401
|
Telomere stability and telomerase in mesenchymal stem cells. Biochimie 2008; 90:33-40. [DOI: 10.1016/j.biochi.2007.09.005] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2007] [Accepted: 09/10/2007] [Indexed: 01/25/2023]
|
402
|
Baird DM. Telomere dynamics in human cells. Biochimie 2008; 90:116-21. [DOI: 10.1016/j.biochi.2007.08.003] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2007] [Accepted: 08/02/2007] [Indexed: 01/18/2023]
|
403
|
Lees-Murdock DJ, Walsh CP. DNA methylation reprogramming in the germ line. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2008; 626:1-15. [PMID: 18372787 DOI: 10.1007/978-0-387-77576-0_1] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
In mammals, methylation occurs almost exclusively on the CpG dinucleotide in DNA and shows no preference for sequence context surrounding this target. CpGs are found on many different sequence classes and methylation of this dinucleotide is associated with repression of transcription. Reprogramming methylation in the primordial germ cells establishes monoallelic expression of imprinted genes which exhibit monoallelic expression throughout the lifetime of an organism, maintains retrotransposons in an inactive state and inactivates one of the two X chromosomes. In addition to direct transcriptional silencing, DNA methylation is important for suppression of recombination, and resetting this information is therefore necessary for maintenance of genomic stability. In this chapter, we will review the recent progress in our understanding of the time course and extent of DNA methylation reprogramming of many different sequence classes. We focus on the mouse germline, since this has been the model system from which we have gained the most knowledge of the process. In addition we will examine some of the evidence suggesting a link between repeat methylation and methylation of epigenetically controlled single-copy genes. To do this, we will look at the temporal sequence of methylation events from the time the germ cells become recognizable as a discrete population until the mature male and female gametes fuse and form the early embryo.
Collapse
Affiliation(s)
- Diane J Lees-Murdock
- Stem Cells and Epigenetics Research Group, School of Biomedical Sciences, Centre for Molecular Bioscience, University of Ulster, Coleraine, Northern Ireland, UK.
| | | |
Collapse
|
404
|
Developmentally regulated transcription of mammalian telomeres by DNA-dependent RNA polymerase II. Nat Cell Biol 2007; 10:228-36. [DOI: 10.1038/ncb1685] [Citation(s) in RCA: 588] [Impact Index Per Article: 32.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2007] [Accepted: 12/12/2007] [Indexed: 12/11/2022]
|
405
|
Latham T, Gilbert N, Ramsahoye B. DNA methylation in mouse embryonic stem cells and development. Cell Tissue Res 2007; 331:31-55. [PMID: 18060563 DOI: 10.1007/s00441-007-0537-9] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2007] [Accepted: 10/17/2007] [Indexed: 01/01/2023]
Abstract
Mammalian development is associated with considerable changes in global DNA methylation levels at times of genomic reprogramming. Normal DNA methylation is essential for development but, despite considerable advances in our understanding of the DNA methyltransferases, the reason that development fails when DNA methylation is deficient remains unclear. Furthermore, although much is known about the enzymes that cause DNA methylation, comparatively little is known about the mechanisms or significance of active demethylation in early development. In this review, we discuss the roles of the various DNA methyltransferases and their likely functions in development.
Collapse
Affiliation(s)
- Tom Latham
- Cancer Research Centre, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK
| | | | | |
Collapse
|
406
|
Abstract
Telomere shortening occurs concomitant with organismal aging, and it is accelerated in the context of human diseases associated with mutations in telomerase, such as some cases of dyskeratosis congenita, idiopathic pulmonary fibrosis and aplastic anemia. People with these diseases, as well as Terc-deficient mice, show decreased lifespan coincidental with a premature loss of tissue renewal, which suggests that telomerase is rate-limiting for tissue homeostasis and organismal survival. These findings have gained special relevance as they suggest that telomerase activity and telomere length can directly affect the ability of stem cells to regenerate tissues. If this is true, stem cell dysfunction provoked by telomere shortening may be one of the mechanisms responsible for organismal aging in both humans and mice. Here, we will review the current evidence linking telomere shortening to aging and stem cell dysfunction.
Collapse
Affiliation(s)
- Maria A Blasco
- Telomeres and Telomerase Group, Molecular Oncology Program, Spanish National Cancer Centre, 3 Melchor Fernandez Almagro, 28019 Madrid, Spain.
| |
Collapse
|
407
|
Benetti R, Gonzalo S, Jaco I, Schotta G, Klatt P, Jenuwein T, Blasco MA. Suv4-20h deficiency results in telomere elongation and derepression of telomere recombination. ACTA ACUST UNITED AC 2007; 178:925-36. [PMID: 17846168 PMCID: PMC2064618 DOI: 10.1083/jcb.200703081] [Citation(s) in RCA: 199] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Mammalian telomeres have heterochromatic features, including trimethylated histone H3 at lysine 9 (H3K9me3) and trimethylated histone H4 at lysine 20 (H4K20me3). In addition, subtelomeric DNA is hypermethylated. The enzymatic activities responsible for these modifications at telomeres are beginning to be characterized. In particular, H4K20me3 at telomeres could be catalyzed by the novel Suv4-20h1 and Suv4-20h2 histone methyltransferases (HMTases). In this study, we demonstrate that the Suv4-20h enzymes are responsible for this histone modification at telomeres. Cells deficient for Suv4-20h2 or for both Suv4-20h1 and Suv4-20h2 show decreased levels of H4K20me3 at telomeres and subtelomeres in the absence of changes in H3K9me3. These epigenetic alterations are accompanied by telomere elongation, indicating a role for Suv4-20h HMTases in telomere length control. Finally, cells lacking either the Suv4-20h or Suv39h HMTases show increased frequencies of telomere recombination in the absence of changes in subtelomeric DNA methylation. These results demonstrate the importance of chromatin architecture in the maintenance of telomere length homeostasis and reveal a novel role for histone lysine methylation in controlling telomere recombination.
Collapse
Affiliation(s)
- Roberta Benetti
- Telomeres and Telomerase Group, Molecular Oncology Program, Spanish National Cancer Centre, Madrid, Spain
| | | | | | | | | | | | | |
Collapse
|
408
|
Abstract
Genetic and epigenetic mechanisms contribute to the development of human tumors. However, the conventional analysis of neoplasias has preferentially focused on only one of these processes. This approach has led to a biased, primarily genetic view, of human tumorigenesis. Epigenetic alterations, such as aberrant DNA methylation, are sufficient to induce tumor formation, and can modify the incidence, and determine the type of tumor which will arise in genetic models of cancer. These observations raise important questions about the degree to which genetic and epigenetic mechanisms cooperate in human tumorigenesis, the identity of the specific cooperating genes and how these genes interact functionally to determine the diverse biological and clinical paths to tumor initiation and progression. These gaps in our knowledge are, in part, due to the lack of methods for full-scale integrated genetic and epigenetic analyses. The ultimate goal to fill these gaps would include sequencing relevant regions of the 3-billion nucleotide genome, and determining the methylation status of the 28-million CpG dinucleotide methylome at single nucleotide resolution in different types of neoplasias. Here, we review the emergence and advancement of technologies to map ever larger proportions of the cancer methylome, and the unique discovery potential of integrating these with cancer genomic data. We discuss the knowledge gained from these large-scale analyses in the context of gene discovery, therapeutic application and building a more widely applicable mechanism-based model of human tumorigenesis.
