401
|
Westin ER, Aykin-Burns N, Buckingham EM, Spitz DR, Goldman FD, Klingelhutz AJ. The p53/p21(WAF/CIP) pathway mediates oxidative stress and senescence in dyskeratosis congenita cells with telomerase insufficiency. Antioxid Redox Signal 2011; 14:985-97. [PMID: 21087144 PMCID: PMC3043957 DOI: 10.1089/ars.2010.3444] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Telomere attrition is a natural process that occurs due to inadequate telomere maintenance. Once at a critically short threshold, telomeres signal growth arrest, leading to senescence. Telomeres can be elongated by the enzyme telomerase, which adds de novo telomere repeats to the ends of chromosomes. Mutations in genes for telomere binding proteins or components of telomerase give rise to the premature aging disorder dyskeratosis congenita (DC), which is characterized by extremely short telomeres and an aging phenotype. The current study demonstrates that DC cells signal a DNA damage response through p53 and its downstream mediator, p21(WAF/CIP), which is accompanied by an elevation in steady-state levels of superoxide and percent glutathione disulfide, both indicators of oxidative stress. Poor proliferation of DC cells can be partially overcome by reducing O(2) tension from 21% to 4%. Further, restoring telomerase activity or inhibiting p53 or p21(WAF/CIP) significantly mitigated growth inhibition as well as caused a significant decrease in steady-state levels of superoxide. Our results support a model in which telomerase insufficiency in DC leads to p21(WAF/CIP) signaling, via p53, to cause increased steady-state levels of superoxide, metabolic oxidative stress, and senescence.
Collapse
Affiliation(s)
- Erik R Westin
- Interdisciplinary Program in Genetics, University of Iowa, Iowa City, Iowa 52242, USA
| | | | | | | | | | | |
Collapse
|
402
|
Eisenberg DTA. An evolutionary review of human telomere biology: the thrifty telomere hypothesis and notes on potential adaptive paternal effects. Am J Hum Biol 2011; 23:149-67. [PMID: 21319244 DOI: 10.1002/ajhb.21127] [Citation(s) in RCA: 137] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2010] [Revised: 08/03/2010] [Accepted: 09/30/2010] [Indexed: 12/14/2022] Open
Abstract
Telomeres, repetitive DNA sequences found at the ends of linear chromosomes, play a role in regulating cellular proliferation, and shorten with increasing age in proliferating human tissues. The rate of age-related shortening of telomeres is highest early in life and decreases with age. Shortened telomeres are thought to limit the proliferation of cells and are associated with increased morbidity and mortality. Although natural selection is widely assumed to operate against long telomeres because they entail increased cancer risk, the evidence for this is mixed. Instead, here it is proposed that telomere length is primarily limited by energetic constraints. Cell proliferation is energetically expensive, so shorter telomeres should lead to a thrifty phenotype. Shorter telomeres are proposed to restrain adaptive immunity as an energy saving mechanism. Such a limited immune system, however, might also result in chronic infections, inflammatory stress, premature aging, and death--a more "disposable soma." With an increased reproductive lifespan, the fitness costs of premature aging are higher and longer telomeres will be favored by selection. Telomeres exhibit a paternal effect whereby the offspring of older fathers have longer telomeres due to increased telomere lengths of sperm with age. This paternal effect is proposed to be an adaptive signal of the expected age of male reproduction in the environment offspring are born into. The offspring of lineages of older fathers will tend to have longer, and thereby less thrifty, telomeres, better preparing them for an environment with higher expected ages at reproduction.
Collapse
Affiliation(s)
- Dan T A Eisenberg
- Department of Anthropology, Northwestern University, Evanston, IL 60208-1330, USA.
| |
Collapse
|
403
|
Koziel JE, Fox MJ, Steding CE, Sprouse AA, Herbert BS. Medical genetics and epigenetics of telomerase. J Cell Mol Med 2011; 15:457-67. [PMID: 21323862 PMCID: PMC3922369 DOI: 10.1111/j.1582-4934.2011.01276.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2011] [Accepted: 02/01/2011] [Indexed: 12/13/2022] Open
Abstract
Telomerase is a specialized reverse transcriptase that extends and maintains the terminal ends of chromosomes, or telomeres. Since its discovery in 1985 by Nobel Laureates Elizabeth Blackburn and Carol Greider, thousands of articles have emerged detailing its significance in telomere function and cell survival. This review provides a current assessment on the importance of telomerase regulation and relates it in terms of medical genetics. In this review, we discuss the recent findings on telomerase regulation, focusing on epigenetics and non-coding RNAs regulation of telomerase, such as microRNAs and the recently discovered telomeric-repeat containing RNA transcripts. Human genetic disorders that develop due to mutations in telomerase subunits, the role of single nucleotide polymorphisms in genes encoding telomerase components and diseases as a result of telomerase regulation going awry are also discussed. Continual investigation of the complex regulation of telomerase will further our insight into the use of controlling telomerase activity in medicine.
Collapse
Affiliation(s)
- Jillian E Koziel
- Department of Medical and Molecular Genetics, Indiana University School of MedicineIndianapolis, IN, USA
| | - Melanie J Fox
- Department of Medical and Molecular Genetics, Indiana University School of MedicineIndianapolis, IN, USA
| | - Catherine E Steding
- Department of Medical and Molecular Genetics, Indiana University School of MedicineIndianapolis, IN, USA
| | - Alyssa A Sprouse
- Department of Pharmacology and Toxicology, Indiana University School of MedicineIndianapolis, IN, USA
| | - Brittney-Shea Herbert
- Department of Medical and Molecular Genetics, Indiana University School of MedicineIndianapolis, IN, USA
- Department of Pharmacology and Toxicology, Indiana University School of MedicineIndianapolis, IN, USA
- Indiana University Melvin and Bren Simon Cancer Center, Indiana University School of MedicineIndianapolis, IN, USA
- Indiana University Center for Regenerative Biology and Medicine, Indiana University School of MedicineIndianapolis, IN, USA
| |
Collapse
|
404
|
Thakkar D, Shervington L, Shervington A. Proteomic studies coupled with RNAi methodologies can shed further light on the downstream effects of telomerase in glioma. Cancer Invest 2011; 29:113-22. [PMID: 21261472 DOI: 10.3109/07357907.2010.543212] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
A comprehensive proteomic study utilizing 2D-DIGE and MALDI-TOF was used to assess the effect of inhibiting two different regulatory mechanisms of telomerase in glioma. RNAi was used to target hTERT and hsp90α. Inhibition of telomerase activity resulted in downregulation of various cytoskeletal proteins with correlative evidence of the involvement of telomerase in regulating the expression of vimentin. Inhibition of telomerase via sihTERT resulted in the downregulation of vimentin expression in glioma cell lines in a grade-specific manner. This study identified novel downstream role of telomerase in regulating the expression of vimentin, thereby affecting tumor progression and metastasis.
Collapse
Affiliation(s)
- Dipti Thakkar
- Brain Tumour North West, Faculty of Science and Technology, University of Central Lancashire, Preston, UK
| | | | | |
Collapse
|
405
|
Curcumin regulates low-linear energy transfer γ-radiation-induced NFκB-dependent telomerase activity in human neuroblastoma cells. Int J Radiat Oncol Biol Phys 2011; 79:1206-15. [PMID: 21236599 DOI: 10.1016/j.ijrobp.2010.10.058] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2010] [Revised: 10/11/2010] [Accepted: 10/21/2010] [Indexed: 11/22/2022]
Abstract
PURPOSE We recently reported that curcumin attenuates ionizing radiation (IR)-induced survival signaling and proliferation in human neuroblastoma cells. Also, in the endothelial system, we have demonstrated that NFκB regulates IR-induced telomerase activity (TA). Accordingly, we investigated the effect of curcumin in inhibiting IR-induced NFκB-dependent hTERT transcription, TA, and cell survival in neuroblastoma cells. METHODS AND MATERIALS SK-N-MC or SH-SY5Y cells exposed to IR and treated with curcumin (10-100 nM) with or without IR were harvested after 1 h through 24 h. NFκB-dependent regulation was investigated either by luciferase reporter assays using pNFκB-, pGL3-354-, pGL3-347-, or pUSE-IκBα-Luc, p50/p65, or RelA siRNA-transfected cells. NFκB activity was analyzed using an electrophoretic mobility shift assay and hTERT expression using the quantitative polymerase chain reaction. TA was determined using the telomerase repeat amplification protocol assay and cell survival using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltertrazolium bromide and clonogenic assay. RESULTS Curcumin profoundly inhibited IR-induced NFκB. Consequently, curcumin significantly inhibited IR-induced TA and hTERT mRNA at all points investigated. Furthermore, IR-induced TA is regulated at the transcriptional level by triggering telomerase reverse transcriptase (TERT) promoter activation. Moreover, NFκB becomes functionally activated after IR and mediates TA upregulation by binding to the κB-binding region in the promoter region of the TERT gene. Consistently, elimination of the NFκB-recognition site on the telomerase promoter or inhibition of NFκB by the IκBα mutant compromises IR-induced telomerase promoter activation. Significantly, curcumin inhibited IR-induced TERT transcription. Consequently, curcumin inhibited hTERT mRNA and TA in NFκB overexpressed cells. Furthermore, curcumin enhanced the IR-induced inhibition of cell survival. CONCLUSIONS These results strongly suggest that curcumin inhibits IR-induced TA in an NFκB dependent manner in human neuroblastoma cells.
