401
|
Peng R, White AF, Zhai H, Kin-Lic Chan G. Conservation laws in coupled cluster dynamics at finite temperature. J Chem Phys 2021; 155:044103. [PMID: 34340387 DOI: 10.1063/5.0059257] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We extend the finite-temperature Keldysh non-equilibrium coupled cluster theory (Keldysh-CC) [A. F. White and G. K.-L. Chan, J. Chem. Theory Comput. 15, 6137-6253 (2019)] to include a time-dependent orbital basis. When chosen to minimize the action, such a basis restores local and global conservation laws (Ehrenfest's theorem) for all one-particle properties while remaining energy conserving for time-independent Hamiltonians. We present the time-dependent Keldysh orbital-optimized coupled cluster doubles method in analogy with the formalism for zero-temperature dynamics, extended to finite temperatures through the time-dependent action on the Keldysh contour. To demonstrate the conservation property and understand the numerical performance of the method, we apply it to several problems of non-equilibrium finite-temperature dynamics: a 1D Hubbard model with a time-dependent Peierls phase, laser driving of molecular H2, driven dynamics in warm-dense silicon, and transport in the single impurity Anderson model.
Collapse
Affiliation(s)
- Ruojing Peng
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, USA
| | - Alec F White
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, USA
| | - Huanchen Zhai
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, USA
| | - Garnet Kin-Lic Chan
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, USA
| |
Collapse
|
402
|
Sharma S, Beylkin G. Efficient Evaluation of Two-Center Gaussian Integrals in Periodic Systems. J Chem Theory Comput 2021; 17:3916-3922. [PMID: 34061523 DOI: 10.1021/acs.jctc.0c01195] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
By using Poisson's summation formula, we calculate periodic integrals over Gaussian basis functions by partitioning the lattice summations between the real and reciprocal space, where both sums converge exponentially fast with a large exponent. We demonstrate that the summation can be performed efficiently to calculate two-center Gaussian integrals over various kernels including overlap, kinetic, and Coulomb. The summation in real space is performed using an efficient flavor of the McMurchie-Davidson recurrence relation. The expressions for performing summation in the reciprocal space are also derived and implemented. The algorithm for reciprocal space summation allows us to reuse several terms and leads to a significant improvement in efficiency when highly contracted basis functions with large exponents are used. We find that the resulting algorithm is only between a factor of 5 and 15 slower than that for molecular integrals, indicating the very small number of terms needed in both the real and reciprocal space summations. An outline of the algorithm for calculating three-center Coulomb integrals is also provided.
Collapse
Affiliation(s)
- Sandeep Sharma
- Department of Chemistry, University of Colorado, Boulder, Boulder, Colorado 80302, United States
| | - Gregory Beylkin
- Department of Applied Mathematics, University of Colorado, Boulder, Boulder, Colorado 80309, United States
| |
Collapse
|
403
|
Eriksen JJ. Decomposed Mean-Field Simulations of Local Properties in Condensed Phases. J Phys Chem Lett 2021; 12:6048-6055. [PMID: 34165982 DOI: 10.1021/acs.jpclett.1c01375] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The present work demonstrates a robust protocol for probing localized electronic structure in condensed-phase systems, operating in terms of a recently proposed theory for decomposing the results of Kohn-Sham density functional theory in a basis of spatially localized molecular orbitals. In an initial application to liquid, ambient water and the assessment of the solvation energy and the embedded dipole moment of H2O in solution, we find that both properties are amplified on average-in accordance with expectation-and that correlations are indeed observed to exist between them. However, the simulated solvent-induced shift to the dipole moment of water is found to be significantly dampened with respect to typical literature values. The local nature of our methodology has further allowed us to evaluate the convergence of bulk properties with respect to the extent of the underlying one-electron basis set, ranging from single-ζ to full (augmented) quadruple-ζ quality. Albeit a pilot example, our work paves the way toward future studies of local effects and defects in more complex phases, e.g., liquid mixtures and even solid-state crystals.
Collapse
Affiliation(s)
- Janus J Eriksen
- DTU Chemistry, Technical University of Denmark, Kemitorvet Bldg. 206, DK-2800 Kgs. Lyngby, Denmark
| |
Collapse
|
404
|
Xu X, Yang Y. Molecular vibrational frequencies from analytic Hessian of constrained nuclear-electronic orbital density functional theory. J Chem Phys 2021; 154:244110. [PMID: 34241362 DOI: 10.1063/5.0055506] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Nuclear quantum effects are important in a variety of chemical and biological processes. The constrained nuclear-electronic orbital density functional theory (cNEO-DFT) has been developed to include nuclear quantum effects in energy surfaces. Herein, we develop the analytic Hessian for cNEO-DFT energy with respect to the change in nuclear (expectation) positions, which can be used to characterize stationary points on energy surfaces and compute molecular vibrational frequencies. This is achieved by constructing and solving the multicomponent cNEO coupled-perturbed Kohn-Sham (cNEO-CPKS) equations, which describe the response of electronic and nuclear orbitals to the displacement of nuclear (expectation) positions. With the analytic Hessian, the vibrational frequencies of a series of small molecules are calculated and compared to those from conventional DFT Hessian calculations as well as those from the vibrational second-order perturbation theory (VPT2). It is found that even with a harmonic treatment, cNEO-DFT significantly outperforms DFT and is comparable to DFT-VPT2 in the description of vibrational frequencies in regular polyatomic molecules. Furthermore, cNEO-DFT can reasonably describe the proton transfer modes in systems with a shared proton, whereas DFT-VPT2 often faces great challenges. Our results suggest the importance of nuclear quantum effects in molecular vibrations, and cNEO-DFT is an accurate and inexpensive method to describe molecular vibrations.