Collapse
Affiliation(s)
- Romulo M Brena
- Department of Molecular Genetics, The Ohio State University Comprehensive Cancer Center, Columbus, OH 43210, USA
| | | |
Collapse
|
409
|
Murga M, Jaco I, Fan Y, Soria R, Martinez-Pastor B, Cuadrado M, Yang SM, Blasco MA, Skoultchi AI, Fernandez-Capetillo O. Global chromatin compaction limits the strength of the DNA damage response. ACTA ACUST UNITED AC 2007; 178:1101-8. [PMID: 17893239 PMCID: PMC2064646 DOI: 10.1083/jcb.200704140] [Citation(s) in RCA: 203] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
In response to DNA damage, chromatin undergoes a global decondensation process that has been proposed to facilitate genome surveillance. However, the impact that chromatin compaction has on the DNA damage response (DDR) has not directly been tested and thus remains speculative. We apply two independent approaches (one based on murine embryonic stem cells with reduced amounts of the linker histone H1 and the second making use of histone deacetylase inhibitors) to show that the strength of the DDR is amplified in the context of “open” chromatin. H1-depleted cells are hyperresistant to DNA damage and present hypersensitive checkpoints, phenotypes that we show are explained by an increase in the amount of signaling generated at each DNA break. Furthermore, the decrease in H1 leads to a general increase in telomere length, an as of yet unrecognized role for H1 in the regulation of chromosome structure. We propose that slight differences in the epigenetic configuration might account for the cell-to-cell variation in the strength of the DDR observed when groups of cells are challenged with DNA breaks.
Collapse
Affiliation(s)
- Matilde Murga
- Genomic Instability Group, Molecular Oncology Programme, Spanish National Cancer Center, Madrid 28029, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|
410
|
Telomere lengthening early in development. Nat Cell Biol 2007; 9:1436-41. [PMID: 17982445 DOI: 10.1038/ncb1664] [Citation(s) in RCA: 296] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2007] [Accepted: 09/24/2007] [Indexed: 12/11/2022]
Abstract
Stem cells and cancer cells maintain telomere length mostly through telomerase. Telomerase activity is high in male germ line and stem cells, but is low or absent in mature oocytes and cleavage stage embryos, and then high again in blastocysts. How early embryos reset telomere length remains poorly understood. Here, we show that oocytes actually have shorter telomeres than somatic cells, but their telomeres lengthen remarkably during early cleavage development. Moreover, parthenogenetically activated oocytes also lengthen their telomeres, thus the capacity to elongate telomeres must reside within oocytes themselves. Notably, telomeres also elongate in the early cleavage embryos of telomerase-null mice, demonstrating that telomerase is unlikely to be responsible for the abrupt lengthening of telomeres in these cells. Coincident with telomere lengthening, extensive telomere sister-chromatid exchange (T-SCE) and colocalization of the DNA recombination proteins Rad50 and TRF1 were observed in early cleavage embryos. Both T-SCE and DNA recombination proteins decrease in blastocyst stage embryos, whereas telomerase activity increases and telomeres elongate only slowly. We suggest that telomeres lengthen during the early cleavage cycles following fertilization through a recombination-based mechanism, and that from the blastocyst stage onwards, telomerase only maintains the telomere length established by this alternative mechanism.
Collapse
|
411
|
Siegl-Cachedenier I, Muñoz P, Flores JM, Klatt P, Blasco MA. Deficient mismatch repair improves organismal fitness and survival of mice with dysfunctional telomeres. Genes Dev 2007; 21:2234-47. [PMID: 17785530 PMCID: PMC1950861 DOI: 10.1101/gad.430107] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Mismatch repair (MMR) has important roles in meiotic and mitotic recombination, DNA damage signaling, and various aspects of DNA metabolism including class-switch recombination, somatic hypermutation, and triplet-repeat expansion. Defects in MMR are responsible for human cancers characterized by microsatellite instability. Intriguingly, MMR deficiency has been shown to rescue survival and proliferation of telomerase-deficient yeast strains. A putative role for MMR at mammalian telomeres that could have an impact on cancer and aging is, however, unknown. Here, we studied the role of MMR in response to dysfunctional telomeres by generating mice doubly deficient for telomerase and the PMS2 MMR gene (Terc-/-/PMS2-/- mice). PMS2 deficiency prolonged the mean lifespan and median survival of telomerase-deficient mice concomitant with rescue of degenerative pathologies. This rescue of survival was independent of changes in telomere length, in sister telomere recombination, and in microsatellite instability. Importantly, PMS2 deficiency rescued cell proliferation defects but not apoptotic defects in vivo, concomitant with a decreased p21 induction in response to short telomeres. The proliferative advantage conferred to telomerase-deficient cells by the ablation of PMS2 did not produce increased tumors. Indeed, Terc-/-/PMS2-/- mice showed reduced tumors compared with PMS2-/- mice, in agreement with a tumor suppressor role for short telomeres in the context of MMR deficiencies. These results highlight an unprecedented role for MMR in mediating the cellular response to dysfunctional telomeres in vivo by attenuating p21 induction.
Collapse
Affiliation(s)
- Irene Siegl-Cachedenier
- Telomeres and Telomerase Group, Molecular Oncology Program, Spanish National Cancer Centre (CNIO), Madrid 28029, Spain
| | - Purificación Muñoz
- Telomeres and Telomerase Group, Molecular Oncology Program, Spanish National Cancer Centre (CNIO), Madrid 28029, Spain
| | - Juana M. Flores
- Animal Surgery and Medicine Department, Facultad de Veterinaria, Universidad Complutense de Madrid, Madrid 28040, Spain
| | - Peter Klatt
- Telomeres and Telomerase Group, Molecular Oncology Program, Spanish National Cancer Centre (CNIO), Madrid 28029, Spain
| | - María A. Blasco
- Telomeres and Telomerase Group, Molecular Oncology Program, Spanish National Cancer Centre (CNIO), Madrid 28029, Spain
- Corresponding author.E-MAIL ; FAX +34-917328028
| |
Collapse
|
412
|
Auriche C, Di Domenico EG, Ascenzioni F. Budding yeast with human telomeres: a puzzling structure. Biochimie 2007; 90:108-15. [PMID: 17954006 DOI: 10.1016/j.biochi.2007.09.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2007] [Accepted: 09/13/2007] [Indexed: 12/11/2022]
Abstract
Telomeres share some common features among eukaryotes, with few exceptions such as the fruit fly Drosophila that uses transposons as telomeres, they consist of G-rich repetitive DNA that is elongated by telomerase and/or alternative pathways depending on recombination. Telomere structure comprises both cis-acting satellite DNA (telomeric DNA) and proteins that interact directly and/or indirectly with the underlying DNA. Telomeric DNAs are surprisingly conserved among the vertebrates and very similar in most eukaryotes, but present some differences in yeast such as Saccharomyces cerevisiae. The telomeric proteins are more variable although the basic mechanisms which control telomere lengthening and capping are very similar, in fact orthologues of the yeast telomeric proteins, which have been studied first, have been identified in other organisms. Here we describe the structure of human telomeres in budding yeast as compared to canonical yeast and mammalian telomeres taking into consideration the more recent findings highlighting the mechanisms that are responsible for chromosome end protection and lengthening, and the role of chromatin organization in telomere function. This yeast represents a model for the study of mammalian telomeres that could be reconstituted step-by-step in all their components, moreover it could be useful for the assembly of mammalian artificial chromosome.