Collapse
|
406
|
Giardini M, Fernández M, Lira C, Cano M. Leishmania amazonensis: Partial purification and study of the biochemical properties of the telomerase reverse transcriptase activity from promastigote-stage. Exp Parasitol 2011; 127:243-8. [DOI: 10.1016/j.exppara.2010.08.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2010] [Revised: 07/28/2010] [Accepted: 08/02/2010] [Indexed: 11/25/2022]
|
407
|
Shammas MA, Rao MY. Purification of diseased cells from Barrett's esophagus and related lesions by laser capture microdissection. Methods Mol Biol 2011; 755:181-7. [PMID: 21761303 DOI: 10.1007/978-1-61779-163-5_14] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Barrett's esophageal adenocarcinoma (BEAC) arises from Barrett's esophagus (BE), a premalignant lesion caused by acid reflux (heartburn). Although the cancer is uncommon, its incidence is rapidly rising in western countries. Like most other cancers, BEAC cells also have elevated telomerase activity which maintains telomere length and supports continued proliferation of these cells. It is not clear if telomerase is activated early at premalignant (BE) stage, because reports of telomerase activity in Barrett's and normal esophagi have been controversial. We have shown that detection of telomerase and telomeres becomes easier and much more reliable if purified BE cells are used instead of tissue specimens. This chapter, therefore, emphasizes the importance of laser capture microdissection and provides the method to purify Barrett's esophagus related cells, using this technique.
Collapse
Affiliation(s)
- Masood A Shammas
- Department of Medical Oncology, Harvard (Dana Farber) Cancer Institute and VA Boston Healthcare System, Boston, MA, USA.
| | | |
Collapse
|
408
|
Abstract
Telomeres are ends of chromosomes that play an important part in the biology of eukaryotic cells. Through the coordinated action of the telomerase and networks of other proteins and factors, the length and integrity of telomeres are maintained to prevent telomere dysfunction that has been linked to senescence, aging, diseases, and cancer. The tools and assays being used to study telomeres are being broadened, which has allowed us to derive a more detailed, high-resolution picture of the various players and pathways at work at the telomeres.
Collapse
Affiliation(s)
- Zhou Songyang
- Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
409
|
Nourbakhsh M, Golestani A, Zahrai M, Modarressi MH, Malekpour Z, Karami-Tehrani F. Androgens stimulate telomerase expression, activity and phosphorylation in ovarian adenocarcinoma cells. Mol Cell Endocrinol 2010; 330:10-6. [PMID: 20673788 DOI: 10.1016/j.mce.2010.07.021] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2010] [Revised: 07/17/2010] [Accepted: 07/22/2010] [Indexed: 10/19/2022]
Abstract
Androgens have been implicated in increasing ovarian cancer risk. Most ovarian cancer cells have high telomerase activity which is effective in inducing ovarian carcinogenesis. The purpose of this study was to investigate the effects of testosterone and androstenedione on the viability of an ovarian adenocarcinoma cell line, the activity and expression of telomerase, and the phosphorylation status of its catalytic subunit in these cells. Results showed that androgens significantly increased the viability of ovarian cancer cells and that these hormones induced the expression, activity and phosphorylation of telomerase. This upregulation was blocked by phosphatidylinositol 3-kinase pathway inhibitors. These findings might have implications for understanding the role of androgens in ovarian carcinogenesis.
Collapse
Affiliation(s)
- Mitra Nourbakhsh
- Department of Biochemistry, School of Medicine, Tehran University of Medical Sciences, 1417613151 Tehran, Iran
| | | | | | | | | | | |
Collapse
|
410
|
Tuntiwechapikul W, Taka T, Songsomboon C, Kaewtunjai N, Imsumran A, Makonkawkeyoon L, Pompimon W, Lee TR. Ginger extract inhibits human telomerase reverse transcriptase and c-Myc expression in A549 lung cancer cells. J Med Food 2010; 13:1347-54. [PMID: 21091248 DOI: 10.1089/jmf.2010.1191] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The rhizome of ginger (Zingiber officinale Roscoe) has been reputed to have many curative properties in traditional medicine, and recent publications have also shown that many agents in ginger possess anticancer properties. Here we show that the ethyl acetate fraction of ginger extract can inhibit the expression of the two prominent molecular targets of cancer, the human telomerase reverse transcriptase (hTERT) and c-Myc, in A549 lung cancer cells in a time- and concentration-dependent manner. The treated cells exhibited diminished telomerase activity because of reduced protein production rather than direct inhibition of telomerase. The reduction of hTERT expression coincided with the reduction of c-Myc expression, which is one of the hTERT transcription factors; thus, the reduction in hTERT expression might be due in part to the decrease of c-Myc. As both telomerase inhibition and Myc inhibition are cancer-specific targets for cancer therapy, ginger extract might prove to be beneficial as a complementary agent in cancer prevention and maintenance therapy.
Collapse
Affiliation(s)
- Wirote Tuntiwechapikul
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand.
| | | | | | | | | | | | | | | |
Collapse
|
411
|
Wojtyla A, Gladych M, Rubis B. Human telomerase activity regulation. Mol Biol Rep 2010; 38:3339-49. [PMID: 21086176 PMCID: PMC3085100 DOI: 10.1007/s11033-010-0439-x] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2010] [Accepted: 11/08/2010] [Indexed: 01/27/2023]
Abstract
Telomerase has been recognized as a relevant factor distinguishing cancer cells from normal cells. Thus, it has become a very promising target for anticancer therapy. The cell proliferative potential can be limited by replication end problem, due to telomeres shortening, which is overcome in cancer cells by telomerase activity or by alternative telomeres lengthening (ALT) mechanism. However, this multisubunit enzymatic complex can be regulated at various levels, including expression control but also other factors contributing to the enzyme phosphorylation status, assembling or complex subunits transport. Thus, we show that the telomerase expression targeting cannot be the only possibility to shorten telomeres and induce cell apoptosis. It is important especially since the transcription expression is not always correlated with the enzyme activity which might result in transcription modulation failure or a possibility for the gene therapy to be overcome. This review summarizes the current state of knowledge of numerous telomerase regulation mechanisms that take place after telomerase subunits coding genes transcription. Thus we show the possible mechanisms of telomerase activity regulation which might become attractive anticancer therapy targets.
Collapse
Affiliation(s)
- Aneta Wojtyla
- Department of Clinical Chemistry and Molecular Diagnostics, Poznan University of Medical Sciences, Przybyszewskiego 49 St, 60-355 Poznan, Poland
| | | | | |
Collapse
|
412
|
Arendt ML, Nasir L, Morgan IM. The human and canine TERT promoters function equivalently in human and canine cells. Vet Comp Oncol 2010; 8:310-6. [PMID: 21062413 DOI: 10.1111/j.1476-5829.2010.00227.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Telomerase targeted cancer gene therapy is being exploited for treatment of human cancer. The high incidence and many comparative aspects of human and canine cancer and the compliance and dedication of dog owners to treat cancer makes the canine pet population a good clinical model for investigating and developing new cancer therapeutics. Here, we report that the human telomerase promoter operates in canine cells, suggesting that human telomerase promoter-driven cancer therapy can be used to treat cancer in canines. Therefore, the canine pet population can act as a clinical model for new drug development based on telomerase therapeutics.
