401
|
Degradation of HPV20E6 by p53: ΔNp63α and mutant p53R248W protect the wild type p53 mediated caspase-degradation. Int J Cancer 2008; 123:108-16. [DOI: 10.1002/ijc.23506] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
402
|
Arama E, Bader M, Rieckhof GE, Steller H. A ubiquitin ligase complex regulates caspase activation during sperm differentiation in Drosophila. PLoS Biol 2007; 5:e251. [PMID: 17880263 PMCID: PMC1976628 DOI: 10.1371/journal.pbio.0050251] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2007] [Accepted: 07/25/2007] [Indexed: 11/19/2022] Open
Abstract
In both insects and mammals, spermatids eliminate their bulk cytoplasm as they undergo terminal differentiation. In Drosophila, this process of dramatic cellular remodeling requires apoptotic proteins, including caspases. To gain further insight into the regulation of caspases, we screened a large collection of sterile male flies for mutants that block effector caspase activation at the onset of spermatid individualization. Here, we describe the identification and characterization of a testis-specific, Cullin-3-dependent ubiquitin ligase complex that is required for caspase activation in spermatids. Mutations in either a testis-specific isoform of Cullin-3 (Cul3(Testis)), the small RING protein Roc1b, or a Drosophila orthologue of the mammalian BTB-Kelch protein Klhl10 all reduce or eliminate effector caspase activation in spermatids. Importantly, all three genes encode proteins that can physically interact to form a ubiquitin ligase complex. Roc1b binds to the catalytic core of Cullin-3, and Klhl10 binds specifically to a unique testis-specific N-terminal Cullin-3 (TeNC) domain of Cul3(Testis) that is required for activation of effector caspase in spermatids. Finally, the BIR domain region of the giant inhibitor of apoptosis-like protein dBruce is sufficient to bind to Klhl10, which is consistent with the idea that dBruce is a substrate for the Cullin-3-based E3-ligase complex. These findings reveal a novel role of Cullin-based ubiquitin ligases in caspase regulation.
Collapse
Affiliation(s)
- Eli Arama
- Strang Laboratory of Cancer Research, The Rockefeller University, New York, New York, United States of America
- Howard Hughes Medical Institute, The Rockefeller University, New York, New York, United States of America
| | - Maya Bader
- Strang Laboratory of Cancer Research, The Rockefeller University, New York, New York, United States of America
- Howard Hughes Medical Institute, The Rockefeller University, New York, New York, United States of America
| | - Gabrielle E Rieckhof
- Strang Laboratory of Cancer Research, The Rockefeller University, New York, New York, United States of America
- Howard Hughes Medical Institute, The Rockefeller University, New York, New York, United States of America
| | - Hermann Steller
- Strang Laboratory of Cancer Research, The Rockefeller University, New York, New York, United States of America
- Howard Hughes Medical Institute, The Rockefeller University, New York, New York, United States of America
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
403
|
Gdynia G, Grund K, Eckert A, Bock BC, Funke B, Macher-Goeppinger S, Sieber S, Herold-Mende C, Wiestler B, Wiestler OD, Roth W. Basal Caspase Activity Promotes Migration and Invasiveness in Glioblastoma Cells. Mol Cancer Res 2007; 5:1232-40. [DOI: 10.1158/1541-7786.mcr-07-0343] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
404
|
|
405
|
Abstract
The identification of caspases as major regulators of apoptotic cell death in animals initiated a quest for homologous peptidases in other kingdoms. With the discovery of metacaspases in plants, fungi, and protozoa, this search had apparently reached its goal. However, there is compelling evidence that metacaspases lack caspase activity and that they are not responsible for the caspaselike activities detected during plant and fungal cell death. In this paper, we attempt to broaden the discussion of these peptidases to biological functions beyond apoptosis and cell death. We further suggest that metacaspases and paracaspases, although sharing structural and mechanistic features with the metazoan caspases, form a distinct family of clan CD cysteine peptidases.
