401
|
Harris PA, King BW, Bandyopadhyay D, Berger SB, Campobasso N, Capriotti CA, Cox JA, Dare L, Dong X, Finger JN, Grady LC, Hoffman SJ, Jeong JU, Kang J, Kasparcova V, Lakdawala AS, Lehr R, McNulty DE, Nagilla R, Ouellette MT, Pao CS, Rendina AR, Schaeffer MC, Summerfield JD, Swift BA, Totoritis RD, Ward P, Zhang A, Zhang D, Marquis RW, Bertin J, Gough PJ. DNA-Encoded Library Screening Identifies Benzo[b][1,4]oxazepin-4-ones as Highly Potent and Monoselective Receptor Interacting Protein 1 Kinase Inhibitors. J Med Chem 2016; 59:2163-78. [DOI: 10.1021/acs.jmedchem.5b01898] [Citation(s) in RCA: 174] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - LaShadric C. Grady
- Platform Technology & Science, GlaxoSmithKline, Winter Street, Waltham, Massachusetts 02451, United States
| | | | | | | | | | | | | | | | | | | | | | | | | | - Jennifer D. Summerfield
- Platform Technology & Science, GlaxoSmithKline, Winter Street, Waltham, Massachusetts 02451, United States
| | | | | | | | - Aming Zhang
- Platform Technology & Science, GlaxoSmithKline, King of Prussia, Pennsylvania 19406, United States
| | | | | | | | | |
Collapse
|
402
|
Inhibition of colon cancer growth by docosahexaenoic acid involves autocrine production of TNFα. Oncogene 2016; 35:4611-22. [PMID: 26853468 DOI: 10.1038/onc.2015.523] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Revised: 12/02/2015] [Accepted: 12/11/2015] [Indexed: 12/20/2022]
Abstract
The omega-3 polyunsaturated fatty acid docosahexaenoic acid (DHA) has anti-inflammatory and anti-cancer properties. Among pro-inflammatory mediators, tumor necrosis factor α (TNFα) plays a paradoxical role in cancer biology with induction of cancer cell death or survival depending on the cellular context. The objective of the study was to evaluate the role of TNFα in DHA-mediated tumor growth inhibition and colon cancer cell death. The treatment of human colorectal cancer cells, HCT-116 and HCT-8 cells, with DHA triggered apoptosis in autocrine TNFα-dependent manner. We demonstrated that DHA-induced increased content of TNFα mRNA occurred through a post-transcriptional regulation via the down-regulation of microRNA-21 (miR-21) expression. Treatment with DHA led to nuclear accumulation of Foxo3a that bounds to the miR-21 promoter triggering its transcriptional repression. Moreover, inhibition of RIP1 kinase and AMP-activated protein kinase α reduced Foxo3a nuclear-cytoplasmic shuttling and subsequent increase of TNFα expression through a decrease of miR-21 expression in DHA-treated colon cancer cells. Finally, we were able to show in HCT-116 xenograft tumor-bearing nude mice that a DHA-enriched diet induced a decrease of human miR-21 expression and an increase of human TNFα mRNA expression limiting tumor growth in a cancer cell-derived TNFα dependent manner. Altogether, the present work highlights a novel mechanism for anti-cancer action of DHA involving colon cancer cell death mediated through autocrine action of TNFα.
Collapse
|
403
|
Viringipurampeer IA, Metcalfe AL, Bashar AE, Sivak O, Yanai A, Mohammadi Z, Moritz OL, Gregory-Evans CY, Gregory-Evans K. NLRP3 inflammasome activation drives bystander cone photoreceptor cell death in a P23H rhodopsin model of retinal degeneration. Hum Mol Genet 2016; 25:1501-16. [PMID: 27008885 DOI: 10.1093/hmg/ddw029] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Accepted: 02/01/2016] [Indexed: 12/11/2022] Open
Abstract
The molecular signaling leading to cell death in hereditary neurological diseases such as retinal degeneration is incompletely understood. Previous neuroprotective studies have focused on apoptotic pathways; however, incomplete suppression of cell death with apoptosis inhibitors suggests that other mechanisms are at play. Here, we report that different signaling pathways are activated in rod and cone photoreceptors in the P23H rhodopsin mutant rat, a model representing one of the commonest forms of retinal degeneration. Up-regulation of the RIP1/RIP3/DRP1 axis and markedly improved survival with necrostatin-1 treatment highlighted necroptosis as a major cell-death pathway in degenerating rod photoreceptors. Conversely, up-regulation of NLRP3 and caspase-1, expression of mature IL-1β and IL-18 and improved cell survival with N-acetylcysteine treatment suggested that inflammasome activation and pyroptosis was the major cause of cone cell death. This was confirmed by generation of the P23H mutation on an Nlrp3-deficient background, which preserved cone viability. Furthermore, Brilliant Blue G treatment inhibited inflammasome activation, indicating that the 'bystander cell death' phenomenon was mediated through the P2RX7 cell-surface receptor. Here, we identify a new pathway in cones for bystander cell death, a phenomenon important in development and disease in many biological systems. In other retinal degeneration models different cell-death pathways are activated, which suggests that the particular pathways that are triggered are to some extent genotype-specific. This also implies that neuroprotective strategies to limit retinal degeneration need to be customized; thus, different combinations of inhibitors will be needed to target the specific pathways in any given disease.
Collapse
Affiliation(s)
- Ishaq A Viringipurampeer
- Department of Ophthalmology and Visual Sciences, University of British Columbia, 2550 Willow Street, Vancouver, BC, Canada V5Z 3N9
| | - Andrew L Metcalfe
- Department of Ophthalmology and Visual Sciences, University of British Columbia, 2550 Willow Street, Vancouver, BC, Canada V5Z 3N9
| | - Abu E Bashar
- Department of Ophthalmology and Visual Sciences, University of British Columbia, 2550 Willow Street, Vancouver, BC, Canada V5Z 3N9
| | - Olena Sivak
- Department of Ophthalmology and Visual Sciences, University of British Columbia, 2550 Willow Street, Vancouver, BC, Canada V5Z 3N9
| | - Anat Yanai
- Department of Ophthalmology and Visual Sciences, University of British Columbia, 2550 Willow Street, Vancouver, BC, Canada V5Z 3N9
| | - Zeinabsadat Mohammadi
- Department of Ophthalmology and Visual Sciences, University of British Columbia, 2550 Willow Street, Vancouver, BC, Canada V5Z 3N9
| | - Orson L Moritz
- Department of Ophthalmology and Visual Sciences, University of British Columbia, 2550 Willow Street, Vancouver, BC, Canada V5Z 3N9
| | - Cheryl Y Gregory-Evans
- Department of Ophthalmology and Visual Sciences, University of British Columbia, 2550 Willow Street, Vancouver, BC, Canada V5Z 3N9
| | - Kevin Gregory-Evans
- Department of Ophthalmology and Visual Sciences, University of British Columbia, 2550 Willow Street, Vancouver, BC, Canada V5Z 3N9
| |
Collapse
|
404
|
Nie D, Zhang D, Dai J, Zhang M, Zhao X, Xu W, Chen Z, Wang L, Wang Z, Qiao Z. Nicotine Induced Murine Spermatozoa Apoptosis via Up-Regulation of Deubiquitinated RIP1 by Trim27 Promoter Hypomethylation1. Biol Reprod 2016; 94:31. [DOI: 10.1095/biolreprod.115.131656] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Accepted: 11/19/2015] [Indexed: 12/21/2022] Open
|
405
|
Lee YS, Park JS, Jung SM, Kim SD, Kim JH, Lee JY, Jung KC, Mamura M, Lee S, Kim SJ, Bae YS, Park SH. Inhibition of lethal inflammatory responses through the targeting of membrane-associated Toll-like receptor 4 signaling complexes with a Smad6-derived peptide. EMBO Mol Med 2016; 7:577-92. [PMID: 25766838 PMCID: PMC4492818 DOI: 10.15252/emmm.201404653] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
We have previously reported that Smad6, one of the inhibitory Smads of transforming growth factor-β (TGF-β)/bone morphogenetic protein (BMP) signaling, inhibits Toll-like receptor (TLR) 4 signaling by disrupting the Pellino-1-mediated TLR4 signaling complex. Here, we developed Smaducin-6, a novel membrane-tethered palmitic acid-conjugated Smad6-derived peptide composed of amino acids 422–441 of Smad6. Smaducin-6 interacted with Pellino-1, located in the inner membrane, thereby disrupting the formation of IRAK1-, RIP1-, IKKε-mediated TLR4 signaling complexes. Systemic administration of Smaducin-6 showed a significant therapeutic effect on mouse TLR4-mediated inflammatory disease models, cecal-ligation–puncture (CLP)-induced sepsis, and lipopolysaccharide-induced endotoxemia, by inhibiting pro-inflammatory cytokine production and apoptosis while enhancing neutrophil migration and bacterial clearance. Our findings provide clues to develop new peptide-based drugs to target Pellino-1 protein in TLR4 signaling pathway for the treatment of sepsis.
Collapse
Affiliation(s)
- Youn Sook Lee
- Department of Biological Sciences, Sungkyunkwan University, Suwon, Korea
| | - Jin Seok Park
- Department of Biological Sciences, Sungkyunkwan University, Suwon, Korea
| | - Su Myung Jung
- Department of Biological Sciences, Sungkyunkwan University, Suwon, Korea
| | - Sang-Doo Kim
- Department of Biological Sciences, Sungkyunkwan University, Suwon, Korea
| | - Jun Hwan Kim
- Department of Biological Sciences, Sungkyunkwan University, Suwon, Korea
| | - Jae Young Lee
- Department of Biological Sciences, Sungkyunkwan University, Suwon, Korea
| | - Kyeong Cheon Jung
- Department of Pathology, College of Medicine, Seoul National University, Seoul, Korea
| | - Mizuko Mamura
- Department of Molecular Pathology, Tokyo Medical University, Tokyo, Japan Department of Internal Medicine, Kyungpook National University School of Medicine, Daegu, Korea
| | - Sangho Lee
- Department of Biological Sciences, Sungkyunkwan University, Suwon, Korea
| | | | - Yoe-Sik Bae
- Department of Biological Sciences, Sungkyunkwan University, Suwon, Korea Samsung Advanced Institute for Health Sciences and Technology, Sungkyunkwan University, Seoul, Korea
| | - Seok Hee Park
- Department of Biological Sciences, Sungkyunkwan University, Suwon, Korea Samsung Advanced Institute for Health Sciences and Technology, Sungkyunkwan University, Seoul, Korea
| |
Collapse
|
406
|
Evaluation of RIP1K and RIP3K expressions in the malignant and benign breast tumors. Tumour Biol 2016; 37:8849-56. [PMID: 26749282 DOI: 10.1007/s13277-015-4762-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Accepted: 12/29/2015] [Indexed: 12/26/2022] Open
Abstract
Receptor-interacting protein kinase 1 (RIP1K) and RIP3K belong to RIPK family, which regulate cell survival and cell death. In the present investigation, the expression levels of RIP1K and RIP3K were evaluated in the 30 malignant, 15 benign, and 20 normal breast tissues, and their correlation with clinicopathological characteristics was also studied. The expression levels of RIP1K and RIP3K were determined, by western blot analysis. The relative RIP1K expression was significantly higher in the malignant and benign tumors when compared to those of normal tissues (P < 0.0001 and P < 0.001, respectively). However, the expression level of RIP3K was significantly lower in the malignant tumors than those of normal and benign values (P < 0.001 and P < 0.01, respectively). Positive significant correlation was found for RIP1K expression with tumor size (P < 0.001), grades (P < 0.0001), and c-erbB2 (P < 0.001), but negative significant correlation was detected with patient's age (P < 0.001), estrogen receptor (ER) (P < 0.001), progesterone receptor (PR) (P < 0.01), and P53 (P<0.01) status. RIP3K expression was significantly lower in the pre-menopauses (P < 0.01), grade III (P < 0.05), ER-negative (P < 0.05), and c-erbB2-negative malignant tumors, but no correlation was detected with tumor size, PR, and P53 status. No significant correlation was observed for RIP1K and RIP3K expressions with Ki67 and Her2. Based on the present results, it is concluded that reduction of RIP3K expression in the malignant breast tumor might be an important evidence to support the antitumor activity of this enzyme in vivo. However, RIP1K expression was shown to be higher in the malignant breast tumors than those of normal and benign breast tissues, which probably designates as a poor prognostic factor.
