401
|
Zhao J, Li L, Leissring MA. Insulin-degrading enzyme is exported via an unconventional protein secretion pathway. Mol Neurodegener 2009; 4:4. [PMID: 19144176 PMCID: PMC2632642 DOI: 10.1186/1750-1326-4-4] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2008] [Accepted: 01/14/2009] [Indexed: 11/28/2022] Open
Abstract
Insulin-degrading enzyme (IDE) is a ubiquitously expressed zinc-metalloprotease that degrades several pathophysiologically significant extracellular substrates, including insulin and the amyloid β-protein (Aβ), and accumulating evidence suggests that IDE dysfunction may be operative in both type 2 diabetes mellitus and Alzheimer disease (AD). Although IDE is well known to be secreted by a variety of cell types, the underlying trafficking pathway(s) remain poorly understood. To address this topic, we investigated the effects of known inhibitors or stimulators of protein secretion on the secretion of IDE from murine hepatocytes and HeLa cells. IDE secretion was found to be unaffected by the classical secretion inhibitors brefeldin A (BFA), monensin, or nocodazole, treatments that readily inhibited the secretion of α1-antitrypsin (AAT) overexpressed in the same cells. Using a novel cell-based Aβ-degradation assay, we show further that IDE secretion was similarly unaffected by multiple stimulators of protein secretion, including glyburide and 3'-O-(4-benzoyl)benzoyl-ATP (Bz-ATP). The calcium ionophore, A23187, increased extracellular IDE activity, but only under conditions that also elicited cytotoxicity. Our results provide the first biochemical evidence that IDE export is not dependent upon the classical secretion pathway, thereby identifying IDE as a novel member of the select class of unconventionally secreted proteins. Further elucidation of the mechanisms underlying IDE secretion, which would be facilitated by the assays described herein, promises to uncover processes that might be defective in disease or manipulated for therapeutic benefit.
Collapse
Affiliation(s)
- Ji Zhao
- Department of Molecular Therapeutics, The Scripps Research Institute, Scripps Florida, 5353 Parkside Dr,, Jupiter, FL 32458, USA.
| | | | | |
Collapse
|
402
|
Zuo X, Jia J. Promoter polymorphisms which modulate insulin degrading enzyme expression may increase susceptibility to Alzheimer's disease. Brain Res 2009; 1249:1-8. [DOI: 10.1016/j.brainres.2008.10.034] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2008] [Revised: 10/01/2008] [Accepted: 10/10/2008] [Indexed: 10/21/2022]
|
403
|
Wang R, Wang S, Malter JS, Wang DS. Effects of 4-hydroxy-nonenal and Amyloid-beta on expression and activity of endothelin converting enzyme and insulin degrading enzyme in SH-SY5Y cells. J Alzheimers Dis 2009; 17:489-501. [PMID: 19363254 PMCID: PMC2819406 DOI: 10.3233/jad-2009-1066] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The cerebral accumulation of amyloid-beta (Abeta) is a consistent feature of and likely contributor to the development of Alzheimer's disease (AD). In addition to dysregulated production, increasing experimental evidence suggests reduced catabolism plays an important role in Abeta accumulation. Although endothelin converting enzyme (ECE) and insulin degrading enzyme (IDE) degrade and thus contribute to regulating the steady-state levels of Abeta, how these enzymes are regulated remain poorly understood. In this study, we investigated the effects of 4-hydroxy-nonenal (HNE) and Abeta on the expression and activity of ECE-1 and IDE in human neuroblastoma SH-SY5Y cells. Treatment with HNE or Abeta upregulated ECE-1 mRNA and protein, while IDE was unchanged. Although both ECE-1 and IDE were oxidized within 24 h of HNE or Abeta treatment, ECE-1 catalytic activity was elevated while IDE specific activity was unchanged. The results demonstrated for the first time that both ECE-1 and IDE are substrates of HNE modification induced by Abeta. In addition, the results suggest complex mechanisms underlying the regulation of their enzymatic activity.
Collapse
Affiliation(s)
| | | | - James S. Malter
- Department of Pathology and Laboratory Medicine, School of Medicine and Public Health, University of Wisconsin, Madison, WI, USA
| | - Deng-Shun Wang
- Department of Pathology and Laboratory Medicine, School of Medicine and Public Health, University of Wisconsin, Madison, WI, USA
| |
Collapse
|
404
|
Abstract
The short half-life of insulin in the human body (4-6 min) prompted the search and discovery of insulin-degrading enzyme (IDE), a 110-kDa metalloprotease that can rapidly degrade insulin into inactive fragments. Genetic and biochemical evidence accumulated in the last sixty years has implicated IDE as an important physiological contributor in the maintenance of insulin levels. Recent structural and biochemical analyses reveal the molecular basis of how IDE uses size and charge distribution of the catalytic chamber and structural flexibility of substrates to selectively recognize and degrade insulin, as well as the regulatory mechanisms of this enzyme. These studies provide a path for potential therapeutics in the control of insulin metabolism by the degradation of insulin.
Collapse
Affiliation(s)
- Raymond E. Hulse
- Committee on Neurobiology, The University of Chicago, 947 East 58 Street, Chicago, IL 60637
| | - Luis A. Ralat
- Ben-May Department for Cancer Research, The University of Chicago, 929 East 57 Street, Chicago, IL 60637
| | - Wei-Jen Tang
- Committee on Neurobiology, The University of Chicago, 947 East 58 Street, Chicago, IL 60637
- Ben-May Department for Cancer Research, The University of Chicago, 929 East 57 Street, Chicago, IL 60637
| |
Collapse
|
405
|
Klock G, Baiersdörfer M, Koch-Brandt C. Chapter 7 Cell Protective Functions of Secretory Clusterin (sCLU). Adv Cancer Res 2009; 104:115-38. [DOI: 10.1016/s0065-230x(09)04007-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
406
|
S Roriz-Filho J, Sá-Roriz TM, Rosset I, Camozzato AL, Santos AC, Chaves MLF, Moriguti JC, Roriz-Cruz M. (Pre)diabetes, brain aging, and cognition. Biochim Biophys Acta Mol Basis Dis 2008; 1792:432-43. [PMID: 19135149 DOI: 10.1016/j.bbadis.2008.12.003] [Citation(s) in RCA: 250] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2008] [Revised: 12/08/2008] [Accepted: 12/08/2008] [Indexed: 12/14/2022]
Abstract
Cognitive dysfunction and dementia have recently been proven to be common (and underrecognized) complications of diabetes mellitus (DM). In fact, several studies have evidenced that phenotypes associated with obesity and/or alterations on insulin homeostasis are at increased risk for developing cognitive decline and dementia, including not only vascular dementia, but also Alzheimer's disease (AD). These phenotypes include prediabetes, diabetes, and the metabolic syndrome. Both types 1 and 2 diabetes are also important risk factors for decreased performance in several neuropsychological functions. Chronic hyperglycemia and hyperinsulinemia primarily stimulates the formation of Advanced Glucose Endproducts (AGEs), which leads to an overproduction of Reactive Oxygen Species (ROS). Protein glycation and increased oxidative stress are the two main mechanisms involved in biological aging, both being also probably related to the etiopathogeny of AD. AD patients were found to have lower than normal cerebrospinal fluid levels of insulin. Besides its traditional glucoregulatory importance, insulin has significant neurothrophic properties in the brain. How can clinical hyperinsulinism be a risk factor for AD whereas lab experiments evidence insulin to be an important neurothrophic factor? These two apparent paradoxal findings may be reconciliated by evoking the concept of insulin resistance. Whereas insulin is clearly neurothrophic at moderate concentrations, too much insulin in the brain may be associated with reduced amyloid-beta (Abeta) clearance due to competition for their common and main depurative mechanism - the Insulin-Degrading Enzyme (IDE). Since IDE is much more selective for insulin than for Abeta, brain hyperinsulinism may deprive Abeta of its main clearance mechanism. Hyperglycemia and hyperinsulinemia seems to accelerate brain aging also by inducing tau hyperphosphorylation and amyloid oligomerization, as well as by leading to widespread brain microangiopathy. In fact, diabetes subjects are more prone to develop extense and earlier-than-usual leukoaraiosis (White Matter High-Intensity Lesions - WMHL). WMHL are usually present at different degrees in brain scans of elderly people. People with more advanced WMHL are at increased risk for executive dysfunction, cognitive impairment and dementia. Clinical phenotypes associated with insulin resistance possibly represent true clinical models for brain and systemic aging.
Collapse
Affiliation(s)
- Jarbas S Roriz-Filho
- Division of Geriatrics, Department of Internal Medicine, Faculty of Medicine, University of São Paulo-RP, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
407
|
IDE Gene Polymorphism Influences on BPSD in Mild Dementia of Alzheimer's Type. Curr Gerontol Geriatr Res 2008:858759. [PMID: 19415148 PMCID: PMC2671997 DOI: 10.1155/2008/858759] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2008] [Revised: 07/14/2008] [Accepted: 10/03/2008] [Indexed: 11/18/2022] Open
Abstract
Insulin degrading enzyme (IDE) degrades amyloid beta (Abeta), which may inhibit the accumulation of Abeta in a brain affected with dementia of Alzheimer's type (DAT). A decrease in the activity of IDE results in changes in glucose utilization in the brain, which could affect the cognitive and psychiatric symptoms of DAT. We investigated a possible association of IDE gene polymorphism and the behavioral and psychological symptoms of dementia (BPSD) in mild DAT. The genotyping for IDE and apolipoprotein E (ApoE) was determined in 207 patients with mild DAT and 215 controls. The occurrence of BPSD was demonstrated using the Behavioral Pathology in Alzheimer's Disease Rating Scale (BEHAVE-AD). IDE gene polymorphism is unlikely to play a substantial role in conferring susceptibility to DAT, but it may be involved in the development of affective disturbance through the course of mild DAT, regardless of the presence of an ApoE epsilon4 allele. The present data could be the result of a small sample size. Further investigations using larger samples are thus required to clarify the correlation between IDE gene polymorphism, susceptibility to DAT, and emergence of BPSD.
