401
|
Irreversible electroporation for locally advanced pancreatic cancer. Diagn Interv Imaging 2016; 97:1297-1304. [DOI: 10.1016/j.diii.2016.10.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Accepted: 10/04/2016] [Indexed: 12/18/2022]
|
402
|
Zager Y, Kain D, Landa N, Leor J, Maor E. Optimization of Irreversible Electroporation Protocols for In-vivo Myocardial Decellularization. PLoS One 2016; 11:e0165475. [PMID: 27893744 PMCID: PMC5125564 DOI: 10.1371/journal.pone.0165475] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Accepted: 10/12/2016] [Indexed: 12/18/2022] Open
Abstract
Background Irreversible electroporation (IRE) is a non-thermal cell ablation approach that induces selective damage to cell membranes only. The purpose of the current study was to evaluate and optimize its use for in-vivo myocardial decellularization. Methods Forty-two Sprague-Dawley rats were used to compare myocardial damage of seven different IRE protocols with anterior myocardial infarction damage. An in-vivo open thoracotomy model was used, with two-needle electrodes in the anterior ventricular wall. IRE protocols included different combinations of pulse lengths (70 vs. 100 μseconds), frequency (1, 2, 4 Hz), and number (10 vs. 20 pulses), as well as voltage intensity (50, 250 and 500 Volts). All animals underwent baseline echocardiographic evaluation. Degree of myocardial ablation was determined using repeated echocardiography measurements (days 7 and 28) as well as histologic and morphometric analysis at 28 days. Results All animals survived 28 days of follow-up. Compared with 50V and 250V, electroporation with 500V was associated with significantly increased myocardial scar and reduction in ejection fraction (67.4%±4% at baseline vs. 34.6%±20% at 28 days; p <0.01). Also, compared with pulse duration of 70 μsec, pulses of 100 μsec were associated with markedly reduced left ventricular function and markedly increased relative scar area ratio (28%±9% vs. 16%±3%, p = 0.02). Decreasing electroporation pulse frequency (1Hz vs. 2Hz, 2Hz vs. 4Hz) was associated with a significant increase in myocardial damage. Electroporation protocols with a greater number of pulses (20 vs. 10) correlated with more profound tissue damage (p<0.05). When compared with myocardial infarction damage, electroporation demonstrated a considerable likeness regarding the extent of the inflammatory process, but with relatively higher levels of extra-cellular preservation. Conclusions IRE has a graded effect on the myocardium. The extent of ablation can be controlled by changing pulse length, frequency and number, as well as by changing electric field intensity.
Collapse
Affiliation(s)
- Yaniv Zager
- Tamman Cardiovascular Research Institute, Sheba Medical Center, Tel-Hashomer, Ramat-Gan, Israel
| | - David Kain
- Tamman Cardiovascular Research Institute, Sheba Medical Center, Tel-Hashomer, Ramat-Gan, Israel
- Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Natalie Landa
- Tamman Cardiovascular Research Institute, Sheba Medical Center, Tel-Hashomer, Ramat-Gan, Israel
- Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Jonathan Leor
- Tamman Cardiovascular Research Institute, Sheba Medical Center, Tel-Hashomer, Ramat-Gan, Israel
- Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Elad Maor
- Tamman Cardiovascular Research Institute, Sheba Medical Center, Tel-Hashomer, Ramat-Gan, Israel
- Pinchas Borenstein Talpiot Medical Leadership Program, Sheba Medical Center, Tel-Hashomer, Ramat-Gan, Israel
- * E-mail:
| |
Collapse
|
403
|
D’Onofrio M, Ciaravino V, De Robertis R, Barbi E, Salvia R, Girelli R, Paiella S, Gasparini C, Cardobi N, Bassi C. Percutaneous ablation of pancreatic cancer. World J Gastroenterol 2016; 22:9661-9673. [PMID: 27956791 PMCID: PMC5124972 DOI: 10.3748/wjg.v22.i44.9661] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Revised: 09/13/2016] [Accepted: 10/19/2016] [Indexed: 02/06/2023] Open
Abstract
Pancreatic ductal adenocarcinoma is a highly aggressive tumor with an overall 5-year survival rate of less than 5%. Prognosis and treatment depend on whether the tumor is resectable or not, which mostly depends on how quickly the diagnosis is made. Chemotherapy and radiotherapy can be both used in cases of non-resectable pancreatic cancer. In cases of pancreatic neoplasm that is locally advanced, non-resectable, but non-metastatic, it is possible to apply percutaneous treatments that are able to induce tumor cytoreduction. The aim of this article will be to describe the multiple currently available treatment techniques (radiofrequency ablation, microwave ablation, cryoablation, and irreversible electroporation), their results, and their possible complications, with the aid of a literature review.
Collapse
|
404
|
Cvetković DM, Živanović MN, Milutinović MG, Djukić TR, Radović MD, Cvetković AM, Filipović ND, Zdravković ND. Real-time monitoring of cytotoxic effects of electroporation on breast and colon cancer cell lines. Bioelectrochemistry 2016; 113:S1567-5394(16)30149-9. [PMID: 28029459 DOI: 10.1016/j.bioelechem.2016.10.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Revised: 10/11/2016] [Accepted: 10/19/2016] [Indexed: 12/16/2022]
Abstract
PURPOSE To study the effects of electroporation on different cell lines. MATERIAL The effects of electroporation on human breast cancer (MDA-MB-231), human colon cancer (SW-480 and HCT-116), human fibroblast cell line (MRC-5), primary human aortic smooth muscle cells (hAoSMC) and human umbilical vein endothelial cells (HUVEC) were studied. Real-time technology was used for cell viability monitoring. Acridine orange/ethidium bromide assay was applied for cell death type determination. A numerical model of electroporation has been proposed. RESULTS Electroporation induced inhibition of cell viability on dose (voltage) dependent way. The electroporation treatment 375-437.5Vcm-1 caused irreversible electroporation of cancer cells and reversible electroporation of healthy cells. The application of lower voltage rating (250Vcm-1) led to apoptosis as the predominant type of cell death, whereas the use of higher voltage (500Vcm-1) mainly caused necrosis. CONCLUSION Electroporation represents a promising method in cancer treatment. Different cancer cell lines had different response to the identical electroporation treatment. Electroporation 375-437.5Vcm-1 selectively caused permanent damage of cancer cells (SW-480), while healthy cells (MRC-5, hAoSM and HUVEC) recovered after 72h. The type of cell death is dependent of electroporation conditions. The proposed numerical model is useful for the analysis of phenomena related to electroporation treatment.