Collapse
|
407
|
|
408
|
Dara L, Johnson H, Suda J, Win S, Gaarde W, Han D, Kaplowitz N. Receptor interacting protein kinase 1 mediates murine acetaminophen toxicity independent of the necrosome and not through necroptosis. Hepatology 2015; 62:1847-57. [PMID: 26077809 PMCID: PMC4681652 DOI: 10.1002/hep.27939] [Citation(s) in RCA: 143] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Accepted: 05/30/2015] [Indexed: 12/13/2022]
Abstract
UNLABELLED Although necrosis in the acetaminophen (APAP) model is known to be regulated by c-Jun NH2-terminal kinase (JNK) through interaction with mitochondria, the role of necroptosis through receptor-interacting proteins 1 and 3 (RIPK1 and RIPK3) has also been suggested. Our aim was to determine the relationship between these two mechanisms of cell death. To verify the participation of RIPK1, we used antisense knockdown and confirmed protection comparable to the RIPK1 inhibitor, necrostatin, in vivo and in vitro. However, we found no evidence that RIPK3 is expressed in primary mouse hepatocytes under basal conditions or after APAP and RIPK3(-/-) mice were not protected. RIPK3 was exclusively expressed in nonparenchymal cells. RIPK1 knockdown protected RIPK3(-/-) mice to the same extent as wild-type mice, underscoring the independent role of RIPK1. We confirmed that necroptosis is not involved in APAP toxicity by using mixed lineage kinase domain-like protein (MLKL) knockout mice, which were not protected from APAP. Next, we addressed whether there is interplay between RIPK1 and JNK. RIPK1 knockdown decreased the level of JNK activation and translocation to mitochondria and abrogated subsequent translocation of dynamin-related protein 1 (Drp1). Interestingly, APAP induced translocation of RIPK1 to mitochondria, which was unaffected by knockdown of the mitochondrial JNK docking protein, Sh3 homology 3 binding protein 5 (Sab). CONCLUSION RIPK1 participates in APAP-induced necrosis upstream of JNK activation whereas RIPK3 and MLKL are dispensable, indicating that necroptosis does not contribute to APAP-induced necrosis and RIPK1 has a unique, independent role.
Collapse
Affiliation(s)
- Lily Dara
- University of Southern California Research Center for Liver Diseases, and the Division of GI-Liver, Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Heather Johnson
- University of Southern California Research Center for Liver Diseases, and the Division of GI-Liver, Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Jo Suda
- University of Southern California Research Center for Liver Diseases, and the Division of GI-Liver, Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Sanda Win
- University of Southern California Research Center for Liver Diseases, and the Division of GI-Liver, Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | | | - Derick Han
- University of Southern California Research Center for Liver Diseases, and the Division of GI-Liver, Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA,Department of Biopharmaceutical Sciences, School of Pharmacy, Keck Graduate Institute, Claremont, CA 91711
| | - Neil Kaplowitz
- University of Southern California Research Center for Liver Diseases, and the Division of GI-Liver, Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| |
Collapse
|
409
|
Davidovich P, Kearney CJ, Martin SJ. Inflammatory outcomes of apoptosis, necrosis and necroptosis. Biol Chem 2015; 395:1163-71. [PMID: 25153241 DOI: 10.1515/hsz-2014-0164] [Citation(s) in RCA: 132] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Accepted: 08/01/2014] [Indexed: 01/06/2023]
Abstract
Microbial infection and tissue injury are well established as the two major drivers of inflammation. However, although it is widely accepted that necrotic cell death can trigger or potentiate inflammation, precisely how this is achieved still remains relatively obscure. Certain molecules, which have been dubbed 'damage-associated molecular patterns' (DAMPs) or alarmins, are thought to promote inflammation upon release from necrotic cells. However, the precise nature and relative potency of DAMPs, compared to conventional pro-inflammatory cytokines or pathogen-associated molecular patterns (PAMPs), remains unclear. How different modes of cell death impact on the immune system also requires further clarification. Apoptosis has long been regarded as a non-inflammatory or even anti-inflammatory mode of cell death, but recent studies suggest that this is not always the case. Necroptosis is a programmed form of necrosis that is engaged under certain conditions when caspase activation is blocked. Necroptosis is also regarded as a highly pro-inflammatory mode of cell death but there has been little explicit examination of this issue. Here we discuss the inflammatory implications of necrosis, necroptosis and apoptosis and some of the unresolved questions concerning how dead cells influence inflammatory responses.
Collapse
|
410
|
Zhao H, Jaffer T, Eguchi S, Wang Z, Linkermann A, Ma D. Role of necroptosis in the pathogenesis of solid organ injury. Cell Death Dis 2015; 6:e1975. [PMID: 26583318 PMCID: PMC4670925 DOI: 10.1038/cddis.2015.316] [Citation(s) in RCA: 99] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Revised: 09/16/2015] [Accepted: 09/18/2015] [Indexed: 02/07/2023]
Abstract
Necroptosis is a type of regulated cell death dependent on the activity of receptor-interacting serine/threonine-protein (RIP) kinases. However, unlike apoptosis, it is caspase independent. Increasing evidence has implicated necroptosis in the pathogenesis of disease, including ischemic injury, neurodegeneration, viral infection and many others. Key players of the necroptosis signalling pathway are now widely recognized as therapeutic targets. Necrostatins may be developed as potent inhibitors of necroptosis, targeting the activity of RIPK1. Necrostatin-1, the first generation of necrostatins, has been shown to confer potent protective effects in different animal models. This review will summarize novel insights into the involvement of necroptosis in specific injury of different organs, and the therapeutic platform that it provides for treatment.
Collapse
Affiliation(s)
- H Zhao
- Anaesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Chelsea and Westminster Hospital, London, UK
| | - T Jaffer
- Anaesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Chelsea and Westminster Hospital, London, UK
| | - S Eguchi
- Anaesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Chelsea and Westminster Hospital, London, UK
| | - Z Wang
- Anaesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Chelsea and Westminster Hospital, London, UK
| | - A Linkermann
- Division of Nephrology and Hypertension, Christian-Albrechts-University, Kiel, Germany
| | - D Ma
- Anaesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Chelsea and Westminster Hospital, London, UK
| |
Collapse
|
411
|
Ofengeim D, Ito Y, Najafov A, Zhang Y, Shan B, DeWitt JP, Ye J, Zhang X, Chang A, Vakifahmetoglu-Norberg H, Geng J, Py B, Zhou W, Amin P, Berlink Lima J, Qi C, Yu Q, Trapp B, Yuan J. Activation of necroptosis in multiple sclerosis. Cell Rep 2015; 10:1836-49. [PMID: 25801023 DOI: 10.1016/j.celrep.2015.02.051] [Citation(s) in RCA: 393] [Impact Index Per Article: 43.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2014] [Revised: 01/14/2015] [Accepted: 02/21/2015] [Indexed: 11/20/2022] Open
Abstract
Multiple sclerosis (MS), a common neurodegenerative disease of the CNS, is characterized by the loss of oligodendrocytes and demyelination. Tumor necrosis factor α (TNF-α), a proinflammatory cytokine implicated in MS, can activate necroptosis, a necrotic cell death pathway regulated by RIPK1 and RIPK3 under caspase-8-deficient conditions. Here, we demonstrate defective caspase-8 activation, as well as activation of RIPK1, RIPK3, and MLKL, the hallmark mediators of necroptosis, in the cortical lesions of human MS pathological samples. Furthermore, we show that MS pathological samples are characterized by an increased insoluble proteome in common with other neurodegenerative diseases such as Alzheimer's disease (AD), Parkinson’s disease (PD), and Huntington's disease (HD). Finally, we show that necroptosis mediates oligodendrocyte degeneration induced by TNF-α and that inhibition of RIPK1 protects against oligodendrocyte cell death in two animal models of MS and in culture. Our findings demonstrate that necroptosis is involved in MS and suggest that targeting RIPK1 may represent a therapeutic strategy for MS.
Collapse
|
412
|
Abstract
Small-molecule kinase inhibitors are invaluable targeted therapeutics for the treatment of various human diseases, especially cancers. While the majority of approved and developed preclinical small-molecule inhibitors are characterized as type I or type II inhibitors that target the ATP-binding pocket of kinases, the remarkable sequential and structural similarity among ATP pockets renders the selective inhibition of kinases a daunting challenge. Therefore, targeting allosteric pockets of kinases outside the highly conversed ATP pocket has been proposed as a promising alternative to overcome current barriers of kinase inhibitors, including poor selectivity and emergence of drug resistance. In spite of the small number of identified allosteric inhibitors in comparison with that of inhibitors targeting the ATP pocket, encouraging results, such as the FDA-approval of the first small-molecule allosteric inhibitor trametinib in 2013, the progress of more than 10 other allosteric inhibitors in clinical trials, and the emergence of a pipeline of highly selective and potent preclinical molecules, have been reported in the past decade. In this article, we present the current knowledge on allosteric inhibition in terms of conception, classification, potential advantages, and summarized debatable topics in the field. Recent progress and allosteric inhibitors that were identified in the past three years are highlighted in this paper.
Collapse
Affiliation(s)
- Peng Wu
- Department of Chemistry, Technical University of Denmark, Kgs. Lyngby DK-2800, Denmark.
| | - Mads H Clausen
- Department of Chemistry, Technical University of Denmark, Kgs. Lyngby DK-2800, Denmark; Center for Nanomedicine and Theranostics, Technical University of Denmark, Kgs. Lyngby DK-2800, Denmark
| | - Thomas E Nielsen
- Protein and Peptide Chemistry, Novo Nordisk A/S, Måløv DK-2760, Denmark
| |
Collapse
|
413
|
Dong T, Liao D, Liu X, Lei X. Using Small Molecules to Dissect Non-apoptotic Programmed Cell Death: Necroptosis, Ferroptosis, and Pyroptosis. Chembiochem 2015; 16:2557-61. [PMID: 26388514 DOI: 10.1002/cbic.201500422] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Indexed: 12/29/2022]
Abstract
Genetically programmed cell death is a universal and fundamental cellular process in multicellular organisms. Apoptosis and necroptosis, two common forms of programmed cell death, play vital roles in maintenance of homeostasis in metazoans. Dysfunction of the regulatory machinery of these processes can lead to carcinogenesis or autoimmune diseases. Inappropriate death of essential cells can lead to organ dysfunction or even death; ischemia-reperfusion injury and neurodegenerative disorders are examples of this. Recently, novel forms of non-apoptotic programmed cell death have been identified. Although these forms of cell death play significant roles in both physiological and pathological conditions, the detailed molecular mechanisms underlying them are still poorly understood. Here, we discuss progress in using small molecules to dissect three forms of non-apoptotic programmed cell death: necroptosis, ferroptosis, and pyroptosis.