Collapse
|
408
|
Ciaccio C, Tundo GR, Grasso G, Spoto G, Marasco D, Ruvo M, Gioia M, Rizzarelli E, Coletta M. Somatostatin: a novel substrate and a modulator of insulin-degrading enzyme activity. J Mol Biol 2008; 385:1556-67. [PMID: 19073193 DOI: 10.1016/j.jmb.2008.11.025] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2008] [Revised: 10/15/2008] [Accepted: 11/17/2008] [Indexed: 12/26/2022]
Abstract
Insulin-degrading enzyme (IDE) is an interesting pharmacological target for Alzheimer's disease (AD), since it hydrolyzes beta-amyloid, producing non-neurotoxic fragments. It has also been shown that the somatostatin level reduction is a pathological feature of AD and that it regulates the neprilysin activity toward beta-amyloid. In this work, we report for the first time that IDE is able to hydrolyze somatostatin [k(cat) (s(-1))=0.38 (+/-0.05); K(m) (M)=7.5 (+/-0.9) x 10(-6)] at the Phe6-Phe7 amino acid bond. On the other hand, somatostatin modulates IDE activity, enhancing the enzymatic cleavage of a novel fluorogenic beta-amyloid through a decrease of the K(m) toward this substrate, which corresponds to the 10-25 amino acid sequence of the Abeta(1-40). Circular dichroism spectroscopy and surface plasmon resonance imaging experiments show that somatostatin binding to IDE brings about a concentration-dependent structural change of the secondary and tertiary structure(s) of the enzyme, revealing two possible binding sites. The higher affinity binding site disappears upon inactivation of IDE by ethylenediaminetetraacetic acid, which chelates the catalytic Zn(2+) ion. As a whole, these features suggest that the modulatory effect is due to an allosteric mechanism: somatostatin binding to the active site of one IDE subunit (where somatostatin is cleaved) induces an enhancement of IDE proteolytic activity toward fluorogenic beta-amyloid by another subunit. Therefore, this investigation on IDE-somatostatin interaction contributes to a more exhaustive knowledge about the functional and structural aspects of IDE and its pathophysiological implications in the amyloid deposition and somatostatin homeostasis in the brain.
Collapse
Affiliation(s)
- Chiara Ciaccio
- Department of Experimental Medicine and Biochemical Sciences, University of Roma Tor Vergata, Rome, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
409
|
Tambuyzer BR, Ponsaerts P, Nouwen EJ. Microglia: gatekeepers of central nervous system immunology. J Leukoc Biol 2008; 85:352-70. [DOI: 10.1189/jlb.0608385] [Citation(s) in RCA: 238] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
|
410
|
Biran Y, Masters CL, Barnham KJ, Bush AI, Adlard PA. Pharmacotherapeutic targets in Alzheimer's disease. J Cell Mol Med 2008; 13:61-86. [PMID: 19040415 PMCID: PMC3823037 DOI: 10.1111/j.1582-4934.2008.00595.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder which is characterized by an increasing impairment in normal memory and cognitive processes that significantly diminishes a person's daily functioning. Despite decades of research and advances in our understanding of disease aetiology and pathogenesis, there are still no effective disease-modifying drugs available for the treatment of AD. However, numerous compounds are currently undergoing pre-clinical and clinical evaluations. These candidate pharma-cotherapeutics are aimed at various aspects of the disease, such as the microtubule-associated τ-protein, the amyloid-β (Aβ) peptide and metal ion dyshomeostasis – all of which are involved in the development and progression of AD. We will review the way these pharmacological strategies target the biochemical and clinical features of the disease and the investigational drugs for each category.
Collapse
Affiliation(s)
- Yif'at Biran
- The Oxidation Biology Laboratory, The Mental Health Research Institute, Parkville, Victoria, Australia
| | | | | | | | | |
Collapse
|
411
|
Insulin resistance and amyloidogenesis as common molecular foundation for type 2 diabetes and Alzheimer's disease. Biochim Biophys Acta Mol Basis Dis 2008; 1792:482-96. [PMID: 19026743 DOI: 10.1016/j.bbadis.2008.10.014] [Citation(s) in RCA: 240] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2008] [Revised: 10/18/2008] [Accepted: 10/21/2008] [Indexed: 12/22/2022]
Abstract
Characterized as a peripheral metabolic disorder and a degenerative disease of the central nervous system respectively, it is now widely recognized that type 2 diabetes mellitus (T2DM) and Alzheimer's disease (AD) share several common abnormalities including impaired glucose metabolism, increased oxidative stress, insulin resistance and amyloidogenesis. Several recent studies suggest that this is not an epiphenomenon, but rather these two diseases disrupt common molecular pathways and each disease compounds the progression of the other. For instance, in AD the accumulation of the amyloid-beta peptide (Abeta), which characterizes the disease and is thought to participate in the neurodegenerative process, may also induce neuronal insulin resistance. Conversely, disrupting normal glucose metabolism in transgenic animal models of AD that over-express the human amyloid precursor protein (hAPP) promotes amyloid-peptide aggregation and accelerates the disease progression. Studying these processes at a cellular level suggests that insulin resistance and Abeta aggregation may not only be the consequence of excitotoxicity, aberrant Ca(2+) signals, and proinflammatory cytokines such as TNF-alpha, but may also promote these pathological effectors. At the molecular level, insulin resistance and Abeta disrupt common signal transduction cascades including the insulin receptor family/PI3 kinase/Akt/GSK3 pathway. Thus both disease processes contribute to overlapping pathology, thereby compounding disease symptoms and progression.
Collapse
|
412
|
Shimizu E, Kawahara K, Kajizono M, Sawada M, Nakayama H. IL-4-induced selective clearance of oligomeric beta-amyloid peptide(1-42) by rat primary type 2 microglia. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2008; 181:6503-13. [PMID: 18941241 DOI: 10.4049/jimmunol.181.9.6503] [Citation(s) in RCA: 122] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
A hallmark of immunopathology associated with Alzheimer's disease is the presence of activated microglia (MG) surrounding senile plaque deposition of beta-amyloid (Abeta) peptides. Abeta peptides are believed to be potent activators of MG, which leads to Alzheimer's disease pathology, but the role of MG subtypes in Abeta clearance still remains unclear. In this study, we found that IL-4 treatment of rat primary-type 2 MG enhanced uptake and degradation of oligomeric Abeta(1-42) (o-Abeta(1-42)). IL-4 treatment induced significant expression of the scavenger receptor CD36 and the Abeta-degrading enzymes neprilysin (NEP) and insulin-degrading enzyme (IDE) but reduced expression of certain other scavenger receptors. Of cytokines and stimulants tested, the anti-inflammatory cytokines IL-4 and IL-13 effectively enhanced CD36, NEP, and IDE. We demonstrated the CD36 contribution to IL-4-induced Abeta clearance: Chinese hamster ovary cells overexpressing CD36 exhibited marked, dose-dependent degradation of (125)I-labeled o-Abeta(1-42) compared with controls, the degradation being blocked by anti-CD36 Ab. Also, we found IL-4-induced clearance of o-Abeta(1-42) in type 2 MG from CD36-expressing WKY/NCrj rats but not in cells from SHR/NCrj rats with dysfunctional CD36 expression. NEP and IDE also contributed to IL-4-induced degradation of Abeta(1-42), because their inhibitors, thiorphan and insulin, respectively, significantly suppressed this activity. IL-4-stimulated uptake and degradation of o-Abeta(1-42) were selectively enhanced in type 2, but not type 1 MG that express CD40, which suggests that the two MG types may play different neuroimmunomodulating roles in the Abeta-overproducing brain. Thus, selective o-Abeta(1-42) clearance, which is induced by IL-4, may provide an additional focus for developing strategies to prevent and treat Alzheimer's disease.
Collapse
Affiliation(s)
- Eisuke Shimizu
- Department of Molecular Cell Function, Graduate School of Medical and Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
| | | | | | | | | |
Collapse
|
413
|
Sun B, Zhou Y, Halabisky B, Lo I, Cho SH, Mueller-Steiner S, Wang X, Grubb A, Gan L. Cystatin C-cathepsin B axis regulates amyloid beta levels and associated neuronal deficits in an animal model of Alzheimer's disease. Neuron 2008; 60:247-57. [PMID: 18957217 PMCID: PMC2755563 DOI: 10.1016/j.neuron.2008.10.001] [Citation(s) in RCA: 178] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2008] [Revised: 09/23/2008] [Accepted: 10/07/2008] [Indexed: 12/19/2022]
Abstract
Impaired degradation of amyloid beta (Abeta) peptides could lead to Abeta accumulation, an early trigger of Alzheimer's disease (AD). How Abeta-degrading enzymes are regulated remains largely unknown. Cystatin C (CysC, CST3) is an endogenous inhibitor of cysteine proteases, including cathepsin B (CatB), a recently discovered Abeta-degrading enzyme. A CST3 polymorphism is associated with an increased risk of late-onset sporadic AD. Here, we identified CysC as the key inhibitor of CatB-induced Abeta degradation in vivo. Genetic ablation of CST3 in hAPP-J20 mice significantly lowered soluble Abeta levels, the relative abundance of Abeta1-42, and plaque load. CysC removal also attenuated Abeta-associated cognitive deficits and behavioral abnormalities and restored synaptic plasticity in the hippocampus. Importantly, the beneficial effects of CysC reduction were abolished on a CatB null background, providing direct evidence that CysC regulates soluble Abeta and Abeta-associated neuronal deficits through inhibiting CatB-induced Abeta degradation.
Collapse
Affiliation(s)
- Binggui Sun
- Gladstone Institute of Neurological Diseases, University of California, San Francisco, California 94158
- Department of Neurology, University of California, San Francisco, California 94158
| | - Yungui Zhou
- Gladstone Institute of Neurological Diseases, University of California, San Francisco, California 94158
| | - Brian Halabisky
- Gladstone Institute of Neurological Diseases, University of California, San Francisco, California 94158
- Department of Neurology, University of California, San Francisco, California 94158
| | - Iris Lo
- Gladstone Institute of Neurological Diseases, University of California, San Francisco, California 94158
| | - Seo-Hyun Cho
- Gladstone Institute of Neurological Diseases, University of California, San Francisco, California 94158
- Department of Neurology, University of California, San Francisco, California 94158
| | - Sarah Mueller-Steiner
- Gladstone Institute of Neurological Diseases, University of California, San Francisco, California 94158
- Department of Neurology, University of California, San Francisco, California 94158
| | - Xin Wang
- Gladstone Institute of Neurological Diseases, University of California, San Francisco, California 94158
| | - Anders Grubb
- Department of Clinical Chemistry, University Hospital, S-22185 Lund, Sweden
| | - Li Gan
- Gladstone Institute of Neurological Diseases, University of California, San Francisco, California 94158
- Department of Neurology, University of California, San Francisco, California 94158
| |
Collapse
|
414
|
Yamada K, Hashimoto T, Yabuki C, Nagae Y, Tachikawa M, Strickland DK, Liu Q, Bu G, Basak JM, Holtzman DM, Ohtsuki S, Terasaki T, Iwatsubo T. The low density lipoprotein receptor-related protein 1 mediates uptake of amyloid beta peptides in an in vitro model of the blood-brain barrier cells. J Biol Chem 2008; 283:34554-62. [PMID: 18940800 DOI: 10.1074/jbc.m801487200] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The metabolism of amyloid beta peptide (A beta) in the brain is crucial to the pathogenesis of Alzheimer disease. A body of evidence suggests that A beta is actively transported from brain parenchyma to blood across the blood-brain barrier (BBB), although the precise mechanism remains unclear. To unravel the cellular and molecular mechanism of A beta transport across the BBB, we established a new in vitro model of the initial internalization step of A beta transport using TR-BBB cells, a conditionally immortalized endothelial cell line from rat brain. We show that TR-BBB cells rapidly internalize A beta through a receptor-mediated mechanism. We also provide evidence that A beta internalization is mediated by LRP1 (low density lipoprotein receptor-related protein 1), since administration of LRP1 antagonist, receptor-associated protein, neutralizing antibody, or small interference RNAs all reduced A beta uptake. Despite the requirement of LRP1-dependent internalization, A beta does not directly bind to LRP1 in an in vitro binding assay. Unlike TR-BBB cells, mouse embryonic fibroblasts endogenously expressing functional LRP1 and exhibiting the authentic LRP1-mediated endocytosis (e.g. of tissue plasminogen activator) did not show rapid A beta uptake. Based on these data, we propose that the rapid LRP1-dependent internalization of A beta occurs under the BBB-specific cellular context and that TR-BBB is a useful tool for analyzing the molecular mechanism of the rapid transport of A beta across BBB.