Collapse
Affiliation(s)
- Danijela M Cvetković
- University of Kragujevac, Faculty of Science, Institute of Biology and Ecology, Kragujevac, Serbia.
| | - Marko N Živanović
- University of Kragujevac, Faculty of Science, Institute of Biology and Ecology, Kragujevac, Serbia.
| | - Milena G Milutinović
- University of Kragujevac, Faculty of Science, Institute of Biology and Ecology, Kragujevac, Serbia.
| | - Tijana R Djukić
- University of Kragujevac, Faculty of Engineering, Kragujevac, Serbia; BioIRC Bioengineering R&D Center, Kragujevac, Serbia.
| | - Miloš D Radović
- University of Kragujevac, Faculty of Engineering, Kragujevac, Serbia; BioIRC Bioengineering R&D Center, Kragujevac, Serbia.
| | | | - Nenad D Filipović
- University of Kragujevac, Faculty of Engineering, Kragujevac, Serbia; University of Harvard, Boston, USA; BioIRC Bioengineering R&D Center, Kragujevac, Serbia.
| | | |
Collapse
|
405
|
Towards marine biorefineries: Selective proteins extractions from marine macroalgae Ulva with pulsed electric fields. INNOV FOOD SCI EMERG 2016. [DOI: 10.1016/j.ifset.2016.03.013] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
406
|
Raso J, Frey W, Ferrari G, Pataro G, Knorr D, Teissie J, Miklavčič D. Recommendations guidelines on the key information to be reported in studies of application of PEF technology in food and biotechnological processes. INNOV FOOD SCI EMERG 2016. [DOI: 10.1016/j.ifset.2016.08.003] [Citation(s) in RCA: 151] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
407
|
Electric field distribution in relation to cell membrane electroporation in potato tuber tissue studied by magnetic resonance techniques. INNOV FOOD SCI EMERG 2016. [DOI: 10.1016/j.ifset.2016.03.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
408
|
Beyer LP, Pregler B, Michalik K, Niessen C, Dollinger M, Müller M, Schlitt HJ, Stroszczynski C, Wiggermann P. Evaluation of a robotic system for irreversible electroporation (IRE) of malignant liver tumors: initial results. Int J Comput Assist Radiol Surg 2016; 12:803-809. [PMID: 27653615 DOI: 10.1007/s11548-016-1485-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2016] [Accepted: 09/01/2016] [Indexed: 12/18/2022]
Abstract
OBJECTIVE Comparison of conventional CT-guided manual irreversible electroporation (IRE) of malignant liver tumors and a robot-assisted approach regarding procedural accuracy, intervention time, dose, complications, and treatment success. METHODS A retrospective single-center analysis of 40 cases of irreversible electroporation of malignant liver tumors in 35 patients (6 females, 29 males, average age 60.3 years). Nineteen of these ablation procedures were performed manually and 21 with robotic assistance. A follow-up (ultrasound, CT, and MRI) was performed after 6 weeks in all patients. RESULTS The time from the planning CT scan to the start of the ablation as well as the dose-length product were significantly lower under robotic assistance (63.5 vs. 87.4 min, [Formula: see text]; 2132 vs. 4714 mGy cm, [Formula: see text]). The procedural accuracy, measured as the deviation of the IRE probes with respect to a defined reference probe, was significantly higher using robotic guidance (2.2 vs. 3.1 mm, [Formula: see text]). There were no complications. There was one incomplete ablation in the manual group. CONCLUSION Robotic assistance for IRE of liver tumors allows for faster procedure times with higher accuracy while reducing radiation dose as compared to the manual placement of IRE probes.
Collapse
Affiliation(s)
- L P Beyer
- Department of Radiology, University Medical Center Regensburg, 93053, Regensburg, Germany.
| | - B Pregler
- Department of Radiology, University Medical Center Regensburg, 93053, Regensburg, Germany
| | - K Michalik
- Department of Radiology, University Medical Center Regensburg, 93053, Regensburg, Germany
| | - C Niessen
- Department of Radiology, University Medical Center Regensburg, 93053, Regensburg, Germany
| | - M Dollinger
- Department of Radiology, University Medical Center Regensburg, 93053, Regensburg, Germany
| | - M Müller
- Department of Internal Medicine I, University Medical Center Regensburg, Regensburg, Germany
| | - H J Schlitt
- Department of Surgery, University Medical Center Regensburg, Regensburg, Germany
| | - C Stroszczynski
- Department of Radiology, University Medical Center Regensburg, 93053, Regensburg, Germany
| | - P Wiggermann
- Department of Radiology, University Medical Center Regensburg, 93053, Regensburg, Germany
| |
Collapse
|
409
|
Novickij V, Grainys A, Lastauskienė E, Kananavičiūtė R, Pamedytytė D, Kalėdienė L, Novickij J, Miklavčič D. Pulsed Electromagnetic Field Assisted in vitro Electroporation: A Pilot Study. Sci Rep 2016; 6:33537. [PMID: 27634482 PMCID: PMC5025861 DOI: 10.1038/srep33537] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Accepted: 08/30/2016] [Indexed: 12/21/2022] Open
Abstract
Electroporation is a phenomenon occurring due to exposure of cells to Pulsed Electric Fields (PEF) which leads to increase of membrane permeability. Electroporation is used in medicine, biotechnology, and food processing. Recently, as an alternative to electroporation by PEF, Pulsed ElectroMagnetic Fields (PEMF) application causing similar biological effects was suggested. Since induced electric field in PEMF however is 2–3 magnitudes lower than in PEF electroporation, the membrane permeabilization mechanism remains hypothetical. We have designed pilot experiments where Saccharomyces cerevisiae and Candida lusitaniae cells were subjected to single 100–250 μs electrical pulse of 800 V with and without concomitant delivery of magnetic pulse (3, 6 and 9 T). As expected, after the PEF pulses only the number of Propidium Iodide (PI) fluorescent cells has increased, indicative of membrane permeabilization. We further show that single sub-millisecond magnetic field pulse did not cause detectable poration of yeast. Concomitant exposure of cells to pulsed electric (PEF) and magnetic field (PMF) however resulted in the increased number PI fluorescent cells and reduced viability. Our results show increased membrane permeability by PEF when combined with magnetic field pulse, which can explain electroporation at considerably lower electric field strengths induced by PEMF compared to classical electroporation.