Collapse
Affiliation(s)
- Ting Dong
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and, Molecular Engineering of Ministry of Education, Department of Chemical Biology, College of Chemistry and Molecular Engineering, Synthetic and Functional Biomolecules Center and, Peking-Tsinghua Center for Life Sciences, Peking University, 202 Cheng Fu Road, Beijing, 100871, China.,National Institute of Biological Sciences (NIBS), No 7 Life Science Road, Zhong Guan Cun Life Science Park, Beijing, 102206, China
| | - Daohong Liao
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and, Molecular Engineering of Ministry of Education, Department of Chemical Biology, College of Chemistry and Molecular Engineering, Synthetic and Functional Biomolecules Center and, Peking-Tsinghua Center for Life Sciences, Peking University, 202 Cheng Fu Road, Beijing, 100871, China
| | - Xiaohui Liu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and, Molecular Engineering of Ministry of Education, Department of Chemical Biology, College of Chemistry and Molecular Engineering, Synthetic and Functional Biomolecules Center and, Peking-Tsinghua Center for Life Sciences, Peking University, 202 Cheng Fu Road, Beijing, 100871, China
| | - Xiaoguang Lei
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and, Molecular Engineering of Ministry of Education, Department of Chemical Biology, College of Chemistry and Molecular Engineering, Synthetic and Functional Biomolecules Center and, Peking-Tsinghua Center for Life Sciences, Peking University, 202 Cheng Fu Road, Beijing, 100871, China. .,National Institute of Biological Sciences (NIBS), No 7 Life Science Road, Zhong Guan Cun Life Science Park, Beijing, 102206, China.
| |
Collapse
|
414
|
The NAE inhibitor pevonedistat (MLN4924) synergizes with TNF-α to activate apoptosis. Cell Death Discov 2015; 1:15034. [PMID: 27551465 PMCID: PMC4979425 DOI: 10.1038/cddiscovery.2015.34] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Accepted: 08/04/2015] [Indexed: 12/12/2022] Open
Abstract
Predicting and understanding the mechanism of drug-induced toxicity is one of the primary goals of drug development. It has been hypothesized that inflammation may have a synergistic role in this process. Cell-based models provide an easily manipulated system to investigate this type of drug toxicity. Several groups have attempted to reproduce in vivo toxicity with combination treatment of pharmacological agents and inflammatory cytokines. Through this approach, synergistic cytotoxicity between the investigational agent pevonedistat (MLN4924) and TNF-α was identified. Pevonedistat is an inhibitor of the NEDD8-activating enzyme (NAE). Inhibition of NAE prevents activation of cullin-RING ligases, which are critical for proteasome-mediated protein degradation. TNF-α is a cytokine that is involved in inflammatory responses and cell death, among other biological functions. Treatment of cultured cells with the combination of pevonedistat and TNF-α, but not as single agents, resulted in rapid cell death. This cell death was determined to be mediated by caspase-8. Interestingly, the combination treatment of pevonedistat and TNF-α also caused an accumulation of the p10 protease subunit of caspase-8 that was not observed with cytotoxic doses of TNF-α. Under conditions where apoptosis was blocked, the mechanism of death switched to necroptosis. Trimerized MLKL was verified as a biomarker of necroptotic cell death. The synergistic toxicity of pevonedistat and elevated TNF-α was also demonstrated by in vivo rat studies. Only the combination treatment resulted in elevated serum markers of liver damage and single-cell hepatocyte necrosis. Taken together, the results of this work have characterized a novel synergistic toxicity driven by pevonedistat and TNF-α.
Collapse
|
415
|
Responses of Multipotent Retinal Stem Cells to IL-1β, IL-18, or IL-17. J Ophthalmol 2015; 2015:369312. [PMID: 26504591 PMCID: PMC4609432 DOI: 10.1155/2015/369312] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2015] [Accepted: 07/14/2015] [Indexed: 02/07/2023] Open
Abstract
Purpose. To investigate how multipotent retinal stem cells (RSCs) isolated from mice respond to the proinflammatory signaling molecules, IL-1β, IL-18, and IL-17A. Materials and Methods. RSCs were cultured in a specific culture medium and were treated with these cytokines. Cell viability was detected by MTT assay; ultrastructure was evaluated by transmission electron microscopy; expression of IL-17rc and proapoptotic proteins was detected by immunocytochemistry and expression of Il-6 and Il-17a was detected by quantitative RT-PCR. As a comparison, primary mouse retinal pigment epithelium (RPE) cells were also treated with IL-1β, IL-18, or IL-17A and analyzed for the expression of Il-6 and Il-17rc. Results. Treatment with IL-1β, IL-18, or IL-17A decreased RSC viability in a dose-dependent fashion and led to damage in cellular ultrastructure including pyroptotic and/or necroptotic cells. IL-1β and IL-18 could induce proapoptotic protein expression. All treatments induced significantly higher expression of Il-6 and Il-17rc in both cells. However, neither IL-1β nor IL-18 could induce Il-17a expression in RSCs. Conclusions. IL-1β, IL-18, and IL-17A induce retinal cell death via pyroptosis/necroptosis and apoptosis. They also provoke proinflammatory responses in RSCs. Though IL-1β and IL-18 could not induce Il-17a expression in RSCs, they both increase Il-17rc expression, which may mediate the effect of Il-17a.
Collapse
|
416
|
Intradermal delivery of DNA encoding HCV NS3 and perforin elicits robust cell-mediated immunity in mice and pigs. Gene Ther 2015; 23:26-37. [PMID: 26262584 DOI: 10.1038/gt.2015.86] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Revised: 07/22/2015] [Accepted: 07/29/2015] [Indexed: 02/08/2023]
Abstract
Currently, no vaccine is available against hepatitis C virus (HCV), and although DNA vaccines have considerable potential, this has not been realised. Previously, the efficacy of DNA vaccines for human immunodeficiency virus (HIV) and HCV was shown to be enhanced by including the gene for a cytolytic protein, viz. perforin. In this study, we examined the mechanism of cell death by this bicistronic DNA vaccine, which encoded the HCV non-structural protein 3 (NS3) under the control of the CMV promoter and perforin is controlled by the SV40 promoter. Compared with a canonical DNA vaccine and a bicistronic DNA vaccine encoding NS3 and the proapoptotic gene NSP4, the perforin-containing vaccine elicited enhanced cell-mediated immune responses against the NS3 protein in vaccinated mice and pigs, as determined by ELISpot and intracellular cytokine staining, whereas a mouse challenge model suggested that the immunity was CD8(+) T-cell-dependent. The results of the study showed that the inclusion of perforin in the DNA vaccine altered the fate of NS3-positive cells from apoptosis to necrosis, and this resulted in more robust immune responses in mice and pigs, the latter of which represents an accepted large animal model in which to test vaccine efficacy.
Collapse
|
417
|
Abstract
Hepatocyte death, inflammation, and liver fibrosis are the hallmarks of chronic liver disease. Tumor necrosis factor-α (TNFα) is an inflammatory cytokine involved in liver inflammation and sustained liver inflammation leads to liver fibrosis. TNFα exerts inflammation, proliferation, and apoptosis. However, the role of TNFα signaling in liver fibrosis is not fully understood. This review highlights the recent findings demonstrating the molecular mechanisms of TNFα and its downstream signaling in liver fibrosis. During the progression of liver fibrosis, hepatic stellate cells play a pivotal role in a dynamic process of production of extracellular matrix proteins and modulation of immune response. Hepatic stellate cells transdifferentiate into activated myofibroblasts in response to damaged hepatocyte-derived mediators and immune cell-derived cytokines/chemokines. Here, we will discuss the role of TNFα in hepatic stellate cell survival and activation and the crosstalk between hepatic stellate cells and hepatocytes or other immune cells, such as macrophages, dendritic cells, and B cells in the development of liver fibrosis.
Collapse
Affiliation(s)
- Yoon Mee Yang
- Department of Medicine, Division of Gastroenterology, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
| | - Ekihiro Seki
- Department of Medicine, Division of Gastroenterology, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
| |
Collapse
|
418
|
Necroptotic Cell Death Signaling and Execution Pathway: Lessons from Knockout Mice. Mediators Inflamm 2015; 2015:128076. [PMID: 26491219 PMCID: PMC4600508 DOI: 10.1155/2015/128076] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2014] [Revised: 03/24/2015] [Accepted: 04/16/2015] [Indexed: 12/31/2022] Open
Abstract
Under stress conditions, cells in living tissue die by apoptosis or necrosis depending on the activation of the key molecules within a dying cell that either transduce cell survival or death signals that actively destroy the sentenced cell. Multiple extracellular (pH, heat, oxidants, and detergents) or intracellular (DNA damage and Ca(2+) overload) stress conditions trigger various types of the nuclear, endoplasmic reticulum (ER), cytoplasmatic, and mitochondrion-centered signaling events that allow cells to preserve the DNA integrity, protein folding, energetic, ionic and redox homeostasis, thus escaping from injury. Along the transition from reversible to irreversible injury, death signaling is highly heterogeneous and damaged cells may engage autophagy, apoptotic, or necrotic cell death programs. Studies on multiple double- and triple- knockout mice identified caspase-8, flip, and fadd genes as key regulators of embryonic lethality and inflammation. Caspase-8 has a critical role in pro- and antinecrotic signaling pathways leading to the activation of receptor interacting protein kinase 1 (RIPK1), RIPK3, and the mixed kinase domain-like (MLKL) for a convergent execution pathway of necroptosis or regulated necrosis. Here we outline the recent discoveries into how the necrotic cell death execution pathway is engaged in many physiological and pathological outcome based on genetic analysis of knockout mice.
Collapse
|
419
|
Berger SB, Bertin J, Gough PJ. Drilling into RIP1 biology: what compounds are in your toolkit? Cell Death Dis 2015; 6:e1889. [PMID: 26379194 PMCID: PMC4650449 DOI: 10.1038/cddis.2015.254] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Affiliation(s)
- S B Berger
- Pattern Recognition Receptor Discovery Performance Unit, Immuno-Inflammation Therapeutic Area, GlaxoSmithKline, Collegeville, PA 19426, USA
| | - J Bertin
- Pattern Recognition Receptor Discovery Performance Unit, Immuno-Inflammation Therapeutic Area, GlaxoSmithKline, Collegeville, PA 19426, USA
| | - P J Gough
- Pattern Recognition Receptor Discovery Performance Unit, Immuno-Inflammation Therapeutic Area, GlaxoSmithKline, Collegeville, PA 19426, USA
| |
Collapse
|
420
|
Lucas A, Mialet-Perez J, Daviaud D, Parini A, Marber MS, Sicard P. Gadd45γ regulates cardiomyocyte death and post-myocardial infarction left ventricular remodelling. Cardiovasc Res 2015; 108:254-67. [PMID: 26370247 DOI: 10.1093/cvr/cvv219] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Accepted: 09/08/2015] [Indexed: 11/13/2022] Open
Abstract
AIMS Post-infarction remodelling is accompanied and influenced by perturbations in mitogen-activated protein kinase (MAPK) signalling. The growth arrest and DNA-damage-inducible 45 (Gadd45) proteins are small acidic proteins involved in DNA repair and modulation of MAPK activity. Little is known about the role of Gadd45 in the heart. Here, we explored the potential contribution of Gadd45 gamma (γ) isoform to the acute and late phase of heart failure (HF) after myocardial infarction (MI) and determined the mechanisms underlying Gadd45γ actions. METHODS AND RESULTS The Gadd45γ isoform is up-regulated in murine cardiomyocytes subjected to simulated ischaemia and in the mouse heart during MI. To mimic the situation observed during MI, we enhanced Gadd45γ content in cardiomyocytes with a single injection of an adeno-associated viral (AAV9) vector encoding Gadd45γ under the cTNT promoter. Gadd45γ overexpression induces cardiomyocyte apoptosis, fibrosis, left ventricular dysfunction, and HF. On the other hand, genetic deletion of Gadd45γ in knockout mice confers resistance to ischaemic injury, at least in part by limiting cardiomyocyte apoptosis. Mechanistically, Gadd45γ activates receptor-interacting protein 1 (RIP1) and caspase-8 in a p38 MAPK-dependent manner to promote cardiomyocyte death. CONCLUSION This work is the first to demonstrate that Gadd45γ accumulation during MI promotes the development and persistence of HF by inducing cardiomyocyte apoptosis in a p38 MAPK-dependent manner. We clearly identify Gadd45γ as a therapeutic target in the development of HF.