Collapse
Affiliation(s)
- Cristina Auriche
- Dipartimento di Biologia Cellulare e dello Sviluppo, Università di Roma La Sapienza, Roma, Italy
| | | | | |
Collapse
|
413
|
Endings in the middle: current knowledge of interstitial telomeric sequences. Mutat Res 2007; 658:95-110. [PMID: 17921045 DOI: 10.1016/j.mrrev.2007.08.006] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2007] [Revised: 08/28/2007] [Accepted: 08/30/2007] [Indexed: 01/24/2023]
Abstract
Interstitial telomeric sequences (ITSs) consist of tandem repeats of the canonical telomeric repeat and are common in mammals. They are localized at intrachromosomal sites, including those repeats located close to the centromeres and those found at interstitial sites, i.e., between the centromeres and the telomeres. ITSs might originate from ancestral intrachromosomal rearrangements (inversions and fusions), from differential crossing-over or from the repair of double-strand break during evolution. Three classes of ITSs have been described in the human genome, namely, short ITSs, long subtelomeric ITSs and fusion ITSs. The fourth class of ITSs, pericentromeric ITSs, has been found in other species. The function of ITSs can be inferred from the association of heritable diseases with ITS polymorphic variants, both in copy number and sequence. This is one of the most attractive aspects of ITS studies because it leads to new and useful markers for genetic linkage studies, forensic applications, and detection of genetic instability in tumors. Some ITSs also might be hotspots of chromosome breakage, rearrangement and amplification sites, based on the type of clastogens and the nature of ITSs. This study will contribute new knowledge with respect to ITSs' biology and mechanism, prevalence of diseases, risk evaluation and prevention of related diseases, thus facilitates the design of early detection markers for diseases caused by genomic instability.
Collapse
|
414
|
Gao Q, Reynolds GE, Innes L, Pedram M, Jones E, Junabi M, Gao DW, Ricoul M, Sabatier L, Van Brocklin H, Franc BL, Murnane JP. Telomeric transgenes are silenced in adult mouse tissues and embryo fibroblasts but are expressed in embryonic stem cells. Stem Cells 2007; 25:3085-92. [PMID: 17823235 DOI: 10.1634/stemcells.2007-0478] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
In addition to their role in protecting the ends of chromosomes, telomeres also influence the expression of adjacent genes, a process called telomere-position effect. We previously reported that the neo and HSV-tk transgenes located adjacent to telomeres in mouse embryonic stem cells are initially expressed at low levels and then become gradually silenced upon passage in culture through a process involving DNA methylation. We also reported extensive DNA methylation in these telomeric transgenes in three different tissues isolated from mice generated from one of these embryonic stem cell clones. In the present study, we demonstrate that embryo fibroblasts isolated from two different mouse strains show extensive DNA methylation and silencing of the telomeric transgenes. Consistent with this observation, we also demonstrate little or no detectable expression of the HSV-tk telomeric transgene in somatic tissues using whole body imaging. In contrast, both telomeric transgenes are expressed at low levels and have little DNA methylation in embryonic stem cell lines isolated from these same mouse strains. Our results demonstrate that telomere-position effect in mammalian cells can be observed either as a low level of expression in embryonic stem cells in the preimplantation embryo or as complete silencing and DNA methylation in differentiated cells and somatic tissues. This pattern of expression of the telomeric transgenes demonstrates that subtelomeric regions, like much of the genome, are epigenetically reprogrammed in the preimplantation embryo, a process that has been proposed to be important in early embryonic development. Disclosure of potential conflicts of interest is found at the end of this article.
Collapse
Affiliation(s)
- Qing Gao
- Department of Radiation Oncology, University of California, 1855 Folsom Street, MCB 200, San Francisco, California 94103, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
415
|
Nittis T, Guittat L, Stewart SA. Alternative lengthening of telomeres (ALT) and chromatin: is there a connection? Biochimie 2007; 90:5-12. [PMID: 17935854 DOI: 10.1016/j.biochi.2007.08.009] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2007] [Accepted: 08/24/2007] [Indexed: 12/31/2022]
Abstract
The acquisition of cellular immortality is a critical step in the tumorigenic process that requires stabilization of the telomeres, nucleoprotein structures at the termini of chromosomes. While the majority of human tumors stabilize their telomeres through activation of telomerase (hTERT), a significant portion (10-15%) utilize a poorly understood alternative mechanism of telomere maintenance referred to as ALT (Alternative Lengthening of Telomeres). Strikingly, the ALT mechanism is more prevalent in tumors arising from tissues of mesenchymal origin than in those of epithelial origin. This observation suggests that cell type specific mechanisms favor the activation of the ALT mechanism versus telomerase in human tumorigenesis. In addition, the presence of an alternative mechanism of telomere maintenance raises the possibility that telomerase-positive tumors undergoing anti-telomerase therapies might escape by activating the ALT pathway. For these reasons, delineating the ALT mechanism is critical for our understanding of the tumorigenic process and the development of ALT-specific anti-neoplastic therapies. Recent studies have demonstrated that epigenetic modifications at telomeres have a profound effect on telomere length, and may also be linked to the ALT mechanism. In this review we focus on these recent advances and their implications in telomere maintenance.
Collapse
Affiliation(s)
- Thalia Nittis
- Department of Cell Biology and Physiology, Washington University, St. Louis, MO 63110, USA
| | | | | |
Collapse
|
416
|
Abstract
Telomeres are among the most important structures in eukaryotic cells. Creating the physical ends of linear chromosomes, they play a crucial role in maintaining genome stability, control of cell division, cell growth and senescence. In vertebrates, telomeres consist of G-rich repetitive DNA sequences (TTAGGG)n and specific proteins, creating a specialized structure called the telosome that through mutual interactions with many other factors in the cell give rise to dynamic regulation of chromosome maintenance. In this review, we survey the structural and mechanistic aspects of telomere length regulation and how these processes lead to alterations in normal and immortal cell growth.