Collapse
Affiliation(s)
- M L Arendt
- Institute of Comparative Medicine, University of Glasgow, Glasgow, UK.
| | | | | |
Collapse
|
413
|
Lee OH, Kim H, He Q, Baek HJ, Yang D, Chen LY, Liang J, Chae HK, Safari A, Liu D, Songyang Z. Genome-wide YFP fluorescence complementation screen identifies new regulators for telomere signaling in human cells. Mol Cell Proteomics 2010; 10:M110.001628. [PMID: 21044950 DOI: 10.1074/mcp.m110.001628] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Detection of low-affinity or transient interactions can be a bottleneck in our understanding of signaling networks. To address this problem, we developed an arrayed screening strategy based on protein complementation to systematically investigate protein-protein interactions in live human cells, and performed a large-scale screen for regulators of telomeres. Maintenance of vertebrate telomeres requires the concerted action of members of the Telomere Interactome, built upon the six core telomeric proteins TRF1, TRF2, RAP1, TIN2, TPP1, and POT1. Of the ∼12,000 human proteins examined, we identified over 300 proteins that associated with the six core telomeric proteins. The majority of the identified proteins have not been previously linked to telomere biology, including regulators of post-translational modifications such as protein kinases and ubiquitin E3 ligases. Results from this study shed light on the molecular niche that is fundamental to telomere regulation in humans, and provide a valuable tool to investigate signaling pathways in mammalian cells.
Collapse
Affiliation(s)
- Ok-Hee Lee
- Severance Hospital Integrative Research Institute for Cerebral and Cardiovascular Disease, Yonsei University Health System, Seoul, Korea
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
414
|
Ageing, telomeres, senescence, and liver injury. J Hepatol 2010; 53:950-61. [PMID: 20739078 DOI: 10.1016/j.jhep.2010.06.009] [Citation(s) in RCA: 119] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2010] [Revised: 06/24/2010] [Accepted: 06/26/2010] [Indexed: 02/08/2023]
Abstract
Populations in developed countries continue to grow older and an understanding of the ageing process to allow healthy ageing carries important medical implications. Older individuals are more susceptible to most acquired liver disorders and more vulnerable to the consequences of liver disease. Accordingly, age is a critical determinant of outcome for hepatitis C virus infection and liver transplantation. In this review we describe changes in the ageing liver and discuss mechanisms of senescence at the cellular level. In particular, we focus on mechanisms by which inflammation, oxidative stress, and oncogenic stress accelerate cellular senescence. In the setting of chronic hepatic injury and inflammation, cellular senescence functions as an essential stress-response mechanism to limit the proliferation of damaged cells and reduce the risk of malignancy, but this benefit is achieved at the expense of senescence-related organ dysfunction. The dual role of cell senescence in chronic liver disease will make this an intriguing but challenging area for future clinical interventions.
Collapse
|
415
|
Amor S, Remy S, Dambrine G, Le Vern Y, Rasschaert D, Laurent S. Alternative splicing and nonsense-mediated decay regulate telomerase reverse transcriptase (TERT) expression during virus-induced lymphomagenesis in vivo. BMC Cancer 2010; 10:571. [PMID: 20964812 PMCID: PMC2976754 DOI: 10.1186/1471-2407-10-571] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2010] [Accepted: 10/21/2010] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Telomerase activation, a critical step in cell immortalization and oncogenesis, is partly regulated by alternative splicing. In this study, we aimed to use the Marek's disease virus (MDV) T-cell lymphoma model to evaluate TERT regulation by splicing during lymphomagenesis in vivo, from the start point to tumor establishment. RESULTS We first screened cDNA libraries from the chicken MDV lymphoma-derived MSB-1 T- cell line, which we compared with B (DT40) and hepatocyte (LMH) cell lines. The chTERT splicing pattern was cell line-specific, despite similar high levels of telomerase activity. We identified 27 alternative transcripts of chicken TERT (chTERT). Five were in-frame alternative transcripts without in vitro telomerase activity in the presence of viral or chicken telomerase RNA (vTR or chTR), unlike the full-length transcript. Nineteen of the 22 transcripts with a premature termination codon (PTC) harbored a PTC more than 50 nucleotides upstream from the 3' splice junction, and were therefore predicted targets for nonsense-mediated decay (NMD). The major PTC-containing alternatively spliced form identified in MSB1 (ie10) was targeted to the NMD pathway, as demonstrated by UPF1 silencing. We then studied three splicing events separately, and the balance between in-frame alternative splice variants (d5f and d10f) plus the NMD target i10ec and constitutively spliced chTERT transcripts during lymphomagenesis induced by MDV indicated that basal telomerase activity in normal T cells was associated with a high proportion of in-frame non functional isoforms and a low proportion of constitutively spliced chTERT. Telomerase upregulation depended on an increase in active constitutively spliced chTERT levels and coincided with a switch in alternative splicing from an in-frame variant to NMD-targeted variants. CONCLUSIONS TERT regulation by splicing plays a key role in telomerase upregulation during lymphomagenesis, through the sophisticated control of constitutive and alternative splicing. Using the MDV T-cell lymphoma model, we identified a chTERT splice variant as a new NMD target.
Collapse
Affiliation(s)
- Souheila Amor
- Equipe TLVI, Université François Rabelais de Tours, UFR Sciences et Techniques, Parc de Grandmont 37200 Tours, France
| | | | | | | | | | | |
Collapse
|
416
|
Lee JH, Khadka P, Baek SH, Chung IK. CHIP promotes human telomerase reverse transcriptase degradation and negatively regulates telomerase activity. J Biol Chem 2010; 285:42033-45. [PMID: 20959453 DOI: 10.1074/jbc.m110.149831] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The maintenance of eukaryotic telomeres requires telomerase, which is minimally composed of a telomerase reverse transcriptase (TERT) and an associated RNA component. Telomerase activity is tightly regulated by expression of human (h) TERT at both the transcriptional and post-translational levels. The Hsp90 and p23 molecular chaperones have been shown to associate with hTERT for the assembly of active telomerase. Here, we show that CHIP (C terminus of Hsc70-interacting protein) physically associates with hTERT in the cytoplasm and regulates the cellular abundance of hTERT through a ubiquitin-mediated degradation. Overexpression of CHIP prevents nuclear translocation of hTERT and promotes hTERT degradation in the cytoplasm, thereby inhibiting telomerase activity. In contrast, knockdown of endogenous CHIP results in the stabilization of cytoplasmic hTERT. However, it does not affect the level of nuclear hTERT and has no effect on telomerase activity and telomere length. We further show that the binding of CHIP and Hsp70 to hTERT inhibits nuclear translocation of hTERT by dissociating p23. However, Hsp90 binding to hTERT was not affected by CHIP overexpression. These results suggest that CHIP can remodel the hTERT-chaperone complexes. Finally, the amount of hTERT associated with CHIP peaks in G(2)/M phases but decreases during S phase, suggesting a cell cycle-dependent regulation of hTERT. Our data suggest that CHIP represents a new pathway for modulating telomerase activity in cancer.
Collapse
Affiliation(s)
- Ji Hoon Lee
- Departments of Biology and Biomedical Science, World Class University Program of Graduate School, Yonsei University, Seoul 20-749, Korea
| | | | | | | |
Collapse
|
417
|
Abstract
Advances in chromosome dynamics have increased our understanding of the significant role of telomeres and telomerase in cancer. Telomerase is expressed in almost all cancer cells but is inactive in most normal somatic cells. Therefore, telomerase is an important target for the design of therapeutic agents that might have minimal side effects. Herein, we evaluate current approaches to telomerase/telomere-targeted therapy, discuss the benefits and disadvantages, and speculate on the future direction of telomerase inhibitors as cancer therapeutics.
Collapse
|
418
|
Ozsarlak-Sozer G, Kerry Z, Gokce G, Oran I, Topcu Z. Oxidative stress in relation to telomere length maintenance in vascular smooth muscle cells following balloon angioplasty. J Physiol Biochem 2010; 67:35-42. [DOI: 10.1007/s13105-010-0046-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2010] [Accepted: 09/14/2010] [Indexed: 12/20/2022]
|
419
|
Bhatia S, Kaul D, Varma N. Functional genomics of tumor suppressor miR-196b in T-cell acute lymphoblastic leukemia. Mol Cell Biochem 2010; 346:103-16. [PMID: 20924650 DOI: 10.1007/s11010-010-0597-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2010] [Accepted: 09/18/2010] [Indexed: 12/19/2022]
Abstract
Huge data accumulated in last few years have shown that differential expression of candidate miRNAs in normal versus transformed cell provides important insights into the pathogenesis of cancer including leukemias. In our previous report, we have revealed that miR-196b was significantly down-regulated in both EB-3 cells as well as B-cell ALL (acute lymphoblastic leukemia) patients as compared to their respective controls. We have unambiguously proven that miR-196b restoration in EB-3 cells leads to significant down-regulation of c-myc and its effector genes, i.e., human telomerase reverse transcriptase (hTERT), B-cell lymphoma/leukemia-2 (Bcl-2), apoptosis antagonizing transcription factor (AATF), and qualifies for tumor suppressor function in B-cell ALL. Keeping in view these results, the present study was aimed at dissecting the role of miR-196b and other miRNAs present near/within the genomic regions involved in genetic translocations characteristic of ALL in T-cell ALL cell lines and patient samples. We have demonstrated significant down-regulation in the expression of miR-196b in MOLT-4 and T-cell ALL patients with respect to the respective control cells. Transfection experiments revealed that none of the six identified miRNAs were able to knock down the expression of c-myc gene. Interestingly, it was found that miR-196b loses its ability to down-regulate c-myc gene expression in T-cell ALL as a consequence of mutations in target 3'-untranslated region (3'-UTR) of the c-myc gene. Results of the present study revealed that miR-196b becomes non-functional in T-cell ALL as a consequence of mutations in 3'-UTR of c-myc gene in T-cell ALL cellular models.