Collapse
Affiliation(s)
- Alexandre Lucas
- INSERM, UMR-1048, Institute of Metabolic and Cardiovascular Diseases, 1 Avenue Jean Poulhes, 31432 Toulouse, France University Paul Sabatier, CHU of Toulouse, 31432 Toulouse, France
| | - Jeanne Mialet-Perez
- INSERM, UMR-1048, Institute of Metabolic and Cardiovascular Diseases, 1 Avenue Jean Poulhes, 31432 Toulouse, France University Paul Sabatier, CHU of Toulouse, 31432 Toulouse, France
| | - Danièle Daviaud
- INSERM, UMR-1048, Institute of Metabolic and Cardiovascular Diseases, 1 Avenue Jean Poulhes, 31432 Toulouse, France University Paul Sabatier, CHU of Toulouse, 31432 Toulouse, France
| | - Angelo Parini
- INSERM, UMR-1048, Institute of Metabolic and Cardiovascular Diseases, 1 Avenue Jean Poulhes, 31432 Toulouse, France University Paul Sabatier, CHU of Toulouse, 31432 Toulouse, France
| | - Michael S Marber
- Cardiovascular Division, King's College London, The Rayne Institute, St. Thomas' Hospital, London, UK
| | - Pierre Sicard
- INSERM, UMR-1048, Institute of Metabolic and Cardiovascular Diseases, 1 Avenue Jean Poulhes, 31432 Toulouse, France University Paul Sabatier, CHU of Toulouse, 31432 Toulouse, France
| |
Collapse
|
421
|
Abstract
The tumor necrosis factor receptors (TNFRs) play essential roles in innate and adaptive immunity. Depending on conditions, TNFR induces multiple cell fates including cell survival, cell apoptosis, and cell programmed necrosis. Here, we review recent progress in structural studies of the TNFR signaling pathway. The structural basis for the high order signal complexes, including the DISC, ripoptosome, necrosome, and RIP3/MLKL complex, may provide novel insights for understanding the biophysical principles of cell signaling cascades.
Collapse
|
422
|
|
423
|
Geserick P, Wang J, Schilling R, Horn S, Harris PA, Bertin J, Gough PJ, Feoktistova M, Leverkus M. Absence of RIPK3 predicts necroptosis resistance in malignant melanoma. Cell Death Dis 2015; 6:e1884. [PMID: 26355347 PMCID: PMC4650439 DOI: 10.1038/cddis.2015.240] [Citation(s) in RCA: 118] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Revised: 07/07/2015] [Accepted: 07/13/2015] [Indexed: 12/14/2022]
Abstract
Acquired or intrinsic resistance to apoptotic and necroptotic stimuli is considered a major hindrance of therapeutic success in malignant melanoma. Inhibitor of apoptosis proteins (IAPs) are important regulators of apoptotic and necroptotic cell death mediated by numerous cell death signalling platforms. In this report we investigated the impact of IAPs for cell death regulation in malignant melanoma. Suppression of IAPs strongly sensitized a panel of melanoma cells to death ligand-induced cell death, which, surprisingly, was largely mediated by apoptosis, as it was completely rescued by addition of caspase inhibitors. Interestingly, the absence of necroptosis signalling correlated with a lack of receptor-interacting protein kinase-3 (RIPK3) mRNA and protein expression in all cell lines, whereas primary melanocytes and cultured nevus cells strongly expressed RIPK3. Reconstitution of RIPK3, but not a RIPK3-kinase dead mutant in a set of melanoma cell lines overcame CD95L/IAP antagonist-induced necroptosis resistance independent of autocrine tumour necrosis factor secretion. Using specific inhibitors, functional studies revealed that RIPK3-mediated mixed-lineage kinase domain-like protein (MLKL) phosphorylation and necroptosis induction critically required receptor-interacting protein kinase-1 signalling. Furthermore, the inhibitor of mutant BRAF Dabrafenib, but not Vemurafenib, inhibited necroptosis in melanoma cells whenever RIPK3 is present. Our data suggest that loss of RIPK3 in melanoma and selective inhibition of the RIPK3/MLKL axis by BRAF inhibitor Dabrafenib, but not Vemurafenib, is critical to protect from necroptosis. Strategies that allow RIPK3 expression may allow unmasking the necroptotic signalling machinery in melanoma and points to reactivation of this pathway as a treatment option for metastatic melanoma.
Collapse
Affiliation(s)
- P Geserick
- Section of Molecular Dermatology, Department of Dermatology, Venerology and Allergology, Medical Faculty Mannheim, University Heidelberg, Mannheim, Germany
| | - J Wang
- Section of Molecular Dermatology, Department of Dermatology, Venerology and Allergology, Medical Faculty Mannheim, University Heidelberg, Mannheim, Germany.,Department for Dermatology and Allergology, University Hospital Aachen, RWTH Aachen, Aachen, Germany
| | - R Schilling
- Section of Molecular Dermatology, Department of Dermatology, Venerology and Allergology, Medical Faculty Mannheim, University Heidelberg, Mannheim, Germany
| | - S Horn
- Section of Molecular Dermatology, Department of Dermatology, Venerology and Allergology, Medical Faculty Mannheim, University Heidelberg, Mannheim, Germany
| | - P A Harris
- Pattern Recognition Receptor Discovery Performance Unit, Immuno-Inflammation Therapeutic Area, GlaxoSmithKline, Collegeville, PA 19426, USA
| | - J Bertin
- Pattern Recognition Receptor Discovery Performance Unit, Immuno-Inflammation Therapeutic Area, GlaxoSmithKline, Collegeville, PA 19426, USA
| | - P J Gough
- Pattern Recognition Receptor Discovery Performance Unit, Immuno-Inflammation Therapeutic Area, GlaxoSmithKline, Collegeville, PA 19426, USA
| | - M Feoktistova
- Section of Molecular Dermatology, Department of Dermatology, Venerology and Allergology, Medical Faculty Mannheim, University Heidelberg, Mannheim, Germany.,Department for Dermatology and Allergology, University Hospital Aachen, RWTH Aachen, Aachen, Germany
| | - M Leverkus
- Section of Molecular Dermatology, Department of Dermatology, Venerology and Allergology, Medical Faculty Mannheim, University Heidelberg, Mannheim, Germany.,Department for Dermatology and Allergology, University Hospital Aachen, RWTH Aachen, Aachen, Germany
| |
Collapse
|
424
|
Wagner RN, Reed JC, Chanda SK. HIV-1 protease cleaves the serine-threonine kinases RIPK1 and RIPK2. Retrovirology 2015; 12:74. [PMID: 26297639 PMCID: PMC4546280 DOI: 10.1186/s12977-015-0200-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Accepted: 08/13/2015] [Indexed: 11/21/2022] Open
Abstract
Background HIV-1 protease (PR) is essential for viral infectivity as it cleaves Gag and Gag-Pol polyprotein precursors during viral maturation. Recent evidence suggests that cellular proteins can also be cleaved by PR, perhaps representing an important viral strategy to counter host defense mechanisms. Receptor-interacting protein kinase 1 (RIPK1) and RIPK2 belong to a family of serine/threonine kinases with conserved domain architecture and important functions in apoptosis, necrosis and innate immunity. Results We found that RIPK1 and RIPK2 but not other members of the RIP kinase family are cleaved by HIV-1 PR. In RIPK1, we identified a putative PR cleavage site; a mutation at this site rendered RIPK1 resistant to PR cleavage. RIPK1 and RIPK2 were cleaved during HIV-1 infection of T cell lines or primary activated CD4+ T cells. Interfering with the viral life cycle at different stages by the addition of specific inhibitors against RT, integrase, or PR, completely prevented RIPK1 and RIPK2 cleavage. Cleavage of RIPK1 disrupted RIPK1/RIPK3 complex formation and RIPK1-mediated induction of NF-kB. Conclusions These findings indicate that RIPK1 and RIPK2 are targets of HIV-1 PR activity during infection, and their inactivation may contribute to modulation of cell death and host defense pathways by HIV-1. Electronic supplementary material The online version of this article (doi:10.1186/s12977-015-0200-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Roland N Wagner
- Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, CA, USA. .,Department of Molecular Biology, University of Salzburg, Salzburg, Austria.
| | - John C Reed
- Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, CA, USA. .,Roche, Pharma Research and Early Development, Roche Innovation Center Basel, Basel, Switzerland.
| | - Sumit K Chanda
- Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, CA, USA.
| |
Collapse
|
425
|
Guo G, Gong K, Wohlfeld B, Hatanpaa KJ, Zhao D, Habib AA. Ligand-Independent EGFR Signaling. Cancer Res 2015; 75:3436-41. [PMID: 26282175 DOI: 10.1158/0008-5472.can-15-0989] [Citation(s) in RCA: 127] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Accepted: 05/06/2015] [Indexed: 12/31/2022]
Abstract
Constitutive activation of the EGFR is common in cancer due to EGFR wild-type (EGFRwt) overexpression or the presence of mutant EGFR. Signaling by constitutively active NSCLC EGFR mutants or the EGFRvIII mutant in glioblastoma has been studied intensively and the downstream signals are known. Normally, the EGFRwt is activated when it is exposed to ligand, resulting in activation of canonical signals such as ERK and Akt. The EGFRwt also becomes tyrosine phosphorylated and constitutively activated without ligand when it is overexpressed, but downstream signals are unclear. Recent studies have identified a noncanonical form of signaling triggered by EGFRwt exclusively in the absence of ligand that does not involve ERK or Akt activation but, instead, results in activation of the transcription factor IRF3. The addition of ligand turns off IRF3-dependent transcription and activates ERK and Akt. Thus, the EGFR triggers distinct and mutually exclusive signaling networks, depending on the presence of ligand. Furthermore, noncanonical EGFRwt signaling may influence response to treatment in cancer. Also, there are reports of both synergistic and antagonistic interactions between ligand-dependent EGFRwt and EGFRvIII signaling. Here, we discuss ligand-independent EGFR signal transduction by oncogenic EGFR mutants and EGFRwt, and review the interplay between EGFRwt and EGFRvIII.
Collapse
Affiliation(s)
- Gao Guo
- Department of Neurology and Neurotherapeutics, The University of Texas Southwestern Medical Center, Dallas, Texas
| | - Ke Gong
- Department of Neurology and Neurotherapeutics, The University of Texas Southwestern Medical Center, Dallas, Texas
| | - Bryan Wohlfeld
- Department of Neurosurgery, The University of Texas Southwestern Medical Center, Dallas, Texas. VA North Texas Health Care System, Dallas, Texas
| | - Kimmo J Hatanpaa
- Department of Pathology, The University of Texas Southwestern Medical Center, Dallas, Texas
| | - Dawen Zhao
- Department of Radiology, The University of Texas Southwestern Medical Center, Dallas, Texas
| | - Amyn A Habib
- Department of Neurology and Neurotherapeutics, The University of Texas Southwestern Medical Center, Dallas, Texas. VA North Texas Health Care System, Dallas, Texas.
| |
Collapse
|
426
|
Shi J, Du X, Yuan D, Haburcak R, Zhou N, Xu B. Supramolecular Detoxification of Neurotoxic Nanofibrils of Small Molecules via Morphological Switch. Bioconjug Chem 2015; 26:1879-83. [PMID: 26258500 DOI: 10.1021/acs.bioconjchem.5b00356] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Insoluble amyloid plagues are likely cytoprotective, but the cellular mechanism remains less known. To model β-amyloid we use a small peptide derivative to generate cytotoxic nanofibrils that cause the death of model neuron cells (i.e., PC12). The use of supramolecular interaction effectively converts the nanofibrils to nanoparticles that are innocuous to cells. This approach also removes the cytotoxicity of the fibrils to other mammalian cells (e.g., HeLa). Preliminary mechanistic study reveals that, in contrast to the fibrils, the particles promote the expression of TNFR2, a cell survival signal, and decrease the expression of TNFR1 and DR5, two extrinsic cell death receptors. As the first use of ligand-receptor interaction to abrogate the cytotoxicity of nanoscale assemblies of small molecules, this work illustrates an effective way to use supramolecular interaction to control the morphology of supramolecular assemblies for modulating their biological activity.