Collapse
Affiliation(s)
- M Matulić
- Ruder Bosković Institute, Department of Molecular Biology, Zagreb, Croatia
| | | | | |
Collapse
|
417
|
Rincón-Arano H, Furlan-Magaril M, Recillas-Targa F. Protection against telomeric position effects by the chicken cHS4 beta-globin insulator. Proc Natl Acad Sci U S A 2007; 104:14044-9. [PMID: 17715059 PMCID: PMC1955792 DOI: 10.1073/pnas.0704999104] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2007] [Indexed: 12/26/2022] Open
Abstract
Epigenetic silencing of genes relocated near telomeres, termed telomeric position effect, has been extensively studied in yeast and more recently in vertebrates. However, protection of a transgene against telomeric position effects by chromatin insulators has not yet been addressed. In this work we investigated the capacity of the chicken beta-globin insulator cHS4 to shield a transgene against silencing by telomeric heterochromatin. Using telomeric repeats, we targeted transgene integration into telomeres of the chicken cell line HD3. When the chicken cHS4 insulator is incorporated to the transgene, we observe a sustained gene expression of single-copy integrants that can be maintained for >100 days of continuous culture. However, uninsulated single-copy clones showed an accelerated gene expression extinction profile. Unexpectedly, telomeric silencing was not reversed with trichostatin A or nicotidamine. In contrast, significant reactivation was obtained with 5-aza-2'-deoxycytidine, consistent with the subtelomeric DNA methylation status. Strikingly, insulated transgenes integrated into telomeric regions were enriched in histone methylation, such as H3K4me2 and H3K79me2, but not in histone acetylation. Furthermore, the cHS4 insulator counteracts telomeric position effects in an upstream stimulatory factor-independent manner. Our results suggest that this insulator has the capacity to adapt to different chromatin propagation signals in distinct insertional epigenome environments.
Collapse
Affiliation(s)
- Héctor Rincón-Arano
- Instituto de Fisiología Celular, Departamento de Genética Molecular, Universidad Nacional Autónoma de México, Apartado Postal 70-242, 04510 México, D.F., México
| | - Mayra Furlan-Magaril
- Instituto de Fisiología Celular, Departamento de Genética Molecular, Universidad Nacional Autónoma de México, Apartado Postal 70-242, 04510 México, D.F., México
| | - Félix Recillas-Targa
- Instituto de Fisiología Celular, Departamento de Genética Molecular, Universidad Nacional Autónoma de México, Apartado Postal 70-242, 04510 México, D.F., México
| |
Collapse
|
418
|
Akins RE, Gratton K, Quezada E, Rutter H, Tsuda T, Soteropoulos P. Gene expression profile of bioreactor-cultured cardiac cells: activation of morphogenetic pathways for tissue engineering. DNA Cell Biol 2007; 26:425-34. [PMID: 17570766 DOI: 10.1089/dna.2006.0543] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Cells grown in three-dimensional (3D) culture take on in vivo phenotypes and organize into tissue-like structures. Understanding the pathways and mechanisms contributing to this in vitro tissuegenesis is a critical goal of tissue engineering. To identify pathways relevant to cardiac tissue engineering, we compared mRNA expression profiles from bioreactor-cultured 3D aggregates of primary neonatal rat heart cells (NRHCs), which form layered structures similar to cardiac tissue, and standard plate-cultured NRHCs, which do not. In a series of two experiments, NRHCs were grown on solid microcarrier surfaces within clinostatically rotated polytetrafluoroethylene (PTFE) vessels and compared to parallel cultures grown on standard tissue culture plates without rotation. After 1, 4, and 6 days, gene expression profiles were analyzed using Affymetrix Rat Genome U34A (RG-U34A) arrays. The results were validated using real-time PCR, and the data set was filtered to generate a list of 93 probe sets that were substantially the same in replicate samples but substantially different between the bioreactor and plate groups. Cluster analysis indicated that the bioreactor and plate samples had similar expression patterns on day 1 but that these patterns diverged thereafter. Database for Annotation, Visualization, and Integrated Discovery (DAVID) analysis revealed a number of statistically significant gene groupings, including groups associated with muscle development and morphogenesis. Further analysis of the annotated gene list indicated that 13 of the 93 filtered genes were associated with endothelial cells, blood vessels, or angiogenesis. These results suggest that 3D aggregate culture of NRHCs in bioreactors is associated with the differential expression of morphogenic and angiogenic pathways similar to those seen during cardiac development.
Collapse
Affiliation(s)
- Robert E Akins
- Nemours Biomedical Research, A.I. duPont Hospital for Children, Wilmington, Delaware19803, USA.
| | | | | | | | | | | |
Collapse
|
419
|
Abstract
Telomeres are required to preserve genome integrity, chromosome stability, nuclear architecture and chromosome pairing during meiosis. Given that telomerase activity is limiting or absent in most somatic tissues, shortening of telomeres during development and aging is the rule. In vitro, telomere length operates as a mechanism to prevent uncontrolled cell growth and therefore defines the proliferation potential of a cell. In vitro, in somatic cells that have lost proliferation control, shortening of telomeres becomes the main source of genome instability leading to genetic or epigenetic changes that may allow cells to become immortal and to acquire tumor phenotypes. In vivo, mice models have indisputably shown both the protective and the promoting role of very short telomeres in cancer development. In humans, although telomere shortening and other types of telomere dysfunction probably contribute to the genome instability often detected in tumors, the specific contributions of such instability to the development of cancer remain largely undetermined.
Collapse
|
420
|
De Cian A, Lacroix L, Douarre C, Temime-Smaali N, Trentesaux C, Riou JF, Mergny JL. Targeting telomeres and telomerase. Biochimie 2007; 90:131-55. [PMID: 17822826 DOI: 10.1016/j.biochi.2007.07.011] [Citation(s) in RCA: 484] [Impact Index Per Article: 26.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2007] [Accepted: 07/16/2007] [Indexed: 01/06/2023]
Abstract
Telomeres and telomerase represent, at least in theory, an extremely attractive target for cancer therapy. The objective of this review is to present the latest view on the mechanism(s) of action of telomerase inhibitors, with an emphasis on a specific class of telomere ligands called G-quadruplex ligands, and to discuss their potential use in oncology.
Collapse
Affiliation(s)
- Anne De Cian
- INSERM, U565, Acides nucléiques: dynamique, ciblage et fonctions biologiques, 43 rue Cuvier, CP26, Paris Cedex 05, F-75231, France
| | | | | | | | | | | | | |
Collapse
|
421
|
Jiang WQ, Zhong ZH, Henson JD, Reddel RR. Identification of candidate alternative lengthening of telomeres genes by methionine restriction and RNA interference. Oncogene 2007; 26:4635-47. [PMID: 17297460 DOI: 10.1038/sj.onc.1210260] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2006] [Revised: 10/27/2006] [Accepted: 11/29/2006] [Indexed: 11/09/2022]
Abstract
Telomerase-negative cancer cells can maintain their telomeres by a recombination-mediated alternative lengthening of telomeres (ALT) process. We reported previously that sequestration of MRE11/RAD50/NBS1 complexes represses ALT-mediated telomere length maintenance, and suppresses formation of ALT-associated promyelocytic leukemia (PML) bodies (APBs). APBs are PML bodies containing telomeric DNA and telomere-binding proteins, and are observed only in a small fraction of cells within asynchronously dividing ALT-positive cell populations. Here, we report that methionine restriction caused a reversible arrest in G0/G1 phase of the cell cycle and reversible induction of APB formation in most cells within an ALT-positive population. We combined methionine restriction with RNA interference to test whether the following proteins are required for APB formation: PML body-associated proteins, PML and Sp100; telomere-associated proteins, TRF1, TRF2, TIN2 and RAP1; and DNA repair proteins, MRE11, RAD50, NBS1 and 53BP1. APB formation was not decreased by depletion of Sp100 (as reported previously) or of 53BP1, although 53BP1 partially colocalizes with APBs. Depletion of the other proteins suppressed APB formation. Because of the close linkage between ALT-mediated telomere maintenance and ability to form APBs, the eight proteins identified by this screen as being required for APB formation are also likely to be required for the ALT mechanism.