Collapse
Affiliation(s)
- Vitalij Novickij
- Vilnius Gediminas Technical University, Institute of High Magnetic Fields, Vilnius, 03227, Lithuania
| | - Audrius Grainys
- Vilnius Gediminas Technical University, Institute of High Magnetic Fields, Vilnius, 03227, Lithuania
| | - Eglė Lastauskienė
- Vilnius University, Department of Biotechnology and Microbiology, Vilnius, 03101, Lithuania
| | - Rūta Kananavičiūtė
- Vilnius University, Department of Biotechnology and Microbiology, Vilnius, 03101, Lithuania
| | - Dovilė Pamedytytė
- Vilnius University, Department of Biotechnology and Microbiology, Vilnius, 03101, Lithuania
| | - Lilija Kalėdienė
- Vilnius University, Department of Biotechnology and Microbiology, Vilnius, 03101, Lithuania
| | - Jurij Novickij
- Vilnius Gediminas Technical University, Institute of High Magnetic Fields, Vilnius, 03227, Lithuania
| | - Damijan Miklavčič
- University of Ljubljana, Faculty of Electrical Engineering, Ljubljana, SI-1000, Slovenia
| |
Collapse
|
410
|
Electrotransfer parameters as a tool for controlled and targeted gene expression in skin. MOLECULAR THERAPY-NUCLEIC ACIDS 2016; 5:e356. [PMID: 27574782 PMCID: PMC5023408 DOI: 10.1038/mtna.2016.65] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Accepted: 07/07/2016] [Indexed: 12/25/2022]
Abstract
Skin is an attractive target for gene electrotransfer. It consists of different cell types that can be transfected, leading to various responses to gene electrotransfer. We demonstrate that these responses could be controlled by selecting the appropriate electrotransfer parameters. Specifically, the application of low or high electric pulses, applied by multi-electrode array, provided the possibility to control the depth of the transfection in the skin, the duration and the level of gene expression, as well as the local or systemic distribution of the transgene. The influence of electric pulse type was first studied using a plasmid encoding a reporter gene (DsRed). Then, plasmids encoding therapeutic genes (IL-12, shRNA against endoglin, shRNA against melanoma cell adhesion molecule) were used, and their effects on wound healing and cutaneous B16F10 melanoma tumors were investigated. The high-voltage pulses resulted in gene expression that was restricted to superficial skin layers and induced a local response. In contrast, the low-voltage electric pulses promoted transfection into the deeper skin layers, resulting in prolonged gene expression and higher transgene production, possibly with systemic distribution. Therefore, in the translation into the clinics, it will be of the utmost importance to adjust the electrotransfer parameters for different therapeutic approaches and specific mode of action of the therapeutic gene.
Collapse
|
411
|
Modification of Pulsed Electric Field Conditions Results in Distinct Activation Profiles of Platelet-Rich Plasma. PLoS One 2016; 11:e0160933. [PMID: 27556645 PMCID: PMC4996457 DOI: 10.1371/journal.pone.0160933] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Accepted: 07/27/2016] [Indexed: 12/21/2022] Open
Abstract
Background Activated autologous platelet-rich plasma (PRP) used in therapeutic wound healing applications is poorly characterized and standardized. Using pulsed electric fields (PEF) to activate platelets may reduce variability and eliminate complications associated with the use of bovine thrombin. We previously reported that exposing PRP to sub-microsecond duration, high electric field (SMHEF) pulses generates a greater number of platelet-derived microparticles, increased expression of prothrombotic platelet surfaces, and differential release of growth factors compared to thrombin. Moreover, the platelet releasate produced by SMHEF pulses induced greater cell proliferation than plasma. Aims To determine whether sub-microsecond duration, low electric field (SMLEF) bipolar pulses results in differential activation of PRP compared to SMHEF, with respect to profiles of activation markers, growth factor release, and cell proliferation capacity. Methods PRP activation by SMLEF bipolar pulses was compared to SMHEF pulses and bovine thrombin. PRP was prepared using the Harvest SmartPreP2 System from acid citrate dextrose anticoagulated healthy donor blood. PEF activation by either SMHEF or SMLEF pulses was performed using a standard electroporation cuvette preloaded with CaCl2 and a prototype instrument designed to take into account the electrical properties of PRP. Flow cytometry was used to assess platelet surface P-selectin expression, and annexin V binding. Platelet-derived growth factor (PDGF), vascular endothelial growth factor (VEGF), endothelial growth factor (EGF) and platelet factor 4 (PF4), and were measured by ELISA. The ability of supernatants to stimulate proliferation of human epithelial cells in culture was also evaluated. Controls included vehicle-treated, unactivated PRP and PRP with 10 mM CaCl2 activated with 1 U/mL bovine thrombin. Results PRP activated with SMLEF bipolar pulses or thrombin had similar light scatter profiles, consistent with the presence of platelet-derived microparticles, platelets, and platelet aggregates whereas SMHEF pulses primarily resulted in platelet-derived microparticles. Microparticles and platelets in PRP activated with SMLEF bipolar pulses had significantly lower annexin V-positivity than those following SMHEF activation. In contrast, the % P-selectin positivity and surface P-selectin expression (MFI) for platelets and microparticles in SMLEF bipolar pulse activated PRP was significantly higher than that in SMHEF-activated PRP, but not significantly different from that produced by thrombin activation. Higher levels of EGF were observed following either SMLEF bipolar pulses or SMHEF pulses of PRP than after bovine thrombin activation while VEGF, PDGF, and PF4 levels were similar with all three activating conditions. Cell proliferation was significantly increased by releasates of both SMLEF bipolar pulse and SMHEF pulse activated PRP compared to plasma alone. Conclusions PEF activation of PRP at bipolar low vs. monopolar high field strength results in differential platelet-derived microparticle production and activation of platelet surface procoagulant markers while inducing similar release of growth factors and similar capacity to induce cell proliferation. Stimulation of PRP with SMLEF bipolar pulses is gentler than SMHEF pulses, resulting in less platelet microparticle generation but with overall activation levels similar to that obtained with thrombin. These results suggest that PEF provides the means to alter, in a controlled fashion, PRP properties thereby enabling evaluation of their effects on wound healing and clinical outcomes.