Collapse
Affiliation(s)
- Suman Bhatia
- Molecular Biology Unit, Department of Experimental Medicine and Biotechnology, Postgraduate Institute of Medical Education and Research, Chandigarh, 160012, India
| | | | | |
Collapse
|
420
|
Telomerase protects adult rodent olfactory ensheathing glia from early senescence. Exp Neurol 2010; 229:54-64. [PMID: 20736004 DOI: 10.1016/j.expneurol.2010.08.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2010] [Accepted: 08/07/2010] [Indexed: 11/21/2022]
Abstract
Adult olfactory bulb ensheathing glia (OB-OEG) promote the repair of acute, subacute, and chronic spinal cord injuries and autologous transplantation is a feasible approach. There are interspecies differences between adult rodent and primate OB-OEG related to their longevity in culture. Whereas primate OB-OEG exhibit a relatively long life span, under the same culture conditions rodent OB-OEG divide just three to four times, are sensitive to oxidative stress and become senescent after the third week in vitro. Telomerase is a "physiological key regulator" of the life span of normal somatic cells and also has extratelomeric functions such as increased resistance to oxidative stress. To elucidate whether telomerase has a role in the senescence of rodent OB-OEG, we have introduced the catalytic subunit of telomerase mTERT into cultures of these cells by retroviral infection. Native and modified adult rat OB-OEG behaved as telomerase-competent cells as they divided while expressing mTERT but entered senescence once the gene switched off. After ectopic expression of mTERT, OB-OEG resumed division at a nonsenescent rate, expressed p75 and other OEG markers, and exhibited the morphology of nonsenescent OB-OEG. The nonsenescent period of mTERT-OEG lasted 9weeks and then ectopic mTERT switched off and cells entered senescence again. Our results suggest a role of telomerase in early senescence of adult rodent OB-OEG cultures and a protection from oxidative damage. This article is part of a Special Issue entitled: Understanding olfactory ensheathing glia and their prospect for nervous system repair.
Collapse
|
421
|
Tomlinson RL, Li J, Culp BR, Terns RM, Terns MP. A Cajal body-independent pathway for telomerase trafficking in mice. Exp Cell Res 2010; 316:2797-809. [PMID: 20633556 DOI: 10.1016/j.yexcr.2010.07.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2009] [Revised: 07/01/2010] [Accepted: 07/03/2010] [Indexed: 01/03/2023]
Abstract
The intranuclear trafficking of human telomerase involves a dynamic interplay between multiple nuclear sites, most notably Cajal bodies and telomeres. Cajal bodies are proposed to serve as sites of telomerase maturation, storage, and assembly, as well as to function in the cell cycle-regulated delivery of telomerase to telomeres in human cells. Here, we find that telomerase RNA does not localize to Cajal bodies in mouse cells, and instead resides in separate nuclear foci throughout much of the cell cycle. However, as in humans, mouse telomerase RNA (mTR) localizes to subsets of telomeres specifically during S phase. The localization of mTR to telomeres in mouse cells does not require coilin-containing Cajal bodies, as mTR is found at telomeres at similar frequencies in cells from wild-type and coilin knockout mice. At the same time, we find that human TR localizes to Cajal bodies (as well as telomeres) in mouse cells, indicating that the distinct trafficking of mTR is attributable to an intrinsic property of the RNA (rather than a difference in the mouse cell environment such as the properties of mouse Cajal bodies). We also find that during S phase, mTR foci coalesce into short chains, with at least one of the conjoined mTR foci co-localizing with a telomere. These findings point to a novel, Cajal body-independent pathway for telomerase biogenesis and trafficking in mice.
Collapse
Affiliation(s)
- Rebecca L Tomlinson
- Departments of Biochemistry and Molecular Biology, and Genetics, University of Georgia, Athens, GA 30602, USA
| | | | | | | | | |
Collapse
|
422
|
Shin JY, Choi YY, Jeon HS, Hwang JH, Kim SA, Kang JH, Chang YS, Jacobs DR, Park JY, Lee DH. Low-dose persistent organic pollutants increased telomere length in peripheral leukocytes of healthy Koreans. Mutagenesis 2010; 25:511-6. [DOI: 10.1093/mutage/geq035] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
423
|
Butt H, Atturu G, London N, Sayers R, Bown M. Telomere Length Dynamics in Vascular Disease: A Review. Eur J Vasc Endovasc Surg 2010; 40:17-26. [DOI: 10.1016/j.ejvs.2010.04.012] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2010] [Accepted: 04/26/2010] [Indexed: 01/06/2023]
|
424
|
|
425
|
Li W, Zeng J, Li Q, Zhao L, Liu T, Björkholm M, Jia J, Xu D. Reptin is required for the transcription of telomerase reverse transcriptase and over-expressed in gastric cancer. Mol Cancer 2010; 9:132. [PMID: 20509972 PMCID: PMC2887797 DOI: 10.1186/1476-4598-9-132] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2009] [Accepted: 05/30/2010] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Telomerase is activated in oncogenesis, which confers an immortal phenotype to cancer cells. The AAA + ATPase Reptin is required for telomerase biogenesis by maintaining telomerase RNA (hTER) stability and is aberrantly expressed in certain cancers. Given its role in chromatin remodeling and transcription regulation, we determined the effect of Reptin on the transcription of the telomerase reverse transcriptase (hTERT) gene, a key component of the telomerase complex and its expression in gastric cancer. RESULTS Knocking down Reptin or its partner Pontin using small interfering RNA in gastric and cervical cancer cells led to significant decreases in hTERT mRNA, but hTERT promoter activity was inhibited in only Reptin-depleted cells. Reptin interacted with the c-MYC oncoprotein and its stimulatory effect on the hTERTpromoter was significantly dependent on functional E-boxes in the promoter. Moreover, Reptin bound to the hTERT proximal promoter and the loss of the Reptin occupancy led to dissociation of c-MYC from the hTERT promoter in Reptin-depleted cells. Reptin inhibition dramatically impaired clonogenic potential of gastric cancer cells by inducing cell growtharrest and over-expression of Reptin was observed in primary gastric cancer specimens. CONCLUSIONS The hTERT gene is a direct target of Reptin, and hTERT transcription requires constitutive expression of Reptin and its cooperation with c-MYC. Thus, Reptin regulates telomerase at two different levels. This finding, together with the requirementof Reptin for the clonogenic potential of cancer cells and its over-expression in gastriccancer and other solid tumors, suggests that Reptin may be a putative therapeutic target.
Collapse
Affiliation(s)
- Wenjuan Li
- Department of Microbiology/Key Laboratory for Experimental Teratology of Chinese Ministry of Education, School of Medicine and School of Life Sciences, Shandong University, Jinan, PR China.
| | | | | | | | | | | | | | | |
Collapse
|
426
|
Pang LY, Argyle D. Cancer stem cells and telomerase as potential biomarkers in veterinary oncology. Vet J 2010; 185:15-22. [PMID: 20580998 DOI: 10.1016/j.tvjl.2010.04.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Despite advances in chemotherapy and radiotherapy, cancer remains a disease of high morbidity and mortality in domestic animals. In parallel to the development of novel therapeutic interventions, appropriate biomarkers are required to detect early-stage disease and disease remission and relapse at both gross and molecular levels, and the effectiveness of therapy. The field of cancer pathogenesis has grown exponentially over the last decade, both in terms of our understanding of the underlying molecular events, and the technologies available to interrogate the cancer cell. This paper reviews the role of the telomerase enzyme and of telomere length as potential biomarkers in cancer. Furthermore, the potential role of cancer stem cells as biomarkers of malignancy and disease progression is assessed.
