401
|
Shyu YJ, Hiatt SM, Duren HM, Ellis RE, Kerppola TK, Hu CD. Visualization of protein interactions in living Caenorhabditis elegans using bimolecular fluorescence complementation analysis. Nat Protoc 2008; 3:588-96. [PMID: 18388940 DOI: 10.1038/nprot.2008.16] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The bimolecular fluorescence complementation (BiFC) assay is a powerful tool for visualizing and identifying protein interactions in living cells. This assay is based on the principle of protein-fragment complementation, using two nonfluorescent fragments derived from fluorescent proteins. When two fragments are brought together in living cells by tethering each to one of a pair of interacting proteins, fluorescence is restored. Here, we provide a protocol for a Venus-based BiFC assay to visualize protein interactions in the living nematode, Caenorhabditis elegans. We discuss how to design appropriate C. elegans BiFC cloning vectors to enable visualization of protein interactions using either inducible heat shock promoters or native promoters; transform the constructs into worms by microinjection; and analyze and interpret the resulting data. When expression of BiFC fusion proteins is induced by heat shock, the fluorescent signals can be visualized as early as 30 min after induction and last for 24 h in transgenic animals. The entire procedure takes 2-3 weeks to complete.
Collapse
Affiliation(s)
- Y John Shyu
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana 47907-2091, USA
| | | | | | | | | | | |
Collapse
|
402
|
Gandia J, Galino J, Amaral OB, Soriano A, Lluís C, Franco R, Ciruela F. Detection of higher-order G protein-coupled receptor oligomers by a combined BRET-BiFC technique. FEBS Lett 2008; 582:2979-84. [PMID: 18675812 DOI: 10.1016/j.febslet.2008.07.045] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2008] [Revised: 07/01/2008] [Accepted: 07/11/2008] [Indexed: 01/25/2023]
Abstract
Despite some caveats, G protein-coupled receptor oligomerization is a phenomenon that is becoming largely accepted. Within these oligomers, however, stoichiometry remains to be elucidated. Here, by using bimolecular fluorescence complementation, we visualized adenosine A(2A) receptor homodimers in living cells, showing no apparent difference in the subcellular distribution when compared to the YFP-labelled adenosine A(2A) receptor protomer. Interestingly, the combination of bimolecular fluorescence complementation and bioluminescence resonance energy transfer techniques allowed us to detect the occurrence of adenosine A(2A) receptors oligomers containing more than two protomers. These results provide new insights into the molecular composition of G protein-coupled receptor oligomers.
Collapse
Affiliation(s)
- Jorge Gandia
- Departament Patologia i Terapèutica Experimental, Facultat de Medicina, Universitat de Barcelona, Pavelló de Govern, L'Hospitalet de Llobregat, 08907 Barcelona, Spain
| | | | | | | | | | | | | |
Collapse
|
403
|
Ciruela F. Fluorescence-based methods in the study of protein-protein interactions in living cells. Curr Opin Biotechnol 2008; 19:338-43. [PMID: 18602005 DOI: 10.1016/j.copbio.2008.06.003] [Citation(s) in RCA: 120] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2008] [Revised: 06/04/2008] [Accepted: 06/06/2008] [Indexed: 11/29/2022]
Abstract
Multiprotein complexes partake in nearly all cell functions, thus the characterization and visualization of protein-protein interactions in living cells constitute an important step in the study of a large array of cellular mechanisms. Recently, noninvasive fluorescence-based methods using resonance energy transfer (RET), namely bioluminescence-RET (BRET) and fluorescence-RET (FRET), and those centered on protein fragment complementation, such as bimolecular fluorescence complementation (BiFC), have been successfully used in the study of protein interactions. These new technologies are nowadays the most powerful approaches for visualizing the interactions occurring within protein complexes in living cells, thus enabling the investigation of protein behavior in their normal milieu. Here we address the individual strengths and weaknesses of these methods when applied to the study of protein-protein interactions.