Collapse
Affiliation(s)
- Junfeng Shi
- Department of Chemistry, Brandeis University , 415 South Street, MS 015, Waltham, Massachusetts 02453, United States
| | - Xuewen Du
- Department of Chemistry, Brandeis University , 415 South Street, MS 015, Waltham, Massachusetts 02453, United States
| | - Dan Yuan
- Department of Chemistry, Brandeis University , 415 South Street, MS 015, Waltham, Massachusetts 02453, United States
| | - Richard Haburcak
- Department of Chemistry, Brandeis University , 415 South Street, MS 015, Waltham, Massachusetts 02453, United States
| | - Ning Zhou
- Department of Chemistry, Brandeis University , 415 South Street, MS 015, Waltham, Massachusetts 02453, United States
| | - Bing Xu
- Department of Chemistry, Brandeis University , 415 South Street, MS 015, Waltham, Massachusetts 02453, United States
| |
Collapse
|
427
|
RIP1 Cleavage in the Kinase Domain Regulates TRAIL-Induced NF-κB Activation and Lymphoma Survival. Mol Cell Biol 2015. [PMID: 26195820 DOI: 10.1128/mcb.00692-15] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Although TRAIL is considered a potential anticancer agent, it enhances tumor progression by activating NF-κB in apoptosis-resistant cells. Cellular FLICE-like inhibitory protein (cFLIP) overexpression and caspase-8 activation have been implicated in TRAIL-induced NF-κB activation; however, the underlying mechanisms are unknown. Here, we report that caspase-8-dependent cleavage of RIP1 in the kinase domain (KD) and intermediate domain (ID) determines the activation state of the NF-κB pathway in response to tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) treatment. In apoptosis-sensitive cells, caspase-8 cleaves RIP1 in the KD and ID immediately after the recruitment of RIP1 to the receptor complex, impairing IκB kinase (IKK) recruitment and NF-κB activation. In apoptosis-resistant cells, cFLIP restricts caspase-8 activity, resulting in limited RIP1 cleavage and generation of a KD-cleaved fragment capable of activating NF-κB but not apoptosis. Notably, depletion of the cytoplasmic pool of TRAF2 and cIAP1 in lymphomas by CD40 ligation inhibits basal RIP1 ubiquitination but does not prompt cell death, due to CD40L-induced cFLIP expression and limited RIP1 cleavage. Inhibition of RIP1 cleavage at the KD suppresses NF-κB activation and cell survival even in cFLIP-overexpressing lymphomas. Importantly, RIP1 is constitutively cleaved in human and mouse lymphomas, suggesting that cFLIP-mediated and caspase-8-dependent limited cleavage of RIP1 is a new layer of mechanism that promotes NF-κB activation and lymphoma survival.
Collapse
|
428
|
Abstract
Impaired mitochondrial structure and function are common features of neurodegenerative disorders, ultimately characterized by the death of neural cells promoted by still unknown signals. Among the possible modulators of neurodegeneration, the activation of poly(ADP-ribosylation), a post-translational modification of proteins, has been considered, being the product of the reaction, poly(ADP-ribose), a signaling molecule for different cell death paradigms. The basic properties of poly(ADP-ribosylation) are here described, focusing on the mitochondrial events; cell death paradigms such as apoptosis, parthanatos, necroptosis and mitophagy are illustrated. Finally, the promising use of poly(ADP-ribosylation) inhibitors to rescue neurodegeneration is addressed.
Collapse
Affiliation(s)
| | - Anna Ivana Scovassi
- Istituto di Genetica Molecolare CNR, Via Abbiategrasso 207, 27100 Pavia, Italy.
| |
Collapse
|
429
|
Yoon S, Bogdanov K, Kovalenko A, Wallach D. Necroptosis is preceded by nuclear translocation of the signaling proteins that induce it. Cell Death Differ 2015; 23:253-60. [PMID: 26184911 PMCID: PMC4716306 DOI: 10.1038/cdd.2015.92] [Citation(s) in RCA: 115] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Revised: 05/19/2015] [Accepted: 06/01/2015] [Indexed: 12/15/2022] Open
Abstract
A signaling pathway that induces programmed necrotic cell death (necroptosis) was reported to be activated in cells by several cytokines and various pathogen components. The major proteins participating in that pathway are the protein kinases RIPK1 and RIPK3 and the pseudokinase mixed lineage kinase domain-like protein (MLKL). Recent studies have suggested that MLKL, once activated, mediates necroptosis by binding to cellular membranes, thereby triggering ion fluxes. However, our knowledge of both the sequence of molecular events leading to MLKL activation and the subcellular sites of these events is fragmentary. Here we report that the association of MLKL with the cell membrane in necroptotic death is preceded by the translocation of phosphorylated MLKL, along with RIPK1 and RIPK3, to the nucleus.
Collapse
Affiliation(s)
- S Yoon
- Department of Biological Chemistry, The Weizmann Institute of Science, Rehovot 76100, Israel
| | - K Bogdanov
- Department of Biological Chemistry, The Weizmann Institute of Science, Rehovot 76100, Israel
| | - A Kovalenko
- Department of Biological Chemistry, The Weizmann Institute of Science, Rehovot 76100, Israel
| | - D Wallach
- Department of Biological Chemistry, The Weizmann Institute of Science, Rehovot 76100, Israel
| |
Collapse
|
430
|
Cellular IAP proteins and LUBAC differentially regulate necrosome-associated RIP1 ubiquitination. Cell Death Dis 2015; 6:e1800. [PMID: 26111062 PMCID: PMC4669837 DOI: 10.1038/cddis.2015.158] [Citation(s) in RCA: 87] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Revised: 04/03/2015] [Accepted: 05/04/2015] [Indexed: 12/15/2022]
Abstract
Necroptosis is a caspase-independent regulated type of cell death that relies on receptor-interacting protein kinases RIP1 (receptor-interacting protein kinases 1) and RIP3. Tumor necrosis factor-α (TNFα)-stimulated assembly of the TNFR1 (TNF receptor 1)-associated signaling complex leads to the recruitment of RIP1, whose ubiquitination is mediated by the cellular inhibitors of apoptosis (c-IAPs). Translocation of RIP1 to the cytoplasm and association of RIP1 with the necrosome is believed to correlate with deubiquitination of RIP1. However, we found that RIP1 is ubiquitinated with K63 and linear polyubiquitin chains during TNFα, IAP antagonist BV6 and caspase inhibitor zVAD-fmk-induced necroptotic signaling. Furthermore, ubiquitinated RIP1 is associated with the necrosome, and RIP1 ubiquitination in the necrosome coincides with RIP3 phosphorylation. Both cellular IAPs and LUBAC (linear ubiquitin chain assembly complex) modulate RIP1 ubiquitination in IAP antagonist-treated necrotic cells, but they use different mechanisms. c-IAP1 regulates RIP1 recruitment to the necrosome without directly affecting RIP1 ubiquitination, whereas HOIP and HOIL1 mediate linear ubiquitination of RIP1 in the necrosome, but are not essential for necrosome formation. Knockdown of the E3 ligase c-IAP1 decreased RIP1 ubiquitination, necrosome assembly and necroptosis induced by TNFα, BV6 and zVAD-fmk. c-IAP1 deficiency likely decreases necroptotic cell death through the activation of the noncanonical NF-κB pathway and consequent c-IAP2 upregulation. The ability to upregulate c-IAP2 could determine whether c-IAP1 absence will have a positive or negative impact on TNFα-induced necroptotic cell death and necrosome formation. Collectively, these results reveal unexpected complexity of the roles of IAP proteins, IAP antagonists and LUBAC in the regulation of necrosome assembly.
Collapse
|
431
|
Asaoka T, Ikeda F. New Insights into the Role of Ubiquitin Networks in the Regulation of Antiapoptosis Pathways. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2015; 318:121-58. [PMID: 26315885 DOI: 10.1016/bs.ircmb.2015.05.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Ubiquitin is a small modifier protein that conjugates on lysine (Lys) residues of substrates, and it can be targeted by another ubiquitin molecule to form chains through conjugation on the intrinsic Lys residues and methionine (Met) 1 residue. Ubiquitination of substrates by such chains determines the fate of substrates, thereby influencing various biological processes. In this chapter, we focus on apoptosis with an emphasis on the regulation by ubiquitination. The signal transduction of apoptosis is governed not only by the classical function of ubiquitin, which is proteasome-dependent degradation of substrates, but also by the apoptosis signaling complex formation guided by different types of ubiquitin chains. Ubiquitinations of pro- and antiapoptotic proteins are tightly regulated by particular sets of enzymes, such as ubiquitin E3 ligases and deubiquitinases (DUBs). We further discuss ubiquitination in the tumor necrosis factor (TNF) signaling pathway as an example for the ubiquitin-dependent regulation of apoptosis and cell survival.
Collapse
Affiliation(s)
- Tomoko Asaoka
- Institute of Molecular Biotechnology (IMBA), Vienna, Austria
| | - Fumiyo Ikeda
- Institute of Molecular Biotechnology (IMBA), Vienna, Austria
| |
Collapse
|
432
|
Pietkiewicz S, Schmidt JH, Lavrik IN. Quantification of apoptosis and necroptosis at the single cell level by a combination of Imaging Flow Cytometry with classical Annexin V/propidium iodide staining. J Immunol Methods 2015; 423:99-103. [PMID: 25975759 DOI: 10.1016/j.jim.2015.04.025] [Citation(s) in RCA: 145] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Revised: 04/15/2015] [Accepted: 04/30/2015] [Indexed: 02/06/2023]
Abstract
Precisely identifying the type of programmed cell death is one of the key questions in contemporary biomedical research. We developed a straightforward approach allowing quantitative discrimination between two types of cell death on the single cell level: apoptosis and necroptosis. This method uses the combination of imaging flow cytometry with classical Annexin V/propidium iodide staining, which allows for the ascertainment of typical features of dying cells: exposure of the phospholipid phosphatidylserine and the loss of membrane integrity. Image-based analysis of nuclear morphology enables us to distinguish between secondary necrotic/late apoptotic and necroptotic cells directly in one assay. This is a major advantage compared to other contemporary approaches of necroptosis detection, which require a parallel application of several methods. This approach can be used for the quantitative assessment of cell death in cell and systems biology studies of signal transduction networks.