Collapse
Affiliation(s)
- Xi Xu
- Theoretical Chemistry Institute and Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, Wisconsin 53706, USA
| | - Yang Yang
- Theoretical Chemistry Institute and Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, Wisconsin 53706, USA
| |
Collapse
|
405
|
Nakai H. Development of Linear-Scaling Relativistic Quantum Chemistry Covering the Periodic Table. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2021. [DOI: 10.1246/bcsj.20210091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Hiromi Nakai
- Department of Chemistry and Biochemistry, School of Advanced Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan
- Waseda Research Institute for Science and Engineering (WISE), Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan
- Elements Strategy Initiative for Catalysts and Batteries (ESICB), Kyoto University, Katsura, Kyoto 615-8520, Japan
| |
Collapse
|
406
|
Scheurer M, Reinholdt P, Olsen JMH, Dreuw A, Kongsted J. Efficient Open-Source Implementations of Linear-Scaling Polarizable Embedding: Use Octrees to Save the Trees. J Chem Theory Comput 2021; 17:3445-3454. [PMID: 33949862 DOI: 10.1021/acs.jctc.1c00225] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
We present open-source implementations of the linear-scaling fast multipole method (FMM) within the polarizable embedding (PE) model for efficient treatment of large polarizable environments in computational spectroscopy simulations. The implementations are tested for accuracy, efficiency, and usability on model systems as well as more realistic biomolecular systems. We explain how FMM parameters affect the calculation of molecular properties and show that PE calculations employing FMM can be carried out in a black-box manner. The efficiency of the linear-scaling approach is demonstrated by simulating the UV/vis spectrum of a chromophore in an environment of more than 1 million polarizable sites. Our implementations are interfaced to several open-source quantum chemistry programs, making computational spectroscopy simulations within the PE model and FMM available to a large variety of methods and a broad user base.
Collapse
Affiliation(s)
- Maximilian Scheurer
- Interdisciplinary Center for Scientific Computing, Heidelberg University, D-69120 Heidelberg, Germany
| | - Peter Reinholdt
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, DK-5230 Odense, Denmark
| | | | - Andreas Dreuw
- Interdisciplinary Center for Scientific Computing, Heidelberg University, D-69120 Heidelberg, Germany
| | - Jacob Kongsted
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, DK-5230 Odense, Denmark
| |
Collapse
|
407
|
Huang T, Zhao L, Jiang X, Yu W, Xu B, Wang X, Schwarz WHE, Li J. Metal Oxo-Fluoride Molecules O nMF 2 (M = Mn and Fe; n = 1-4) and O 2MnF: Matrix Infrared Spectra and Quantum Chemistry. Inorg Chem 2021; 60:7687-7696. [PMID: 34029065 DOI: 10.1021/acs.inorgchem.0c03806] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
On reacting laser-ablated manganese or iron difluorides with O2 or O3 during codeposition in solid neon or argon, infrared absorptions of several new metal oxo-fluoride molecules, including OMF2, (η1-O2)MF2, (η2-O3)MF2, (η1-O2)2MF2 (M = Mn and Fe), and O2MnF, have been observed. Quantum chemical density functional and multiconfiguration wavefunction calculations have been applied to characterize these new products by their geometric and electronic structures, vibrations, charges, and bonding. The assignment of the main vibrational absorptions as dominant symmetric or antisymmetric M-F or M-O stretching modes is confirmed by oxygen isotopic shifts and quantum chemical calculations of frequencies and thermal stabilities. The tendency of Fe to form polyoxygen complexes in lower oxidation states than the preceding element Mn is affirmed experimentally and supported theoretically. The M-F stretching frequencies of the isolated metal oxo-fluorides may provide a scale for the local charge on the MF2 sites in active energy conversion systems. The study of these species provides insights for understanding the trend of oxidation state changes across the transition-metal series.