Collapse
Affiliation(s)
- Lisa Y Pang
- Royal (Dick) School of Veterinary Studies and Roslin Institute, University of Edinburgh Hospital for Small Animals, Easter Bush, Midlothian EH25 9RG, UK
| | | |
Collapse
|
427
|
Oh W, Lee EW, Lee D, Yang MR, Ko A, Yoon CH, Lee HW, Bae YS, Choi CY, Song J. Hdm2 negatively regulates telomerase activity by functioning as an E3 ligase of hTERT. Oncogene 2010; 29:4101-12. [PMID: 20453884 DOI: 10.1038/onc.2010.160] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
In this study, we identified posttranslational regulation of human telomerase reverse-transcriptase (hTERT) by the E3 ligase Hdm2. The telomerase activity generated by exogenous hTERT in U2OS cells was reduced on adriamycin treatment. The overexpressed levels of hTERT were also decreased under the same conditions. These processes were reversed by treatment with a proteasome inhibitor or depletion of Hdm2. Furthermore, intrinsic telomerase activity was increased in HCT116 cells with ablation of Hdm2. Immunoprecipitation analyses showed that hTERT and Hdm2 bound to each other in multiple domains. Ubiquitination analyses showed that Hdm2 could polyubiquitinate hTERT principally at the N-terminus, which was further degraded in a proteasome-dependent manner. An hTERT mutant with all five lysine residues at the N-terminus of hTERT that mutated to arginine became resistant to Hdm2-mediated ubiquitination and degradation. In U2OS cells, depletion of Hdm2 or addition of the Hdm2-resistant hTERT mutant strengthened the cellular protective effects against apoptosis. Similar results were obtained with the Hdm2-stable H1299 cell line. These observations indicate that Hdm2 is an E3 ligase of hTERT.
Collapse
Affiliation(s)
- W Oh
- Department of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon, Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
428
|
Abstract
Recruitment to telomeres is a pivotal step in the function and regulation of human telomerase; however, the molecular basis for recruitment is not known. Here, we have directly investigated the process of telomerase recruitment via fluorescence in situ hybridization (FISH) and chromatin immunoprecipitation (ChIP). We find that depletion of two components of the shelterin complex that is found at telomeres--TPP1 and the protein that tethers TPP1 to the complex, TIN2--results in a loss of telomerase recruitment. On the other hand, we find that the majority of the observed telomerase association with telomeres does not require POT1, the shelterin protein that links TPP1 to the single-stranded region of the telomere. Deletion of the oligonucleotide/oligosaccharide binding fold (OB-fold) of TPP1 disrupts telomerase recruitment. In addition, while loss of TPP1 results in the appearance of DNA damage factors at telomeres, the DNA damage response per se does not account for the telomerase recruitment defect observed in the absence of TPP1. Our findings indicate that TIN2-anchored TPP1 plays a major role in the recruitment of telomerase to telomeres in human cells and that recruitment does not depend on POT1 or interaction of the shelterin complex with the single-stranded region of the telomere.
Collapse
|
429
|
Potential tumor suppressive function of miR-196b in B-cell lineage acute lymphoblastic leukemia. Mol Cell Biochem 2010; 340:97-106. [PMID: 20549547 DOI: 10.1007/s11010-010-0406-9] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2009] [Accepted: 02/09/2010] [Indexed: 01/22/2023]
Abstract
Keeping in view the fact that genes coding microRNAs (miRNAs) have been found to be localized in chromosomal regions susceptible to genetic translocations, this study was addressed to identify and characterize the miRNAs that are present near/within the regions involved in genetic translocations characteristic of B-cell acute lymphoblastic leukemia (B-cell ALL). Out of six such identified miRNAs miR-196b was not only found to be significantly down-regulated in both EB-3 cell line as well as B-cell ALL patients as compared to that found in the corresponding controls, but also had the inherent capacity to down-regulate the highly expressed c-myc gene, a consequence of genetic translocation characteristic of EB-3 cells at both transcriptional and translational level. This phenomenon was in conformity with the observed reciprocal relationship between the expressed genes coding for miR-196b and c-myc in B-cells derived from ALL patients as well as c-myc gene was found to be a putative target of miR-196b as predicted by bioinformatic algorithms. Also down-regulation of c-myc gene was accompanied by decreased expressions of c-myc effector genes coding for hTERT, Bcl-2, and AATF. Based upon these results, we propose for the first time that miR-196b has the inherent capacity to down-regulate the overamplified c-myc gene recognized as a common pathognomonic feature leading to cancer in general and B-cell ALL in particular. Hence miR-196b can be assigned with the tumor suppressor function and can be of therapeutic importance in paving the way toward the treatment of B-cell ALL.
Collapse
|
430
|
Aguennouz M, Vita GL, Messina S, Cama A, Lanzano N, Ciranni A, Rodolico C, Di Giorgio RM, Vita G. Telomere shortening is associated to TRF1 and PARP1 overexpression in Duchenne muscular dystrophy. Neurobiol Aging 2010; 32:2190-7. [PMID: 20137830 DOI: 10.1016/j.neurobiolaging.2010.01.008] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2009] [Revised: 10/30/2009] [Accepted: 01/14/2010] [Indexed: 01/09/2023]
Abstract
Telomere shortening is thought to contribute to premature senescence of satellite cells in Duchenne muscular dystrophy (DMD) muscle. Telomeric repeat binding factor-1 (TRF1) and poly (ADP-ribose) polymerase-1 (PARP1) are proteins known to modulate telomerase reverse transcriptase (TERT) activity, which controls telomere elongation. Here we show that an age-dependent telomere shortening occurs in DMD muscles and is associated to overexpression of mRNA and protein levels of TRF1 and PARP1. TERT expression and activity are detectable in normal control muscles and they slightly increase in DMD. This is the first demonstration of TRF1 and PARP1 overexpression in DMD muscles. They can be directly involved in replicative senescence of satellite cells and/or in the pathogenetic cascade through a cross-talk with oxidative stress and inflammatory response. Modulation of these events by TRF1 or PARP1 inhibition might represent a novel strategy for treatment of DMD and other muscular dystrophies.
Collapse
Affiliation(s)
- M'Hammed Aguennouz
- Department of Neurosciences, Psychiatry and Anaesthesiology, University of Messina, AOU Policlinico, Messina 98125, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
431
|
The relationship between premature ageing and immune responses in the oral cavity of Down syndrome. JAPANESE DENTAL SCIENCE REVIEW 2010. [DOI: 10.1016/j.jdsr.2009.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
432
|
Tumor cell redox state and mitochondria at the center of the non-canonical activity of telomerase reverse transcriptase. Mol Aspects Med 2010; 31:21-8. [DOI: 10.1016/j.mam.2009.12.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2009] [Accepted: 12/02/2009] [Indexed: 12/20/2022]
|
433
|
Xu Y, Yu M, Wu F, Sun J, Wood C, Hattori MA, Wang J, Xi Y. Effects of ectopic expression of human telomerase reverse transcriptase on immortalization of feather keratinocyte stem cells. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2010; 312:872-84. [PMID: 19551764 DOI: 10.1002/jez.b.21302] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Normal somatic cells possess a finite life span owing to replicative senescence. Telomerase functions as a potential regulator of senescence in various cells. Expression level of human telomerase reverse transcriptase (hTERT) is correlated with telomerase activity and cellular immortalization. In this study, we investigated the effects of ectopic expression of hTERT on proliferation potential of chicken feather keratinocyte stem cells (FKSCs). We established FKSCs transduced with hTERT catalytic subunit fused with EGFP marker gene (hTERT-EGFP-FKSCs). hTERT-EGFP-FKSCs had the great potential of proliferation in vitro and expressed kerainocyte stem cell markers integrin beta1 and CD49c. Keratin 15 and keratin 19, as native FKSCs, were also detected in hTERT-EGFP-FKSCs. By the analysis of fluorescent RT-PCR, western blotting and TRAP assay, hTERT-EGFP-FKSCs were positive for telomerase activity, in comparison with native FKSCs showing no telomerase activity. We demonstrated that ectopic expression of hTERT could result in immortalization of FKSCs. Tumorigenecity of hTERT-EGFP-FKSCs were examined by soft agar assay and transplantation into NOD-SCID mice. Results showed that hTERT-EGFP-FKSCs sustained the cellular characteristics of native FKSCs and had no transforming activity. In vivo differentiation multipotentials of hTERT-EGFP-FKSCs were confirmed by transplantation into developing chicken embryos and in situ hybridization analysis. These data provide a novel framework for understanding human telomerase activity in different species and suggest a new insight for manipulating hTERT for therapeutic purposes in treating tissue injury and aging.