Collapse
Affiliation(s)
- W-Q Jiang
- Cancer Research Unit, Children's Medical Research Institute, Westmead, NSW, Australia
| | | | | | | |
Collapse
|
422
|
Opresko PL, Calvo JP, von Kobbe C. Role for the Werner syndrome protein in the promotion of tumor cell growth. Mech Ageing Dev 2007; 128:423-36. [PMID: 17624410 DOI: 10.1016/j.mad.2007.05.009] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2007] [Revised: 05/18/2007] [Accepted: 05/21/2007] [Indexed: 11/20/2022]
Abstract
Werner syndrome (WS) is a premature aging and cancer-prone disease caused by loss of the RecQ helicase WRN protein. Cultured WS fibroblasts display high genomic instability and senesce prematurely. Epigenetic inactivation of the WRN gene occurs in numerous tumor types, in which WRN demonstrates tumor suppressor-like activity (Agrelo et al., 2006). However, the role of WRN in tumors that express WRN protein is unknown. Here we report that the inhibition of WRN expression strongly impairs growth of 12 out of 15 cancer cell lines tested. For those cell lines in which WRN depletion induced high cell death, the majority of the surviving proliferative clones exhibited WRN expression. Growth arrest induced by WRN depletion was characterized by an accumulation of cells in the G2/M cell cycle phases and an increase in DNA damage. Importantly, WRN depletion inhibited tumor growth in vivo in SCID mouse xenograft models. Altogether, these findings support a dual role for WRN in tumorigenesis; tumor suppressor-like activity in tumors with WRN inactivation and the promotion of proliferation and survival in tumors that express WRN. These findings suggest a possible therapeutic role for WRN as an anti-cancer target, and highlight the importance of WRN protein status for tumorigenesis and clinical treatments of patients.
Collapse
Affiliation(s)
- Patricia L Opresko
- University of Pittsburgh, Department of Environmental and Occupational Health, Pittsburgh, PA, USA.
| | | | | |
Collapse
|
423
|
Graakjaer J, Christensen R, Kolvraa S, Serakinci N. Mesenchymal stem cells with high telomerase expression do not actively restore their chromosome arm specific telomere length pattern after exposure to ionizing radiation. BMC Mol Biol 2007; 8:49. [PMID: 17565702 PMCID: PMC1906829 DOI: 10.1186/1471-2199-8-49] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2007] [Accepted: 06/13/2007] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Previous studies have demonstrated that telomeres in somatic cells are not randomly distributed at the end of the chromosomes. We hypothesize that these chromosome arm specific differences in telomere length (the telomere length pattern) may be actively maintained. In this study we investigate the existence and maintenance of the telomere length pattern in stem cells. For this aim we studied telomere length in primary human mesenchymal stem cells (hMSC) and their telomerase-immortalised counterpart (hMSC-telo1) during extended proliferation as well as after irradiation. Telomere lengths were measured using Fluorescence In Situ Hybridization (Q-FISH). RESULTS A telomere length pattern was found to exist in primary hMSC's as well as in hMSC-telo1. This pattern is similar to what was previously found in lymphocytes and fibroblasts. The cells were then exposed to a high dose of ionizing radiation. Irradiation caused profound changes in chromosome specific telomere lengths, effectively destroying the telomere length pattern. Following long term culturing after irradiation, a telomere length pattern was found to re-emerge. However, the new telomere length pattern did not resemble the telomere length pattern observed before irradiation. CONCLUSION Our findings indicate that a telomere length pattern does exist in mesenchymal stem cells and that the pattern is not actively re-established after destruction by irradiation.
Collapse
Affiliation(s)
- Jesper Graakjaer
- Department of Clinical Genetics, Vejle County Hospital, Vejle, Denmark
| | - Rikke Christensen
- Department of Anatomy and Neurobiology, Institute of Medical Biology, University of Southern Denmark, Odense, Denmark
| | - Steen Kolvraa
- Department of Clinical Genetics, Vejle County Hospital, Vejle, Denmark
| | | |
Collapse
|
424
|
Meier A, Fiegler H, Muñoz P, Ellis P, Rigler D, Langford C, Blasco MA, Carter N, Jackson SP. Spreading of mammalian DNA-damage response factors studied by ChIP-chip at damaged telomeres. EMBO J 2007; 26:2707-18. [PMID: 17491589 PMCID: PMC1888678 DOI: 10.1038/sj.emboj.7601719] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2007] [Accepted: 04/19/2007] [Indexed: 12/13/2022] Open
Abstract
Phosphorylated histone H2AX (gammaH2AX) is generated in nucleosomes flanking sites of DNA double-strand breaks, triggering the recruitment of DNA-damage response proteins such as MDC1 and 53BP1. Here, we study shortened telomeres in senescent human cells. We show that most telomeres trigger gammaH2AX formation, which spreads up to 570 kb into the subtelomeric regions. Furthermore, we reveal that the spreading patterns of 53BP1 and MDC1 are very similar to that of gammaH2AX, consistent with a structural link between these factors. Moreover, different subsets of telomeres signal in different cell lines, with those that signal tending to equate to the shortest telomeres of the corresponding cell line, thus linking telomere attrition with DNA-damage signalling. Notably, we find that, in some cases, gammaH2AX spreading is modulated in a manner suggesting that H2AX distribution or its ability to be phosphorylated is not uniform along the chromosome. Finally, we observe weak gammaH2AX signals at telomeres of proliferating cells, but not in hTERT immortalised cells, suggesting that low telomerase activity leads to telomere uncapping and senescence in proliferating primary cells.
Collapse
Affiliation(s)
- Andreas Meier
- The Wellcome Trust and Cancer Research UK Gurdon Institute, Department of Zoology, University of Cambridge, Cambridge, UK
| | - Heike Fiegler
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, UK
| | - Purificacion Muñoz
- Spanish National Cancer Center (CNIO), Melchor Fernández Almagro no 3, Madrid, Spain
| | - Peter Ellis
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, UK
| | - Diane Rigler
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, UK
| | - Cordelia Langford
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, UK
| | - Maria A Blasco
- Spanish National Cancer Center (CNIO), Melchor Fernández Almagro no 3, Madrid, Spain
| | - Nigel Carter
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, UK
| | - Stephen P Jackson
- The Wellcome Trust and Cancer Research UK Gurdon Institute, Department of Zoology, University of Cambridge, Cambridge, UK
| |
Collapse
|
425
|
Lezhava T, Jokhadze T. Activation of pericentromeric and telomeric heterochromatin in cultured lymphocytes from old individuals. Ann N Y Acad Sci 2007; 1100:387-99. [PMID: 17460203 DOI: 10.1196/annals.1395.043] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The functional characteristics of chromosomes (level of total heterochromatin, chromosome instability, and sister chromatid exchanges [SCEs]) were studied in cultured lymphocytes derived from 80- to 91-year-old and 18- to 30-year-old (control group) individuals under the single and combined effect of CoCl(2) and bioregulator Livagen. The results obtained showed that chromosome heterochromatinization (condensation of eu- and heterochromatin regions) had progressively increased with aging and led to inactivation of a number of once functioning "active genes." The peptide bioregulator Livagen could induce reactivation (deheterochromatinization) of chromatin to modify heterochromatinized chromosomal regions in cultured lymphocytes of aged individuals. Our results indicated that metal ions (CoCl(2)) caused a significant increase in the level of chromosomal aberrations in old donors in comparison with the control group (P < 0.05). The peptide bioregulator Livagen was effective in decreasing the number of changes induced by the CoCl(2) 3.4 +/- 0.6% (control group 4.2 +/- 0.7%). Co(2+) ions single and Co(2+) ions in combination with the Livagen changed the distribution of SCE over chromosomes: pericentromeric heterochromatin was more sensitive to the effect of CoCl(2) (15.4 +/- 1.8% SCE), while SCE were mostly registered in telomeric heterochromatin under the combined effect of CoCl(2) and Livagen 12.0 +/- 1.2% SCE (control group 4.5 +/- 0.6% and 2.8 +/- 0.5% SCE, respectively). Thus, we have first demonstrated that Co(2+) ions separately and in combination with the bioregulator Livagen have different chromosomal target regions as demonstrated by SCE induction, deheterochromatinization of precentromeric and telomeric heterochromatin in lymphocytes from old individuals.