Collapse
Affiliation(s)
- Kaoru Yamada
- Department of Neuropathology and Neuroscience, Graduate School of Pharmaceutical Sciences, University of Tokyo, Tokyo 113-0033, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
415
|
EPTING CONRADL, KING FRANKW, PEDERSEN ANISSA, ZAMAN JESSICA, RITNER CARISSA, BERNSTEIN HAROLDS. Stem cell antigen-1 localizes to lipid microdomains and associates with insulin degrading enzyme in skeletal myoblasts. J Cell Physiol 2008; 217:250-60. [PMID: 18506847 PMCID: PMC2636697 DOI: 10.1002/jcp.21500] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Stem cell antigen-1 (Sca-1, Ly6A/E) is a glycosylphosphotidylinositol-anchored protein that identifies many tissue progenitor cells. We originally identified Sca-1 as a marker of myogenic precursor cells and subsequently demonstrated that Sca-1 regulates proliferation of activated myoblasts, suggesting an important role for Sca-1 in skeletal muscle homeostasis. Beyond its functional role in regulating proliferation, however, little is known about the mechanism(s) that drive Sca-1-mediated events. We now report that lipid microdomain organization is essential for normal myogenic differentiation, and that Sca-1 constitutively localizes to these domains during myoblast proliferation and differentiation. We also demonstrate that Sca-1 associates with insulin degrading enzyme (IDE), a catalytic protein responsible for the cleavage of mitogenic peptides, in differentiating myoblasts. We show that chemical inhibition of IDE as well as RNAi knockdown of IDE mRNA recapitulates the phenotype of Sca-1 interference, that is, sustained myoblast proliferation and delayed myogenic differentiation. These findings identify the first signaling protein that physically and functionally associates with Sca-1 in myogenic precursor cells, and suggest a potential pathway for Sca-1-mediated signaling. Future efforts to manipulate this pathway may lead to new strategies for augmenting the myogenic proliferative response, and ultimately muscle repair.
Collapse
Affiliation(s)
- CONRAD L. EPTING
- Cardiovascular Research Institute, University of California, San Francisco, California
- Department of Pediatrics, University of California, San Francisco, California
| | - FRANK W. KING
- Cardiovascular Research Institute, University of California, San Francisco, California
| | - ANISSA PEDERSEN
- Cardiovascular Research Institute, University of California, San Francisco, California
| | - JESSICA ZAMAN
- Cardiovascular Research Institute, University of California, San Francisco, California
| | - CARISSA RITNER
- Cardiovascular Research Institute, University of California, San Francisco, California
| | - HAROLD S. BERNSTEIN
- Cardiovascular Research Institute, University of California, San Francisco, California
- Department of Pediatrics, University of California, San Francisco, California
- Institute for Regeneration Medicine, University of California, San Francisco, California
| |
Collapse
|
416
|
Yamamoto M, Kiyota T, Walsh SM, Liu J, Kipnis J, Ikezu T. Cytokine-mediated inhibition of fibrillar amyloid-beta peptide degradation by human mononuclear phagocytes. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2008; 181:3877-86. [PMID: 18768842 PMCID: PMC2603577 DOI: 10.4049/jimmunol.181.6.3877] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Vaccination therapy of AD animal models and patients strongly suggests an active role of brain mononuclear phagocytes in immune-mediated clearance of amyloid-beta peptides (Abeta) in brain. Although Abeta uptake by macrophages can be regulated by pro- and anti-inflammatory cytokines, their effects on macrophage-mediated Abeta degradation are poorly understood. To better understand this mechanism of degradation, we examined whether pro- and anti-inflammatory cytokines affect the degradation of Abeta using primary cultured human monocyte-derived macrophages (MDM) and microglia using pulse-chase analysis of fibrillar and oligomer (125)I-Abeta40 and Abeta42. Initial uptake of fibrillar Abeta40 and Abeta42 was 40% and its degradation was saturated by 120 h in both MDM and microglia, compared with an initial uptake of oligomeric Abeta less than 0.5% and saturation of degradation within 24 h. IFN-gamma increased the intracellular retention of fibrillar Abeta40 and Abeta42 by inhibiting degradation, whereas IL-4, IL-10, and TGF-beta1, but not IL-13 and IL-27, enhanced degradation. Fibrillar Abeta degradation in MDM is sensitive to lysosomal and insulin degrading enzyme inhibitors but insensitive to proteasomal and neprilysin inhibitors. IFN-gamma and TNF-alpha directly reduced the expression of insulin degrading enzyme and chaperone molecules (heat shock protein 70 and heat shock cognate protein 70), which are involved in refolding of aggregated proteins. Coculture of MDM with activated, but not naive T cells, suppressed Abeta degradation in MDM, which was partially blocked by a combination of neutralizing Abs against proinflammatory cytokines. These data suggest that proinflammatory cytokines suppress Abeta degradation in MDM, whereas select anti-inflammatory and regulatory cytokines antagonize these effects.
Collapse
Affiliation(s)
- Masaru Yamamoto
- Department of Pharmacology and Experimental Neuroscience, Center for Neurovirology and Neurodegenerative Disorders, University of Nebraska Medical Center, Omaha, NE 68198-5880, USA
| | | | | | | | | | | |
Collapse
|
417
|
Betts V, Leissring MA, Dolios G, Wang R, Selkoe DJ, Walsh DM. Aggregation and catabolism of disease-associated intra-Abeta mutations: reduced proteolysis of AbetaA21G by neprilysin. Neurobiol Dis 2008; 31:442-50. [PMID: 18602473 PMCID: PMC3160758 DOI: 10.1016/j.nbd.2008.06.001] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2008] [Revised: 06/04/2008] [Accepted: 06/05/2008] [Indexed: 01/23/2023] Open
Abstract
Five point mutations within the amyloid beta-protein (Abeta) sequence of the APP gene are associated with hereditary diseases which are similar or identical to Alzheimer's disease and encode: the A21G (Flemish), E22G (Arctic), E22K (Italian), E22Q (Dutch) and the D23N (Iowa) amino acid substitutions. Although a substantial body of data exists on the effects of these mutations on Abeta production, whether or not intra-Abeta mutations alter degradation and how this relates to their aggregation state remain unclear. Here we report that the E22G, E22Q and the D23N substitutions significantly increase fibril nucleation and extension, whereas the E22K substitution exhibits only an increased rate of extension and the A21G substitution actually causes a decrease in the extension rate. These substantial differences in aggregation together with our observation that aggregated wild type Abeta(1-40) was much less well degraded than monomeric wild type Abeta(1-40), prompted us to assess whether or not disease-associated intra-Abeta mutations alter proteolysis independent of their effects on aggregation. Neprilysin (NEP), insulin degrading enzyme (IDE) and plasmin play a major role in Abeta catabolism, therefore we compared the ability of these enzymes to degrade wild type and mutant monomeric Abeta peptides. Experiments investigating proteolysis revealed that all monomeric peptides are degraded similarly by IDE and plasmin, but that the Flemish peptide was degraded significantly more slowly by NEP than wild type Abeta or any of the other mutant peptides. This finding suggests that resistance to NEP-mediated proteolysis may underlie the pathogenicity associated with the A21G mutation.
Collapse
Affiliation(s)
- Vicki Betts
- Laboratory for Neurodegenerative Research, The Conway Institute for Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin 4, Republic of Ireland
| | - Malcolm A. Leissring
- The Mayo Clinic, Jacksonville, 4500 San Pablo Road, Birdsall Building, Jacksonville, FL 32224, USA
| | - Georgia Dolios
- Department of Human Genetics, Mount Sinai School of Medicine, New York, NY 10029, USA
| | - Rong Wang
- Department of Neurology, Harvard Medical School and Center for Neurologic Diseases, Brigham & Women's Hospital, Boston, MA 02115, USA
| | - Dennis J. Selkoe
- Department of Neurology, Harvard Medical School and Center for Neurologic Diseases, Brigham & Women's Hospital, Boston, MA 02115, USA
| | - Dominic M. Walsh
- Laboratory for Neurodegenerative Research, The Conway Institute for Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin 4, Republic of Ireland
- Department of Neurology, Harvard Medical School and Center for Neurologic Diseases, Brigham & Women's Hospital, Boston, MA 02115, USA
| |
Collapse
|
418
|
Abstract
Type 2 diabetes is a genetically heterogeneous disease, with several relatively rare monogenic forms and a number of more common forms resulting from a complex interaction of genetic and environmental factors. Previous studies using a candidate gene approach, family linkage studies, and gene expression profiling uncovered a number of type 2 genes, but the genetic basis of common type 2 diabetes remained unknown. Recently, a new window has opened on defining potential type 2 diabetes genes through genome-wide SNP association studies of very large populations of individuals with diabetes. This review explores the pathway leading to discovery of these genetic effects, the impact of these genetic loci on diabetes risk, the potential mechanisms of action of the genes to alter glucose homeostasis, and the limitations of these studies in defining the role of genetics in this important disease.