Collapse
|
412
|
Kurita H, Takao Y, Kishikawa K, Takashima K, Numano R, Mizuno A. Fundamental study on a gene transfection methodology for mammalian cells using water-in-oil droplet deformation in a DC electric field. Biochem Biophys Rep 2016; 8:81-88. [PMID: 28955944 PMCID: PMC5613697 DOI: 10.1016/j.bbrep.2016.08.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Revised: 07/08/2016] [Accepted: 08/08/2016] [Indexed: 12/24/2022] Open
Abstract
We have developed a gene transfection method called water-in-oil droplet electroporation (EP) that uses a dielectric oil and a liquid droplet containing live cells and exogenous DNA. When a cell suspension droplet is placed between a pair of electrodes, an intense DC electric field can induce droplet deformation, resulting in an instantaneous short circuit caused by the droplet elongating and contacting the two electrodes simultaneously. Small transient pores are generated in the cell membrane during the short, allowing the introduction of exogenous DNA into the cells. The droplet EP was characterized by varying the following experimental parameters: applied voltage, number of short circuits, type of medium (electric conductivity), concentration of exogenous DNA, and size of the droplet. In addition, the formation of transient pores in the cell membrane during droplet EP and the transfection efficiency were evaluated. Characterization of water-in-oil droplet electroporation. The electric field strength is the most critical experimental parameter. The volume of the droplet affects viability and gene expression. Droplet deformation under a DC electric field is critical.
Collapse
Affiliation(s)
- Hirofumi Kurita
- Department of Environmental and Life Sciences, Graduate School of Engineering, Toyohashi University of Technology, 1-1 Hibarigaoka, Tempaku-cho, Toyohashi, Aichi 441-8580, Japan
| | - Yasuhiro Takao
- Department of Environmental and Life Sciences, Graduate School of Engineering, Toyohashi University of Technology, 1-1 Hibarigaoka, Tempaku-cho, Toyohashi, Aichi 441-8580, Japan
| | - Kenta Kishikawa
- Department of Environmental and Life Sciences, Graduate School of Engineering, Toyohashi University of Technology, 1-1 Hibarigaoka, Tempaku-cho, Toyohashi, Aichi 441-8580, Japan
| | - Kazunori Takashima
- Department of Environmental and Life Sciences, Graduate School of Engineering, Toyohashi University of Technology, 1-1 Hibarigaoka, Tempaku-cho, Toyohashi, Aichi 441-8580, Japan
| | - Rika Numano
- Department of Environmental and Life Sciences, Graduate School of Engineering, Toyohashi University of Technology, 1-1 Hibarigaoka, Tempaku-cho, Toyohashi, Aichi 441-8580, Japan.,Electronics-Inspired Interdisciplinary Research Institute, Toyohashi University of Technology, 1-1 Hibarigaoka, Tempaku-cho, Toyohashi, Aichi 441-8580, Japan
| | - Akira Mizuno
- Department of Environmental and Life Sciences, Graduate School of Engineering, Toyohashi University of Technology, 1-1 Hibarigaoka, Tempaku-cho, Toyohashi, Aichi 441-8580, Japan
| |
Collapse
|
413
|
Beyer LP, Pregler B, Nießen C, Schicho A, Haimerl M, Jung EM, Stroszczynski C, Wiggermann P. Stereotactically-navigated percutaneous Irreversible Electroporation (IRE) compared to conventional IRE: a prospective trial. PeerJ 2016; 4:e2277. [PMID: 27602266 PMCID: PMC4991851 DOI: 10.7717/peerj.2277] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Accepted: 07/01/2016] [Indexed: 12/18/2022] Open
Abstract
Purpose. The purpose of this study was to compare CT-navigated stereotactic IRE (SIRE) needle placement to non-navigated conventional IRE (CIRE) for percutaneous ablation of liver malignancies. Materials and Methods. A prospective trial including a total of 20 patients was conducted with 10 patients in each arm of the study. IRE procedures were guided using either CT fluoroscopy (CIRE) or a stereotactic planning and navigation system (SIRE). Primary endpoint was procedure time. Secondary endpoints were accuracy of needle placement, technical success rate, complication rate and dose-length product (DLP). Results. A total of 20 IRE procedures were performed to ablate hepatic malignancies (16 HCC, 4 liver metastases), 10 procedures in each arm. Mean time for placement of IRE electrodes in SIRE was significantly shorter with 27 ± 8 min compared to 87 ± 30 min for CIRE (p < 0.001). Accuracy of needle placement for SIRE was higher than CIRE (2.2 mm vs. 3.3 mm mean deviation, p < 0.001). The total DLP and the fluoroscopy DLP were significantly lower in SIRE compared to CIRE. Technical success rate and complication rates were equal in both arms. Conclusion. SIRE demonstrated a significant reduction of procedure length and higher accuracy compared to CIRE. Stereotactic navigation has the potential to reduce radiation dose for the patient and the radiologist without increasing the risk of complications or impaired technical success compared to CIRE.