Collapse
Affiliation(s)
- Dominique Vercammen
- Department of Plant Systems Biology, Flanders Institute for Biotechnology, 9052 Gent, Belgium
| | | | | | | |
Collapse
|
406
|
Ambit A, Fasel N, Coombs GH, Mottram JC. An essential role for the Leishmania major metacaspase in cell cycle progression. Cell Death Differ 2007; 15:113-22. [PMID: 17901875 DOI: 10.1038/sj.cdd.4402232] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Metacaspases (MCAs) are distant orthologues of caspases and have been proposed to play a role in programmed cell death in yeast and plants, but little is known about their function in parasitic protozoa. The MCA gene of Leishmania major (LmjMCA) is expressed in actively replicating amastigotes and procyclic promastigotes, but at a lower level in metacyclic promastigotes. LmjMCA has a punctate distribution throughout the cell in interphase cells, but becomes concentrated in the kinetoplast (mitochondrial DNA) at the time of the organelle's segregation. LmjMCA also translocates to the nucleus during mitosis, where it associates with the mitotic spindle. Overexpression of LmjMCA in promastigotes leads to a severe growth retardation and changes in ploidy, due to defects in kinetoplast segregation and nuclear division and an impairment of cytokinesis. LmjMCA null mutants could not be generated and following genetic manipulation to express LmjMCA from an episome, the only mutants that were viable were those expressing LmjMCA at physiological levels. Together these data suggest that in L. major active LmjMCA is essential for the correct segregation of the nucleus and kinetoplast, functions that could be independent of programmed cell death, and that the amount of LmjMCA is crucial. The absence of MCAs from mammals makes the enzyme a potential drug target against protozoan parasites.
Collapse
Affiliation(s)
- A Ambit
- Wellcome Centre for Molecular Parasitology, Glasgow Biomedical Research Centre, University of Glasgow, Glasgow, UK
| | | | | | | |
Collapse
|
407
|
Droin N, Cathelin S, Jacquel A, Guéry L, Garrido C, Fontenay M, Hermine O, Solary E. A role for caspases in the differentiation of erythroid cells and macrophages. Biochimie 2007; 90:416-22. [PMID: 17905508 DOI: 10.1016/j.biochi.2007.08.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2007] [Accepted: 08/24/2007] [Indexed: 10/22/2022]
Abstract
Several cysteine proteases of the caspase family play a central role in many forms of cell death by apoptosis. Other enzymes of the family are involved in cytokine maturation along inflammatory response. In recent years, several caspases involved in cell death were shown to play a role in other cellular processes such as proliferation and differentiation. In the present review, we summarize the current knowledge of the role of caspases in the differentiation of erythroid cells and macrophages. Based on these two examples, we show that the nature of involved enzymes, the pathways leading to their activation in response to specific growth factors, and the specificity of the target proteins that are cleaved by the activated enzymes strongly differ from one cell type to another. Deregulation of these pathways is thought to play a role in the pathophysiology of low-grade myelodysplastic syndromes, characterized by excessive activation of caspases and erythroid precursor apoptosis, and that of chronic myelomonocytic leukemia, characterized by a defective activation of caspases in monocytes exposed to M-CSF, which blocks their differentiation.
Collapse
|
408
|
Abstract
During the course of an immune response, antigen-reactive T cells clonally expand and then are removed by apoptosis to maintain immune homeostasis. Life and death of T cells is determined by multiple factors, such as T-cell receptor triggering, co-stimulation or cytokine signalling, and by molecules, such as caspase-8 (FLICE)-like inhibitory protein (FLIP) and haematopoietic progenitor kinase 1 (HPK1), which regulate the nuclear factor-kappaB (NF-kappaB) pathway. Here, we discuss the concepts of activation-induced cell death (AICD) and activated cell-autonomous death (ACAD) in the regulation of life and death in T cells.