Collapse
Affiliation(s)
- Yulin Xu
- Institute of Cell Biology and Genetics, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang Province, China
| | | | | | | | | | | | | | | |
Collapse
|
434
|
Cheung PY, Deng W, Man C, Tse WW, Srivastava G, Law S, Tsao SW, Cheung ALM. Genetic alterations in a telomerase-immortalized human esophageal epithelial cell line: implications for carcinogenesis. Cancer Lett 2010; 293:41-51. [PMID: 20092939 DOI: 10.1016/j.canlet.2009.12.015] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2009] [Revised: 12/18/2009] [Accepted: 12/23/2009] [Indexed: 02/04/2023]
Abstract
Ectopic expression of viral oncoproteins disrupts cellular functions and limits the value of many existing immortalization models as models for carcinogenesis, especially for cancers without definitive viral etiology. Our newly established telomerase-immortalized human esophageal epithelial cell line, NE2-hTERT, retained nearly-diploid and non-tumorigenic characteristics, but exhibited genetic and genomic alterations commonly found in esophageal cancer, including progressive loss of the p16(INK4a) alleles, upregulation of anti-apoptotic proteins, epithelial-mesenchymal transition, whole-chromosome 7 gain and duplicated 5q arm. Our data also revealed a novel positive regulation of p16(INK4a) on cyclin D1. These findings probably represent early crucial events and mechanisms in esophageal carcinogenesis.
Collapse
Affiliation(s)
- Pak Yan Cheung
- Cancer Biology Group, Department of Anatomy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | | | | | | | | | | | | | | |
Collapse
|
435
|
Andrews NP, Fujii H, Goronzy JJ, Weyand CM. Telomeres and immunological diseases of aging. Gerontology 2009; 56:390-403. [PMID: 20016137 DOI: 10.1159/000268620] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2009] [Accepted: 09/07/2009] [Indexed: 12/14/2022] Open
Abstract
A defining feature of the eukaryotic genome is the presence of linear chromosomes. This arrangement, however, poses several challenges with regard to chromosomal replication and maintenance. To prevent the loss of coding sequences and to suppress gross chromosomal rearrangements, linear chromosomes are capped by repetitive nucleoprotein structures, called telomeres. Each cell division results in a progressive shortening of telomeres that, below a certain threshold, promotes genome instability, senescence, and apoptosis. Telomeric erosion, maintenance, and repair take center stage in determining cell fate. Cells of the immune system are under enormous proliferative demand, stressing telomeric intactness. Lymphocytes are capable of upregulating telomerase, an enzyme that can elongate telomeric sequences and, thus, prolong cellular lifespan. Therefore, telomere dynamics are critical in preserving immune function and have become a focus for studies of immunosenescence and autoimmunity. In this review, we describe the role of telomeric nucleoproteins in shaping telomere architecture and in suppressing DNA damage responses. We summarize new insights into the regulation of telomerase activity, hereditary disorders associated with telomere dysfunction, the role of telomere loss in immune aging, and the impact of telomere dysfunction in chronic inflammatory disease.
Collapse
Affiliation(s)
- Nicolas P Andrews
- Lowance Center for Human Immunology, Department of Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA
| | | | | | | |
Collapse
|
436
|
Matera L. The choice of the antigen in the dendritic cell-based vaccine therapy for prostate cancer. Cancer Treat Rev 2009; 36:131-41. [PMID: 19954892 DOI: 10.1016/j.ctrv.2009.11.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2009] [Revised: 10/29/2009] [Accepted: 11/03/2009] [Indexed: 12/09/2022]
Abstract
Tumor antigens (TA) are promising candidates for targeted treatment of prostate cancer (PCa). Critical issues in the preparation of dendritic cell (DC)-based TA vaccines are the DC maturation state and the appropriateness of the TA. Prostate-specific antigen (PSA) and prostate acide pshosphatase (PAP) presented by DC have produced encouraging results and PAP-loaded DCs are at late-stage development for PCa patients. TAs indispensable for tumor survival and propagation are now emerging as first choice TAs for future vaccines. The increased expression and enzymatic activity of prostate specific membrane antigen (PSMA) and prostate stem cell antigen (PSCA) by aggressive prostate tumors is indicative of a unique, selective advantage on the part of cells expressing them. Human telomerase reverse transcriptase (hTERT) and survivin are both involved in tumor cell survival and considered universal TAs. The T cell epitope potential of peptides derived from these TAs has been defined by computer-assisted prediction programs and has been tested in vitro and in vivo in terms of their ability to recruit cytotoxic T lymphocytes (CTL) and to be recognised as CTL targets. Results, reviewed here, show that anti-tumor immunity can be induced in vivo by DC loaded with both whole TAs and TA peptides. The promising, but still limited clinical success suggests further exploration of this immune therapy in the more appropriate setting of minimal disease. In advanced stages, vaccine can still be effective when combined with systemic or local cytoreductive therapies, which may overcome antigen specific tolerance and subvert the tumor immunosuppressive environment.
Collapse
Affiliation(s)
- Lina Matera
- Laboratory of Tumor Immunology, Department of Internal Medicine, University of Turin, Turin, Italy.
| |
Collapse
|
437
|
HPV E6 protein interacts physically and functionally with the cellular telomerase complex. Proc Natl Acad Sci U S A 2009; 106:18780-5. [PMID: 19843693 DOI: 10.1073/pnas.0906357106] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Telomerase activation is critical for the immortalization of primary human keratinocytes by the high-risk HPV E6 and E7 oncoproteins, and this activation is mediated in part by E6-induction of the hTERT promoter. E6 induces the hTERT promoter via interactions with the cellular ubiquitin ligase, E6AP, and with the c-Myc and NFX-1 proteins, which are resident on the promoter. In the current study we demonstrate that E6 protein interacts directly with the hTERT protein. Correlating with its ability to bind hTERT, E6 also associates with telomeric DNA and with endogenous active telomerase complexes. Most importantly, E6 increases the telomerase activity of human foreskin fibroblasts transduced with the hTERT gene, and this activity is independent of hTERT mRNA expression. Unlike its ability to degrade p53, E6 does not degrade hTERT protein in vitro or in vivo. Our studies of E6/hTERT interactions also reveal that the C-terminal tagged hTERT protein, although incapable of immortalizing fibroblasts, does immortalize keratinocytes in collaboration with the viral E7 protein. Thus, E6 protein mediates telomerase activation by a posttranscriptional mechanism and these findings provide a model for exploring the direct modulation of cell telomerase/telomere function by an oncogenic virus and suggest its potential role in both neoplasia and virus replication.
Collapse
|
438
|
Nordfjäll K, Svenson U, Norrback KF, Adolfsson R, Roos G. Large-scale parent-child comparison confirms a strong paternal influence on telomere length. Eur J Hum Genet 2009; 18:385-9. [PMID: 19826452 DOI: 10.1038/ejhg.2009.178] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Telomere length is documented to have a hereditary component, and both paternal and X-linked inheritance have been proposed. We investigated blood cell telomere length in 962 individuals with an age range between 0 and 102 years. Telomere length correlations were analyzed between parent-child pairs in different age groups and between grandparent-grandchild pairs. A highly significant correlation between the father's and the child's telomere length was observed (r=0.454, P<0.001), independent of the sex of the offspring (father-son: r=0.465, P<0.001; father-daughter: r=0.484, P<0.001). For mothers, the correlations were weaker (mother-child: r=0.148, P=0.098; mother-son: r=0.080, P=0.561; mother-daughter: r=0.297, P=0.013). A positive telomere length correlation was also observed for grandparent-grandchild pairs (r=0.272, P=0.013). Our findings indicate that fathers contribute significantly stronger to the telomere length of the offspring compared with mothers (P=0.012), but we cannot exclude a maternal influence on the daughter's telomeres. Interestingly, the father-child correlations diminished with increasing age (P=0.022), suggesting that nonheritable factors have an impact on telomere length dynamics during life.