Collapse
Affiliation(s)
- Tengfei Huang
- School of Chemical Science and Engineering, Tongji University, Shanghai 200092, China
| | - Lijuan Zhao
- Department of Chemistry and Key Laboratory of Organic Optoelectronics & Molecular Engineering of the Ministry of Education, Tsinghua University, Beijing 100084, China
| | - Xuelian Jiang
- Department of Chemistry, Southern University of Science & Technology, Shenzhen 518055, China
| | - Wenjie Yu
- School of Chemical Science and Engineering, Tongji University, Shanghai 200092, China
| | - Bing Xu
- School of Chemical Science and Engineering, Tongji University, Shanghai 200092, China
| | - Xuefeng Wang
- School of Chemical Science and Engineering, Tongji University, Shanghai 200092, China
| | - W H Eugen Schwarz
- Department of Chemistry, Siegen University, Siegen 57068, Germany.,Department of Chemistry and Key Laboratory of Organic Optoelectronics & Molecular Engineering of the Ministry of Education, Tsinghua University, Beijing 100084, China
| | - Jun Li
- Department of Chemistry and Key Laboratory of Organic Optoelectronics & Molecular Engineering of the Ministry of Education, Tsinghua University, Beijing 100084, China.,Department of Chemistry, Southern University of Science & Technology, Shenzhen 518055, China
| |
Collapse
|
408
|
Ewing S, Mazziotti DA. Correlation-driven phenomena in periodic molecular systems from variational two-electron reduced density matrix theory. J Chem Phys 2021; 154:214106. [PMID: 34240980 DOI: 10.1063/5.0050277] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Correlation-driven phenomena in molecular periodic systems are challenging to predict computationally not only because such systems are periodically infinite but also because they are typically strongly correlated. Here, we generalize the variational two-electron reduced density matrix (2-RDM) theory to compute the energies and properties of strongly correlated periodic systems. The 2-RDM of the unit cell is directly computed subject to necessary N-representability conditions such that the unit-cell 2-RDM represents at least one N-electron density matrix. Two canonical but non-trivial systems, periodic metallic hydrogen chains and periodic acenes, are treated to demonstrate the methodology. We show that while single-reference correlation theories do not capture the strong (static) correlation effects in either of these molecular systems, the periodic variational 2-RDM theory predicts the Mott metal-to-insulator transition in the hydrogen chains and the length-dependent polyradical formation in acenes. For both hydrogen chains and acenes, the periodic calculations are compared with previous non-periodic calculations with the results showing a significant change in energies and increase in the electron correlation from the periodic boundary conditions. The 2-RDM theory, which allows for much larger active spaces than are traditionally possible, is applicable to studying correlation-driven phenomena in general periodic molecular solids and materials.
Collapse
Affiliation(s)
- Simon Ewing
- Department of Chemistry and The James Frank Institute, The University of Chicago, Chicago, Illinois 60637, USA
| | - David A Mazziotti
- Department of Chemistry and The James Frank Institute, The University of Chicago, Chicago, Illinois 60637, USA
| |
Collapse
|
409
|
Schätzle Z, Hermann J, Noé F. Convergence to the fixed-node limit in deep variational Monte Carlo. J Chem Phys 2021; 154:124108. [PMID: 33810658 DOI: 10.1063/5.0032836] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Variational quantum Monte Carlo (QMC) is an ab initio method for solving the electronic Schrödinger equation that is exact in principle, but limited by the flexibility of the available Ansätze in practice. The recently introduced deep QMC approach, specifically two deep-neural-network Ansätze PauliNet and FermiNet, allows variational QMC to reach the accuracy of diffusion QMC, but little is understood about the convergence behavior of such Ansätze. Here, we analyze how deep variational QMC approaches the fixed-node limit with increasing network size. First, we demonstrate that a deep neural network can overcome the limitations of a small basis set and reach the mean-field (MF) complete-basis-set limit. Moving to electron correlation, we then perform an extensive hyperparameter scan of a deep Jastrow factor for LiH and H4 and find that variational energies at the fixed-node limit can be obtained with a sufficiently large network. Finally, we benchmark MF and many-body Ansätze on H2O, increasing the fraction of recovered fixed-node correlation energy of single-determinant Slater-Jastrow-type Ansätze by half an order of magnitude compared to previous variational QMC results, and demonstrate that a single-determinant Slater-Jastrow-backflow version of the Ansatz overcomes the fixed-node limitations. This analysis helps understand the superb accuracy of deep variational Ansätze in comparison to the traditional trial wavefunctions at the respective level of theory and will guide future improvements of the neural-network architectures in deep QMC.
Collapse
Affiliation(s)
- Z Schätzle
- FU Berlin, Department of Mathematics and Computer Science, Arnimallee 6, 14195 Berlin, Germany
| | - J Hermann
- FU Berlin, Department of Mathematics and Computer Science, Arnimallee 6, 14195 Berlin, Germany
| | - F Noé
- FU Berlin, Department of Mathematics and Computer Science, Arnimallee 6, 14195 Berlin, Germany
| |
Collapse
|
410
|
Bilalbegović G, Maksimović A, Valencic LA, Lehtola S. Sulfur Molecules in Space by X-rays: A Computational Study. ACS EARTH & SPACE CHEMISTRY 2021; 5:436-448. [PMID: 33842801 PMCID: PMC8028330 DOI: 10.1021/acsearthspacechem.0c00238] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 02/12/2021] [Accepted: 02/15/2021] [Indexed: 06/12/2023]
Abstract
X-ray astronomy lacks high resolution spectra of interstellar dust analogues and molecules, severely hampering interstellar medium studies based on upcoming X-ray missions. Various theoretical approaches may be used to address this problem, but they must first be shown to reproduce reliable spectra compared to the experiment. In this work, we calculate the sulfur K edge X-ray absorption spectra of H2S, SO2, and OCS, whose spectra are already known from X-ray experiments and predict the X-ray spectrum of CS, which as far as we are aware has not been measured, thereby hampering its detection by X-ray telescopes. We chose these four molecules as the astrochemistry of sulfur is an unsolved problem and as the four molecules are already known to exist in space. We consider three types of methods for modeling the X-ray spectra: more accurate calculations with the algebraic-diagrammatic construction (ADC) and the CC2, CCSD, and CC3 coupled cluster (CC) approaches as well as more affordable ones with transition potential density functional theory (TP-DFT). A comparison of our computational results to previously reported experimental spectra shows that the core-valence separation (CVS) approaches CVS-ADC(2)-x and CVS-CC3 generally yield a good qualitative level of agreement with the experiment, suggesting that they can be used for interpreting measured spectra, while the TP-DFT method is not reliable for these molecules. However, quantitative agreement with the experiment is still outside the reach of the computational methods studied in this work.