Collapse
Affiliation(s)
- Alessandro Doria
- Joslin Diabetes Center, One Joslin Place, Harvard Medical School, Boston, MA 02215, USA
| | | | | |
Collapse
|
419
|
Roberts RO, Geda YE, Knopman DS, Christianson TJH, Pankratz VS, Boeve BF, Vella A, Rocca WA, Petersen RC. Association of duration and severity of diabetes mellitus with mild cognitive impairment. ARCHIVES OF NEUROLOGY 2008; 65:1066-73. [PMID: 18695056 PMCID: PMC2630223 DOI: 10.1001/archneur.65.8.1066] [Citation(s) in RCA: 137] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND It remains unknown whether diabetes mellitus (DM) is a risk factor for mild cognitive impairment (MCI). OBJECTIVE To investigate the association of DM with MCI using a population-based case-control design. DESIGN Population-based case-control study. SETTING Academic research. PARTICIPANTS Our study was conducted, among subjects aged 70 to 89 years on October 1, 2004, who were randomly selected from the Olmsted County (Minnesota) population. Main Outcome Measure We administered to all participants a neurologic examination, the Clinical Dementia Rating Scale, and a neuropsychological evaluation (including 9 tests in 4 cognitive domains) to diagnose normal cognition, MCI, or dementia. We assessed history of DM, DM treatment, and DM complications by interview, and we measured fasting blood glucose levels. History of DM was also confirmed using a medical records linkage system. RESULTS We compared 329 subjects having MCI with 1640 subjects free of MCI and dementia. The frequency of DM was similar in subjects with MCI (20.1%) and in subjects without MCI (17.7%) (odds ratio [OR], 1.16; 95% confidence interval [CI], 0.85-1.57). However, MCI was associated with onset of DM before age 65 years (OR, 2.20; 95% CI, 1.29-3.73), DM duration of 10 years or longer (OR, 1.76; 95% CI, 1.16-2.68), treatment with insulin (OR, 2.01; 95% CI, 1.22-3.31), and the presence of DM complications (OR, 1.80; 95% CI, 1.13-2.89) after adjustment for age, sex, and education. Analyses using alternative definitions of DM yielded consistent findings. CONCLUSION These findings suggest an association of MCI with earlier onset, longer duration, and greater severity of DM.
Collapse
Affiliation(s)
- Rosebud O Roberts
- Department of Health Sciences Research, Division of Epidemiology, College of Medicine, Mayo Clinic, Rochester, MN 55905, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
420
|
Malito E, Hulse RE, Tang WJ. Amyloid beta-degrading cryptidases: insulin degrading enzyme, presequence peptidase, and neprilysin. Cell Mol Life Sci 2008; 65:2574-85. [PMID: 18470479 PMCID: PMC2756532 DOI: 10.1007/s00018-008-8112-4] [Citation(s) in RCA: 142] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The accumulation of aggregates of amyloidogenic peptides is associated with numerous human diseases. One well studied example is the association between deposition of amyloid beta (Abeta) and Alzheimer's disease. Insulin degrading enzyme and neprilysin are involved in the clearance of Abeta, and presequence peptidase is suggested to play a role in the degradation of mitochondrial Abeta. Recent structural analyses reveal that these three peptidases contain a catalytic chamber (crypt) that selectively encapsulates and cleaves amyloidogenic peptides, hence the name cryptidase. The substrate selectivity of these cryptidases is determined by the size and charge distribution of their crypt as well as the conformational flexibility of substrates. The interaction of Abeta with the catalytic core of these cryptidases is controlled by conformational changes that make the catalytic chambers accessible for Abeta binding. These new structural and biochemical insights into cryptidases provide potential therapeutic strategies for the control of Abeta clearance.
Collapse
Affiliation(s)
- E. Malito
- Ben-May Department for Cancer Research, The University of Chicago, 929 East 57th Street, Chicago, IL 60637 United States
| | - R. E. Hulse
- Committee of Neurobiology, The University of Chicago, 947 East 58th Street, Chicago, IL 60637 United States
| | - W.-J. Tang
- Ben-May Department for Cancer Research, The University of Chicago, 929 East 57th Street, Chicago, IL 60637 United States
- Committee of Neurobiology, The University of Chicago, 947 East 58th Street, Chicago, IL 60637 United States
| |
Collapse
|
421
|
Miners JS, Baig S, Palmer J, Palmer LE, Kehoe PG, Love S. Abeta-degrading enzymes in Alzheimer's disease. Brain Pathol 2008; 18:240-52. [PMID: 18363935 DOI: 10.1111/j.1750-3639.2008.00132.x] [Citation(s) in RCA: 293] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
In Alzheimer's disease (AD) Abeta accumulates because of imbalance between the production of Abeta and its removal from the brain. There is increasing evidence that in most sporadic forms of AD, the accumulation of Abeta is partly, if not in some cases solely, because of defects in its removal--mediated through a combination of diffusion along perivascular extracellular matrix, transport across vessel walls into the blood stream and enzymatic degradation. Multiple enzymes within the central nervous system (CNS) are capable of degrading Abeta. Most are produced by neurons or glia, but some are expressed in the cerebral vasculature, where reduced Abeta-degrading activity may contribute to the development of cerebral amyloid angiopathy (CAA). Neprilysin and insulin-degrading enzyme (IDE), which have been most extensively studied, are expressed both neuronally and within the vasculature. The levels of both of these enzymes are reduced in AD although the correlation with enzyme activity is still not entirely clear. Other enzymes shown capable of degrading Abetain vitro or in animal studies include plasmin; endothelin-converting enzymes ECE-1 and -2; matrix metalloproteinases MMP-2, -3 and -9; and angiotensin-converting enzyme (ACE). The levels of plasmin and plasminogen activators (uPA and tPA) and ECE-2 are reported to be reduced in AD. Reductions in neprilysin, IDE and plasmin in AD have been associated with possession of APOEepsilon4. We found no change in the level or activity of MMP-2, -3 or -9 in AD. The level and activity of ACE are increased, the level being directly related to Abeta plaque load. Up-regulation of some Abeta-degrading enzymes may initially compensate for declining activity of others, but as age, genetic factors and diseases such as hypertension and diabetes diminish the effectiveness of other Abeta-clearance pathways, reductions in the activity of particular Abeta-degrading enzymes may become critical, leading to the development of AD and CAA.
Collapse
Affiliation(s)
- James Scott Miners
- Dementia Research Group, University of Bristol Institute of Clinical Neurosciences, Frenchay Hospital, Bristol, UK
| | | | | | | | | | | |
Collapse
|
422
|
Abstract
In Alzheimer's disease (AD), there is abnormal accumulation of Abeta and tau proteins in the brain. There is an associated immunological response, but it is still unclear whether this is beneficial or harmful. Inflammation in AD, specifically in the form of microglial activation, has, for many years, been considered to contribute to disease progression. However, two types of evidence suggest that it may be appropriate to revise this view: first, the disappointing results of prospective clinical trials of anti-inflammatory agents and, second, the observation that microglia can clear plaques in AD following Abeta immunization. Although Abeta immunization alters AD pathology, there is limited evidence so far of benefit to cognitive function. Immunization against microorganisms is almost always used as a method of disease prevention rather than to treat a disease process that has already started. In animal models, immunotherapy at an early age can protect against Abeta accumulation and it will be interesting to see if this can usefully be applied to humans to prevent AD.
Collapse
Affiliation(s)
- Delphine Boche
- Division of Clinical Neurosciences, University of Southampton, Southampton, UK.
| | | |
Collapse
|
423
|
Venugopal J. Cardiac natriuretic peptides - hope or hype? J Clin Pharm Ther 2008. [DOI: 10.1111/j.1365-2710.2001.00322.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
424
|
Qu HY, Zhang T, Li XL, Zhou JP, Zhao BQ, Li Q, Sun MJ. Transducible P11-CNTF rescues the learning and memory impairments induced by amyloid-beta peptide in mice. Eur J Pharmacol 2008; 594:93-100. [PMID: 18644361 DOI: 10.1016/j.ejphar.2008.06.109] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2008] [Revised: 06/04/2008] [Accepted: 06/12/2008] [Indexed: 10/21/2022]
Abstract
Alzheimer's disease is a progressive brain disorder with the loss of memory and other intellectual abilities. Amyloid species and neurofibrillary tangles are the prime suspects in damaging and killing nerve cells. Abnormal accumulation of Amyloid-beta peptide (Abeta) may cause synaptic dysfunction and degeneration of neurons. Drugs that can prevent its formation and accumulation or stimulate its clearance might ultimately be of therapeutic benefit. Ciliary neurotrophic factor (CNTF), a neurotrophic cytokine, promotes the survival of various neurons in brain. However, the blood-brain barrier hinders the systemic delivery of CNTF to brain. Recently the 11-amino acid of protein transduction domain TAT has successfully assisted the delivery of many macromolecules to treat preclinical models of human disease. The present study aimed to evaluate whether P11-CNTF fusion protein (P11-CNTF) is protective against the Abeta25-35-induced dementia in mice. Immunofluorescence experiments showed that P11 effectively carried CNTF to the SH-SY5Y cells in vitro, and to the brains of mice in vivo. The learning and memory impairments of mice induced by Abeta were substantially rescued by supplement with the P11-CNTF. Furthermore, mRNAs of enzymes involved in the Abeta metabolism, e.g. neprilysin (NEP), endothelin-converting enzyme 1 (ECE-1) and insulin degrading enzyme (IDE), increased in the P11-CNTF treated dementia mice, accompanied by the proliferation of nestin- and choline acetyltransferase (ChAT)-positive cells in hippocampus. It implies that the delivery of P11-CNTF may be a novel treatment for Alzheimer's disease.
Collapse
Affiliation(s)
- Heng Yan Qu
- Department of Biochemistry and Pharmacology, Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, Tai Ping Road, 27, Beijing 100850, China
| | | | | | | | | | | | | |
Collapse
|
425
|
Abstract
Current evidence from epidemiological, neuroimaging, pathological, pharmacotherapeutic, and clinical studies indicate an association of Alzheimer's disease with risk factors of vascular atherosclerotic disease either in isolation or in aggregate. "Metabolic syndrome" (MetS) is the name for a clustering of risk factors for cardiovascular disease and type 2 diabetes that are of metabolic origin. These include central obesity, elevated plasma glucose, high blood pressure, atherogenic dyslipidemia, a prothrombotic state, and a proinflammatory state. In this article, we provide an overview of the relevant literature with regard to the relationship of Alzheimer's disease with MetS. Accumulating evidence suggests a "vascular hypothesis" to be related to the pathology of Alzheimer's disease. In the light of this evidence, clinician may consider lifestyle interventions toward an early and effective cardiovascular risk-factor management to reduce the cardiometabolic and the cognitive decline risk, while further research of other preventive strategies may be warranted.