Collapse
Affiliation(s)
- Lukas P Beyer
- Department of Radiology, University Hospital Regensburg , Regensburg , Germany
| | - Benedikt Pregler
- Department of Radiology, University Hospital Regensburg , Regensburg , Germany
| | - Christoph Nießen
- Department of Radiology, University Hospital Regensburg , Regensburg , Germany
| | - Andreas Schicho
- Department of Radiology, University Hospital Regensburg , Regensburg , Germany
| | - Michael Haimerl
- Department of Radiology, University Hospital Regensburg , Regensburg , Germany
| | - Ernst Michael Jung
- Department of Radiology, University Hospital Regensburg , Regensburg , Germany
| | | | - Philipp Wiggermann
- Department of Radiology, University Hospital Regensburg , Regensburg , Germany
| |
Collapse
|
414
|
Kulbacka J, Pucek A, Kotulska M, Dubińska-Magiera M, Rossowska J, Rols MP, Wilk KA. Electroporation and lipid nanoparticles with cyanine IR-780 and flavonoids as efficient vectors to enhanced drug delivery in colon cancer. Bioelectrochemistry 2016; 110:19-31. [DOI: 10.1016/j.bioelechem.2016.02.013] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Revised: 02/10/2016] [Accepted: 02/24/2016] [Indexed: 01/27/2023]
|
415
|
Cell Electrosensitization Exists Only in Certain Electroporation Buffers. PLoS One 2016; 11:e0159434. [PMID: 27454174 PMCID: PMC4959715 DOI: 10.1371/journal.pone.0159434] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Accepted: 07/01/2016] [Indexed: 12/18/2022] Open
Abstract
Electroporation-induced cell sensitization was described as the occurrence of a delayed hypersensitivity to electric pulses caused by pretreating cells with electric pulses. It was achieved by increasing the duration of the electroporation treatment at the same cumulative energy input. It could be exploited in electroporation-based treatments such as electrochemotherapy and tissue ablation with irreversible electroporation. The mechanisms responsible for cell sensitization, however, have not yet been identified. We investigated cell sensitization dynamics in five different electroporation buffers. We split a pulse train into two trains varying the delay between them and measured the propidium uptake by fluorescence microscopy. By fitting the first-order model to the experimental results, we determined the uptake due to each train (i.e. the first and the second) and the corresponding resealing constant. Cell sensitization was observed in the growth medium but not in other tested buffers. The effect of pulse repetition frequency, cell size change, cytoskeleton disruption and calcium influx do not adequately explain cell sensitization. Based on our results, we can conclude that cell sensitization is a sum of several processes and is buffer dependent. Further research is needed to determine its generality and to identify underlying mechanisms.
Collapse
|
416
|
Cryopreservation of Human Adipose-Derived Stem Cells in Combination with Trehalose and Reversible Electroporation. J Membr Biol 2016; 250:1-9. [DOI: 10.1007/s00232-016-9916-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Accepted: 06/25/2016] [Indexed: 01/19/2023]
|
417
|
Prevc A, Bedina Zavec A, Cemazar M, Kloboves-Prevodnik V, Stimac M, Todorovic V, Strojan P, Sersa G. Bystander Effect Induced by Electroporation is Possibly Mediated by Microvesicles and Dependent on Pulse Amplitude, Repetition Frequency and Cell Type. J Membr Biol 2016; 249:703-711. [PMID: 27371159 DOI: 10.1007/s00232-016-9915-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Accepted: 06/22/2016] [Indexed: 12/16/2022]
Abstract
Bystander effect, a known phenomenon in radiation biology, where irradiated cells release signals which cause damage to nearby, unirradiated cells, has not been explored in electroporated cells yet. Therefore, our aim was to determine whether bystander effect is present in electroporated melanoma cells in vitro, by determining viability of non-electroporated cells exposed to medium from electroporated cells and by the release of microvesicles as potential indicators of the bystander effect. Here, we demonstrated that electroporation of cells induces bystander effect: Cells exposed to electric pulses mediated their damage to the non-electroporated cells, thus decreasing cell viability. We have shown that shedding microvesicles may be one of the ways used by the cells to mediate the death signals to the neighboring cells. The murine melanoma B16F1 cell line was found to be more electrosensitive and thus more prone to bystander effect than the canine melanoma CMeC-1 cell line. In B16F1 cell line, bystander effect was present above the level of electropermeabilization of the cells, with the threshold at 800 V/cm. Furthermore, with increasing electric field intensities and the number of pulses, the bystander effect also increased. In conclusion, electroporation can induce bystander effect which may be mediated by microvesicles, and depends on pulse amplitude, repetition frequency and cell type.
Collapse
Affiliation(s)
- Ajda Prevc
- Department of Experimental Oncology, Institute of Oncology Ljubljana, Zaloska ulica 2, 1000, Ljubljana, Slovenia
| | | | - Maja Cemazar
- Department of Experimental Oncology, Institute of Oncology Ljubljana, Zaloska ulica 2, 1000, Ljubljana, Slovenia.,Faculty of Health Sciences, University of Primorska, Polje 42, 6310, Izola, Slovenia
| | | | - Monika Stimac
- Department of Experimental Oncology, Institute of Oncology Ljubljana, Zaloska ulica 2, 1000, Ljubljana, Slovenia
| | - Vesna Todorovic
- Department of Experimental Oncology, Institute of Oncology Ljubljana, Zaloska ulica 2, 1000, Ljubljana, Slovenia
| | - Primoz Strojan
- Department of Radiation Oncology, Institute of Oncology Ljubljana, Zaloska 2, 1000, Ljubljana, Slovenia
| | - Gregor Sersa
- Department of Experimental Oncology, Institute of Oncology Ljubljana, Zaloska ulica 2, 1000, Ljubljana, Slovenia.