Collapse
Affiliation(s)
- Goranka Bilalbegović
- Department
of Physics, Faculty of Science, University
of Zagreb, Bijenička
cesta 32, 10000 Zagreb, Croatia
| | - Aleksandar Maksimović
- Center
of Excellence for Advanced Materials and Sensing Devices, Rudjer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia
| | - Lynne A. Valencic
- NASA
Goddard Space Flight Center, Greenbelt, 20771 Maryland, United States
- Department
of Physics & Astronomy, The Johns Hopkins
University, 366 Bloomberg
Center, 3400 N. Charles Street, Baltimore, 21218 Maryland, United States
| | - Susi Lehtola
- Department
of Chemistry, University of Helsinki, P.O. Box 55, A. I. Virtasen aukio
1, FI-00014 Helsinki, Finland
| |
Collapse
|
411
|
Lehtola S, Dimitrova M, Fliegl H, Sundholm D. Benchmarking Magnetizabilities with Recent Density Functionals. J Chem Theory Comput 2021; 17:1457-1468. [PMID: 33599491 PMCID: PMC8023670 DOI: 10.1021/acs.jctc.0c01190] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Indexed: 12/21/2022]
Abstract
We have assessed the accuracy of the magnetic properties of a set of 51 density functional approximations, including both recently published and already established functionals. The accuracy assessment considers a series of 27 small molecules and is based on comparing the predicted magnetizabilities to literature reference values calculated using coupled-cluster theory with full singles and doubles and perturbative triples [CCSD(T)] employing large basis sets. The most accurate magnetizabilities, defined as the smallest mean absolute error, are obtained with the BHandHLYP functional. Three of the six studied Berkeley functionals and the three range-separated Florida functionals also yield accurate magnetizabilities. Also, some older functionals like CAM-B3LYP, KT1, BHLYP (BHandH), B3LYP, and PBE0 perform rather well. In contrast, unsatisfactory performance is generally obtained with Minnesota functionals, which are therefore not recommended for calculations of magnetically induced current density susceptibilities and related magnetic properties such as magnetizabilities and nuclear magnetic shieldings. We also demonstrate that magnetizabilities can be calculated by numerical integration of magnetizability density; we have implemented this approach as a new feature in the gauge-including magnetically induced current (GIMIC) method. Magnetizabilities can be calculated from magnetically induced current density susceptibilities within this approach even when analytical approaches for magnetizabilities as the second derivative of the energy have not been implemented. The magnetizability density can also be visualized, providing additional information that is not otherwise easily accessible on the spatial origin of magnetizabilities.
Collapse
Affiliation(s)
- Susi Lehtola
- Department
of Chemistry, University of Helsinki, P.O. Box 55, A.I. Virtanens plats
1, FI-00014 University
of Helsinki, Finland
- Molecular
Sciences Software Institute, Blacksburg, Virginia 24061, United States
| | - Maria Dimitrova
- Department
of Chemistry, University of Helsinki, P.O. Box 55, A.I. Virtanens plats
1, FI-00014 University
of Helsinki, Finland
| | - Heike Fliegl
- Institute
of Nanotechnology, KIT, Hermann-von-Helmholtz Platz 1, D-76344 Eggenstein-Leopoldshafen, Germany
| | - Dage Sundholm
- Department
of Chemistry, University of Helsinki, P.O. Box 55, A.I. Virtanens plats
1, FI-00014 University
of Helsinki, Finland
| |
Collapse
|
412
|
Eriksen JJ, Gauss J. Incremental treatments of the full configuration interaction problem. WIRES COMPUTATIONAL MOLECULAR SCIENCE 2021. [DOI: 10.1002/wcms.1525] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
| | - Jürgen Gauss
- Department Chemie Johannes Gutenberg‐Universität Mainz Mainz Germany
| |
Collapse
|
413
|
Wilhelm J, Seewald P, Golze D. Low-Scaling GW with Benchmark Accuracy and Application to Phosphorene Nanosheets. J Chem Theory Comput 2021; 17:1662-1677. [DOI: 10.1021/acs.jctc.0c01282] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Jan Wilhelm
- Institute of Theoretical Physics, University of Regensburg, D-93053 Regensburg, Germany
| | - Patrick Seewald
- Department of Chemistry, University of Zurich, CH-8057 Zurich, Switzerland
| | - Dorothea Golze
- Department of Applied Physics, Aalto University, FI-00076 Aalto, Finland
| |
Collapse
|
414
|
Banerjee S, Sokolov AY. Efficient implementation of the single-reference algebraic diagrammatic construction theory for charged excitations: Applications to the TEMPO radical and DNA base pairs. J Chem Phys 2021; 154:074105. [PMID: 33607870 DOI: 10.1063/5.0040317] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
We present an efficient implementation of the second- and third-order single-reference algebraic diagrammatic construction (ADC) theory for electron attachment and ionization energies and spectra [EA/IP-ADC(n), n = 2, 3]. Our new EA/IP-ADC program features spin adaptation for closed-shell systems, density fitting for efficient handling of the two-electron integral tensors, and vectorized and parallel implementation of tensor contractions. We demonstrate capabilities of our efficient implementation by applying the EA/IP-ADC(n) (n = 2, 3) methods to compute the photoelectron spectrum of the (2,2,6,6-tetramethylpiperidin-1-yl)oxyl (TEMPO) radical, as well as the vertical and adiabatic electron affinities of TEMPO and two DNA base pairs (guanine-cytosine and adenine-thymine). The spectra and electron affinities computed using large diffuse basis sets with up to 1028 molecular orbitals are found to be in good agreement with the best available results from the experiment and theoretical simulations.
