728 and 6285=8708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
439
|
Stenmark H. Rab GTPases as coordinators of vesicle traffic. Nat Rev Mol Cell Biol 2009. [DOI: 10.1038/nrm2728 order by 1-- gjxv] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
440
|
|
441
|
|
442
|
|
443
|
|
444
|
|
445
|
|
446
|
|
447
|
|
448
|
|
449
|
|
450
|
Rab GTPases as coordinators of vesicle traffic. Nat Rev Mol Cell Biol 2009. [DOI: 10.1038/nrm2728 order by 1#] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|