| |
Collapse
|
418
|
Rems L, Kawale D, Lee LJ, Boukany PE. Flow of DNA in micro/nanofluidics: From fundamentals to applications. BIOMICROFLUIDICS 2016; 10:043403. [PMID: 27493701 PMCID: PMC4958106 DOI: 10.1063/1.4958719] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Accepted: 06/29/2016] [Indexed: 05/26/2023]
Abstract
Thanks to direct observation and manipulation of DNA in micro/nanofluidic devices, we are now able to elucidate the relationship between the polymer microstructure and its rheological properties, as well as to design new single-molecule platforms for biophysics and biomedicine. This allows exploration of many new mechanisms and phenomena, which were previously unachievable with conventional methods such as bulk rheometry tests. For instance, the field of polymer rheology is at a turning point to relate the complex molecular conformations to the nonlinear viscoelasticity of polymeric fluids (such as coil-stretch transition, shear thinning, and stress overshoot in startup shear). In addition, nanofluidic devices provided a starting point for manipulating single DNA molecules by applying basic principles of polymer physics, which is highly relevant to numerous processes in biosciences. In this article, we review recent progress regarding the flow and deformation of DNA in micro/nanofluidic systems from both fundamental and application perspectives. We particularly focus on advances in the understanding of polymer rheology and identify the emerging research trends and challenges, especially with respect to future applications of nanofluidics in the biomedical field.
Collapse
Affiliation(s)
- Lea Rems
- Department of Chemical Engineering, Delft University of Technology , Delft 2629HZ, The Netherlands
| | - Durgesh Kawale
- Department of Chemical Engineering, Delft University of Technology , Delft 2629HZ, The Netherlands
| | - L James Lee
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University , Columbus, Ohio 43210, USA
| | - Pouyan E Boukany
- Department of Chemical Engineering, Delft University of Technology , Delft 2629HZ, The Netherlands
| |
Collapse
|
419
|
Blumrosen G, Abazari A, Golberg A, Yarmush ML, Toner M. Single-step electrical field strength screening to determine electroporation induced transmembrane transport parameters. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2016; 1858:2041-2049. [PMID: 27263825 DOI: 10.1016/j.bbamem.2016.05.022] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Revised: 05/04/2016] [Accepted: 05/31/2016] [Indexed: 12/15/2022]
Abstract
The design of effective electroporation protocols for molecular delivery applications requires the determination of transport parameters including diffusion coefficient, membrane resealing, and critical electric field strength for electroporation. The use of existing technologies to determine these parameters is time-consuming and labor-intensive, and often results in large inconsistencies in parameter estimation due to variations in the protocols and setups. In this work, we suggest using a set of concentric electrodes to screen a full range of electric field strengths in a single test to determine the electroporation-induced transmembrane transport parameters. Using Calcein as a fluorescent probe, we developed analytical methodology to determine the transport parameters based on the electroporation-induced pattern of fluorescence loss from cells. A monolayer of normal human dermal fibroblast (NHDF) cells were pre-loaded with Calcein and electroporated with an applied voltage of 750V with 10 and 50 square pulses with 50μs duration. Using our analytical model, the critical electric field strength for electroporation was found for the 10 and 50 pulses experiments. An inverse correlation between the field strength and the molecular transport time decay constant, and a direct correlation between field strength and the membrane permeability were observed. The results of this work can simplify the development of electroporation-assisted technologies for research and therapies.
Collapse
Affiliation(s)
- Gadi Blumrosen
- Department of Computer Science, Tel Aviv University, Israel
| | - Alireza Abazari
- The Center for Engineering in Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, United States
| | - Alexander Golberg
- The Center for Engineering in Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, United States; Porter School of Environmental Studies, Tel Aviv University, Israel.
| | - Martin L Yarmush
- The Center for Engineering in Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, United States; Department of Biomedical Engineering, Rutgers University, Piscataway, NJ 08854., United States.
| | - Mehmet Toner
- The Center for Engineering in Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, United States
| |
Collapse
|
420
|
Bodénès P, Lopes F, Pareau D, Français O, Le Pioufle B. Microdevice for studying the in situ permeabilization and characterization of Chlamydomonas reinhardtii in lipid accumulation phase. ALGAL RES 2016. [DOI: 10.1016/j.algal.2016.03.023] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
421
|
Langus J, Kranjc M, Kos B, Šuštar T, Miklavčič D. Dynamic finite-element model for efficient modelling of electric currents in electroporated tissue. Sci Rep 2016; 6:26409. [PMID: 27211822 PMCID: PMC4876422 DOI: 10.1038/srep26409] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Accepted: 05/03/2016] [Indexed: 12/18/2022] Open
Abstract
In silico experiments (numerical simulations) are a valuable tool for non-invasive research of the influences of tissue properties, electrode placement and electric pulse delivery scenarios in the process of electroporation. The work described in this article was aimed at introducing time dependent effects into a finite element model developed specifically for electroporation. Reference measurements were made ex vivo on beef liver samples and experimental data were used both as an initial condition for simulation (applied pulse voltage) and as a reference value for numerical model calibration (measured pulse current). The developed numerical model is able to predict the time evolution of an electric pulse current within a 5% error over a broad range of applied pulse voltages, pulse durations and pulse repetition frequencies. Given the good agreement of the current flowing between the electrodes, we are confident that the results of our numerical model can be used both for detailed in silico research of electroporation mechanisms (giving researchers insight into time domain effects) and better treatment planning algorithms, which predict the outcome of treatment based on both spatial and temporal distributions of applied electric pulses.