Collapse
Affiliation(s)
- Peter H Krammer
- Tumour Immunology Program, German Cancer Research Center, Im Neuenheimer Feld 280, D-69120 Heidelberg, Germany.
| | | | | |
Collapse
|
409
|
Hörbelt M, Lee SY, Mang HE, Knipe NL, Sado Y, Kribben A, Sutton TA. Acute and chronic microvascular alterations in a mouse model of ischemic acute kidney injury. Am J Physiol Renal Physiol 2007; 293:F688-95. [PMID: 17626153 DOI: 10.1152/ajprenal.00452.2006] [Citation(s) in RCA: 126] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Functional and structural abnormalities in the renal microvasculature are important processes contributing to the pathophysiology of ischemic acute kidney injury (AKI). In this study, we examine the contribution of endothelial cell loss via apoptosis on microvascular permeability and rarefaction in a mouse model of ischemic AKI. Three-dimensional reconstructions of microvascular networks obtained 24 h following acute ischemic injury demonstrate an intact endothelial monolayer in areas of increased microvascular permeability. A 45% decrease in microvascular density was observed 4 wk after acute ischemic injury. Examination of microvascular endothelial cells following acute ischemic injury did not reveal evidence of positive terminal deoxynucleotidyl transferase dUTP-mediated nick-end labeling staining at 1, 2, 8, and 16 days following ischemia; however, activation of caspase-3 was evident in endothelial cells following acute ischemic injury. Examination of angiopoietin (Ang) protein expression in the kidney 24 h after ischemic injury revealed an eightfold increase in Ang-1 but no significant change in Ang-2. No significant difference in the expression of vascular endothelial growth factor or Ang-2 was observed 4 wk after ischemic injury, although an almost twofold elevation in Ang-1 was observed. An increase in angiostatic breakdown products of collagen IV was observed at both 24 h and 4 wk after ischemic injury. Taken together, these findings indicate that the loss of endothelial cells following ischemic injury is not a major contributor to altered microvascular permeability, although renal microvascular endothelial cells are vulnerable to the initiation of apoptotic mechanisms following ischemic injury that can ultimately impact microvascular density.
Collapse
Affiliation(s)
- Markus Hörbelt
- Division of Nephrology, Department of Medicine and the Indiana Center for Biological Microscopy, Indiana University School of Medicine, Indianapolis, Indiana 46202, USA
| | | | | | | | | | | | | |
Collapse
|
410
|
Altincicek B, Vilcinskas A. Analysis of the immune-related transcriptome of a lophotrochozoan model, the marine annelid Platynereis dumerilii. Front Zool 2007; 4:18. [PMID: 17617895 PMCID: PMC1939704 DOI: 10.1186/1742-9994-4-18] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2006] [Accepted: 07/06/2007] [Indexed: 12/18/2022] Open
Abstract
Background The marine annelid Platynereis dumerilii (Polychaeta, Nereididae) has been recognized as a slow-evolving lophotrochozoan that attracts increasing attention as a valuable model for evolutionary and developmental research. Here, we analyzed its immune-related transcriptome. For targeted identification of immune-induced genes we injected bacterial lipopolysaccharide, a commonly used elicitor of innate immune responses, and applied the suppression subtractive hybridization technique that selectively amplifies cDNAs of differentially expressed genes. Results Sequence analysis of 288 cDNAs revealed induced expression of numerous genes whose potential homologues from other animals mediate recognition of infection (e.g. complement receptor CD35), signaling (e.g. myc and SOCS), or act as effector molecules like ferritins and the bactericidal permeability-increasing protein. Interestingly, phylogenetic analyses implicate that immune-related genes identified in P. dumerilii are more related to counterparts from Deuterostomia than are those from Ecdysozoa, similarly as recently described for opsin and intron-rich genes. Conclusion Obtained results may allow for a better understanding of Platynereis immunity and support the view that P. dumerilii represents a suitable model for analyzing immune responses of Lophotrochozoa.