Collapse
|
426
|
Lee YH, Tharp WG, Maple RL, Nair S, Permana PA, Pratley RE. Amyloid precursor protein expression is upregulated in adipocytes in obesity. Obesity (Silver Spring) 2008; 16:1493-500. [PMID: 18483477 DOI: 10.1038/oby.2008.267] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The aim of this study was to determine whether amyloid precursor protein (APP) is expressed in human adipose tissue, dysregulated in obesity, and related to insulin resistance and inflammation. APP expression was examined by microarray expression profiling of subcutaneous abdominal adipocytes (SAC) and cultured preadipocytes from obese and nonobese subjects. Quantitative real-time PCR (QPCR) was performed to confirm differences in APP expression in SAC and to compare APP expression levels in adipose tissue, adipocytes, and stromal vascular cells (SVCs) from subcutaneous adipose tissue (SAT) and visceral adipose tissue (VAT) specimens. Adipose tissue samples were also examined by western blot and immunofluorescence confocal microscopy. Microarray studies demonstrated that APP mRNA expression levels were higher in SAC (approximately 2.5-fold) and preadipocytes (approximately 1.4) from obese subjects. Real-time PCR confirmed increased APP expression in SAC in a separate group of obese compared with nonobese subjects (P=0.02). APP expression correlated to in vivo indices of insulin resistance independently of BMI and with the expression of proinflammatory genes, such as monocyte chemoattractant protein-1 (MCP-1) (R=0.62, P=0.004), macrophage inflammatory protein-1alpha (MIP-1alpha) (R=0.60, P=0.005), and interleukin-6 (IL-6) (R=0.71, P=0.0005). Full-length APP protein was detected in adipocytes by western blotting and APP and its cleavage peptides, Abeta40 and Abeta42, were observed in SAT and VAT by immunofluorescence confocal microscopy. In summary, APP is highly expressed in adipose tissue, upregulated in obesity, and expression levels correlate with insulin resistance and adipocyte cytokine expression levels. These data suggest a possible role for APP and/or Abeta in the development of obesity-related insulin resistance and adipose tissue inflammation.
Collapse
Affiliation(s)
- Yong-Ho Lee
- Diabetes and Metabolism Translational Medicine Unit, University of Vermont College of Medicine, Burlington, Vermont, USA
| | | | | | | | | | | |
Collapse
|
427
|
Lillis AP, Van Duyn LB, Murphy-Ullrich JE, Strickland DK. LDL receptor-related protein 1: unique tissue-specific functions revealed by selective gene knockout studies. Physiol Rev 2008; 88:887-918. [PMID: 18626063 PMCID: PMC2744109 DOI: 10.1152/physrev.00033.2007] [Citation(s) in RCA: 540] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The LDL receptor-related protein (originally called LRP, but now referred to as LRP1) is a large endocytic receptor that is widely expressed in several tissues. LRP1 is a member of the LDL receptor family that plays diverse roles in various biological processes including lipoprotein metabolism, degradation of proteases, activation of lysosomal enzymes, and cellular entry of bacterial toxins and viruses. Deletion of the LRP1 gene leads to lethality in mice, revealing a critical, but as of yet, undefined role in development. Tissue-specific gene deletion studies reveal an important contribution of LRP1 in the vasculature, central nervous system, macrophages, and adipocytes. Three important properties of LRP1 dictate its diverse role in physiology: 1) its ability to recognize more than 30 distinct ligands, 2) its ability to bind a large number of cytoplasmic adaptor proteins via determinants located on its cytoplasmic domain in a phosphorylation-specific manner, and 3) its ability to associate with and modulate the activity of other transmembrane receptors such as integrins and receptor tyrosine kinases.
Collapse
Affiliation(s)
- Anna P. Lillis
- Center for Vascular and Inflammatory Diseases and Departments of Surgery and Physiology, University of Maryland School of Medicine, Baltimore, MD 21201
- Department of Pathology, Duke University Medical Center, Durham, NC 27710
| | - Lauren B. Van Duyn
- Department of Pathology, Medical Scientist Training Program, and The BioMatrix Engineering and Regenerative Medicine Center, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Joanne E. Murphy-Ullrich
- Department of Pathology, Medical Scientist Training Program, and The BioMatrix Engineering and Regenerative Medicine Center, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Dudley K. Strickland
- Center for Vascular and Inflammatory Diseases and Departments of Surgery and Physiology, University of Maryland School of Medicine, Baltimore, MD 21201
| |
Collapse
|
428
|
Sastre M, Walter J, Gentleman SM. Interactions between APP secretases and inflammatory mediators. J Neuroinflammation 2008; 5:25. [PMID: 18564425 PMCID: PMC2442055 DOI: 10.1186/1742-2094-5-25] [Citation(s) in RCA: 132] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2008] [Accepted: 06/18/2008] [Indexed: 02/08/2023] Open
Abstract
There is now a large body of evidence linking inflammation to Alzheimer's disease (AD). This association manifests itself neuropathologically in the presence of activated microglia and astrocytes around neuritic plaques and increased levels of inflammatory mediators in the brains of AD patients. It is considered that amyloid-β peptide (Aβ), which is derived from the processing of the longer amyloid precursor protein (APP), could be the most important stimulator of this response, and therefore determining the role of the different secretases involved in its generation is essential for a better understanding of the regulation of inflammation in AD. The finding that certain non-steroidal anti-inflammatory drugs (NSAIDs) can affect the processing of APP by inhibiting β- and γ-secretases, together with recent revelations that these enzymes may be regulated by inflammation, suggest that they could be an interesting target for anti-inflammatory drugs. In this review we will discuss some of these issues and the role of the secretases in inflammation, independent of their effect on Aβ formation.
Collapse
Affiliation(s)
- Magdalena Sastre
- Division of Neuroscience and Mental Health, Imperial College London, The Hammersmith Hospital, Du cane Road, London W12 0NN, UK.
| | | | | |
Collapse
|
429
|
Jiang Q, Lee CYD, Mandrekar S, Wilkinson B, Cramer P, Zelcer N, Mann K, Lamb B, Willson TM, Collins JL, Richardson JC, Smith JD, Comery TA, Riddell D, Holtzman DM, Tontonoz P, Landreth GE. ApoE promotes the proteolytic degradation of Abeta. Neuron 2008; 58:681-93. [PMID: 18549781 PMCID: PMC2493297 DOI: 10.1016/j.neuron.2008.04.010] [Citation(s) in RCA: 695] [Impact Index Per Article: 40.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2007] [Revised: 01/19/2008] [Accepted: 04/08/2008] [Indexed: 10/22/2022]
Abstract
Apolipoprotein E is associated with age-related risk for Alzheimer's disease and plays critical roles in Abeta homeostasis. We report that ApoE plays a role in facilitating the proteolytic clearance of soluble Abeta from the brain. The endolytic degradation of Abeta peptides within microglia by neprilysin and related enzymes is dramatically enhanced by ApoE. Similarly, Abeta degradation extracellularly by insulin-degrading enzyme is facilitated by ApoE. The capacity of ApoE to promote Abeta degradation is dependent upon the ApoE isoform and its lipidation status. The enhanced expression of lipidated ApoE, through the activation of liver X receptors, stimulates Abeta degradation. Indeed, aged Tg2576 mice treated with the LXR agonist GW3965 exhibited a dramatic reduction in brain Abeta load. GW3965 treatment also reversed contextual memory deficits. These data demonstrate a mechanism through which ApoE facilitates the clearance of Abeta from the brain and suggest that LXR agonists may represent a novel therapy for AD.
Collapse
Affiliation(s)
- Qingguang Jiang
- Alzheimer Research Laboratory, Department of Neurosciences, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
430
|
Oh ES, Troncoso JC, Fangmark Tucker SM. Maximizing the potential of plasma amyloid-beta as a diagnostic biomarker for Alzheimer's disease. Neuromolecular Med 2008; 10:195-207. [PMID: 18543125 PMCID: PMC2558671 DOI: 10.1007/s12017-008-8035-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2008] [Accepted: 05/06/2008] [Indexed: 12/15/2022]
Abstract
Amyloid plaques are composed primarily of amyloid-beta (Abeta) peptides derived from proteolytic cleavage of amyloid precursor protein (APP) and are considered to play a pivotal role in Alzheimer's disease (AD) pathogenesis. Presently, AD is diagnosed after the onset of clinical manifestations. With the arrival of novel therapeutic agents for treatment of AD, there is an urgent need for biomarkers to detect early stages of AD. Measurement of plasma Abeta has been suggested as an inexpensive and non-invasive tool to diagnose AD and to monitor Abeta modifying therapies. However, the majority of cross-sectional studies on plasma Abeta levels in humans have not shown differences between individuals with AD compared to controls. Similarly, cross-sectional studies of mouse plasma Abeta have yielded inconsistent trends in different mouse models. However, longitudinal studies appear to be more promising in humans. Recently, efforts to modify plasma Abeta levels using modulators have shown some promise. In this review, we will summarize the present data on plasma Abeta in humans and mouse models of AD. We will discuss the potential of modulators of Abeta levels in plasma, including antibodies and insulin, and the challenges associated with measuring plasma Abeta. Modulators of plasma Abeta may provide an important tool to optimize plasma Abeta levels and may improve the diagnostic potential of this approach.
Collapse
Affiliation(s)
- Esther S Oh
- Department of Medicine, The Johns Hopkins University School of Medicine, 558 Ross Research Building, 720 Rutland Ave., Baltimore, MD 21205, USA.
| | | | | |
Collapse
|
431
|
Vepsäläinen S, Hiltunen M, Helisalmi S, Wang J, van Groen T, Tanila H, Soininen H. Increased expression of Aβ degrading enzyme IDE in the cortex of transgenic mice with Alzheimer's disease-like neuropathology. Neurosci Lett 2008; 438:216-20. [DOI: 10.1016/j.neulet.2008.04.025] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2008] [Revised: 03/31/2008] [Accepted: 04/09/2008] [Indexed: 11/26/2022]
|
432
|
Llovera RE, de Tullio M, Alonso LG, Leissring MA, Kaufman SB, Roher AE, de Prat Gay G, Morelli L, Castaño EM. The Catalytic Domain of Insulin-degrading Enzyme Forms a Denaturant-resistant Complex with Amyloid β Peptide. J Biol Chem 2008; 283:17039-48. [DOI: 10.1074/jbc.m706316200] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
433
|
Sun X, Steffens DC, Au R, Folstein M, Summergrad P, Yee J, Rosenberg I, Mwamburi DM, Qiu WQ. Amyloid-associated depression: a prodromal depression of Alzheimer disease? ARCHIVES OF GENERAL PSYCHIATRY 2008; 65:542-50. [PMID: 18458206 PMCID: PMC3042807 DOI: 10.1001/archpsyc.65.5.542] [Citation(s) in RCA: 128] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
CONTEXT A high ratio of plasma amyloid-beta peptide 40 (Abeta(40)) to Abeta(42), determined by both high Abeta(40) and low Abeta(42) levels, increases the risk of Alzheimer disease. In a previous study, we reported that depression is also associated with low plasma Abeta(42) levels in the elderly population. OBJECTIVE To characterize plasma Abeta(40):Abeta(42) ratio and cognitive function in elderly individuals with and without depression. DESIGN Cross-sectional study. SETTING Homecare agencies. PARTICIPANTS A total of 995 homebound elderly individuals of whom 348 were defined as depressed by a Center for Epidemiological Studies Depression score of 16 or greater. MAIN OUTCOME MEASURES Cognitive domains of memory, language, executive, and visuospatial functions according to levels of plasma Abeta(40) and Abeta(42) peptides. RESULTS Subjects with depression had lower plasma Abeta(42) levels (median, 14.1 vs 19.2 pg/mL; P = .006) and a higher plasma Abeta(40):Abeta(42) ratio (median, 8.9 vs 6.4; P < .001) than did those without depression in the absence of cardiovascular disease and antidepressant use. The interaction between depression and plasma Abeta(40):Abeta(42) ratio was associated with lower memory score (beta = -1.9, SE = 0.7, P = .006) after adjusting for potentially confounders. Relative to those without depression, "amyloid-associated depression," defined by presence of depression and a high plasma Abeta(40):Abeta(42) ratio, was associated with greater impairment in memory, visuospatial ability, and executive function; in contrast, nonamyloid depression was not associated with memory impairment but with other cognitive disabilities. CONCLUSION Amyloid-associated depression may define a subtype of depression representing a prodromal manifestation of Alzheimer disease.