Collapse
Affiliation(s)
- Katarina Nordfjäll
- Department of Medical Biosciences, Pathology, Umeå University, Umeå, Sweden
| | | | | | | | | |
Collapse
|
439
|
Ge Z, Li W, Wang N, Liu C, Zhu Q, Björkholm M, Gruber A, Xu D. Chromatin remodeling: recruitment of histone demethylase RBP2 by Mad1 for transcriptional repression of a Myc target gene, telomerase reverse transcriptase. FASEB J 2009; 24:579-86. [PMID: 19762557 DOI: 10.1096/fj.09-140087] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The Myc/Max/Mad network transcription factors are known to govern target gene expression through recruiting histone acetyltransferases or deacetylases. In the present study, we show that Mad1 recruits the histone demethylase RBP2 to the Myc target telomerase reverse transcriptase (hTERT) gene promoter to repress transcription. With differentiation of leukemic HL60 cells, Mad1 and RBP2 were both up-regulated, interacted, and cooccupied the hTERT promoter accompanied by histone H3-K4 demethylation. In immortalized p493-6 B cells, shutting down c-Myc led to the accumulation of Mad1 and RBP2 at hTERT promoter and diminished hTERT mRNA expression. When RBP2 was depleted, hTERT expression was significantly enhanced, coupled with dissociation of RBP2 with and increased H3-K4 methylation at the hTERT promoter in p493-6 cells. Moreover, RBP2 and Mad1 were present on the hTERT promoter in human fibroblasts having a silent hTERT gene, and RBP2 depletion resulted in gene derepression. Taken together, Mad1 recruits RBP2 to the hTERT promoter that, in turn, demethylates H3-K4, thereby contributing to a stable repression of the hTERT gene in normal or differentiated malignant cells. Our findings reveal a novel mechanism through which the Myc/Max/Mad network proteins control their target gene transcription and provide insights into mechanisms underlying telomerase silencing and activation.
Collapse
Affiliation(s)
- Zheng Ge
- Department of Medicine, Center for Hematology, Karolinska University Hospital Solna and Karolinska Institutet, Stockholm, Sweden
| | | | | | | | | | | | | | | |
Collapse
|
440
|
Woo SH, An S, Lee HC, Jin HO, Seo SK, Yoo DH, Lee KH, Rhee CH, Choi EJ, Hong SI, Park IC. A truncated form of p23 down-regulates telomerase activity via disruption of Hsp90 function. J Biol Chem 2009; 284:30871-80. [PMID: 19740745 DOI: 10.1074/jbc.m109.052720] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The Hsp90-associated protein p23 modulates Hsp90 activity during the final stages of the chaperone pathway to facilitate maturation of client proteins. Previous reports indicate that p23 cleavage induced by caspases during cell death triggers destabilization of client proteins. However, the specific role of truncated p23 (Delta p23) in this process and the underlying mechanisms remain to be determined. One such client protein, hTERT, is a telomerase catalytic subunit regulated by several chaperone proteins, including Hsp90 and p23. In the present study, we examined the effects of p23 cleavage on hTERT stability and telomerase activity. Our data showed that overexpression of Delta p23 resulted in a decrease in hTERT levels, and a down-regulation in telomerase activity. Serine phosphorylation of Hsp90 was significantly reduced in cells expressing high levels of Delta p23 compared with those expressing full-length p23. Mutation analyses revealed that two serine residues (Ser-231 and Ser-263) in Hsp90 are important for activation of telomerase, and down-regulation of telomerase activity by Delta p23 was associated with inhibition of cell growth and sensitization of cells to cisplatin. Our data aid in determining the mechanism underlying the regulation of telomerase activity by the chaperone complex during caspase-dependent cell death.
Collapse
Affiliation(s)
- Sang Hyeok Woo
- Division of Radiation Cancer Research, Korea Institute of Radiological & Medical Sciences, Nowon-gu, Seoul 139-706, Korea
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
441
|
Lehoux M, D'Abramo CM, Archambault J. Molecular mechanisms of human papillomavirus-induced carcinogenesis. Public Health Genomics 2009; 12:268-80. [PMID: 19684440 DOI: 10.1159/000214918] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Approximately 20% of all cancers are associated with infectious agents. Among them, human papillomaviruses (HPVs) are very common and are now recognized as the etiological agent of cervical cancer, the second most common cancer in women worldwide, and they are increasingly linked with other forms of dysplasia. Carcinogenesis is a complex and multistep process requiring the acquisition of several genetic and/or epigenetic alterations. HPV-induced neoplasia, however, is in part mediated by the intrinsic functions of the viral proteins. In order to replicate its genome, HPV modulates the cell cycle, while deploying mechanisms to escape the host immune response, cellular senescence and apoptosis. As such, HPV infection leads directly and indirectly to genomic instability, further favouring transforming genetic events and progression to malignancy. This review aims to summarize our current understanding of the molecular mechanisms exploited by HPV to induce neoplasia, with an emphasis on the role of the 2 viral oncoproteins E6 and E7. Greater understanding of the role of HPV proteins in these processes will ultimately aid in the development of antiviral therapies, as well as unravel general mechanisms of oncogenesis.
Collapse
Affiliation(s)
- Michaël Lehoux
- Laboratory of Molecular Virology, Institut de Recherches Cliniques de Montréal, Montreal, Que., H2W 1R7 Canada
| | | | | |
Collapse
|
442
|
Baker AM, Fu Q, Hayward W, Lindsay SM, Fletcher TM. The Myb/SANT domain of the telomere-binding protein TRF2 alters chromatin structure. Nucleic Acids Res 2009; 37:5019-31. [PMID: 19531742 PMCID: PMC2731900 DOI: 10.1093/nar/gkp515] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2009] [Revised: 05/29/2009] [Accepted: 05/29/2009] [Indexed: 01/30/2023] Open
Abstract
Eukaryotic DNA is packaged into chromatin, which regulates genome activities such as telomere maintenance. This study focuses on the interactions of a myb/SANT DNA-binding domain from the telomere-binding protein, TRF2, with reconstituted telomeric nucleosomal array fibers. Biophysical characteristics of the factor-bound nucleosomal arrays were determined by analytical agarose gel electrophoresis (AAGE) and single molecules were visualized by atomic force microscopy (AFM). The TRF2 DNA-binding domain (TRF2 DBD) neutralized more negative charge on the surface of nucleosomal arrays than histone-free DNA. Binding of TRF2 DBD at lower concentrations increased the radius and conformational flexibility, suggesting a distortion of the fiber structure. Additional loading of TRF2 DBD onto the nucleosomal arrays reduced the flexibility and strongly blocked access of micrococcal nuclease as contour lengths shortened, consistent with formation of a unique, more compact higher-order structure. Mirroring the structural results, TRF2 DBD stimulated a strand invasion-like reaction, associated with telomeric t-loops, at lower concentrations while inhibiting the reaction at higher concentrations. Full-length TRF2 was even more effective at stimulating this reaction. The TRF2 DBD had less effect on histone-free DNA structure and did not stimulate the t-loop reaction with this substrate, highlighting the influence of chromatin structure on the activities of DNA-binding proteins.
Collapse
Affiliation(s)
- Asmaa M. Baker
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL 33101-6129 and Department of Chemistry and Biochemistry, Arizona State University, Tempe, AZ 85287, USA
| | - Qiang Fu
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL 33101-6129 and Department of Chemistry and Biochemistry, Arizona State University, Tempe, AZ 85287, USA
| | - William Hayward
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL 33101-6129 and Department of Chemistry and Biochemistry, Arizona State University, Tempe, AZ 85287, USA
| | - Stuart M. Lindsay
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL 33101-6129 and Department of Chemistry and Biochemistry, Arizona State University, Tempe, AZ 85287, USA
| | - Terace M. Fletcher
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL 33101-6129 and Department of Chemistry and Biochemistry, Arizona State University, Tempe, AZ 85287, USA
| |
Collapse
|
443
|
Zeng J, Wang L, Li Q, Li W, Björkholm M, Jia J, Xu D. FoxM1is up-regulated in gastric cancer and its inhibition leads to cellular senescence, partially dependent onp27kip1. J Pathol 2009; 218:419-27. [DOI: 10.1002/path.2530] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
444
|
Deng Z, Yang C, Wang G, Guo S, Liu Y, Jia J, Zhao J. Gene therapy targeted to telomerase in HCC by AF-hTERT-TK/GCV. ACTA ACUST UNITED AC 2009. [DOI: 10.1007/s10330-009-0036-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
445
|
Strati A, Papoutsi Z, Lianidou E, Moutsatsou P. Effect of ellagic acid on the expression of human telomerase reverse transcriptase (hTERT) alpha+beta+ transcript in estrogen receptor-positive MCF-7 breast cancer cells. Clin Biochem 2009; 42:1358-62. [PMID: 19501078 DOI: 10.1016/j.clinbiochem.2009.05.017] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2009] [Revised: 05/25/2009] [Accepted: 05/29/2009] [Indexed: 11/24/2022]
Abstract
OBJECTIVES To evaluate the potential of ellagic acid to inhibit the expression of human telomerase reverse transcriptase (hTERT) alpha+beta+ splice variant in MCF-7 breast cancer cells. DESIGN AND METHODS MCF-7 cells were incubated with ellagic acid (10(-)(9) M-10(-5) M) in the absence and in the presence of 17beta-estradiol (10(-8) M), a known inducer of hTERT transcription, and hTERT alpha+beta+ mRNA expression was quantified by real-time RT-PCR. 17beta-estradiol and ICI182780, a known estrogen antagonist, served as positive and negative controls respectively. RESULTS Ellagic acid, when alone, increased hTERT alpha+beta+ mRNA while its coexistence with 17beta-estradiol reduced significantly the 17beta-estradiol-induced increase in hTERT alpha+beta+ mRNA, implicating thus both its estrogenic and anti-estrogenic effects in breast cancer cells. CONCLUSIONS The potential of ellagic acid to down-regulate the 17beta-estradiol-induced hTERT alpha+beta+ mRNA expression may be a mechanism via which ellagic acid exerts, at least in part, its chemopreventive effects in breast cancer.