Collapse
Affiliation(s)
- Samragni Banerjee
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, USA
| | - Alexander Yu Sokolov
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, USA
| |
Collapse
|
415
|
Ni Z, Guo Y, Neese F, Li W, Li S. Cluster-in-Molecule Local Correlation Method with an Accurate Distant Pair Correction for Large Systems. J Chem Theory Comput 2021; 17:756-766. [PMID: 33410327 DOI: 10.1021/acs.jctc.0c00831] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The cluster-in-molecule (CIM) local correlation approach with an accurate distant pair correlation energy correction is presented. For large systems, the inclusion of distant pair correlation energies is essential for the accurate prediction of absolute correlation energies and relative energies. Here, we propose a simple and efficient scheme for evaluating the distant pair correlation energy correction for the CIM approaches. The corrections can be readily extracted from electron correlation calculations of clusters with almost no additional effort. Benchmark calculations show that the improved CIM approach can recover more than 99.94% of the correlation energy calculated by the parent method. By combining the CIM approach with the domain-based local pair natural orbital (DLPNO) local correlation approach, we have provided accurate binding energies at the CIM-DLPNO-CCSD(T) level for a test set consisting of eight weakly bound complexes ranging in size from 200 to 1027 atoms. With these results as the reference data, the accuracy and applicability of other electron correlation methods and a few density functional methods for large systems have been assessed.
Collapse
Affiliation(s)
- Zhigang Ni
- School of Chemistry and Chemical Engineering, Key Laboratory of Mesoscopic Chemistry of Ministry of Education, Institute of Theoretical and Computational Chemistry, Nanjing University, Nanjing 210023, China.,College of Materials, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, China
| | - Yang Guo
- Qingdao Institute for Theoretical and Computational Sciences, Shandong University, Qingdao 266237, China
| | - Frank Neese
- Max Planck Institut für Kohlenforschung, Kaiser-Wilhelm Platz 1, D-45470 Mülheim an der Ruhr, Germany.,FAccTs GmbH, Rolandstr. 67, 50677 Köln, Germany
| | - Wei Li
- School of Chemistry and Chemical Engineering, Key Laboratory of Mesoscopic Chemistry of Ministry of Education, Institute of Theoretical and Computational Chemistry, Nanjing University, Nanjing 210023, China
| | - Shuhua Li
- School of Chemistry and Chemical Engineering, Key Laboratory of Mesoscopic Chemistry of Ministry of Education, Institute of Theoretical and Computational Chemistry, Nanjing University, Nanjing 210023, China
| |
Collapse
|
416
|
Chen J, Cheng HP, Freericks JK. Quantum-Inspired Algorithm for the Factorized Form of Unitary Coupled Cluster Theory. J Chem Theory Comput 2021; 17:841-847. [PMID: 33503376 DOI: 10.1021/acs.jctc.0c01052] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The factorized form of unitary coupled cluster theory (UCC) is a promising wave-function ansatz for the variational quantum eigensolver algorithm. Here, we present a quantum-inspired classical algorithm for UCC based on an exact operator identity for the individual UCC factors. We implement this algorithm for calculations of the H10 linear chain and the H2O molecule with single and double ζ basis sets to provide insights into UCC as a wave-function ansatz. We find that for weakly correlated molecules, the factorized form of the UCC provides similar accuracy to conventional coupled cluster theory (CC); for strongly correlated molecules, where CC often breaks down, UCC significantly outperforms the configuration interaction (CI) ansatz. As a result, the factorized form of the UCC is an accurate, efficient, and reliable electronic structure method in both the weakly and strongly correlated regions. This classical algorithm now allows robust benchmarking of anticipated results from quantum computers and application of coupled-cluster techniques to more strongly correlated molecules.