Collapse
Affiliation(s)
- Francisco Ciruela
- Unitat de Farmacologia, Departament de Patologia i Terapèutica Experimental, Facultat de Medicina (Campus de Bellvitge), IDIBELL-Universitat de Barcelona, 08907 L'Hospitalet del Llobregat, Barcelona, Spain.
| |
Collapse
|
404
|
Visualizing protein interactions by bimolecular fluorescence complementation in Xenopus. Methods 2008; 45:192-5. [DOI: 10.1016/j.ymeth.2008.06.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2008] [Accepted: 06/16/2008] [Indexed: 11/22/2022] Open
|
405
|
Hiatt SM, Shyu YJ, Duren HM, Hu CD. Bimolecular fluorescence complementation (BiFC) analysis of protein interactions in Caenorhabditis elegans. Methods 2008; 45:185-91. [PMID: 18586101 PMCID: PMC2570267 DOI: 10.1016/j.ymeth.2008.06.003] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2008] [Revised: 05/28/2008] [Accepted: 06/16/2008] [Indexed: 11/24/2022] Open
Abstract
Protein interactions are essential components of signal transduction in cells. With the progress in genome-wide yeast two hybrid screens and proteomics analyses, many protein interaction networks have been generated. These analyses have identified hundreds and thousands of interactions in cells and organisms, creating a challenge for further validation under physiological conditions. The bimolecular fluorescence complementation (BiFC) assay is such an assay that meets this need. The BiFC assay is based on the principle of protein fragment complementation, in which two non-fluorescent fragments derived from a fluorescent protein are fused to a pair of interacting partners. When the two partners interact, the two non-fluorescent fragments are brought into proximity and an intact fluorescent protein is reconstituted. Hence, the reconstituted fluorescent signals reflect the interaction of two proteins under study. Over the past six years, the BiFC assay has been used for visualization of protein interactions in living cells and organisms, including our application of the BiFC assay to the transparent nematode Caenorhabditis elegans. We have demonstrated that BiFC analysis in C. elegans provides a direct means to identify and validate protein interactions in living worms and allows visualization of temporal and spatial interactions. Here, we provide a guideline for the implementation of BiFC analysis in living worms and discuss the factors that are critical for BiFC analysis.
Collapse
Affiliation(s)
- Susan M Hiatt
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue Cancer Center, Purdue University, 575 Stadium Mall Drive, RHPH224D, West Lafayette, Indiana, IN 47907-2091, USA
| | | | | | | |
Collapse
|
406
|
Chun J, Shapovalova Z, Dejgaard SY, Presley JF, Melançon P. Characterization of class I and II ADP-ribosylation factors (Arfs) in live cells: GDP-bound class II Arfs associate with the ER-Golgi intermediate compartment independently of GBF1. Mol Biol Cell 2008; 19:3488-500. [PMID: 18524849 DOI: 10.1091/mbc.e08-04-0373] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Despite extensive work on ADP-ribosylation factor (Arf) 1 at the Golgi complex, the functions of Arf2-5 in the secretory pathway, or for that of any Arf at the ER-Golgi intermediate compartment (ERGIC) remain uncharacterized. Here, we examined the recruitment of fluorescently tagged Arf1, -3, -4, and -5 onto peripheral ERGIC. Live cell imaging detected Arfs on peripheral puncta that also contained Golgi-specific brefeldin A (BFA) resistance factor (GBF) 1 and the ERGIC marker p58. Unexpectedly, BFA did not promote corecruitment of Arfs with GBF1 either at the Golgi complex or the ERGIC, but it uncovered striking differences between Arf1,3 and Arf4,5. Although Arf1,3 quickly dissociated from all endomembranes after BFA addition, Arf4,5 persisted on ERGIC structures, even after redistribution of GBF1 to separate compartments. The GDP-arrested Arf4(T31N) mutant localized to the ERGIC, even with BFA and Exo1 present. In addition, loss of Arf x GTP after treatment with Exo1 caused rapid release of all Arfs from the Golgi complex and led to GBF1 accumulation on both Golgi and ERGIC membranes. Our results demonstrate that GDP-bound Arf4,5 associate with ERGIC membranes through binding sites distinct from those responsible for GBF1 recruitment. Furthermore, they provide the first evidence that GBF1 accumulation on membranes may be caused by loss of Arf x GTP, rather than the formation of an Arf x GDP x BFA x GBF1 complex.
Collapse
Affiliation(s)
- Justin Chun
- Department of Cell Biology, University of Alberta, Edmonton, AB T6G 2H7, Canada
| | | | | | | | | |
Collapse
|
407
|
Smith JC, Hagemann A, Saka Y, Williams PH. Understanding how morphogens work. Philos Trans R Soc Lond B Biol Sci 2008; 363:1387-92. [PMID: 18198154 DOI: 10.1098/rstb.2007.2256] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
In this article, we describe the mechanisms by which morphogens in the Xenopus embryo exert their long-range effects. Our results are consistent with the idea that signalling molecules such as activin and the nodal-related proteins traverse responding tissue not by transcytosis or by cytonemes but by movement through the extracellular space. We suggest, however, that additional experiments, involving real-time imaging of morphogens, are required for a real understanding of what influences signalling range and the shape of a morphogen gradient.