Collapse
Affiliation(s)
- Xiaoyan Sun
- Department of Psychiatry, Tufts-New England Medical Center, Campus Box 1007, 750 Washington St, Boston, MA 02111, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
434
|
Abstract
Numerous studies have investigated the behavioural effects of beta-endorphin, both endogenous and exogenously applied. However, the potential for biotransformation of beta-endorphin in the extracellular space of the brain has not been previously directly addressed in vivo. Utilising microinfusion/microdialysis and matrix-assisted laser desorption/ionisation mass spectrometry, we investigated beta-endorphin biotransformation in the striatum of rats. We infused 1.0 nmol beta-endorphin into the striatum of adult male Fischer rats and observed rapid cleavage resulting in beta-endorphin 1-18, as well as several fragments resulting from further N-terminal degradation. In vitro studies with incubation of full-length beta-endorphin, with and without protease inhibitors, in the incubation fluid of isolated striatal slices indicate that beta-endorphin is initially cleaved predominantly at the Phe(18)-Lys(19), position, as well as at the Leu(17)-Phe(18) position. Investigations of cerebrospinal fluid revealed similar enzymatic cleavage of beta-endorphin. The observed pattern of cleavage sites (Phe(18)-Lys(19) and Leu(17)-Phe(18)) is consistent with published in vitro studies of purified insulin-degrading enzyme cleavage of beta-endorphin. The binding affinities of full-length beta-endorphin, as well as previously identified beta-endorphin fragments alpha-endorphin (beta-endorphin 1-16) and gamma-endorphin (beta-endorphin 1-17), and the fragment identified in the present study, beta-endorphin 1-18, at heterologously expressed mu, delta and kappa-opioid receptors, respectively, were determined; the affinity of the truncation fragments is reduced at each of the receptors compared to the affinity of full length beta-endorphin.
Collapse
Affiliation(s)
- B Reed
- Laboratory of the Biology of Addictive Diseases, The Rockefeller University, New York, NY 10021, USA.
| | | | | | | |
Collapse
|
435
|
Frenkel D, Puckett L, Petrovic S, Xia W, Chen G, Vega J, Dembinsky-Vaknin A, Shen J, Plante M, Burt DS, Weiner HL. A nasal proteosome adjuvant activates microglia and prevents amyloid deposition. Ann Neurol 2008; 63:591-601. [PMID: 18360829 PMCID: PMC2747093 DOI: 10.1002/ana.21340] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
OBJECTIVE We assessed whether peripheral activation of microglia by a nasal proteosome-based adjuvant (Protollin) that has been given safely to humans can prevent amyloid deposition in young mice and affect amyloid deposition and memory function in old mice with a large amyloid load. METHODS Amyloid precursor protein (APP) transgenic (Tg) J20 mice received nasal treatment with Protollin weekly for 8 months beginning at age 5 months. Twenty-four-month-old J20 mice were treated weekly for 6 weeks. RESULTS We found reduction in the level of fibrillar amyloid (93%), insoluble beta-amyloid (Abeta; 68%), and soluble Abeta (45%) fragments in 14-month-old mice treated with Protollin beginning at age 5 months. Twenty-four-month-old mice treated with nasal Protollin for 6 weeks had decreased soluble and insoluble Abeta (1-40) and (1-42) and improved memory function. Activated microglia (CD11b+ cells) colocalized with Abeta fibrils in the 24-month-old animals, and microglial activation correlated with the decrease in Abeta. No microglial activation was observed in 14-month-old mice, suggesting that once Abeta is cleared, there is downregulation of microglial activation. Both groups had reduction in astrocytosis. Protollin was observed in the nasal cavity and cervical lymph node but not in the brain. Activated CD11b+SRA+ (scavenger receptor A) cells were found in blood and cervical lymph node and increased interleukin-10 in cervical lymph node. No toxicity was associated with treatment. INTERPRETATION Our results demonstrate a novel antibody-independent immunotherapy for both prevention and treatment of Alzheimer's disease that is mediated by peripheral activation of microglia with no apparent toxicity.
Collapse
Affiliation(s)
- Dan Frenkel
- Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
436
|
Tomiyama T, Nagata T, Shimada H, Teraoka R, Fukushima A, Kanemitsu H, Takuma H, Kuwano R, Imagawa M, Ataka S, Wada Y, Yoshioka E, Nishizaki T, Watanabe Y, Mori H. A new amyloid beta variant favoring oligomerization in Alzheimer's-type dementia. Ann Neurol 2008; 63:377-87. [PMID: 18300294 DOI: 10.1002/ana.21321] [Citation(s) in RCA: 329] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
OBJECTIVE Soluble oligomers of amyloid beta (Abeta), rather than amyloid fibrils, have been proposed to initiate synaptic and cognitive dysfunction in Alzheimer's disease (AD). However, there is no direct evidence in humans that this mechanism can cause AD. Here, we report a novel amyloid precursor protein (APP) mutation that may provide evidence to address this question. METHODS A Japanese pedigree showing Alzheimer's-type dementia was examined for mutations in APP, PSEN1, and PSEN2. In addition, 5,310 Japanese people, including 2,121 patients with AD, were screened for the novel APP mutation. The pathogenic effects of this mutation on Abeta production, degradation, aggregation, and synaptotoxicity were also investigated. RESULTS We identified a novel APP mutation (E693Delta) producing variant Abeta lacking gulutamate-22 (E22Delta) in Japanese pedigrees showing Alzheimer's-type dementia and AD. Although the secretion of total Abeta was markedly reduced by this mutation, the variant Abeta was more resistant to proteolytic degradation. The mutant peptides showed the unique aggregation property of enhanced oligomerization but no fibrillization, and inhibited hippocampal long-term potentiation more potently than wild-type peptide in rats in vivo. Consistent with the nonfibrillogenic property of the variant Abeta, a very low amyloid signal was observed in the patient's brain on positron emission tomography using Pittsburgh compound-B. INTERPRETATION The E693Delta mutation has been suggested as a cause of dementia because of enhanced formation of synaptotoxic Abeta oligomers. Our findings may provide genetic validation in humans for the emerging hypothesis that the synaptic and cognitive impairment in AD is primarily caused by soluble Abeta oligomers.
Collapse
Affiliation(s)
- Takami Tomiyama
- Department of Neuroscience, Osaka City University Graduate School of Medicine, Osaka, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
437
|
Hartley DM, Zhao C, Speier AC, Woodard GA, Li S, Li Z, Walz T. Transglutaminase induces protofibril-like amyloid beta-protein assemblies that are protease-resistant and inhibit long-term potentiation. J Biol Chem 2008; 283:16790-800. [PMID: 18397883 DOI: 10.1074/jbc.m802215200] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
An increasing body of evidence suggests that soluble assemblies of amyloid beta-protein (Abeta) play an important role in the initiation of Alzheimer disease (AD). In vitro studies have found that synthetic Abeta can form soluble aggregates through self-assembly, but this process requires Abeta concentrations 100- to 1000-fold greater than physiological levels. Tissue transglutaminase (TGase) has been implicated in neurodegeneration and can cross-link Abeta. Here we show that TGase induces rapid aggregation of Abeta within 0.5-30 min, which was not observed with chemical cross-linkers. Both Abeta40 and Abeta42 are good substrates for TGase but show different aggregation patterns. Guinea pig and human TGase induced similar Abeta aggregation patterns, and oligomerization was observed with Abeta40 concentrations as low as 50 nm. The formed Abeta40 species range from 5 to 6 nm spheres to curvilinear structures of the same width, but up to 100 nm in length, that resemble the previously described self-assembled Abeta protofibrils. TGase-induced Abeta40 assemblies are resistant to a 1-h incubation with either neprilysin or insulin degrading enzyme, whereas the monomer is rapidly degraded by both proteases. In support of these species being pathological, TGase-induced Abeta40 assemblies (100 nm) inhibited long term potentiation recorded in the CA1 region of mouse hippocampus slices. Our data suggest that TGase can contribute to AD by initiating Abeta oligomerization and aggregation at physiological levels, by reducing the clearance of Abeta due to the generation of protease-resistant Abeta species, and by forming Abeta assemblies that inhibit processes involved in memory and learning. Our data suggest that TGase might constitute a specific therapeutic target for slowing or blocking the progression of AD.