Collapse
Affiliation(s)
- Teimuraz Lezhava
- Department of Genetics, Tbilisi State University, Chavchavadze ave.1, 0128, Tbilisi, Georgia.
| | | |
Collapse
|
426
|
Zellinger B, Riha K. Composition of plant telomeres. ACTA ACUST UNITED AC 2007; 1769:399-409. [PMID: 17383025 DOI: 10.1016/j.bbaexp.2007.02.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2006] [Revised: 02/01/2007] [Accepted: 02/09/2007] [Indexed: 12/15/2022]
Abstract
Telomeres are essential elements of eukaryotic chromosomes that differentiate native chromosome ends from deleterious DNA double-strand breaks (DSBs). This is achieved by assembling chromosome termini in elaborate high-order nucleoprotein structures that in most organisms encompass telomeric DNA, specific telomere-associated proteins as well as general chromatin and DNA repair factors. Although the individual components of telomeric chromatin are evolutionary highly conserved, cross species comparisons have revealed a remarkable flexibility in their utilization at telomeres. This review outlines the strategies used for chromosome end protection and maintenance in mammals, yeast and flies and discusses current progress in deciphering telomere structure in plants.
Collapse
Affiliation(s)
- Barbara Zellinger
- Gregor Mendel Institute of Plant Molecular Biology, Austrian Academy of Sciences, Dr. Bohrgasse 3, A-1030 Vienna, Austria
| | | |
Collapse
|
427
|
Weber M, Schübeler D. Genomic patterns of DNA methylation: targets and function of an epigenetic mark. Curr Opin Cell Biol 2007; 19:273-80. [PMID: 17466503 DOI: 10.1016/j.ceb.2007.04.011] [Citation(s) in RCA: 270] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2007] [Accepted: 04/16/2007] [Indexed: 01/22/2023]
Abstract
Methylation of cytosines can mediate epigenetic gene silencing and is the only known DNA modification in eukaryotes. Recent efforts to map DNA methylation across mammalian genomes revealed limited DNA methylation at regulatory regions but widespread methylation in intergenic regions and repeats. This is consistent with the idea that hypermethylation is the default epigenetic state and serves in maintaining genome integrity. DNA methylation patterns at regulatory regions are generally stable, but a minor subset of regulatory regions show variable DNA methylation between cell types, suggesting an additional dynamic component. Such promoter de novo methylation might be involved in the maintenance rather than the initiation of silencing of defined genes during development. How frequently such dynamic methylation occurs, its biological relevance and the pathways involved deserve investigation.
Collapse
Affiliation(s)
- Michael Weber
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, CH-4058 Basel, Switzerland
| | | |
Collapse
|
428
|
Abstract
Increasing evidence indicates that chromatin modifications are important regulators of mammalian telomeres. Telomeres provide well studied paradigms of heterochromatin formation in yeast and flies, and recent studies have shown that mammalian telomeres and subtelomeric regions are also enriched in epigenetic marks that are characteristic of heterochromatin. Furthermore, the abrogation of master epigenetic regulators, such as histone methyltransferases and DNA methyltransferases, correlates with loss of telomere-length control, and telomere shortening to a critical length affects the epigenetic status of telomeres and subtelomeres. These links between epigenetic status and telomere-length regulation provide important new avenues for understanding processes such as cancer development and ageing, which are characterized by telomere-length defects.
Collapse
Affiliation(s)
- María A Blasco
- Telomeres and Telomerase Group, Molecular Oncology Programme, Spanish National Cancer Centre (CNIO), 3 Melchor Fernández Almagro, Madrid E-28029, Spain.
| |
Collapse
|
429
|
Abstract
Overlapping epigenetic mechanisms have evolved in eukaryotic cells to silence the expression and mobility of transposable elements (TEs). Owing to their ability to recruit the silencing machinery, TEs have served as building blocks for epigenetic phenomena, both at the level of single genes and across larger chromosomal regions. Important progress has been made recently in understanding these silencing mechanisms. In addition, new insights have been gained into how this silencing has been co-opted to serve essential functions in 'host' cells, highlighting the importance of TEs in the epigenetic regulation of the genome.
Collapse
Affiliation(s)
- R Keith Slotkin
- Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, New York 11724, USA
| | | |
Collapse
|
430
|
Canela A, Vera E, Klatt P, Blasco MA. High-throughput telomere length quantification by FISH and its application to human population studies. Proc Natl Acad Sci U S A 2007; 104:5300-5. [PMID: 17369361 PMCID: PMC1828130 DOI: 10.1073/pnas.0609367104] [Citation(s) in RCA: 247] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A major limitation of studies of the relevance of telomere length to cancer and age-related diseases in human populations and to the development of telomere-based therapies has been the lack of suitable high-throughput (HT) assays to measure telomere length. We have developed an automated HT quantitative telomere FISH platform, HT quantitative FISH (Q-FISH), which allows the quantification of telomere length as well as percentage of short telomeres in large human sample sets. We show here that this technique provides the accuracy and sensitivity to uncover associations between telomere length and human disease.