Collapse
Affiliation(s)
- Jia Chen
- Department of Physics, University of Florida, Gainesville, Florida 32611, USA.,Quantum Theory Project, University of Florida, Gainesville, Florida 32611, USA
| | - Hai-Ping Cheng
- Department of Physics, University of Florida, Gainesville, Florida 32611, USA.,Quantum Theory Project, University of Florida, Gainesville, Florida 32611, USA
| | - James K Freericks
- Department of Physics, Georgetown University, 37th Street and O Street, NW, Washington, District of Columbia 20057, United States
| |
Collapse
|
417
|
Bintrim SJ, Berkelbach TC. Full-frequency GW without frequency. J Chem Phys 2021; 154:041101. [PMID: 33514108 PMCID: PMC7843153 DOI: 10.1063/5.0035141] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 12/13/2020] [Indexed: 01/30/2023] Open
Abstract
Efficient computer implementations of the GW approximation must approximate a numerically challenging frequency integral; the integral can be performed analytically, but doing so leads to an expensive implementation whose computational cost scales as O(N6), where N is the size of the system. Here, we introduce a new formulation of the full-frequency GW approximation by exactly recasting it as an eigenvalue problem in an expanded space. This new formulation (1) avoids the use of time or frequency grids, (2) naturally obviates the need for the common "diagonal" approximation, (3) enables common iterative eigensolvers that reduce the canonical scaling to O(N5), and (4) enables a density-fitted implementation that reduces the scaling to O(N4). We numerically verify these scaling behaviors and test a variety of approximations that are motivated by this new formulation. The new formulation is found to be competitive with conventional O(N4) methods based on analytic continuation or contour deformation. In this new formulation, the relation of the GW approximation to configuration interaction, coupled-cluster theory, and the algebraic diagrammatic construction is made especially apparent, providing a new direction for improvements to the GW approximation.
Collapse
Affiliation(s)
- Sylvia J. Bintrim
- Department of Chemistry, Columbia University, New York, New York 10027, USA
| | | |
Collapse
|
418
|
Lau BTG, Knizia G, Berkelbach TC. Regional Embedding Enables High-Level Quantum Chemistry for Surface Science. J Phys Chem Lett 2021; 12:1104-1109. [PMID: 33475362 DOI: 10.1021/acs.jpclett.0c03274] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Compared to common density functionals, ab initio wave function methods can provide greater reliability and accuracy, which could prove useful when modeling adsorbates or defects of otherwise periodic systems. However, the breaking of translational symmetry necessitates large supercells that are often prohibitive for correlated wave function methods. As an alternative, this paper introduces the regional embedding approach, which enables correlated wave function treatments of only a target fragment of interest through small, fragment-localized orbital spaces constructed using a simple overlap criterion. Applications to the adsorption of water on lithium hydride, hexagonal boron nitride, and graphene substrates show that regional embedding combined with focal-point corrections can provide converged CCSD(T) (coupled-cluster) adsorption energies with very small fragment sizes.
Collapse
Affiliation(s)
- Bryan T G Lau
- Center for Computational Quantum Physics, Flatiron Institute, New York, New York 10010, United States
| | - Gerald Knizia
- Department of Chemistry, Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Timothy C Berkelbach
- Center for Computational Quantum Physics, Flatiron Institute, New York, New York 10010, United States
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| |
Collapse
|
419
|
Abstract
We present a Perspective on what the future holds for full configuration interaction (FCI) theory, with an emphasis on conceptual rather than technical details. Upon revisiting the early history of FCI, a number of its key contemporary approximations are compared on as equal a footing as possible, using a recent blind challenge on the benzene molecule as a testbed [Eriksen et al., J. Phys. Chem. Lett., 2020 11, 8922]. In the process, we review the scope of applications for which FCI continues to prove indispensable, and the required traits in terms of robustness, efficacy, and reliability its modern approximations must satisfy are discussed. We close by conveying a number of general observations on the merits offered by the state-of-the-art alongside some of the challenges still faced to this day. While the field has altogether seen immense progress over the years-the past decade, in particular-it remains clear that our community as a whole has a substantial way to go in enhancing the overall applicability of near-exact electronic structure theory for systems of general composition and increasing size.
Collapse
Affiliation(s)
- Janus J Eriksen
- School of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS, United Kingdom
| |
Collapse
|
420
|
Peng Y, Zhou X, Wang Z, Wang F. Diffusion Monte Carlo method on small boron clusters using single- and multi- determinant-Jastrow trial wavefunctions. J Chem Phys 2021; 154:024301. [PMID: 33445915 DOI: 10.1063/5.0031051] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Multireference character in some small boron clusters could be significant, and a previous all-electron fixed-node diffusion quantum Monte Carlo (FN-DMC) calculation with the single-determinant-Jastrow (SDJ) trial wavefunction shows that the atomization energy (AE) of B4 + is overestimated by about 1.4 eV compared with the coupled cluster method with single, doubles, and perturbative triples [CCSD(T)] results. All-electron FN-DMC calculations and those with the pseudopotential (PP) using SDJ and multi-determinant-Jastrow (MDJ) trial wavefunctions with B3LYP orbitals as well as CC calculations at different levels are carried out on Bn Q (n = 1-5, Q = -1, 0, 1) clusters. The obtained FN-DMC energies indicate that the node error of the employed SDJ trial wavefunction in all-electron calculations is different from that with the PP for some clusters. The error of AEs and dissociation energies (DEs) from all-electron FN-DMC calculations is larger than that with the PP when the SDJ trial wavefunction is employed, while errors of CC methods do not depend on whether the PP is used. AEs and DEs of the boron clusters are improved significantly when MDJ trial wavefunctions are used in both all-electron calculations and those with the PP, and their error is similar to that of CCSD(T) compared with CCSDT(Q) results. On the other hand, reasonable adiabatic electron detachment energies (ADEs) and ionization potentials (AIPs) are achieved with FN-DMC using SDJ trial wavefunctions and MDJ is less effective on ADEs and AIPs. Furthermore, the relative energy between two structures of B9 - is predicted reliably with FN-DMC using the SDJ trial wavefunction and the effect of MDJ is negligible, while density functional theory results using different exchange-correlation functionals differ significantly.