Collapse
Affiliation(s)
- Dean M Hartley
- Department of Neurological Sciences, Rush University Medical Center, Chicago, Illinois 60612, USA.
| | | | | | | | | | | | | |
Collapse
|
438
|
Miners JS, Ashby E, Van Helmond Z, Chalmers KA, Palmer LE, Love S, Kehoe PG. Angiotensin-converting enzyme (ACE) levels and activity in Alzheimer's disease, and relationship of perivascular ACE-1 to cerebral amyloid angiopathy. Neuropathol Appl Neurobiol 2008; 34:181-93. [DOI: 10.1111/j.1365-2990.2007.00885.x] [Citation(s) in RCA: 116] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
439
|
St George-Hyslop P. GENETICS OF DEMENTIA. Continuum (Minneap Minn) 2008. [DOI: 10.1212/01.con.0000275624.01820.a9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
440
|
Farfara D, Lifshitz V, Frenkel D. Neuroprotective and neurotoxic properties of glial cells in the pathogenesis of Alzheimer's disease. J Cell Mol Med 2008; 12:762-80. [PMID: 18363841 PMCID: PMC4401126 DOI: 10.1111/j.1582-4934.2008.00314.x] [Citation(s) in RCA: 164] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Alzheimer's disease (AD) affects more than 18 million people worldwide and is characterized by progressive memory deficits, cognitive impairment and personality changes. The main cause of AD is generally attributed to the increased production and accumulation of amyloid-β (Aβ), in association with neurofibrillary tangle (NFT) formation. Increased levels of pro-inflammatory factors such as cytokines and chemokines, and the activation of the complement cascade occurs in the brains of AD patients and contributes to the local inflammatory response triggered by senile plaque. The existence of an inflammatory component in AD is now well known on the basis of epidemiological findings showing a reduced prevalence of the disease upon long-term medication with anti-inflammatory drugs, and evidence from studies of clinical materials that shows an accumulation of activated glial cells, particularly microglia and astrocytes, in the same areas as amyloid plaques. Glial cells maintain brain plasticity and protect the brain for functional recovery from injuries. Dysfunction of glial cells may promote neurodegeneration and, eventually, the retraction of neuronal synapses, which leads to cognitive deficits. The focus of this review is on glial cells and their diversity properties in AD.
Collapse
Affiliation(s)
- D Farfara
- Department of Neurobiology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | | | | |
Collapse
|
441
|
Liu Y, Liu H, Yang J, Liu X, Lu S, Wen T, Xie L, Wang G. Increased amyloid beta-peptide (1-40) level in brain of streptozotocin-induced diabetic rats. Neuroscience 2008; 153:796-802. [PMID: 18424002 DOI: 10.1016/j.neuroscience.2008.03.019] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2008] [Revised: 03/06/2008] [Accepted: 03/11/2008] [Indexed: 10/22/2022]
Abstract
The aims of the study were to investigate whether the level of amyloid beta-peptide (Abeta) (1-40) was increased in brain of diabetic rats and whether the increase was associated with dysfunction of P-glycoprotein at the blood-brain barrier. A diabetes-like condition was induced by single administration of 65 mg/kg streptozotocin via i.p. injection. Abeta (1-40) levels in brain of the diabetic rats were measured using an enzyme linked immunosorbent assay (ELISA) kit. The in vivo brain-to-blood efflux and blood-to-brain influx transport of [(125)I]-labeled human amyloid-beta-peptide (hAbeta) (1-40) were measured using the brain efflux index and brain permeability coefficient-surface area product, respectively. [(14)C]inulin served as a reference compound. The results showed that Abeta (1-40) levels significantly increased in temporal cortex and hippocampus of the diabetic rats. The brain remaining percentage of [(125)I]hAbeta (1-40) in diabetic rats significantly increased at 30 min after intracerebral microinjection, accompanied by decrease of the brain efflux index. Pretreatment of P-glycoprotein inhibitors verapamil or cyclosporin A significantly increased the brain remaining percentage of [(125)I]hAbeta (1-40). The brain permeability coefficient-surface area product of [(125)I]hAbeta (1-40) was increased in diabetic rats, accompanied by increased Abeta (1-40) levels in plasma. The present study demonstrated that a diabetic state could increase Abeta (1-40) levels in brain, which might be explained, at least in part, by the decline in brain-to-blood efflux of Abeta (1-40) due to deficient cerebral P-glycoprotein function in diabetic rats.
Collapse
Affiliation(s)
- Y Liu
- Key Laboratory of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing 210009, China
| | | | | | | | | | | | | | | |
Collapse
|
442
|
Immunocapture-based fluorometric assay for the measurement of insulin-degrading enzyme activity in brain tissue homogenates. J Neurosci Methods 2008; 169:177-81. [DOI: 10.1016/j.jneumeth.2007.12.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2007] [Revised: 12/06/2007] [Accepted: 12/07/2007] [Indexed: 11/18/2022]
|
443
|
Jiang Q, Heneka M, Landreth GE. The role of peroxisome proliferator-activated receptor-gamma (PPARgamma) in Alzheimer's disease: therapeutic implications. CNS Drugs 2008; 22:1-14. [PMID: 18072811 DOI: 10.2165/00023210-200822010-00001] [Citation(s) in RCA: 137] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Alzheimer's disease is a complex neurodegenerative disorder, with aging, genetic and environmental factors contributing to its development and progression. The complexity of Alzheimer's disease presents substantial challenges for the development of new therapeutic agents. Alzheimer's disease is typified by pathological depositions of beta-amyloid peptides and neurofibrillary tangles within the diseased brain. It has also been demonstrated to be associated with a significant microglia-mediated inflammatory component, dysregulated lipid homeostasis and regional deficits in glucose metabolism within the brain. The peroxisome proliferator-activated receptor-gamma (PPARgamma) is a prototypical ligand-activated nuclear receptor that coordinates lipid, glucose and energy metabolism, and is found in elevated levels in the brains of individuals with Alzheimer's disease. A recently appreciated physiological function of this type of receptor is its ability to modulate inflammatory responses. In animal models of Alzheimer's disease, PPARgamma agonist treatment results in the reduction of amyloid plaque burden, reduced inflammation and reversal of disease-related behavioural impairment. In a recent phase II clinical trial, the use of the PPARgamma agonist rosiglitazone was associated with improved cognition and memory in patients with mild to moderate Alzheimer's disease. Thus, PPARgamma may act to modulate multiple pathophysiological mechanisms that contribute to Alzheimer's disease, and represents an attractive therapeutic target for the treatment of the disease.
Collapse
Affiliation(s)
- Qingguang Jiang
- Department of Neurosciences, Alzheimer Research Laboratory, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106, USA
| | | | | |
Collapse
|
444
|
Huet Y, Strassner J, Schaller A. Cloning, expression and characterization of insulin-degrading enzyme from tomato (Solanum lycopersicum). Biol Chem 2008; 389:91-8. [PMID: 18095874 DOI: 10.1515/bc.2008.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
A cDNA encoding insulin-degrading enzyme (IDE) was cloned from tomato (Solanum lycopersicum) and expressed in Escherichia coli in N-terminal fusion with glutathione S-transferase. GST-SlIDE was characterized as a neutral thiol-dependent metallopeptidase with insulinase activity: the recombinant enzyme cleaved the oxidized insulin B chain at eight peptide bonds, six of which are also targets of human IDE. Despite a certain preference for proline in the vicinity of the cleavage site, synthetic peptides were cleaved at apparently stochastic positions indicating that SlIDE, similar to IDEs from other organisms, does not recognize any particular amino acid motif in the primary structure of its substrates. Under steady-state conditions, an apparent K(m) of 62+/-7 microm and a catalytic efficiency (k(cat)/K(m)) of 62+/-15 mm(-1) s(-1) were determined for Abz-SKRDPPKMQTDLY(NO(3))-NH(2) as the substrate. GST-SlIDE was effectively inhibited by ATP at physiological concentrations, suggesting regulation of its activity in response to the energy status of the cell. While mammalian and plant IDEs share many of their biochemical properties, this similarity does not extend to their function in vivo, because insulin and the beta-amyloid peptide, well-established substrates of mammalian IDEs, as well as insulin-related signaling appear to be absent from plant systems.
Collapse
Affiliation(s)
- Yoann Huet
- Institute of Plant Physiology and Biotechnology, University of Hohenheim, D-70593 Stuttgart, Germany
| | | | | |
Collapse
|
445
|
Ertekin-Taner N, Younkin LH, Yager DM, Parfitt F, Baker MC, Asthana S, Hutton ML, Younkin SG, Graff-Radford NR. Plasma amyloid beta protein is elevated in late-onset Alzheimer disease families. Neurology 2008; 70:596-606. [PMID: 17914065 DOI: 10.1212/01.wnl.0000278386.00035.21] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
OBJECTIVE Plasma A beta levels are elevated in early-onset Alzheimer disease (AD) caused by autosomal dominant mutations. Our objective was to determine whether similar genetic elevations exist in late-onset AD (LOAD). METHODS We measured plasma A beta in first-degree relatives of patients with LOAD in a cross-sectional series and in extended LOAD families. We screened these subjects for pathogenic mutations in early-onset AD genes and determined their ApoE genotypes. RESULTS Plasma A beta is significantly elevated in the LOAD first-degree relatives in comparison to unrelated controls and married-in spouses. These elevations are not due to ApoE epsilon 4 or pathogenic coding mutations in the known early-onset AD genes. CONCLUSIONS The findings provide strong evidence for the existence of novel, as yet unknown genetic factors that affect late-onset Alzheimer disease by increasing A beta.
Collapse
Affiliation(s)
- N Ertekin-Taner
- Department of Neuroscience, Mayo Clinic, 4500 San Pablo Road South, Jacksonville, FL 32224, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
446
|
Liu H, Wang J, Sekiyama A, Tabira T. Juzen-taiho-to, an Herbal Medicine, Activates and Enhances Phagocytosis in Microglia/Macrophages. TOHOKU J EXP MED 2008; 215:43-54. [DOI: 10.1620/tjem.215.43] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Affiliation(s)
- Huayan Liu
- Department of Vascular Dementia Research, National Institute for Longevity Sciences, National Center for Geriatrics and Gerontology
- Department of Neurology, First Affiliated Hospital, China Medical University
| | - Jun Wang
- Department of Vascular Dementia Research, National Institute for Longevity Sciences, National Center for Geriatrics and Gerontology
- Department of Neurology, First Affiliated Hospital, China Medical University
| | - Atsuo Sekiyama
- Department of Vascular Dementia Research, National Institute for Longevity Sciences, National Center for Geriatrics and Gerontology
| | - Takeshi Tabira
- Department of Vascular Dementia Research, National Institute for Longevity Sciences, National Center for Geriatrics and Gerontology
| |
Collapse
|
447
|
Taguchi H, Planque S, Nishiyama Y, Symersky J, Boivin S, Szabo P, Friedland RP, Ramsland PA, Edmundson AB, Weksler ME, Paul S. Autoantibody-catalyzed hydrolysis of amyloid beta peptide. J Biol Chem 2007; 283:4714-22. [PMID: 18086674 DOI: 10.1074/jbc.m707983200] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We describe IgM class human autoantibodies that hydrolyze amyloid beta peptide 1-40 (Abeta40). A monoclonal IgM from a patient with Waldenström's macroglobulinemia hydrolyzed Abeta40 at the Lys-28-Gly-29 bond and Lys-16-Ala-17 bonds. The catalytic activity was inhibited stoichiometrically by an electrophilic serine protease inhibitor. Treatment with the catalytic IgM blocked the aggregation and toxicity of Abeta40 in neuronal cell cultures. IgMs purified from the sera of patients with Alzheimer disease (AD) hydrolyzed Abeta40 at rates superior to IgMs from age-matched humans without dementia. IgMs from non-elderly humans expressed the least catalytic activity. The reaction rate was sufficient to afford appreciable degradation at physiological Abeta and IgM concentrations found in peripheral circulation. Increased Abeta concentrations in the AD brain are thought to induce neurodegenerative effects. Peripheral administration of Abeta binding antibodies has been suggested as a potential treatment of AD. Our results suggest that catalytic IgM autoantibodies can help clear Abeta, and they open the possibility of using catalytic Abs for AD immunotherapy.