Collapse
Affiliation(s)
- J C Smith
- Wellcome Trust/CR-UK Gurdon Institute, Department of Zoology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK.
| | | | | | | |
Collapse
|
408
|
Waadt R, Kudla J. In Planta Visualization of Protein Interactions Using Bimolecular Fluorescence Complementation (BiFC). ACTA ACUST UNITED AC 2008; 2008:pdb.prot4995. [PMID: 21356813 DOI: 10.1101/pdb.prot4995] [Citation(s) in RCA: 112] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
INTRODUCTIONBimolecular fluorescence complementation (BiFC) analysis enables direct visualization of protein-protein interactions in living cells. This method has been successfully adapted to a variety of expression systems in different organisms. BiFC is based on the formation of a fluorescent complex by fragments of the enhanced yellow fluorescent protein (eYFP) when brought together by the interaction of two associating proteins fused to these fragments. Interaction of these proteins restores fluorescence and allows the visualization of spatial localization patterns of protein complexes. Absence of interaction prevents reassembly of the fluorescent protein and results only in background fluorescence. The specificity of bimolecular fluorescence complementation must be confirmed by parallel analysis of proteins in which the interaction interface has been mutated. This protocol describes the Agrobacterium-mediated transient expression protocol for BiFC assays in Nicotiana benthamiana leaf cells. This method exhibits a high transformation rate (up to 90% of the cells) and allows the simultaneous expression of multiple proteins in single cells. Therefore, this expression system enables colocalization analyses of fluorescently labeled proteins with the formation of BiFC complexes for determination of cellular complex localization. In addition, protein interaction assays in N. benthamiana leaves permit the investigation of protein interactions at different time points of expression, allow analysis of proteins that are normally toxic in protoplasts, and enable comparative protein interaction investigation in epidermal cells as well as in mesophyll protoplasts.
Collapse
Affiliation(s)
- Rainer Waadt
- Institut für Botanik und Botanischer Garten, Universität Münster, 48149 Münster, Germany
| | | |
Collapse
|
409
|
Prinz A, Reither G, Diskar M, Schultz C. Fluorescence and bioluminescence procedures for functional proteomics. Proteomics 2008; 8:1179-96. [DOI: 10.1002/pmic.200700802] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
410
|
Study and selection of in vivo protein interactions by coupling bimolecular fluorescence complementation and flow cytometry. Nat Protoc 2008; 3:22-33. [PMID: 18193018 DOI: 10.1038/nprot.2007.496] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
We present a high-throughput approach to study weak protein-protein interactions by coupling bimolecular fluorescent complementation (BiFC) to flow cytometry (FC). In BiFC, the interaction partners (bait and prey) are fused to two rationally designed fragments of a fluorescent protein, which recovers its function upon the binding of the interacting proteins. For weak protein-protein interactions, the detected fluorescence is proportional to the interaction strength, thereby allowing in vivo discrimination between closely related binders with different affinity for the bait protein. FC provides a method for high-speed multiparametric data acquisition and analysis; the assay is simple, thousands of cells can be analyzed in seconds and, if required, selected using fluorescence-activated cell sorting (FACS). The combination of both methods (BiFC-FC) provides a technically straightforward, fast and highly sensitive method to validate weak protein interactions and to screen and identify optimal ligands in biologically synthesized libraries. Once plasmids encoding the protein fusions have been obtained, the evaluation of a specific interaction, the generation of a library and selection of active partners using BiFC-FC can be accomplished in 5 weeks.
Collapse
|
411
|
Zhang C, Tang J, Xie J, Zhang H, Li Y, Zhang J, Verpooten D, He B, Cao Y. A conserved domain of herpes simplex virus ICP34.5 regulates protein phosphatase complex in mammalian cells. FEBS Lett 2007; 582:171-6. [PMID: 18068675 DOI: 10.1016/j.febslet.2007.11.082] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2007] [Revised: 11/17/2007] [Accepted: 11/29/2007] [Indexed: 11/18/2022]
Abstract
ICP34.5, encoded by herpes simplex virus 1, is a protein phosphatase 1 (PP1) regulatory subunit that mediates dephosphorylation of the alpha subunit of translation initiation factor 2 (eIF2alpha). However, the mechanism of its action remains poorly understood. Here, we show that amino acid substitutions in the arginine-rich motif have differential effects on ICP34.5 activity. The phenotypes parallel with viral protein synthesis and cytopathic effects in virus infected cells. Besides the consensus PP1 binding motif, the Arg-motif appears to enhance the interaction between ICP34.5 and PP1. These results suggest that concerted action between the PP1 binding domain and the effector domain of ICP34.5 is crucial for eIF2alpha dephosphorylation and viral protein synthesis.