Collapse
Affiliation(s)
- Sabine Pietkiewicz
- Department of Translational Inflammation Research, Institute of Experimental Internal Medicine, Otto von Guericke University, Magdeburg, Germany.
| | - Jörn H Schmidt
- Department of Translational Inflammation Research, Institute of Experimental Internal Medicine, Otto von Guericke University, Magdeburg, Germany.
| | - Inna N Lavrik
- Department of Translational Inflammation Research, Institute of Experimental Internal Medicine, Otto von Guericke University, Magdeburg, Germany.
| |
Collapse
|
433
|
Barquero-Calvo E, Mora-Cartín R, Arce-Gorvel V, de Diego JL, Chacón-Díaz C, Chaves-Olarte E, Guzmán-Verri C, Buret AG, Gorvel JP, Moreno E. Brucella abortus Induces the Premature Death of Human Neutrophils through the Action of Its Lipopolysaccharide. PLoS Pathog 2015; 11:e1004853. [PMID: 25946018 PMCID: PMC4422582 DOI: 10.1371/journal.ppat.1004853] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Accepted: 04/03/2015] [Indexed: 01/18/2023] Open
Abstract
Most bacterial infections induce the activation of polymorphonuclear neutrophils (PMNs), enhance their microbicidal function, and promote the survival of these leukocytes for protracted periods of time. Brucella abortus is a stealthy pathogen that evades innate immunity, barely activates PMNs, and resists the killing mechanisms of these phagocytes. Intriguing clinical signs observed during brucellosis are the low numbers of Brucella infected PMNs in the target organs and neutropenia in a proportion of the patients; features that deserve further attention. Here we demonstrate that B. abortus prematurely kills human PMNs in a dose-dependent and cell-specific manner. Death of PMNs is concomitant with the intracellular Brucella lipopolysaccharide (Br-LPS) release within vacuoles. This molecule and its lipid A reproduce the premature cell death of PMNs, a phenomenon associated to the low production of proinflammatory cytokines. Blocking of CD14 but not TLR4 prevents the Br-LPS-induced cell death. The PMNs cell death departs from necrosis, NETosis and classical apoptosis. The mechanism of PMN cell death is linked to the activation of NADPH-oxidase and a modest but steadily increase of ROS mediators. These effectors generate DNA damage, recruitments of check point kinase 1, caspases 5 and to minor extent of caspase 4, RIP1 and Ca++ release. The production of IL-1β by PMNs was barely stimulated by B. abortus infection or Br-LPS treatment. Likewise, inhibition of caspase 1 did not hamper the Br-LPS induced PMN cell death, suggesting that the inflammasome pathway was not involved. Although activation of caspases 8 and 9 was observed, they did not seem to participate in the initial triggering mechanisms, since inhibition of these caspases scarcely blocked PMN cell death. These findings suggest a mechanism for neutropenia in chronic brucellosis and reveal a novel Brucella-host cross-talk through which B. abortus is able to hinder the innate function of PMN. The absence of obvious clinical symptoms during the early stages of brucellosis is linked to the Brucella stealthy strategy and its non-canonical PAMPs, which are low PRRs agonists. Still, there are clinical profiles that require explanation. For instance ‒despite the fact that neutrophils readily ingest Brucella during the onset of infection, brucellosis courses without neutrophilia, and just a low number of infected neutrophils are present in target organs. In the chronic phases, a significant proportion of the patients display absolute neutropenia and bone marrow pancytopenia linked to the myeloid cell linage. Examination of the Brucella infected bone marrow reveals granulomas and phagocytosis of myeloid cells. Based on these observations we explored the fate of native neutrophils during their interaction with Brucella. We found that the bacterium induces the premature cell death of neutrophils without inducing proinflammatory phenotypic changes. This event was reproduced by the lipid A of the Brucella LPS and depends on NADPH-oxidase activation and low ROS formation. We believe that this phenomenon explains ‒at least in part‒ the hematological and histological profiles observed during brucellosis. In addition, it may be that dying Brucella-infected neutrophils serve as “Trojan horse” vehicles for infecting phagocytic cells without promoting activation.
Collapse
Affiliation(s)
- Elías Barquero-Calvo
- Programa de Investigación en Enfermedades Tropicales, Escuela de Medicina Veterinaria, Universidad Nacional, Heredia, Costa Rica
- Centro de Investigación en Enfermedades Tropicales, Universidad de Costa Rica, San José, Costa Rica
| | - Ricardo Mora-Cartín
- Programa de Investigación en Enfermedades Tropicales, Escuela de Medicina Veterinaria, Universidad Nacional, Heredia, Costa Rica
| | - Vilma Arce-Gorvel
- Centre d'Immunologie de Marseille-Luminy (CIML), Aix-Marseille University, UM2, Marseille, France
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1104, Marseille, France
- Centre National de la Recherche Scientifique (CNRS), UMR7280, Marseille, France
| | - Juana L. de Diego
- Department of Cell Microbiology, Max Planck Institute for Infection Biology, Berlin, Germany
| | - Carlos Chacón-Díaz
- Centro de Investigación en Enfermedades Tropicales, Universidad de Costa Rica, San José, Costa Rica
| | - Esteban Chaves-Olarte
- Programa de Investigación en Enfermedades Tropicales, Escuela de Medicina Veterinaria, Universidad Nacional, Heredia, Costa Rica
- Centro de Investigación en Enfermedades Tropicales, Universidad de Costa Rica, San José, Costa Rica
| | - Caterina Guzmán-Verri
- Programa de Investigación en Enfermedades Tropicales, Escuela de Medicina Veterinaria, Universidad Nacional, Heredia, Costa Rica
- Centro de Investigación en Enfermedades Tropicales, Universidad de Costa Rica, San José, Costa Rica
| | - Andre G. Buret
- Biological Sciences, Inflammation Research Network, University of Calgary, Calgary, Alberta, Canada
| | - Jean-Pierre Gorvel
- Centre d'Immunologie de Marseille-Luminy (CIML), Aix-Marseille University, UM2, Marseille, France
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1104, Marseille, France
- Centre National de la Recherche Scientifique (CNRS), UMR7280, Marseille, France
- * E-mail: (JPG); (EM)
| | - Edgardo Moreno
- Programa de Investigación en Enfermedades Tropicales, Escuela de Medicina Veterinaria, Universidad Nacional, Heredia, Costa Rica
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José, Costa Rica
- * E-mail: (JPG); (EM)
| |
Collapse
|
434
|
Abstract
Receptor‐interacting protein kinase‐1 (RIPK1) sits at a signaling node controlling a number of functional pathways. These include both positive and negative control of apoptosis and necroptosis (a form of regulated necrosis). In this issue of EMBO Reports, Yonekawa and colleagues describe another function for RIPK1, the inhibition of autophagy via ERK‐mediated phosphorylation of the transcription factor, TFEB [1]. Their findings are considered in the context of RIPK1 signaling, and how it is engaged.
Collapse
Affiliation(s)
- Douglas R Green
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA
| |
Collapse
|
435
|
Tait SWG, Ichim G, Green DR. Die another way--non-apoptotic mechanisms of cell death. J Cell Sci 2015; 127:2135-44. [PMID: 24833670 DOI: 10.1242/jcs.093575] [Citation(s) in RCA: 253] [Impact Index Per Article: 28.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Regulated, programmed cell death is crucial for all multicellular organisms. Cell death is essential in many processes, including tissue sculpting during embryogenesis, development of the immune system and destruction of damaged cells. The best-studied form of programmed cell death is apoptosis, a process that requires activation of caspase proteases. Recently it has been appreciated that various non-apoptotic forms of cell death also exist, such as necroptosis and pyroptosis. These non-apoptotic cell death modalities can be either triggered independently of apoptosis or are engaged should apoptosis fail to execute. In this Commentary, we discuss several regulated non-apoptotic forms of cell death including necroptosis, autophagic cell death, pyroptosis and caspase-independent cell death. We outline what we know about their mechanism, potential roles in vivo and define outstanding questions. Finally, we review data arguing that the means by which a cell dies actually matters, focusing our discussion on inflammatory aspects of cell death.
Collapse
Affiliation(s)
- Stephen W G Tait
- Cancer Research UK Beatson Institute, Institute of Cancer Sciences, University of Glasgow, Switchback Road, Glasgow G61 1BD, UK
| | - Gabriel Ichim
- Cancer Research UK Beatson Institute, Institute of Cancer Sciences, University of Glasgow, Switchback Road, Glasgow G61 1BD, UK
| | - Douglas R Green
- Department of Immunology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| |
Collapse
|
436
|
Sorokin AV, Nair BC, Wei Y, Aziz KE, Evdokimova V, Hung MC, Chen J. Aberrant Expression of proPTPRN2 in Cancer Cells Confers Resistance to Apoptosis. Cancer Res 2015; 75:1846-58. [PMID: 25877877 DOI: 10.1158/0008-5472.can-14-2718] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Accepted: 02/01/2015] [Indexed: 01/09/2023]
Abstract
The protein tyrosine phosphatase receptor PTPRN2 is expressed predominantly in endocrine and neuronal cells, where it functions in exocytosis. We found that its immature isoform proPTPRN2 is overexpressed in various cancers, including breast cancer. High proPTPRN2 expression was associated strongly with lymph node-positive breast cancer and poor clinical outcome. Loss of proPTPRN2 in breast cancer cells promoted apoptosis and blocked tumor formation in mice, whereas enforced expression of proPTPRN2 in nontransformed human mammary epithelial cells exerted a converse effect. Mechanistic investigations suggested that ProPTPRN2 elicited these effects through direct interaction with TRAF2, a hub scaffold protein for multiple kinase cascades, including ones that activate NF-κB. Overall, our results suggest PTPRN2 as a novel candidate biomarker and therapeutic target in breast cancer.
Collapse
Affiliation(s)
- Alexey V Sorokin
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Binoj C Nair
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Yongkun Wei
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Kathryn E Aziz
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Valentina Evdokimova
- Department of Genomics, Ontario Institute for Cancer Research, Toronto, Ontario, Canada
| | - Mien-Chie Hung
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas. Center for Molecular Medicine and Graduate Institute of Cancer Biology, China Medical University, Taichung, Taiwan
| | - Junjie Chen
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas.
| |
Collapse
|
437
|
Yanagi T, Shi R, Aza-Blanc P, Reed JC, Matsuzawa SI. PCTAIRE1-knockdown sensitizes cancer cells to TNF family cytokines. PLoS One 2015; 10:e0119404. [PMID: 25790448 PMCID: PMC4366397 DOI: 10.1371/journal.pone.0119404] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Accepted: 01/12/2015] [Indexed: 12/11/2022] Open
Abstract
While PCTAIRE1/PCTK1/Cdk16 is overexpressed in malignant cells and is crucial in tumorigenesis, its function in apoptosis remains unclear. Here we investigated the role of PCTAIRE1 in apoptosis, especially in the extrinsic cell death pathway. Gene-knockdown of PCTAIRE1 sensitized prostate cancer PPC1 and Du145 cells, and breast cancer MDA-MB-468 cells to TNF-family cytokines, including TNF-related apoptosis-inducing ligand (TRAIL). Meanwhile, PCTAIRE1-knockdown did not sensitize non-malignant cells, including diploid fibroblasts IMR-90 and the immortalized prostate epithelial cell line 267B1. PCTAIRE1-knockdown did not up-regulate death receptor expression on the cell surface or affect caspase-8, FADD and FLIP expression levels. PCTAIRE1-knockdown did promote caspase-8 cleavage and RIPK1 degradation, while RIPK1 mRNA knockdown sensitized PPC1 cells to TNF-family cytokines. Furthermore, the kinase inhibitor SNS-032, which inhibits PCTAIRE1 kinase activity, sensitized PPC1 cells to TRAIL-induced apoptosis. Together these results suggest that PCTAIRE1 contributes to the resistance of cancer cell lines to apoptosis induced by TNF-family cytokines, which implies that PCTAIRE1 inhibitors could have synergistic effects with TNF-family cytokines for cytodestruction of cancer cells.
