401
|
Chiou K, Collins EMS. Why we need mechanics to understand animal regeneration. Dev Biol 2017; 433:155-165. [PMID: 29179947 DOI: 10.1016/j.ydbio.2017.09.021] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Revised: 08/31/2017] [Accepted: 09/17/2017] [Indexed: 12/19/2022]
Abstract
Mechanical forces are an important contributor to cell fate specification and cell migration during embryonic development in animals. Similarities between embryogenesis and regeneration, particularly with regards to pattern formation and large-scale tissue movements, suggest similarly important roles for physical forces during regeneration. While the influence of the mechanical environment on stem cell differentiation in vitro is being actively exploited in the fields of tissue engineering and regenerative medicine, comparatively little is known about the role of stresses and strains acting during animal regeneration. In this review, we summarize published work on the role of physical principles and mechanical forces in animal regeneration. Novel experimental techniques aimed at addressing the role of mechanics in embryogenesis have greatly enhanced our understanding at scales from the subcellular to the macroscopic - we believe the time is ripe for the field of regeneration to similarly leverage the tools of the mechanobiological research community.
Collapse
Affiliation(s)
- Kevin Chiou
- Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Eva-Maria S Collins
- Physics Department, UC San Diego, La Jolla, CA 92093, USA; Section of Cell&Developmental Biology, UC San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
402
|
|
403
|
Abstract
Epithelial cell monolayers exhibit traveling mechanical waves. We rationalize this observation thanks to a hydrodynamic description of the monolayer as a compressible, active and polar material. We show that propagating waves of the cell density, polarity, velocity and stress fields may be due to a Hopf bifurcation occurring above threshold values of active coupling coefficients.
Collapse
Affiliation(s)
- Shunsuke Yabunaka
- Fukui Institute for Fundamental Chemistry, Kyoto University, Kyoto, Japan.
| | | |
Collapse
|
404
|
Blanch-Mercader C, Casademunt J. Hydrodynamic instabilities, waves and turbulence in spreading epithelia. SOFT MATTER 2017; 13:6913-6928. [PMID: 28825077 DOI: 10.1039/c7sm01128h] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
We present a hydrodynamic model of spreading epithelial monolayers described as polar viscous fluids, with active contractility and traction on a substrate. The combination of both active forces generates an instability that leads to nonlinear traveling waves, which propagate in the direction of polarity with characteristic time scales that depend on contact forces. Our viscous fluid model provides a comprehensive understanding of a variety of observations on the slow dynamics of epithelial monolayers, remarkably those that seemed to be characteristic of elastic media. The model also makes simple predictions to test the non-elastic nature of the mechanical waves, and provides new insights into collective cell dynamics, explaining plithotaxis as a result of strong flow-polarity coupling, and quantifying the non-locality of force transmission. In addition, we study the nonlinear regime of waves deriving an exact map of the model into the complex Ginzburg-Landau equation, which provides a complete classification of possible nonlinear scenarios. In particular, we predict the transition to different forms of weak turbulence, which in turn could explain the chaotic dynamics often observed in epithelia.