Collapse
Affiliation(s)
- Boran Altincicek
- Institute of Phytopathology and Applied Zoology, Interdisciplinary Research Center, Justus-Liebig-University of Giessen, Heinrich-Buff-Ring 26-32, D-35392 Giessen, Germany
| | - Andreas Vilcinskas
- Institute of Phytopathology and Applied Zoology, Interdisciplinary Research Center, Justus-Liebig-University of Giessen, Heinrich-Buff-Ring 26-32, D-35392 Giessen, Germany
| |
Collapse
|
411
|
Nicotera P, Petersen OH, Melino G, Verkhratsky A. Janus a god with two faces: death and survival utilise same mechanisms conserved by evolution. Cell Death Differ 2007; 14:1235-6. [PMID: 17572705 DOI: 10.1038/sj.cdd.4402161] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
|
412
|
Kumar AP, Chang MKX, Fliegel L, Pervaiz S, Clément MV. Oxidative repression of NHE1 gene expression involves iron-mediated caspase activity. Cell Death Differ 2007; 14:1733-46. [PMID: 17571084 DOI: 10.1038/sj.cdd.4402176] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
The mechanism of Na(+)/H(+) exchanger 1 (NHE1) gene repression upon exposure of cells to non-apoptotic concentrations of hydrogen peroxide (H(2)O(2)) was investigated. We show that continuous presence of H(2)O(2) was not required for inhibition of NHE1 promoter activity. However, the downregulation of NHE1 promoter activity and protein expression was abrogated by the presence of beta mercaptoethanol (betaME) and dithiothreitol. The pan-caspase inhibitor zVAD-fmk also blocked the effect of H(2)O(2) on NHE1 promoter activity and expression, but unlike betaME, caspase inhibition was ineffective in rescuing the early phase of NHE1 repression. Interestingly, the effect of caspase inhibition was observed only after 9 h of exposure to H(2)O(2) and completely restored NHE1 promoter activity by 18-24 h. Using tetrapeptide inhibitors of a variety of caspases and siRNA-mediated gene silencing, caspases 3 and 6 were identified as mediators of H(2)O(2)-induced NHE1 repression, independent of initiator/amplifier caspase activation. Furthermore, incubation of cells with the iron chelator, desferioxamine, not only blocked the activities of caspases 3 and 6, but also affected NHE1 promoter and protein expression in a manner similar to zVAD-fmk. These data show that a mild oxidative stress represses NHE1 promoter activity and expression via an early oxidation phase blocked by reducing agents, and a late phase requiring an iron-dependent increase in caspases 3 and 6 activities.
Collapse
Affiliation(s)
- A P Kumar
- 1National University Medical Institutes, Yong Loo Lin School of Medicine, National University of Singapore, 8 Medical Drive, 117 597 Singapore
| | | | | | | | | |
Collapse
|
413
|
Kuranaga E, Miura M. Nonapoptotic functions of caspases: caspases as regulatory molecules for immunity and cell-fate determination. Trends Cell Biol 2007; 17:135-44. [PMID: 17275304 DOI: 10.1016/j.tcb.2007.01.001] [Citation(s) in RCA: 156] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2006] [Revised: 12/20/2006] [Accepted: 01/17/2007] [Indexed: 11/30/2022]
Abstract
Caspases are a family of cysteine proteases that are highly conserved in multicellular organisms and function as central regulators of apoptosis. Recent investigations in Caenorhabditis elegans, Drosophila and mice suggest that caspases also function as regulatory molecules for immunity and cell-fate determination. Here, we review genetic studies of nonapoptotic functions of caspases and discuss the regulatory mechanisms of caspases for executing nonapoptotic functions.
Collapse
Affiliation(s)
- Erina Kuranaga
- Department of Genetics, Graduate School of Pharmaceutical Sciences, University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | | |
Collapse
|
414
|
|