Collapse
Affiliation(s)
- J Langus
- C3M d.o.o., Technology park 21, SI-1000 Ljubljana, Slovenia
| | - M Kranjc
- University of Ljubljana, Faculty of Electrical Engineering, Laboratory of Biocybernetics, Tržaška 25, 1000 Ljubljana, Slovenia
| | - B Kos
- University of Ljubljana, Faculty of Electrical Engineering, Laboratory of Biocybernetics, Tržaška 25, 1000 Ljubljana, Slovenia
| | - T Šuštar
- C3M d.o.o., Technology park 21, SI-1000 Ljubljana, Slovenia
| | - D Miklavčič
- University of Ljubljana, Faculty of Electrical Engineering, Laboratory of Biocybernetics, Tržaška 25, 1000 Ljubljana, Slovenia
| |
Collapse
|
422
|
The Effect of Millisecond Pulsed Electric Fields (msPEF) on Intracellular Drug Transport with Negatively Charged Large Nanocarriers Made of Solid Lipid Nanoparticles (SLN): In Vitro Study. J Membr Biol 2016; 249:645-661. [PMID: 27173678 PMCID: PMC5045845 DOI: 10.1007/s00232-016-9906-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Accepted: 05/02/2016] [Indexed: 12/21/2022]
Abstract
Drug delivery technology is still a dynamically developing field of medicine. The main direction in nanotechnology research (nanocarriers, nanovehicles, etc.) is efficient drug delivery to target cells with simultaneous drug reduction concentration. However, nanotechnology trends in reducing the carrier sizes to several nanometers limit the volume of the loaded substance and may pose a danger of uncontrolled access into the cells. On the other hand, nanoparticles larger than 200 nm in diameter have difficulties to undergo rapid diffusional transport through cell membranes. The main advantage of large nanoparticles is higher drug encapsulation efficiency and the ability to deliver a wider array of drugs. Our present study contributes a new approach with large Tween 80 solid lipid nanoparticles SLN (i.e., hydrodynamic GM-SLN-glycerol monostearate, GM, as the lipid and ATO5-SLNs-glyceryl palmitostearate, ATO5, as the lipid) with diameters DH of 379.4 nm and 547 nm, respectively. They are used as drug carriers alone and in combination with electroporation (EP) induced by millisecond pulsed electric fields. We evaluate if EP can support the transport of large nanocarriers into cells. The study was performed with two cell lines: human colon adenocarcinoma LoVo and hamster ovarian fibroblastoid CHO-K1 with coumarin 6 (C6) as a fluorescent marker for encapsulation. The biological safety of the potential treatment procedure was evaluated with cell viability after their exposure to nanoparticles and EP. The EP efficacy was evaluated by FACS method. The impact on intracellular structure organization of cytoskeleton was visualized by CLSM method with alpha-actin and beta-tubulin. The obtained results indicate low cytotoxicity of both carrier types, free and loaded with C6. The evaluation of cytoskeleton proteins indicated no intracellular structure damage. The intracellular uptake and accumulation show that SLNs do not support transport of C6 coumarin. Only application of electroporation improved the transport of encapsulated and free C6 into both treated cell lines.
Collapse
|
423
|
Phillips M, Krishnan H, Raju N, Rubinsky B. Tissue Ablation by a Synergistic Combination of Electroporation and Electrolysis Delivered by a Single Pulse. Ann Biomed Eng 2016; 44:3144-3154. [DOI: 10.1007/s10439-016-1624-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Accepted: 04/20/2016] [Indexed: 01/20/2023]
|
424
|
Zderic A, Zondervan E. Polyphenol extraction from fresh tea leaves by pulsed electric field: A study of mechanisms. Chem Eng Res Des 2016. [DOI: 10.1016/j.cherd.2016.03.010] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
425
|
Golberg A, Sack M, Teissie J, Pataro G, Pliquett U, Saulis G, Stefan T, Miklavcic D, Vorobiev E, Frey W. Energy-efficient biomass processing with pulsed electric fields for bioeconomy and sustainable development. BIOTECHNOLOGY FOR BIOFUELS 2016; 9:94. [PMID: 27127539 PMCID: PMC4848877 DOI: 10.1186/s13068-016-0508-z] [Citation(s) in RCA: 92] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Accepted: 04/13/2016] [Indexed: 05/24/2023]
Abstract
Fossil resources-free sustainable development can be achieved through a transition to bioeconomy, an economy based on sustainable biomass-derived food, feed, chemicals, materials, and fuels. However, the transition to bioeconomy requires development of new energy-efficient technologies and processes to manipulate biomass feed stocks and their conversion into useful products, a collective term for which is biorefinery. One of the technological platforms that will enable various pathways of biomass conversion is based on pulsed electric fields applications (PEF). Energy efficiency of PEF treatment is achieved by specific increase of cell membrane permeability, a phenomenon known as membrane electroporation. Here, we review the opportunities that PEF and electroporation provide for the development of sustainable biorefineries. We describe the use of PEF treatment in biomass engineering, drying, deconstruction, extraction of phytochemicals, improvement of fermentations, and biogas production. These applications show the potential of PEF and consequent membrane electroporation to enable the bioeconomy and sustainable development.
Collapse
Affiliation(s)
- Alexander Golberg
- />Porter School of Environmental Studies, Tel Aviv University, Tel Aviv, Israel
| | - Martin Sack
- />Institute for Pulsed Power and Microwave Technology, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Justin Teissie
- />CNRS, Institut de Pharmacologie et de Biologie Structurale Université de Toulouse, Toulouse, France
| | - Gianpiero Pataro
- />Department of Industrial Engineering, University of Salerno, via Giovanni Paolo II 132, 84084 Fisciano, SA Italy
| | - Uwe Pliquett
- />Institut für Bioprozeβ- und Analysenmeβtechnik e.V., Heilbad Heiligenstadt, Germany
| | - Gintautas Saulis
- />Department of Biology, Faculty of Natural Sciences, Vytautas Magnus University, Kaunas, Lithuania
| | - Töpfl Stefan
- />German Institute of Food Technologies, Quakenbrück, Germany
| | - Damijan Miklavcic
- />Faculty of Electrical Engineering, University of Ljubljana, Ljubljana, Slovenia
| | - Eugene Vorobiev
- />Departement de Genie Chimique, Centre de Recherche de Royallieu, Universite de Technologie de Compiegne, Compiegne, France
| | - Wolfgang Frey
- />Institute for Pulsed Power and Microwave Technology, Karlsruhe Institute of Technology, Karlsruhe, Germany
| |
Collapse
|
426
|
Abstract
Electroporation is a widely used technique to permeabilize cell membranes. Despite its prevalence, our understanding of the mechanism of voltage-mediated pore formation is incomplete; methods capable of visualizing the time-dependent behavior of individual electropores would help improve our understanding of this process. Here, using optical single-channel recording, we track multiple isolated electropores in real time in planar droplet interface bilayers. We observe individual, mobile defects that fluctuate in size, exhibiting a range of dynamic behaviors. We observe fast (25 s(-1)) and slow (2 s(-1)) components in the gating of small electropores, with no apparent dependence on the applied potential. Furthermore, we find that electropores form preferentially in the liquid disordered phase. Our observations are in general supportive of the hydrophilic toroidal pore model of electroporation, but also reveal additional complexity in the interactions, dynamics, and energetics of electropores.