Collapse
Affiliation(s)
- C Blanch-Mercader
- Departament de Física de la Matèria Condensada, Universitat de Barcelona, Barcelona 08028, Spain. and Laboratoire Physico Chimie Curie, Institut Curie, PSL Research University, CNRS, 26 rue d' Ulm, 75005 Paris, France
| | - J Casademunt
- Departament de Física de la Matèria Condensada, Universitat de Barcelona, Barcelona 08028, Spain. and Universitat de Barcelona Institute of Complex Systems (UBICS), Universitat de Barcelona, Barcelona, Spain
| |
Collapse
|
405
|
Guillamat P, Ignés-Mullol J, Sagués F. Taming active turbulence with patterned soft interfaces. Nat Commun 2017; 8:564. [PMID: 28916801 PMCID: PMC5601458 DOI: 10.1038/s41467-017-00617-1] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Accepted: 07/13/2017] [Indexed: 11/30/2022] Open
Abstract
Active matter embraces systems that self-organize at different length and time scales, often exhibiting turbulent flows apparently deprived of spatiotemporal coherence. Here, we use a layer of a tubulin-based active gel to demonstrate that the geometry of active flows is determined by a single length scale, which we reveal in the exponential distribution of vortex sizes of active turbulence. Our experiments demonstrate that the same length scale reemerges as a cutoff for a scale-free power law distribution of swirling laminar flows when the material evolves in contact with a lattice of circular domains. The observed prevalence of this active length scale can be understood by considering the role of the topological defects that form during the spontaneous folding of microtubule bundles. These results demonstrate an unexpected strategy for active systems to adapt to external stimuli, and provide with a handle to probe the existence of intrinsic length and time scales. Active nematics consist of self-driven components that develop orientational order and turbulent flow. Here Guillamat et al. investigate an active nematic constrained in a quasi-2D geometrical setup and show that there exists an intrinsic length scale that determines the geometry in all forcing regimes.
Collapse
Affiliation(s)
- P Guillamat
- Department of Materials Science and Physical Chemistry, Universitat de Barcelona, Barcelona, 08028 Catalonia, Spain.,Institute of Nanoscience and Nanotechnology (IN2UB), Universitat de Barcelona, Barcelona, 08028 Catalonia, Spain
| | - J Ignés-Mullol
- Department of Materials Science and Physical Chemistry, Universitat de Barcelona, Barcelona, 08028 Catalonia, Spain.,Institute of Nanoscience and Nanotechnology (IN2UB), Universitat de Barcelona, Barcelona, 08028 Catalonia, Spain
| | - F Sagués
- Department of Materials Science and Physical Chemistry, Universitat de Barcelona, Barcelona, 08028 Catalonia, Spain. .,Institute of Nanoscience and Nanotechnology (IN2UB), Universitat de Barcelona, Barcelona, 08028 Catalonia, Spain.
| |
Collapse
|
406
|
Ishihara S, Marcq P, Sugimura K. From cells to tissue: A continuum model of epithelial mechanics. Phys Rev E 2017; 96:022418. [PMID: 28950595 DOI: 10.1103/physreve.96.022418] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Indexed: 01/05/2023]
Abstract
A two-dimensional continuum model of epithelial tissue mechanics was formulated using cellular-level mechanical ingredients and cell morphogenetic processes, including cellular shape changes and cellular rearrangements. This model incorporates stress and deformation tensors, which can be compared with experimental data. Focusing on the interplay between cell shape changes and cell rearrangements, we elucidated dynamical behavior underlying passive relaxation, active contraction-elongation, and tissue shear flow, including a mechanism for contraction-elongation, whereby tissue flows perpendicularly to the axis of cell elongation. This study provides an integrated scheme for the understanding of the orchestration of morphogenetic processes in individual cells to achieve epithelial tissue morphogenesis.
Collapse
Affiliation(s)
- Shuji Ishihara
- Graduate School of Arts and Sciences, The University of Tokyo, Tokyo 153-8902, Japan and Department of Physics, School of Science and Technology, Meiji University, Kanagawa 214-8571, Japan
| | - Philippe Marcq
- Sorbonne Universités, UPMC Université Paris 6, Institut Curie, CNRS, UMR 168, Laboratoire Physico Chimie Curie, Paris, France
| | - Kaoru Sugimura
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Kyoto 606-8501, Japan and JST PRESTO, Tokyo 102-0075, Japan
| |
Collapse
|
407
|
Wu YL, Engl W, Hu B, Cai P, Leow WR, Tan NS, Lim CT, Chen X. Nanomechanically Visualizing Drug-Cell Interaction at the Early Stage of Chemotherapy. ACS NANO 2017; 11:6996-7005. [PMID: 28530823 DOI: 10.1021/acsnano.7b02376] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
A detailed understanding of chemotherapy is determined by the response of cell to the formation of the drug-target complex and its corresponding sudden or eventual cell death. However, visualization of this early but important process, encompassing the fast dynamics as well as complex network of molecular pathways, remains challenging. Herein, we report that the nanomechanical traction force is sensitive enough to reflect the early cellular response upon the addition of chemotherapeutical molecules in a real-time and noninvasive manner, due to interactions between chemotherapeutic drug and its cytoskeleton targets. This strategy has outperformed the traditional cell viability, cell cycle, cell impendence as well as intracellular protein analyses, in terms of fast response. Furthermore, by using the nanomechanical traction force as a nanoscale biophysical marker, we discover a cellular nanomechanical change upon drug treatment in a fast and sensitive manner. Overall, this approach could help to reveal the hidden mechanistic steps in chemotherapy and provide useful insights in drug screening.