Collapse
Affiliation(s)
- Teruki Yanagi
- Sanford-Burnham Medical Research Institute, 10901 North Torrey Pines Road, La Jolla, California, United States of America
| | - Ranxin Shi
- Sanford-Burnham Medical Research Institute, 10901 North Torrey Pines Road, La Jolla, California, United States of America
| | - Pedro Aza-Blanc
- Sanford-Burnham Medical Research Institute, 10901 North Torrey Pines Road, La Jolla, California, United States of America
| | - John C. Reed
- Sanford-Burnham Medical Research Institute, 10901 North Torrey Pines Road, La Jolla, California, United States of America
- * E-mail: (JR); (SM)
| | - Shu-ichi Matsuzawa
- Sanford-Burnham Medical Research Institute, 10901 North Torrey Pines Road, La Jolla, California, United States of America
- * E-mail: (JR); (SM)
| |
Collapse
|
438
|
Su Z, Yang Z, Xu Y, Chen Y, Yu Q. Apoptosis, autophagy, necroptosis, and cancer metastasis. Mol Cancer 2015; 14:48. [PMID: 25743109 PMCID: PMC4343053 DOI: 10.1186/s12943-015-0321-5] [Citation(s) in RCA: 679] [Impact Index Per Article: 75.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2014] [Accepted: 02/09/2015] [Indexed: 02/06/2023] Open
Abstract
Metastasis is a crucial hallmark of cancer progression, which involves numerous factors including the degradation of the extracellular matrix (ECM), the epithelial-to-mesenchymal transition (EMT), tumor angiogenesis, the development of an inflammatory tumor microenvironment, and defects in programmed cell death. Programmed cell death, such as apoptosis, autophagy, and necroptosis, plays crucial roles in metastatic processes. Malignant tumor cells must overcome these various forms of cell death to metastasize. This review summarizes the recent advances in the understanding of the mechanisms by which key regulators of apoptosis, autophagy, and necroptosis participate in cancer metastasis and discusses the crosstalk between apoptosis, autophagy, and necroptosis involved in the regulation of cancer metastasis.
Collapse
Affiliation(s)
- Zhenyi Su
- Department of Biochemistry and Molecular Biology, Medical School, Southeast University, Nanjing, Jiangsu, 210009, China. .,Department of Cell Biology, Harvard Medical School, Boston, MA, 02115, USA.
| | - Zuozhang Yang
- Bone and Soft Tissue Tumors Research Center of Yunnan Province, Department of Orthopaedics, the Third Affiliated Hospital of Kunming Medical University (Tumor Hospital of Yunnan Province), Kunming, Yunnan, 650118, China. .,Department of Orthopaedics, Kunming General Hospital of Chengdu Military Command, Kunming, Yunnan, 650118, China.
| | - Yongqing Xu
- Department of Orthopaedics, Kunming General Hospital of Chengdu Military Command, Kunming, Yunnan, 650118, China.
| | - Yongbin Chen
- Key Laboratory of Animal Models and Human Disease Mechanisms, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, 650223, China.
| | - Qiang Yu
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, China.
| |
Collapse
|
439
|
Zamaraev AV, Kopeina GS, Zhivotovsky B, Lavrik IN. Cell death controlling complexes and their potential therapeutic role. Cell Mol Life Sci 2015; 72:505-517. [PMID: 25323133 PMCID: PMC11113151 DOI: 10.1007/s00018-014-1757-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Revised: 09/18/2014] [Accepted: 10/09/2014] [Indexed: 12/26/2022]
Abstract
Programmed cell death plays a central role in the regulation of homeostasis and development of multicellular organisms. Deregulation of programmed cell death is connected to a number of disorders, including cancer and autoimmune diseases. Initiation of cell death occurs in the multiprotein complexes or high molecular weight platforms. Composition, structure, and molecular interactions within these platforms influence the cellular decision toward life or death and, therefore, define the induction of a particular cell death program. Here, we discuss in detail the key cell-death complexes-including DISC, complex II, and TNFRI complex I/II, and the necrosome, RIPoptosome, apoptosome, and PIDDosome-that control apoptosis or necroptosis pathways as well as their regulation. The possibility of their pharmacological targeting leading to the development of new strategies of interference with cell death programs via control of the high molecular weight platforms will be discussed.
Collapse
Affiliation(s)
- Alexey V Zamaraev
- Faculty of Basic Medicine, MV Lomonosov Moscow State University, 119991, Moscow, Russia
| | - Gelina S Kopeina
- Faculty of Basic Medicine, MV Lomonosov Moscow State University, 119991, Moscow, Russia
| | - Boris Zhivotovsky
- Faculty of Basic Medicine, MV Lomonosov Moscow State University, 119991, Moscow, Russia.
- Division of Toxicology, Institute of Environmental Medicine, Karolinska Institutet, Box 210, 171 77, Stockholm, Sweden.
| | - Inna N Lavrik
- Faculty of Basic Medicine, MV Lomonosov Moscow State University, 119991, Moscow, Russia
- Department of Translational Inflammation, Institute of Experimental Internal Medicine, Otto von Guericke University, Magdeburg, Germany
| |
Collapse
|
440
|
Fenton K. The effect of cell death in the initiation of lupus nephritis. Clin Exp Immunol 2015; 179:11-6. [PMID: 25041590 DOI: 10.1111/cei.12417] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/09/2014] [Indexed: 12/27/2022] Open
Abstract
Cell death and the release of chromatin have been demonstrated to activate the immune system producing autoantibodies against nuclear antigens in patients with systemic lupus erythematosus (SLE). Apoptosis, necrosis, necroptosis, secondary necrosis, autophagy and the clearance of dying cells by phagocytosis are processes believed to have a role in tolerance avoidance, activation of autoimmune lymphocytes and tissue damage by effector cells. The released chromatin not only activates the immune system; it also acts as antigen for the autoantibodies produced, including anti-dsDNA antibodies. The subsequent immune complex formed is deposited within the basement membranes and the mesangial matrix of glomeruli. This may be considered as an initiating event in lupus nephritis. The origin of the released chromatin is still debated, and the possible mechanisms and cell sources are discussed in this study.
Collapse
Affiliation(s)
- K Fenton
- RNA and Molecular Pathology Research Group, Institute of Medical Biology, Faculty of Health Sciences, University of Tromsø, Tromsø, Norway
| |
Collapse
|
441
|
Abstract
Molluscum contagiosum virus (MCV) is the causative agent of molluscum contagiosum (MC), the third most common viral skin infection in children, and one of the five most prevalent skin diseases worldwide. No FDA-approved treatments, vaccines, or commercially available rapid diagnostics for MCV are available. This review discusses several aspects of this medically important virus including: physical properties of MCV, MCV pathogenesis, MCV replication, and immune responses to MCV infection. Sequencing of the MCV genome revealed novel immune evasion molecules which are highlighted here. Special attention is given to the MCV MC159 and MC160 proteins. These proteins are FLIPs with homologs in gamma herpesviruses and in the cell. They are of great interest because each protein regulates apoptosis, NF-κB, and IRF3. However, the mechanism that each protein uses to impart its effects is different. It is important to elucidate how MCV inhibits immune responses; this knowledge contributes to our understanding of viral pathogenesis and also provides new insights into how the immune system neutralizes virus infections.
Collapse
|
442
|
Emerging Roles for RIPK1 and RIPK3 in Pathogen-Induced Cell Death and Host Immunity. Curr Top Microbiol Immunol 2015; 403:37-75. [PMID: 26385769 DOI: 10.1007/82_2015_449] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Receptor-interacting protein kinases 1 and 3 (RIPK1 and RIPK3 ) are homologous serine-threonine kinases that were recognized for their roles in directing programmed necrotic cell death or necroptosis under a broad range of pathologic settings. Emerging evidence suggests new physiologic roles for RIPK1 and RIPK3 in mediating cell death of innate immune responses. Our review discusses current evidence on the mechanisms and the impact of RIPK1- and/or RIPK3-dependent cell death in responses to a variety of viral and bacterial pathogens. Furthermore, the discussion also summarizes emerging roles for RIPK1 and RIPK3 in other facets of host immunity, including the maintenance of epithelial barrier function and pro-inflammatory processes that may, in some cases, manifest independent of cell death. Finally, we briefly consider the therapeutic opportunities in targeting RIPK1- and RIPK3-dependent processes in infection and immunity.
Collapse
|
443
|
Seneviratne D, Ma J, Tan X, Kwon YK, Muhammad E, Melhem M, DeFrances MC, Zarnegar R. Genomic instability causes HGF gene activation in colon cancer cells, promoting their resistance to necroptosis. Gastroenterology 2015; 148:181-191.e17. [PMID: 25244939 PMCID: PMC4274190 DOI: 10.1053/j.gastro.2014.09.019] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Revised: 08/19/2014] [Accepted: 09/14/2014] [Indexed: 12/15/2022]
Abstract
BACKGROUND & AIMS Genomic instability promotes colon carcinogenesis by inducing genetic mutations, but not all genes affected by this process have been identified. We investigated whether genomic instability in human colorectal cancer (CRC) cells produces mutations in the hepatocyte growth factor (HGF) gene. METHODS We genotyped human colon tumor tissues and adjacent nontumor tissues collected from 78 patients University of Pittsburgh Health Sciences and Veterans Hospital, along with 40 human CRC and adjacent nontumor tissues in a commercial microarray. We used cellular, biochemical, and molecular biological techniques to investigate the factors that alter HGF signaling in colon cancer cells and its effects on cell proliferation and survival. RESULTS All tested human CRC tissues and cell lines that had microsatellite instability contained truncations in the regulatory deoxyadenosine tract element (DATE) of the HGF gene promoter. The DATE was unstable in 14% (11 of 78) of CRC samples; DATE truncation was also polymorphic and detected in 18% (13 of 78) of CRC tissues without microsatellite instability. In CRC cell lines, truncation of DATE activated expression of HGF, resulting in its autocrine signaling via MET. This promoted cell proliferation and resistance to necroptosis. HGF signaling via MET reduced levels of the receptor-interacting serine-threonine kinase 1, a mediator of necroptosis, in CRC cells. High levels of HGF protein in tumor tissues correlated with lower levels of receptor-interacting serine-threonine kinase 1 and shorter survival times of patients. CONCLUSIONS Thirty-one percent of CRC samples contain alterations in the DATE of the HGF promoter. Disruption of the DATE increased HGF signaling via MET and reduced levels of receptor-interacting serine-threonine kinase 1 and CRC cell necroptosis. DATE alteration might be used as a prognostic factor or to select patients for therapies that target HGF-MET signaling.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Reza Zarnegar
- Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania.
| |
Collapse
|
444
|
Shalini S, Dorstyn L, Dawar S, Kumar S. Old, new and emerging functions of caspases. Cell Death Differ 2014; 22:526-39. [PMID: 25526085 DOI: 10.1038/cdd.2014.216] [Citation(s) in RCA: 889] [Impact Index Per Article: 88.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Revised: 11/13/2014] [Accepted: 11/19/2014] [Indexed: 12/26/2022] Open
Abstract
Caspases are proteases with a well-defined role in apoptosis. However, increasing evidence indicates multiple functions of caspases outside apoptosis. Caspase-1 and caspase-11 have roles in inflammation and mediating inflammatory cell death by pyroptosis. Similarly, caspase-8 has dual role in cell death, mediating both receptor-mediated apoptosis and in its absence, necroptosis. Caspase-8 also functions in maintenance and homeostasis of the adult T-cell population. Caspase-3 has important roles in tissue differentiation, regeneration and neural development in ways that are distinct and do not involve any apoptotic activity. Several other caspases have demonstrated anti-tumor roles. Notable among them are caspase-2, -8 and -14. However, increased caspase-2 and -8 expression in certain types of tumor has also been linked to promoting tumorigenesis. Increased levels of caspase-3 in tumor cells causes apoptosis and secretion of paracrine factors that promotes compensatory proliferation in surrounding normal tissues, tumor cell repopulation and presents a barrier for effective therapeutic strategies. Besides this caspase-2 has emerged as a unique caspase with potential roles in maintaining genomic stability, metabolism, autophagy and aging. The present review focuses on some of these less studied and emerging functions of mammalian caspases.