Collapse
Affiliation(s)
- Areti Strati
- Laboratory of Analytical Chemistry, Department of Chemistry, University of Athens, Athens, 15771, Greece
| | | | | | | |
Collapse
|
446
|
Ly H. Genetic and environmental factors influencing human diseases with telomere dysfunction. Int J Clin Exp Med 2009; 2:114-30. [PMID: 19684885 PMCID: PMC2719702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2009] [Accepted: 05/27/2009] [Indexed: 05/28/2023]
Abstract
Both genetic and environmental factors have been implicated in the mechanism underlying the pathogenesis of serious and fatal forms of human blood disorder (acquired aplastic anemia, AA) and lung disease (idiopathic pulmonary fibrosis, IPF). We and other researchers have recently shown that naturally occurring mutations in genes encoding the telomere maintenance complex (telomerase) may predispose patients to the development of AA or IPF. Epidemiological data have shown that environmental factors can also cause and/or exacerbate the pathogenesis of these diseases. The exact mechanisms that these germ-line mutations in telomere maintenance genes coupled with environmental insults lead to ineffective hematopoiesis in AA and lung scarring in IPF are not well understood, however. In this article, we provide a summary of evidence for environmental and genetic factors influencing the diseases. These studies provide important insights into the interplay between environmental and genetic factors leading to human diseases with telomere dysfunction.
Collapse
Affiliation(s)
- Hinh Ly
- Department of Pathology and Laboratory Medicine, Emory University Atlanta, GA 30322, USA
| |
Collapse
|
447
|
McNeil BK, Getzenberg RH. Urinary protein biomarkers of cancer. EXPERT OPINION ON MEDICAL DIAGNOSTICS 2009; 3:263-73. [PMID: 23488462 DOI: 10.1517/17530050902824811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
BACKGROUND Although several cancer biomarkers are now in use, few have the necessary sensitivity and specificity to eliminate the need for invasive diagnostic procedures. With the expansion of proteomics, new technologies have been used to study various cancers, resulting in the discovery of several potential urine biomarkers. Urine is an ideal medium for the detection of biomarkers because of the non-invasive means of collecting samples and demonstrated shedding of cells, proteins, enzymes, nucleic acids and metabolic products into urine during various pathological processes. OBJECTIVE To review the contemporary literature regarding urinary protein markers of cancer. METHODS A PubMed search for 'urinary protein biomarkers of cancer' revealed 4679 scientific publications. The search was limited to studies published over the last 5 years and reviewed pertinent findings regarding biomarker evaluation and discovery. RESULTS Several urinary protein biomarkers have been described for urologic, gynecologic, gastrointestinal and neurologic tumors. Some have been selected for use in clinical practice, whereas others have been abandoned owing to inconclusive follow-up studies. CONCLUSION Several potential urinary protein markers for cancer exist, yet multi-institutional, prospective trials are needed to validate results before implementation in clinical scenarios.
Collapse
Affiliation(s)
- Brian Keith McNeil
- Post-Doctoral Fellow James Buchanan Brady Urological Institute, Marburg 110, 600 N Wolfe Street, Baltimore, MD 21287, USA
| | | |
Collapse
|
448
|
Skvortzov DA, Rubzova MP, Zvereva ME, Kiselev FL, Donzova OA. The regulation of telomerase in oncogenesis. Acta Naturae 2009; 1:51-67. [PMID: 22649586 PMCID: PMC3347505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
The influence that the expression of the human (glial-derived neurotrophic factor (GDNF)) neurotrophic factor has on the morphology and proliferative activity of embryonic stem cells (SC) of a mouse with R1 lineage, as well as their ability to form embroid bodies (EB), has been studied. Before that, using a PCR (polymerase chain reaction) coupled with reverse transcription, it was shown that, in this very lineage of the embryonic SC, the expression of the receptors' genes is being fulfilled for the neurotropfic RET and GFRα1 glia factor. The mouse's embryonic SC lineage has been obtained, transfected by the human GDNF gene, and has been fused with the "green" fluorescent protein (GFP) gene. The presence of the expression of the human GDNF gene in the cells was shown by northern hybridization and the synthesis of its albuminous product by immunocitochemical coloration with the use of specific antibodies. The reliable slowing-down of the embriod-body formation by the embryonic SC transfected by the GDNF gene has been shown. No significant influence of the expression of the GDNF gene on the morphology and the proliferative activity of the transfected embryonic SCs has been found when compared with the control ones.
Collapse
Affiliation(s)
- D A Skvortzov
- Department of Chemistry, Moscow State University, 119992 Moscow
| | | | | | | | | |
Collapse
|
449
|
Strååt K, Liu C, Rahbar A, Zhu Q, Liu L, Wolmer-Solberg N, Lou F, Liu Z, Shen J, Jia J, Kyo S, Björkholm M, Sjöberg J, Söderberg-Nauclér C, Xu D. Activation of telomerase by human cytomegalovirus. J Natl Cancer Inst 2009; 101:488-97. [PMID: 19318640 DOI: 10.1093/jnci/djp031] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND The mechanism by which human cytomegalovirus (HCMV) stimulates oncogenesis is unclear. Because cellular immortalization and transformation require telomerase activation by expression of the telomerase reverse transcriptase (hTERT) gene, we examined the role of HCMV in telomerase activation. METHODS Normal human diploid fibroblasts (HDFs) and human malignant glioma (MG) cell lines were infected with HCMV or transfected with expression vectors encoding HCMV immediate early (IE) antigen 72 or 86. hTERT expression and promoter activity and telomerase activity were evaluated using reverse transcription-polymerase chain reaction, a luciferase reporter assay, and a telomeric repeat amplification protocol, respectively. hTERT promoter occupancy by the transcription factor Sp1, IE antigens, and histone deacetylases (HDACs) was assessed by chromatin immunoprecipitation. hTERT and IE protein expression in human primary glioblastoma multiforme (GBM) was determined immunohistochemically. All statistical tests were two-sided. RESULTS In telomerase and hTERT-negative HDFs, HCMV infection induced constitutive hTERT expression and telomerase activation. The hTERT promoter activity in HDFs and MG cell lines was statistically significantly enhanced by HCMV in a dose-dependent manner (mean luciferase activity [arbitrary units] in control HDFs and in HDFs infected with HCMV at multiplicities of infection [MOIs] of 0.1 = 6 and 521, respectively, difference = 515, 95% CI = 178 to 850; mean activity at MOI of 1 and 10 = 8828 and 59,923, respectively; P < .001 comparing control with HCMV-infected cells at all MOIs). Ectopic expression of HCMV IE-72 protein also stimulated hTERT promoter activity in HDFs. HCMV-mediated transactivation of the hTERT gene was dependent on the presence of Sp1-binding sites in the hTERT promoter and was accompanied by increases in Sp1 binding, acetylation of histone H3, and a reduction in HDAC binding at the core promoter. In specimens of GBM, HCMV IE and hTERT proteins were colocalized in malignant cells and their levels paralleled each other. CONCLUSIONS HCMV activates telomerase in both HDFs and malignant cells. These findings begin to reveal a novel mechanism by which HCMV infection may be linked to or modulate oncogenesis through telomerase activation.
Collapse
Affiliation(s)
- Klas Strååt
- Department of Medicine, Center for Molecular Medicine, Karolinska University Hospital Solna and Karolinska Institutet, Stockholm, Sweden
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
450
|
Svenson U, Ljungberg B, Roos G. Telomere Length in Peripheral Blood Predicts Survival in Clear Cell Renal Cell Carcinoma. Cancer Res 2009; 69:2896-901. [DOI: 10.1158/0008-5472.can-08-3513] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|