Collapse
Affiliation(s)
- Yun-Long Wu
- School of Materials Science and Engineering, Nanyang Technological University , 50 Nanyang Avenue, Singapore 639798, Singapore
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Science, Xiamen University , Xiamen, Fujian 361102, China
| | - Wilfried Engl
- School of Materials Science and Engineering, Nanyang Technological University , 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Benhui Hu
- School of Materials Science and Engineering, Nanyang Technological University , 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Pingqiang Cai
- School of Materials Science and Engineering, Nanyang Technological University , 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Wan Ru Leow
- School of Materials Science and Engineering, Nanyang Technological University , 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Nguan Soon Tan
- School of Biological Sciences, Nanyang Technological University , 60 Nanyang Drive, Singapore 637551, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University , 59 Nanyang Drive, Singapore 636921, Singapore
- Institute of Molecular and Cell Biology, 61 Biopolis Drive, Proteos, Agency for Science Technology & Research , Singapore 138673, Singapore
- KK Research Centre, KK Women's and Children Hospital , 100 Bukit Timah Road, Singapore 229899, Singapore
| | - Chwee Teck Lim
- Mechanobiology Institute, Department of Biomedical Engineering & Department of Mechanical Engineering, National University of Singapore , Singapore 117576, Singapore
| | - Xiaodong Chen
- School of Materials Science and Engineering, Nanyang Technological University , 50 Nanyang Avenue, Singapore 639798, Singapore
| |
Collapse
|
408
|
Duszyc K, Gomez GA, Schroder K, Sweet MJ, Yap AS. In life there is death: How epithelial tissue barriers are preserved despite the challenge of apoptosis. Tissue Barriers 2017; 5:e1345353. [PMID: 28686526 DOI: 10.1080/21688370.2017.1345353] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Apoptosis is a ubiquitous mode of programmed cell death that is found in healthy organs and can be stimulated by many toxic stresses. When it occurs in epithelia, apoptosis presents major challenges to tissue integrity. Apoptotic corpses can promote inflammatory and autoimmune responses if they are retained, and the cellular fragmentation that accompanies apoptosis can potentially compromise the epithelial barrier. Here we discuss 2 homeostatic mechanisms that allow epithelia to circumvent these potential risks: clearance of apoptotic corpses by professional and non-professional phagocytes and physical expulsion of apoptotic cells by apical extrusion. Extrusion and phagocytosis may represent complementary responses that preserve epithelial integrity despite the inevitable challenge of apoptosis.