Collapse
Affiliation(s)
- Yun Peng
- Institute of Atomic and Molecular Physics, Key Laboratory of High Energy Density Physics and Technology, Ministry of Education, Sichuan University, Chengdu 610065, People's Republic of China
| | - Xiaojun Zhou
- Department of Physics, Shaanxi University of Science and Technology, Xi'an 710021, People's Republic of China
| | - Zhifan Wang
- School of Electronic Engineering, Chengdu Technological University, Chengdu 610064, People's Republic of China
| | - Fan Wang
- Institute of Atomic and Molecular Physics, Key Laboratory of High Energy Density Physics and Technology, Ministry of Education, Sichuan University, Chengdu 610065, People's Republic of China
| |
Collapse
|
421
|
White AF, Gao Y, Minnich AJ, Chan GKL. A coupled cluster framework for electrons and phonons. J Chem Phys 2020; 153:224112. [DOI: 10.1063/5.0033132] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Affiliation(s)
- Alec F. White
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, USA
| | - Yang Gao
- Division of Engineering and Applied Science, California Institute of Technology, Pasadena, California 91125, USA
| | - Austin J. Minnich
- Division of Engineering and Applied Science, California Institute of Technology, Pasadena, California 91125, USA
| | - Garnet Kin-Lic Chan
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, USA
| |
Collapse
|
422
|
Upadhyay S, Dumi A, Shee J, Jordan KD. The role of high-order electron correlation effects in a model system for non-valence correlation-bound anions. J Chem Phys 2020; 153:224118. [DOI: 10.1063/5.0030942] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Affiliation(s)
- Shiv Upadhyay
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, USA
| | - Amanda Dumi
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, USA
| | - James Shee
- Department of Chemistry, University of California Berkeley, Berkeley, California 94720, USA
| | - Kenneth D. Jordan
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, USA
| |
Collapse
|
423
|
Abstract
We introduce new and robust decompositions of mean-field Hartree-Fock and Kohn-Sham density functional theory relying on the use of localized molecular orbitals and physically sound charge population protocols. The new lossless property decompositions, which allow for partitioning one-electron reduced density matrices into either bond-wise or atomic contributions, are compared to alternatives from the literature with regard to both molecular energies and dipole moments. Besides commenting on possible applications as an interpretative tool in the rationalization of certain electronic phenomena, we demonstrate how decomposed mean-field theory makes it possible to expose and amplify compositional features in the context of machine-learned quantum chemistry. This is made possible by improving upon the granularity of the underlying data. On the basis of our preliminary proof-of-concept results, we conjecture that many of the structure-property inferences in existence today may be further refined by efficiently leveraging an increase in dataset complexity and richness.
Collapse
Affiliation(s)
- Janus J Eriksen
- School of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS, United Kingdom
| |
Collapse
|
424
|
Azadi S, Booth GH, Kühne TD. Equation of state of atomic solid hydrogen by stochastic many-body wave function methods. J Chem Phys 2020; 153:204107. [DOI: 10.1063/5.0026499] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Sam Azadi
- Department of Physics, King’s College London, Strand, WC2R 2LS London, United Kingdom
| | - George H. Booth
- Department of Physics, King’s College London, Strand, WC2R 2LS London, United Kingdom
| | - Thomas D. Kühne
- Department of Chemistry, Paderborn Center for Parallel Computing, Paderborn University, 33098 Paderborn, Germany
| |
Collapse
|
425
|
Morales MA, Malone FD. Accelerating the convergence of auxiliary-field quantum Monte Carlo in solids with optimized Gaussian basis sets. J Chem Phys 2020; 153:194111. [DOI: 10.1063/5.0025390] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Miguel A. Morales
- Quantum Simulations Group, Lawrence Livermore National Laboratory, Livermore, California 94550, USA
| | - Fionn D. Malone
- Quantum Simulations Group, Lawrence Livermore National Laboratory, Livermore, California 94550, USA
| |
Collapse
|
426
|
Anderson RJ, Booth GH. Four-component full configuration interaction quantum Monte Carlo for relativistic correlated electron problems. J Chem Phys 2020; 153:184103. [DOI: 10.1063/5.0029863] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Robert J. Anderson
- Department of Physics, King’s College London, Strand, London WC2R 2LS, United Kingdom
| | - George H. Booth
- Department of Physics, King’s College London, Strand, London WC2R 2LS, United Kingdom