Collapse
Affiliation(s)
- Andrés Canela
- Telomeres and Telomerase Group, Molecular Oncology Program, Spanish National Cancer Centre, 3 Melchor Fernández Almagro, Madrid E-28029, Spain
| | - Elsa Vera
- Telomeres and Telomerase Group, Molecular Oncology Program, Spanish National Cancer Centre, 3 Melchor Fernández Almagro, Madrid E-28029, Spain
| | - Peter Klatt
- Telomeres and Telomerase Group, Molecular Oncology Program, Spanish National Cancer Centre, 3 Melchor Fernández Almagro, Madrid E-28029, Spain
| | - María A. Blasco
- Telomeres and Telomerase Group, Molecular Oncology Program, Spanish National Cancer Centre, 3 Melchor Fernández Almagro, Madrid E-28029, Spain
- *To whom correspondence should be addressed. E-mail:
| |
Collapse
|
431
|
Atkinson SP, Keith WN. Epigenetic control of cellular senescence in disease: opportunities for therapeutic intervention. Expert Rev Mol Med 2007; 9:1-26. [PMID: 17352843 DOI: 10.1017/s1462399407000269] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Understanding how senescence is established and maintained is an important area of study both for normal cell physiology and in tumourigenesis. Modifications to N-terminal tails of histone proteins, which can lead to chromatin remodelling, appear to be key to the regulation of the senescence phenotype. Epigenetic mechanisms such as modification of histone proteins have been shown to be sufficient to regulate gene expression levels and specific gene promoters can become epigenetically altered at senescence. This suggests that epigenetic mechanisms are important in senescence and further suggests epigenetic deregulation could play an important role in the bypass of senescence and the acquisition of a tumourigenic phenotype. Tumour suppressor proteins and cellular senescence are intimately linked and such proteins are now known to regulate gene expression through chromatin remodelling, again suggesting a link between chromatin modification and cellular senescence. Telomere dynamics and the expression of the telomerase genes are also both implicitly linked to senescence and tumourigenesis, and epigenetic deregulation of the telomerase gene promoters has been identified as a possible mechanism for the activation of telomere maintenance mechanisms in cancer. Recent studies have also suggested that epigenetic deregulation in stem cells could play an important role in carcinogenesis, and new models have been suggested for the attainment of tumourigenesis and bypass of senescence. Overall, proper regulation of the chromatin environment is suggested to have an important role in the senescence pathway, such that its deregulation could lead to tumourigenesis.
Collapse
Affiliation(s)
- Stuart P Atkinson
- Centre for Oncology and Applied Pharmacology, University of Glasgow, Cancer Research UK Beatson Laboratories, Bearsden, Glasgow, G61 1BD, UK
| | | |
Collapse
|
432
|
Abstract
Telomeres, guanine-rich tandem DNA repeats of the chromosomal end, provide chromosomal stability, and cellular replication causes their loss. In somatic cells, the activity of telomerase, a reverse transcriptase that can elongate telomeric repeats, is usually diminished after birth so that the telomere length is gradually shortened with cell divisions, and triggers cellular senescence. In embryonic stem cells, telomerase is activated and maintains telomere length and cellular immortality; however, the level of telomerase activity is low or absent in the majority of stem cells regardless of their proliferative capacity. Thus, even in stem cells, except for embryonal stem cells and cancer stem cells, telomere shortening occurs during replicative ageing, possibly at a slower rate than that in normal somatic cells. Recently, the importance of telomere maintenance in human stem cells has been highlighted by studies on dyskeratosis congenital, which is a genetic disorder in the human telomerase component. The regulation of telomere length and telomerase activity is a complex and dynamic process that is tightly linked to cell cycle regulation in human stem cells. Here we review the role of telomeres and telomerase in the function and capacity of the human stem cells.
Collapse
Affiliation(s)
- E Hiyama
- Division of Life Science Research, Natural Science Center for Basic Research and Development, Hiroshima University, 1-2-3, Kasumi, Minami-ku, Hiroshima 734-8551, Japan.
| | | |
Collapse
|
433
|
Blanco R, Muñoz P, Flores JM, Klatt P, Blasco MA. Telomerase abrogation dramatically accelerates TRF2-induced epithelial carcinogenesis. Genes Dev 2007; 21:206-20. [PMID: 17234886 PMCID: PMC1770903 DOI: 10.1101/gad.406207] [Citation(s) in RCA: 103] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
TRF2 is a telomere-binding protein with roles in telomere protection and telomere-length regulation. The fact that TRF2 is up-regulated in some human tumors suggests a role of TRF2 in cancer. Mice that overexpress TRF2 in the skin, K5TRF2 mice, show critically short telomeres and are susceptible to UV-induced carcinogenesis as a result of deregulated XPF/ERCC1 activity, a nuclease involved in UV damage repair. Here we demonstrate that, when in combination with telomerase deficiency, TRF2 acts as a very potent oncogene in vivo. In particular, we show that telomerase deficiency dramatically accelerates TRF2-induced epithelial carcinogenesis in K5TRF2/Terc-/- mice, coinciding with increased chromosomal instability and DNA damage. Telomere recombination is also increased in these mice, suggesting that TRF2 favors the activation of alternative telomere maintenance mechanisms. Together, these results demonstrate that TRF2 increased expression is a potent oncogenic event that along with telomerase deficiency accelerates carcinogenesis, coincidental with a derepression of telomere recombination. These results are of particular relevance given that TRF2 is up-regulated in some human cancers. Furthermore, these data suggest that telomerase inhibition might not be effective to cease the growth of TRF2-overexpressing tumors.
Collapse
Affiliation(s)
- Raquel Blanco
- Telomeres and Telomerase Group, Molecular Oncology Program, Spanish National Cancer Centre (CNIO), Madrid 28029, Spain
| | - Purificación Muñoz
- Telomeres and Telomerase Group, Molecular Oncology Program, Spanish National Cancer Centre (CNIO), Madrid 28029, Spain
| | - Juana M. Flores
- Animal Surgery and Medicine Department, Facultad de Veterinaria, Universidad Complutense de Madrid, Madrid 28040, Spain
| | - Peter Klatt
- Telomeres and Telomerase Group, Molecular Oncology Program, Spanish National Cancer Centre (CNIO), Madrid 28029, Spain
| | - María A. Blasco
- Telomeres and Telomerase Group, Molecular Oncology Program, Spanish National Cancer Centre (CNIO), Madrid 28029, Spain
- Corresponding author.E-MAIL ; FAX 34-917328028
| |
Collapse
|
434
|
Gehring M, Henikoff S. DNA methylation dynamics in plant genomes. ACTA ACUST UNITED AC 2007; 1769:276-86. [PMID: 17341434 DOI: 10.1016/j.bbaexp.2007.01.009] [Citation(s) in RCA: 96] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2006] [Revised: 01/26/2007] [Accepted: 01/26/2007] [Indexed: 12/28/2022]
Abstract
Cytosine bases are extensively methylated in the DNA of plant genomes. DNA methylation has been implicated in the silencing of transposable elements and genes, and loss of methylation can have severe consequences for the organism. The recent methylation profiling of the entire Arabidopsis genome has provided insight into the extent of DNA methylation and its functions in silencing and gene transcription. Patterns of DNA methylation are faithfully maintained across generations, but some changes in DNA methylation are observed in terminally differentiated tissues. Demethylation by a DNA glycosylase is required for the expression of imprinted genes in the endosperm and de novo methylation might play a role in the selective silencing of certain self-incompatibility alleles in the tapetum. Because DNA methylation patterns are faithfully inherited, changes in DNA methylation that arise somatically during the plant life cycle have the possibility of being propagated. Therefore, epimutations might be an important source of variation during plant evolution.