Collapse
Affiliation(s)
- S Shalini
- Centre for Cancer Biology, University of South Australia, Adelaide, SA 5001, Australia
| | - L Dorstyn
- Centre for Cancer Biology, University of South Australia, Adelaide, SA 5001, Australia
| | - S Dawar
- Centre for Cancer Biology, University of South Australia, Adelaide, SA 5001, Australia
| | - S Kumar
- Centre for Cancer Biology, University of South Australia, Adelaide, SA 5001, Australia
| |
Collapse
|
445
|
Zhang L, Dittmer MR, Blackwell K, Workman LM, Hostager B, Habelhah H. TRAIL activates JNK and NF-κB through RIP1-dependent and -independent pathways. Cell Signal 2014; 27:306-14. [PMID: 25446254 DOI: 10.1016/j.cellsig.2014.11.014] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Revised: 10/29/2014] [Accepted: 11/12/2014] [Indexed: 12/18/2022]
Abstract
The death receptor (DR) ligand TRAIL is being evaluated in clinical trials as an anti-cancer agent; however, many studies have found that TRAIL also enhances tumor progression by activating the NF-κB pathway in apoptosis-resistant cells. Although RIP1, cFLIP and caspase-8 have been implicated in TRAIL-induced JNK and NF-κB activation, underlying mechanisms are unclear. By examining the kinetics of pathway activation in TRAIL-sensitive lymphoma cells wild-type or deficient for RIP1, TRAF2, cIAP1/2 or HOIP, we report here that TRAIL induces two phases of JNK and NF-κB activation. The early phase is activated by TRAF2- and cIAP1-mediated ubiquitination of RIP1, whereas the delayed phase is induced by caspase-dependent activation of MEKK1 independent of RIP1 and TRAF2 expression. cFLIP overexpression promotes the early phase but completely suppresses the delayed phase of pathway activation in lymphoma cells, whereas Bcl-2 overexpression promotes both the early and delayed phases of the pathways. In addition, stable overexpression of cFLIP in RIP1- or TRAF2-deficient cells confers resistance to apoptosis, but fails to mediate NF-κB activation. HOIP is not essential for, but contributes to, TRAIL-induced NF-κB activation in cFLIP-overexpressing cells. These findings not only elucidate details of the mechanisms underlying TRAIL-induced JNK and NF-κB activation, but also clarify conflicting reports in the field.
Collapse
Affiliation(s)
- Laiqun Zhang
- Department of Pathology, Carver College of Medicine, the University of Iowa, Iowa City, IA 52242, United States
| | - Martin R Dittmer
- Iowa Medical Student Research Program, Carver College of Medicine, the University of Iowa, Iowa City, IA 52242, United States
| | - Ken Blackwell
- Department of Pathology, Carver College of Medicine, the University of Iowa, Iowa City, IA 52242, United States
| | - Lauren M Workman
- Interdisciplinary Graduate Program in Molecular and Cellular Biology, Carver College of Medicine, the University of Iowa, Iowa City, IA 52242, United States
| | - Bruce Hostager
- Department of Pediatrics, Carver College of Medicine, the University of Iowa, Iowa City, IA 52242, United States
| | - Hasem Habelhah
- Department of Pathology, Carver College of Medicine, the University of Iowa, Iowa City, IA 52242, United States.
| |
Collapse
|
446
|
Inactivation of the ferroptosis regulator Gpx4 triggers acute renal failure in mice. Nat Cell Biol 2014; 16:1180-91. [PMID: 25402683 DOI: 10.1038/ncb3064] [Citation(s) in RCA: 2299] [Impact Index Per Article: 229.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Accepted: 10/14/2014] [Indexed: 02/06/2023]
Abstract
Ferroptosis is a non-apoptotic form of cell death induced by small molecules in specific tumour types, and in engineered cells overexpressing oncogenic RAS. Yet, its relevance in non-transformed cells and tissues is unexplored and remains enigmatic. Here, we provide direct genetic evidence that the knockout of glutathione peroxidase 4 (Gpx4) causes cell death in a pathologically relevant form of ferroptosis. Using inducible Gpx4(-/-) mice, we elucidate an essential role for the glutathione/Gpx4 axis in preventing lipid-oxidation-induced acute renal failure and associated death. We furthermore systematically evaluated a library of small molecules for possible ferroptosis inhibitors, leading to the discovery of a potent spiroquinoxalinamine derivative called Liproxstatin-1, which is able to suppress ferroptosis in cells, in Gpx4(-/-) mice, and in a pre-clinical model of ischaemia/reperfusion-induced hepatic damage. In sum, we demonstrate that ferroptosis is a pervasive and dynamic form of cell death, which, when impeded, promises substantial cytoprotection.
Collapse
|
447
|
TDP-43 toxicity proceeds via calcium dysregulation and necrosis in aging Caenorhabditis elegans motor neurons. J Neurosci 2014; 34:12093-103. [PMID: 25186754 DOI: 10.1523/jneurosci.2495-13.2014] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a heterogeneous disease with either sporadic or genetic origins characterized by the progressive degeneration of motor neurons. At the cellular level, ALS neurons show protein misfolding and aggregation phenotypes. Transactive response DNA-binding protein 43 (TDP-43) has recently been shown to be associated with ALS, but the early pathophysiological deficits causing impairment in motor function are unknown. Here we used Caenorhabditis elegans expressing mutant TDP-43(A315T) in motor neurons and explored the potential influences of calcium (Ca(2+)). Using chemical and genetic approaches to manipulate the release of endoplasmic reticulum (ER) Ca(2+)stores, we observed that the reduction of intracellular Ca(2+) ([Ca(2+)]i) rescued age-dependent paralysis and prevented the neurodegeneration of GABAergic motor neurons. Our data implicate elevated [Ca(2+)]i as a driver of TDP-43-mediated neuronal toxicity. Furthermore, we discovered that neuronal degeneration is independent of the executioner caspase CED-3, but instead requires the activity of the Ca(2+)-regulated calpain protease TRA-3, and the aspartyl protease ASP-4. Finally, chemically blocking protease activity protected against mutant TDP-43(A315T)-associated neuronal toxicity. This work both underscores the potential of the C. elegans system to identify key targets for therapeutic intervention and suggests that a focused effort to regulate ER Ca(2+) release and necrosis-like degeneration consequent to neuronal injury may be of clinical importance.
Collapse
|
448
|
Günther C, Buchen B, Neurath MF, Becker C. Regulation and pathophysiological role of epithelial turnover in the gut. Semin Cell Dev Biol 2014; 35:40-50. [DOI: 10.1016/j.semcdb.2014.06.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Accepted: 06/02/2014] [Indexed: 12/25/2022]
|
449
|
Mo J, Marshall B, Covar J, Zhang NY, Smith SB, Atherton SS, Zhang M. Role of Bax in death of uninfected retinal cells during murine cytomegalovirus retinitis. Invest Ophthalmol Vis Sci 2014; 55:7137-46. [PMID: 25298417 DOI: 10.1167/iovs.14-15404] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE Extensive death of uninfected bystander neuronal cells is an important component of the pathogenesis of cytomegalovirus retinitis. Our previous results have shown that caspase 3-dependent and -independent pathways are involved in death of uninfected bystander cells during murine cytomegalovirus (MCMV) retinitis and also that Bcl-2, an important inhibitor of apoptosis via the Bax-mediated mitochondrial pathway, is downregulated during this process. The purpose of this study was to determine whether Bax-mediated mitochondrial damage has a significant role in the death of uninfected retinal cells. METHODS BALB/c mice, Bax(-/-) mice, or Bax(+/+) mice were immunosuppressed with methylprednisolone and infected with 5 × 10(3) plaque-forming units (PFU) of the K181 strain of MCMV via the supraciliary route. Injected eyes were analyzed by plaque assay, electron microscopy, hematoxylin and eosin (H&E) staining, TUNEL assay, Western blot (for caspase 3, caspase 12, Bax, receptor interacting protein-1 [RIP1] and receptor interacting protein-3 [RIP3]), as well as immunohistochemical staining for MCMV early antigen and cleaved caspase 3. RESULTS Significantly more Bax was detected in mitochondrial fractions of MCMV-infected eyes than in mitochondrial fractions of mock-infected control eyes. Furthermore, the level of cleaved caspase 3 was significantly lower in MCMV-infected Bax(-/-) eyes than in MCMV-infected Bax(+/+) eyes. However, more caspase 3-independent cell death of uninfected bystander retinal cells and more cleaved RIP1 were observed in Bax(-/-) than in Bax(+/+) eyes. CONCLUSIONS During MCMV retinitis, Bax is activated and has an important role in death of uninfected bystander retinal cells by caspase 3-dependent apoptosis. Although the exact mechanism remains to be deciphered, active Bax might also prevent death of some types of uninfected retinal cells by a caspase 3-independent pathway.
Collapse
Affiliation(s)
- Juan Mo
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Georgia Regents University, Augusta, Georgia, United States
| | - Brendan Marshall
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Georgia Regents University, Augusta, Georgia, United States
| | - Jason Covar
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Georgia Regents University, Augusta, Georgia, United States
| | - Nancy Y Zhang
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Georgia Regents University, Augusta, Georgia, United States
| | - Sylvia B Smith
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Georgia Regents University, Augusta, Georgia, United States
| | - Sally S Atherton
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Georgia Regents University, Augusta, Georgia, United States The James and Jean Culver Vision Discovery Institute, Medical College of Georgia, Georgia Regents University, Augusta, Georgia, United States
| | - Ming Zhang
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Georgia Regents University, Augusta, Georgia, United States The James and Jean Culver Vision Discovery Institute, Medical College of Georgia, Georgia Regents University, Augusta, Georgia, United States
| |
Collapse
|
450
|
Kearney CJ, Cullen SP, Clancy D, Martin SJ. RIPK1 can function as an inhibitor rather than an initiator of RIPK3-dependent necroptosis. FEBS J 2014; 281:4921-34. [PMID: 25195660 DOI: 10.1111/febs.13034] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Revised: 08/28/2014] [Accepted: 09/01/2014] [Indexed: 11/30/2022]
Abstract
Tumour necrosis factor and lipopolysaccharide can promote a regulated form of necrosis, called necroptosis, upon inhibition of caspase activity in cells expressing receptor-interacting serine/threonine kinase (RIPK)3. Because inhibitors of RIPK1 kinase activity such as necrostatin-1 block necroptosis in many settings, RIPK1 is thought to be required for activation of RIPK3, leading to necroptosis. However, here we show that, although necrostatin potently inhibited tumour necrosis factor-induced, lipopolysaccharide-induced and polyIC-induced necroptosis, RIPK1 knockdown unexpectedly potentiated this process. In contrast, RIPK3 knockdown potently suppressed necroptosis under the same conditions. Significantly, necrostatin failed to block necroptosis in the absence of RIPK1, indicating that its ability to suppress necroptosis was indeed RIPK1-dependent. These data argue that RIPK1 is dispensable for necroptosis and can act as an inhibitor of this process. Our observations also suggest that necrostatin enhances the inhibitory effects of RIPK1 on necroptosis, as opposed to blocking its participation in this process.
Collapse
Affiliation(s)
- Conor J Kearney
- Molecular Cell Biology Laboratory, Department of Genetics, The Smurfit Institute, Trinity College, Dublin, Ireland
| | | | | | | |
Collapse
|