Collapse
Affiliation(s)
- Cuizhu Zhang
- College of Life Science, Nankai University, 94 Weijin Road, Tianjin 300071, PR China
| | | | | | | | | | | | | | | | | |
Collapse
|
412
|
Saka Y, Hagemann A, Piepenburg O, Smith JC. Nuclear accumulation of Smad complexes occurs only after the midblastula transition in Xenopus. Development 2007; 134:4209-18. [PMID: 17959720 PMCID: PMC2435607 DOI: 10.1242/dev.010645] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Activin and the Nodal-related proteins induce mesendodermal tissues during Xenopus development. These signals act through specific receptors to cause the phosphorylation, at their carboxyl termini, of Smad2 and Smad3. The phosphorylated Smad proteins form heteromeric complexes with Smad4 and translocate into the nucleus to activate the transcription, after the midblastula transition, of target genes such as Xbra and goosecoid (gsc). In this paper we use bimolecular fluorescence complementation (BiFC) to study complex formation between Smad proteins both in vivo and in response to exogenous proteins. The technique has allowed us to detect Smad2-Smad4 heteromeric interactions during normal Xenopus development and Smad2 and Smad4 homo- and heteromers in isolated Xenopus blastomeres. Smad2-Smad2 and Smad2-Smad4 complexes accumulate rapidly in the nuclei of responding cells following Activin treatment, whereas Smad4 homomeric complexes remain cytoplasmic. When cells divide, Smad2-Smad4 complexes associate with chromatin, even in the absence of ligand. Our observation that Smad2-Smad4 complexes accumulate in the nucleus only after the midblastula transition, irrespective of the stage at which cells were treated with Activin, may shed light on the mechanisms of developmental timing.
Collapse
Affiliation(s)
- Yasushi Saka
- Wellcome Trust/Cancer Research UK Gurdon Institute and Department of Zoology, University of Cambridge, Tennis Court Road. Cambridge CB2 1QN, UK
- Interdisciplinary Research Institute and Institut de Biologie de Lille, 1 rue du professeur Calmette, BP447, 59021 Lille Cedex, France
| | - Anja Hagemann
- Wellcome Trust/Cancer Research UK Gurdon Institute and Department of Zoology, University of Cambridge, Tennis Court Road. Cambridge CB2 1QN, UK
| | | | - James C. Smith
- Wellcome Trust/Cancer Research UK Gurdon Institute and Department of Zoology, University of Cambridge, Tennis Court Road. Cambridge CB2 1QN, UK
| |
Collapse
|
413
|
Ohad N, Shichrur K, Yalovsky S. The analysis of protein-protein interactions in plants by bimolecular fluorescence complementation. PLANT PHYSIOLOGY 2007; 145:1090-9. [PMID: 18056859 PMCID: PMC2151733 DOI: 10.1104/pp.107.107284] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2007] [Accepted: 09/05/2007] [Indexed: 05/21/2023]
Affiliation(s)
- Nir Ohad
- Department of Plant Sciences, Tel-Aviv University, Tel-Aviv 69978, Israel
| | | | | |
Collapse
|
414
|
Affiliation(s)
- Atsushi Miyawaki
- Laboratory for Cell Function and Dynamics, Advanced Technology Development Group, Brain Science Institute, RIKEN, 2-1 Hirosawa, Wako-city, Saitama 351-0198, Japan.
| | | |
Collapse
|
415
|
Abstract
G proteins are key intermediates in cellular signaling and act in response to a variety of extracellular stimuli. The prevailing paradigm is that G protein subunits form a heterotrimeric complex and function principally at the plasma membrane. However, there is growing evidence for localization at, and signaling by, G proteins at intracellular compartments. Moreover, different cellular pools of G proteins may be composed of distinct subunit subtypes, including some binding partners that function in the place of G protein gamma subunits. An article in this issue of Molecular Pharmacology (Yost et al., p. 812) describes the use of an innovative fluorescent cell imaging technique to study interactions of the G protein beta(5) subunit with a panel of Ggamma subunits as well as regulator of G protein signaling (RGS) proteins that contain a Ggamma-like subdomain. The approach used here provides a new strategy to elucidate the spatial and temporal properties of G proteins, including a growing number of atypical Gbetagamma pairings.
Collapse
Affiliation(s)
- Corinne E Zeller
- Department of Biochemistry & Biophysics, University of North Carolina at Chapel Hill, 116 Manning Dr., CB 7260, Chapel Hill, NC 27599, USA
| | | |
Collapse
|