| |
Collapse
|
427
|
Blunt NS, Mahajan A, Sharma S. Efficient multireference perturbation theory without high-order reduced density matrices. J Chem Phys 2020; 153:164120. [DOI: 10.1063/5.0023353] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Affiliation(s)
- Nick S. Blunt
- Department of Chemistry, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Ankit Mahajan
- Department of Chemistry, University of Colorado, Boulder, Colorado 80302, USA
| | - Sandeep Sharma
- Department of Chemistry, University of Colorado, Boulder, Colorado 80302, USA
| |
Collapse
|
428
|
Eriksen JJ, Gauss J. Ground and excited state first-order properties in many-body expanded full configuration interaction theory. J Chem Phys 2020; 153:154107. [DOI: 10.1063/5.0024791] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Affiliation(s)
- Janus J. Eriksen
- School of Chemistry, University of Bristol, Cantock’s Close, Bristol BS8 1TS, United Kingdom
| | - Jürgen Gauss
- Department Chemie, Johannes Gutenberg-Universität Mainz, Duesbergweg 10-14, 55128 Mainz, Germany
| |
Collapse
|
429
|
Chatterjee K, Sokolov AY. Extended Second-Order Multireference Algebraic Diagrammatic Construction Theory for Charged Excitations. J Chem Theory Comput 2020; 16:6343-6357. [DOI: 10.1021/acs.jctc.0c00778] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Koushik Chatterjee
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - Alexander Yu. Sokolov
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| |
Collapse
|
430
|
Schwalbe S, Fiedler L, Kraus J, Kortus J, Trepte K, Lehtola S. PyFLOSIC: Python-based Fermi–Löwdin orbital self-interaction correction. J Chem Phys 2020; 153:084104. [DOI: 10.1063/5.0012519] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Sebastian Schwalbe
- Institute of Theoretical Physics, TU Bergakademie Freiberg, Leipziger Str. 23, D-09599 Freiberg, Germany
| | - Lenz Fiedler
- Institute of Theoretical Physics, TU Bergakademie Freiberg, Leipziger Str. 23, D-09599 Freiberg, Germany
| | - Jakob Kraus
- Institute of Theoretical Physics, TU Bergakademie Freiberg, Leipziger Str. 23, D-09599 Freiberg, Germany
| | - Jens Kortus
- Institute of Theoretical Physics, TU Bergakademie Freiberg, Leipziger Str. 23, D-09599 Freiberg, Germany
| | - Kai Trepte
- Department of Physics, Central Michigan University, Mount Pleasant, Michigan 48859, USA
| | - Susi Lehtola
- Department of Chemistry, University of Helsinki, P.O. Box 55 (A. I. Virtasen Aukio 1), FI-00014 University of Helsinki, Finland
| |
Collapse
|
431
|
Sherrill CD, Manolopoulos DE, Martínez TJ, Michaelides A. Electronic structure software. J Chem Phys 2020; 153:070401. [DOI: 10.1063/5.0023185] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Affiliation(s)
- C. David Sherrill
- Center for Computational Molecular Science and Technology, School of Chemistry and Biochemistry, and School of Computational Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia
30332-0400, USA
| | - David E. Manolopoulos
- Physical and Theoretical Chemistry Laboratory, Department of Chemistry, Oxford University, South Parks Road, Oxford OX1
3QZ, United Kingdom
| | - Todd J. Martínez
- Department of Chemistry and the PULSE Institute, Stanford University, Stanford, California 94305,
USA
| | - Angelos Michaelides
- Thomas Young Centre, London Centre for Nanotechnology and Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT, United Kingdom
| |
Collapse
|
432
|
Zagorec-Marks W, Smith JET, Foreman MM, Sharma S, Weber JM. Intrinsic electronic spectra of cryogenically prepared protoporphyrin IX ions in vacuo – deprotonation-induced Stark shifts. Phys Chem Chem Phys 2020; 22:20295-20302. [DOI: 10.1039/d0cp03614e] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We present electronic spectra containing the Qx and Qy absorption bands of singly and doubly deprotonated protoporphyrin IX, prepared as mass selected ions in vacuo at cryogenic temperatures, revealing vibronic structure of both bands.
Collapse
|
433
|
Motta M, Gujarati TP, Rice JE, Kumar A, Masteran C, Latone JA, Lee E, Valeev EF, Takeshita TY. Quantum simulation of electronic structure with a transcorrelated Hamiltonian: improved accuracy with a smaller footprint on the quantum computer. Phys Chem Chem Phys 2020; 22:24270-24281. [DOI: 10.1039/d0cp04106h] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Molecular quantum computing simulations are currently limited by the use of minimal Gaussian bases, a problem we overcome using a canonical transcorrelated Hamiltonian to accelerate basis convergence, with unitary coupled cluster as an example.
Collapse
Affiliation(s)
- Mario Motta
- IBM Quantum
- IBM Research – Almaden
- San Jose
- USA
| | | | | | | | | | | | - Eunseok Lee
- Mercedes-Benz Research and Development North America
- Sunnyvale
- USA
| | | | | |
Collapse
|