Collapse
Affiliation(s)
- Mary Gehring
- Howard Hughes Medical Institute, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue North, Seattle, WA 98109, USA
| | | |
Collapse
|
435
|
Benetti R, García-Cao M, Blasco MA. Telomere length regulates the epigenetic status of mammalian telomeres and subtelomeres. Nat Genet 2007; 39:243-50. [PMID: 17237781 DOI: 10.1038/ng1952] [Citation(s) in RCA: 256] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2006] [Accepted: 11/28/2006] [Indexed: 11/08/2022]
Abstract
Mammalian telomeres have epigenetic marks of constitutive heterochromatin. Here, we study the impact of telomere length on the maintenance of heterochromatin domains at telomeres. Telomerase-deficient Terc(-/-) mice with short telomeres show decreased trimethylation of histone 3 at Lys9 (H3K9) and histone 4 at Lys20 (H4K20) in telomeric and subtelomeric chromatin as well as decreased CBX3 binding accompanied by increased H3 and H4 acetylation at these regions. Subtelomeric DNA methylation is also decreased in conjunction with telomere shortening in Terc(-/-) mice. In contrast, telomere repeat factors 1 and 2 show normal binding to telomeres independent of telomere length. These results indicate that loss of telomeric repeats leads to a change in the architecture of telomeric and subtelomeric chromatin consisting of loss of heterochromatic features leading to a more 'open' chromatin state. These observations highlight the importance of telomere repeats in the establishment of constitutive heterochromatin at mammalian telomeres and subtelomeres and point to histone modifications as important in counting telomere repeats.
Collapse
Affiliation(s)
- Roberta Benetti
- Telomeres and Telomerase Group, Molecular Oncology Program, Spanish National Cancer Centre (CNIO), 28029 Madrid, Spain
| | | | | |
Collapse
|
436
|
Xhemalce B, Riising EM, Baumann P, Dejean A, Arcangioli B, Seeler JS. Role of SUMO in the dynamics of telomere maintenance in fission yeast. Proc Natl Acad Sci U S A 2007; 104:893-8. [PMID: 17209013 PMCID: PMC1783410 DOI: 10.1073/pnas.0605442104] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The sheltering of chromosome ends from illegitimate DNA repair reactions and telomere length homeostasis are critical for preserving genomic integrity. Growing evidence implicates covalent protein modification by SUMO (small ubiquitin-like modifier) (sumoylation) in the regulation of numerous DNA transactions, including DNA repair and transcription, as well as heterochromatin formation and maintenance. We have recently shown that fission yeast Pli1p is a SUMO E3 ligase and that pli1 mutants, which are impaired for global sumoylation, are viable, but exhibit de-regulated homologous recombination and marked defects in chromosome segregation and centromeric silencing, as well as a consistent increase in telomere length. In this work, we explore the mechanisms underlying sumoylation-dependent telomere maintenance. We show that Pli1p, but not the related Nse2p, is the principal SUMO E3 ligase enzyme involved. Using both a pli1 mutation and a physiological "knockdown" of sumoylation, achieved by inducible expression of a dominant negative form of the conjugating enzyme Ubc9p, we further show that telomere lengthening induced by lack of sumoylation is not due to unscheduled telomere-telomere recombination. Instead, sumoylation increases telomerase activity, therefore suggesting that this modification controls the activity of a positive or negative regulator of telomerase.
Collapse
|
437
|
Abstract
Ageing is often defined in the context of telomerase activity and telomere length regulation. Most somatic cells have limited replication ability and undergo senescence eventually. Stem cells are unique as they possess more abundant telomerase activity and are able to maintain telomere lengths for a longer period. Embryonic stem cells are particularly resistant to ageing and can be propagated indefinitely. Remarkably, adult somatic cells can be reprogrammed to an ESC-like state by various means including cell fusion, exposure to ESC cell-free extracts, enforced expression of specific molecules, and somatic cell nuclear transfer. Thus, the rejuvenation of an 'aged' state can be effected by the activation of specific key molecules in the cell. Here, we argue that cellular ageing is a reversible process, and this is determined by the balance of biological molecules which directly or indirectly control telomere length and telomerase activity, either through altering gene expression and/or modulating the epigenetic state of the chromatin.
Collapse
Affiliation(s)
- Wai-Leong Tam
- Stem Cell & Developmental Biology, Genome Institute of Singapore, Singapore 138672, Singapore
| | | | | |
Collapse
|
438
|
Rajaraman R, Guernsey DL, Rajaraman MM, Rajaraman SR. Stem cells, senescence, neosis and self-renewal in cancer. Cancer Cell Int 2006; 6:25. [PMID: 17092342 PMCID: PMC1664585 DOI: 10.1186/1475-2867-6-25] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2006] [Accepted: 11/08/2006] [Indexed: 12/20/2022] Open
Abstract
We describe the basic tenets of the current concepts of cancer biology, and review the recent advances on the suppressor role of senescence in tumor growth and the breakdown of this barrier during the origin of tumor growth. Senescence phenotype can be induced by (1) telomere attrition-induced senescence at the end of the cellular mitotic life span (MLS*) and (2) also by replication history-independent, accelerated senescence due to inadvertent activation of oncogenes or by exposure of cells to genotoxins. Tumor suppressor genes p53/pRB/p16INK4A and related senescence checkpoints are involved in effecting the onset of senescence. However, senescence as a tumor suppressor mechanism is a leaky process and senescent cells with mutations or epimutations in these genes escape mitotic catastrophe-induced cell death by becoming polyploid cells. These polyploid giant cells, before they die, give rise to several cells with viable genomes via nuclear budding and asymmetric cytokinesis. This mode of cell division has been termed neosis and the immediate neotic offspring the Raju cells. The latter inherit genomic instability and transiently display stem cell properties in that they differentiate into tumor cells and display extended, but, limited MLS, at the end of which they enter senescent phase and can undergo secondary/tertiary neosis to produce the next generation of Raju cells. Neosis is repeated several times during tumor growth in a non-synchronized fashion, is the mode of origin of resistant tumor growth and contributes to tumor cell heterogeneity and continuity. The main event during neosis appears to be the production of mitotically viable daughter genome after epigenetic modulation from the non-viable polyploid genome of neosis mother cell (NMC). This leads to the growth of resistant tumor cells. Since during neosis, spindle checkpoint is not activated, this may give rise to aneuploidy. Thus, tumor cells also are destined to die due to senescence, but may escape senescence due to mutations or epimutations in the senescent checkpoint pathway. A historical review of neosis-like events is presented and implications of neosis in relation to the current dogmas of cancer biology are discussed. Genesis and repetitive re-genesis of Raju cells with transient "stemness" via neosis are of vital importance to the origin and continuous growth of tumors, a process that appears to be common to all types of tumors. We suggest that unlike current anti-mitotic therapy of cancers, anti-neotic therapy would not cause undesirable side effects. We propose a rational hypothesis for the origin and progression of tumors in which neosis plays a major role in the multistep carcinogenesis in different types of cancers. We define cancers as a single disease of uncontrolled neosis due to failure of senescent checkpoint controls.
Collapse
Affiliation(s)
- Rengaswami Rajaraman
- Department of Medicine, Division of Hematology, Dalhousie University, Halifax NS. B3H 1X5
| | - Duane L Guernsey
- Department of Pathology, Dalhousie University, Halifax NS. B3H 1X5, Canada
| | - Murali M Rajaraman
- Nova Scotia Cancer Centre, Department of Radiation Oncology, QEII Health Sciences Center, Dalhousie University, Halifax NS. B3H 1X5, Canada
| | | |
Collapse
|