Collapse
Affiliation(s)
- Hiroaki Taguchi
- Chemical Immunology Research Center, Department of Pathology and Laboratory Medicine, University of Texas Houston Medical School, Houston, Texas 77030, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
448
|
Wang J, Ho L, Chen L, Zhao Z, Zhao W, Qian X, Humala N, Seror I, Bartholomew S, Rosendorff C, Pasinetti GM. Valsartan lowers brain beta-amyloid protein levels and improves spatial learning in a mouse model of Alzheimer disease. J Clin Invest 2007; 117:3393-402. [PMID: 17965777 PMCID: PMC2040315 DOI: 10.1172/jci31547] [Citation(s) in RCA: 251] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2007] [Accepted: 08/28/2007] [Indexed: 12/22/2022] Open
Abstract
Recent epidemiological evidence suggests that some antihypertensive medications may reduce the risk for Alzheimer disease (AD). We screened 55 clinically prescribed antihypertensive medications for AD-modifying activity using primary cortico-hippocampal neuron cultures generated from the Tg2576 AD mouse model. These agents represent all drug classes used for hypertension pharmacotherapy. We identified 7 candidate antihypertensive agents that significantly reduced AD-type beta-amyloid protein (Abeta) accumulation. Through in vitro studies, we found that only 1 of the candidate drugs, valsartan, was capable of attenuating oligomerization of Abeta peptides into high-molecular-weight (HMW) oligomeric peptides, known to be involved in cognitive deterioration. We found that preventive treatment of Tg2576 mice with valsartan significantly reduced AD-type neuropathology and the content of soluble HMW extracellular oligomeric Abeta peptides in the brain. Most importantly, valsartan administration also attenuated the development of Abeta-mediated cognitive deterioration, even when delivered at a dose about 2-fold lower than that used for hypertension treatment in humans. These preclinical studies suggest that certain antihypertensive drugs may have AD-modifying activity and may protect against progressive Abeta-related memory deficits in subjects with AD or in those at high risk of developing AD.
Collapse
Affiliation(s)
- Jun Wang
- Department of Psychiatry, Mount Sinai School of Medicine, New York, New York, USA.
Geriatric Research Education and Clinical Center, James J. Peters Veterans Affairs Medical Center, New York, New York, USA.
Department of Medicine, Mount Sinai School of Medicine and the James J. Peters Veterans Affairs Medical Center, New York, New York, USA.
Department of Neuroscience, Mount Sinai School of Medicine, New York, New York, USA
| | - Lap Ho
- Department of Psychiatry, Mount Sinai School of Medicine, New York, New York, USA.
Geriatric Research Education and Clinical Center, James J. Peters Veterans Affairs Medical Center, New York, New York, USA.
Department of Medicine, Mount Sinai School of Medicine and the James J. Peters Veterans Affairs Medical Center, New York, New York, USA.
Department of Neuroscience, Mount Sinai School of Medicine, New York, New York, USA
| | - Linghong Chen
- Department of Psychiatry, Mount Sinai School of Medicine, New York, New York, USA.
Geriatric Research Education and Clinical Center, James J. Peters Veterans Affairs Medical Center, New York, New York, USA.
Department of Medicine, Mount Sinai School of Medicine and the James J. Peters Veterans Affairs Medical Center, New York, New York, USA.
Department of Neuroscience, Mount Sinai School of Medicine, New York, New York, USA
| | - Zhong Zhao
- Department of Psychiatry, Mount Sinai School of Medicine, New York, New York, USA.
Geriatric Research Education and Clinical Center, James J. Peters Veterans Affairs Medical Center, New York, New York, USA.
Department of Medicine, Mount Sinai School of Medicine and the James J. Peters Veterans Affairs Medical Center, New York, New York, USA.
Department of Neuroscience, Mount Sinai School of Medicine, New York, New York, USA
| | - Wei Zhao
- Department of Psychiatry, Mount Sinai School of Medicine, New York, New York, USA.
Geriatric Research Education and Clinical Center, James J. Peters Veterans Affairs Medical Center, New York, New York, USA.
Department of Medicine, Mount Sinai School of Medicine and the James J. Peters Veterans Affairs Medical Center, New York, New York, USA.
Department of Neuroscience, Mount Sinai School of Medicine, New York, New York, USA
| | - Xianjuan Qian
- Department of Psychiatry, Mount Sinai School of Medicine, New York, New York, USA.
Geriatric Research Education and Clinical Center, James J. Peters Veterans Affairs Medical Center, New York, New York, USA.
Department of Medicine, Mount Sinai School of Medicine and the James J. Peters Veterans Affairs Medical Center, New York, New York, USA.
Department of Neuroscience, Mount Sinai School of Medicine, New York, New York, USA
| | - Nelson Humala
- Department of Psychiatry, Mount Sinai School of Medicine, New York, New York, USA.
Geriatric Research Education and Clinical Center, James J. Peters Veterans Affairs Medical Center, New York, New York, USA.
Department of Medicine, Mount Sinai School of Medicine and the James J. Peters Veterans Affairs Medical Center, New York, New York, USA.
Department of Neuroscience, Mount Sinai School of Medicine, New York, New York, USA
| | - Ilana Seror
- Department of Psychiatry, Mount Sinai School of Medicine, New York, New York, USA.
Geriatric Research Education and Clinical Center, James J. Peters Veterans Affairs Medical Center, New York, New York, USA.
Department of Medicine, Mount Sinai School of Medicine and the James J. Peters Veterans Affairs Medical Center, New York, New York, USA.
Department of Neuroscience, Mount Sinai School of Medicine, New York, New York, USA
| | - Sadie Bartholomew
- Department of Psychiatry, Mount Sinai School of Medicine, New York, New York, USA.
Geriatric Research Education and Clinical Center, James J. Peters Veterans Affairs Medical Center, New York, New York, USA.
Department of Medicine, Mount Sinai School of Medicine and the James J. Peters Veterans Affairs Medical Center, New York, New York, USA.
Department of Neuroscience, Mount Sinai School of Medicine, New York, New York, USA
| | - Clive Rosendorff
- Department of Psychiatry, Mount Sinai School of Medicine, New York, New York, USA.
Geriatric Research Education and Clinical Center, James J. Peters Veterans Affairs Medical Center, New York, New York, USA.
Department of Medicine, Mount Sinai School of Medicine and the James J. Peters Veterans Affairs Medical Center, New York, New York, USA.
Department of Neuroscience, Mount Sinai School of Medicine, New York, New York, USA
| | - Giulio Maria Pasinetti
- Department of Psychiatry, Mount Sinai School of Medicine, New York, New York, USA.
Geriatric Research Education and Clinical Center, James J. Peters Veterans Affairs Medical Center, New York, New York, USA.
Department of Medicine, Mount Sinai School of Medicine and the James J. Peters Veterans Affairs Medical Center, New York, New York, USA.
Department of Neuroscience, Mount Sinai School of Medicine, New York, New York, USA
| |
Collapse
|
449
|
Abstract
There is now sizable literature on the association between traditional cardiovascular risk factors and Alzheimer's disease (AD). Based on epidemiologic studies, both cross-sectional and longitudinal, there are statistically significant correlations between the prevalence of AD and diabetes, hypercholesterolemia, hypertension, hyperhomocysteinemia, dietary saturated fats, cholesterol, antioxidants, alcohol consumption, smoking, physical activity, the presence of atrial fibrillation, atherosclerotic disease, and the plasma concentration of some hemostatic factors. Most of the cardiovascular risk factors found to be associated with AD are age-dependent, and the prevalence of AD increases with age. Therefore, the association could simply be attributed to aging. On the other hand, the common pathogenetic mechanisms for the generation of both atherosclerotic disease and AD, such as inflammation and the generation of free radicals, suggest a causal link. If this is the case, the identification of modifiable risk factors for dementia becomes a research priority and early intervention aimed at reducing those cardiovascular risk factors a therapeutic imperative.
Collapse
Affiliation(s)
- Clive Rosendorff
- Department of Medicine, Mount Sinai School of Medicine, New York, NY, USA.
| | | | | |
Collapse
|
450
|
Farris W, Schütz SG, Cirrito JR, Shankar GM, Sun X, George A, Leissring MA, Walsh DM, Qiu WQ, Holtzman DM, Selkoe DJ. Loss of neprilysin function promotes amyloid plaque formation and causes cerebral amyloid angiopathy. THE AMERICAN JOURNAL OF PATHOLOGY 2007; 171:241-51. [PMID: 17591969 PMCID: PMC1941603 DOI: 10.2353/ajpath.2007.070105] [Citation(s) in RCA: 116] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Cerebral deposition of the amyloid beta protein (Abeta), an invariant feature of Alzheimer's disease, reflects an imbalance between the rates of Abeta production and clearance. The causes of Abeta elevation in the common late-onset form of Alzheimer's disease (LOAD) are largely unknown. There is evidence that the Abeta-degrading protease neprilysin (NEP) is down-regulated in normal aging and LOAD. We asked whether a decrease in endogenous NEP levels can prolong the half-life of Abeta in vivo and promote development of the classic amyloid neuropathology of Alzheimer's disease. We examined the brains and plasma of young and old mice expressing relatively low levels of human amyloid precursor protein and having one or both NEP genes silenced. NEP loss of function 1) elevated whole-brain and plasma levels of human Abeta(40) and Abeta(42), 2) prolonged the half-life of soluble Abeta in brain interstitial fluid of awake animals, 3) raised the concentration of Abeta dimers, 4) markedly increased hippocampal amyloid plaque burden, and 5) led to the development of amyloid angiopathy. A approximately 50% reduction in NEP levels, similar to that reported in some LOAD brains, was sufficient to increase amyloid neuropathology. These findings demonstrate an important role for proteolysis in determining the levels of Abeta and Abeta-associated neuropathology in vivo and support the hypothesis that primary defects in Abeta clearance can cause or contribute to LOAD pathogenesis.
Collapse
Affiliation(s)
- Wesley Farris
- Center for Neurologic Diseases, Department of Neurology, Harvard Institutes of Medicine, Room 730, Boston, MA 02115, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|