Collapse
Affiliation(s)
- Kinga Duszyc
- a Division of Cell Biology and Molecular Medicine , Institute for Molecular Bioscience, The University of Queensland , St. Lucia, Brisbane , Queensland , Australia
| | - Guillermo A Gomez
- a Division of Cell Biology and Molecular Medicine , Institute for Molecular Bioscience, The University of Queensland , St. Lucia, Brisbane , Queensland , Australia
| | - Kate Schroder
- a Division of Cell Biology and Molecular Medicine , Institute for Molecular Bioscience, The University of Queensland , St. Lucia, Brisbane , Queensland , Australia.,b Centre for Inflammation and Disease Research, Institute for Molecular Bioscience, The University of Queensland , St. Lucia, Brisbane , Queensland , Australia
| | - Matthew J Sweet
- a Division of Cell Biology and Molecular Medicine , Institute for Molecular Bioscience, The University of Queensland , St. Lucia, Brisbane , Queensland , Australia.,b Centre for Inflammation and Disease Research, Institute for Molecular Bioscience, The University of Queensland , St. Lucia, Brisbane , Queensland , Australia
| | - Alpha S Yap
- a Division of Cell Biology and Molecular Medicine , Institute for Molecular Bioscience, The University of Queensland , St. Lucia, Brisbane , Queensland , Australia
| |
Collapse
|
409
|
Cross-talk between topological defects in different fields revealed by nematic microfluidics. Proc Natl Acad Sci U S A 2017; 114:E5771-E5777. [PMID: 28674012 DOI: 10.1073/pnas.1702777114] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Topological defects are singularities in material fields that play a vital role across a range of systems: from cosmic microwave background polarization to superconductors and biological materials. Although topological defects and their mutual interactions have been extensively studied, little is known about the interplay between defects in different fields-especially when they coevolve-within the same physical system. Here, using nematic microfluidics, we study the cross-talk of topological defects in two different material fields-the velocity field and the molecular orientational field. Specifically, we generate hydrodynamic stagnation points of different topological charges at the center of star-shaped microfluidic junctions, which then interact with emergent topological defects in the orientational field of the nematic director. We combine experiments and analytical and numerical calculations to show that a hydrodynamic singularity of a given topological charge can nucleate a nematic defect of equal topological charge and corroborate this by creating [Formula: see text], [Formula: see text], and [Formula: see text] topological defects in four-, six-, and eight-arm junctions. Our work is an attempt toward understanding materials that are governed by distinctly multifield topology, where disparate topology-carrying fields are coupled and concertedly determine the material properties and response.
Collapse
|
410
|
Doostmohammadi A, Shendruk TN, Thijssen K, Yeomans JM. Onset of meso-scale turbulence in active nematics. Nat Commun 2017; 8:15326. [PMID: 28508858 PMCID: PMC5440851 DOI: 10.1038/ncomms15326] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 03/21/2017] [Indexed: 11/09/2022] Open
Abstract
Meso-scale turbulence is an innate phenomenon, distinct from inertial turbulence, that spontaneously occurs at low Reynolds number in fluidized biological systems. This spatiotemporal disordered flow radically changes nutrient and molecular transport in living fluids and can strongly affect the collective behaviour in prominent biological processes, including biofilm formation, morphogenesis and cancer invasion. Despite its crucial role in such physiological processes, understanding meso-scale turbulence and any relation to classical inertial turbulence remains obscure. Here we show how the motion of active matter along a micro-channel transitions to meso-scale turbulence through the evolution of locally disordered patches (active puffs) from an ordered vortex-lattice flow state. We demonstrate that the stationary critical exponents of this transition to meso-scale turbulence in a channel coincide with the directed percolation universality class. This finding bridges our understanding of the onset of low-Reynolds-number meso-scale turbulence and traditional scale-invariant turbulence in confinement.
Collapse
Affiliation(s)
- Amin Doostmohammadi
- The Rudolf Peierls Centre for Theoretical Physics, Department of Physics, University of Oxford, 1 Keble Road, Oxford OX1 3NP, UK
| | - Tyler N Shendruk
- The Rudolf Peierls Centre for Theoretical Physics, Department of Physics, University of Oxford, 1 Keble Road, Oxford OX1 3NP, UK.,Center for Studies in Physics and Biology, The Rockefeller University, 1230 York Avenue, New York, New York 10065, USA
| | - Kristian Thijssen
- Department of Applied Physics, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands
| | - Julia M Yeomans
- The Rudolf Peierls Centre for Theoretical Physics, Department of Physics, University of Oxford, 1 Keble Road, Oxford OX1 3NP, UK
| |
Collapse
|
411
|
|