Collapse
|
427
|
Wagstaff PGK, Buijs M, van den Bos W, de Bruin DM, Zondervan PJ, de la Rosette JJMCH, Laguna Pes MP. Irreversible electroporation: state of the art. Onco Targets Ther 2016; 9:2437-46. [PMID: 27217767 PMCID: PMC4853139 DOI: 10.2147/ott.s88086] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The field of focal ablative therapy for the treatment of cancer is characterized by abundance of thermal ablative techniques that provide a minimally invasive treatment option in selected tumors. However, the unselective destruction inflicted by thermal ablation modalities can result in damage to vital structures in the vicinity of the tumor. Furthermore, the efficacy of thermal ablation intensity can be impaired due to thermal sink caused by large blood vessels in the proximity of the tumor. Irreversible electroporation (IRE) is a novel ablation modality based on the principle of electroporation or electropermeabilization, in which electric pulses are used to create nanoscale defects in the cell membrane. In theory, IRE has the potential of overcoming the aforementioned limitations of thermal ablation techniques. This review provides a description of the principle of IRE, combined with an overview of in vivo research performed to date in the liver, pancreas, kidney, and prostate.
Collapse
Affiliation(s)
- Peter GK Wagstaff
- Department of Urology, Academic Medical Center, Amsterdam, the Netherlands
| | - Mara Buijs
- Department of Urology, Academic Medical Center, Amsterdam, the Netherlands
| | | | - Daniel M de Bruin
- Department of Biomedical Engineering and Physics, Academic Medical Center, Amsterdam, the Netherlands
| | | | | | - M Pilar Laguna Pes
- Department of Urology, Academic Medical Center, Amsterdam, the Netherlands
| |
Collapse
|
428
|
Sung CK, Kim HB, Jung JH, Baik KY, Moon KW, Kim HS, Yi JH, Chung JH. Histological and Mathematical Analysis of the Irreversibly Electroporated Liver Tissue. Technol Cancer Res Treat 2016; 16:488-496. [PMID: 27079209 DOI: 10.1177/1533034616640642] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Irreversible electroporation has clinically been used to treat various types of cancer. A plan on how to apply irreversible electroporation before practicing is very important to increase the ablation area and reduce the side effects. Several electrical models have been developed to predict the ablation area with applied electric energy. In this experiment, the static relationship between applied electric energy and ablated area was mathematically and experimentally investigated at 10 hours after applying irreversible electroporation. We performed the irreversible electroporation on the liver tissue of Sprague Dawley rats (male, 8 weeks, weighing 250-350 g). The ablated area was measured based on histological analysis and compared with the mathematical calculation from the electric energy, assuming that the tissue is homogeneous. The ablated area increased with the increase in applied electric energy. The numerically calculated contour lines of electric energy density overlapped well with the apoptotic area induced by the irreversible electroporation. The overlapped area clearly showed that the destructive threshold of apoptosis between electrodes is electric energy density level of 5.9 × 105 J/m3. The results of the present study suggested that the clinical results of the irreversible electroporation on a liver tissue could be predicted through mathematical calculation.
Collapse
Affiliation(s)
- Chang Kyu Sung
- 1 Department of Radiology, Seoul National University Cancer Research Institute, SNU-SMG Boramae Medical Center, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Hong Bae Kim
- 2 Department of Biosystems & Biomaterials Science and Engineering, Seoul National University, Seoul, Republic of Korea
| | - Jong Hyun Jung
- 3 Department of Physics and Astronomy, Seoul National University, Seoul, Republic of Korea
| | - Ku Youn Baik
- 4 Department of Electrical and Biological Physics, Kwangwoon University, Seoul, Republic of Korea
| | - Kee Wook Moon
- 5 Quality Management Team, Infopia Co Ltd, Anyang-si, Republic of Korea
| | - Hyung-Sik Kim
- 6 Department of Biomedical Engineering, Research Institute of Biomedical Engineering, College of Biomedical & Health Science, Konkuk University, Chungcheongbuk-do, Republic of Korea
| | - Jeong-Han Yi
- 6 Department of Biomedical Engineering, Research Institute of Biomedical Engineering, College of Biomedical & Health Science, Konkuk University, Chungcheongbuk-do, Republic of Korea
| | - Jong Hoon Chung
- 2 Department of Biosystems & Biomaterials Science and Engineering, Seoul National University, Seoul, Republic of Korea.,7 Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
429
|
Čorović S, Mahnič-Kalamiza S, Miklavčič D. Education on electrical phenomena involved in electroporation-based therapies and treatments: a blended learning approach. Biomed Eng Online 2016; 15:36. [PMID: 27056369 PMCID: PMC4823865 DOI: 10.1186/s12938-016-0152-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2016] [Accepted: 03/30/2016] [Indexed: 11/28/2022] Open
Abstract
Background Electroporation-based applications require multidisciplinary expertise and collaboration of experts with different professional backgrounds in engineering and science. Beginning in 2003, an international scientific workshop and postgraduate course electroporation based technologies and treatments (EBTT) has been organized at the University of Ljubljana to facilitate transfer of knowledge from leading experts to researches, students and newcomers in the field of electroporation. In this paper we present one of the integral parts of EBTT: an e-learning practical work we developed to complement delivery of knowledge via lectures and laboratory work, thus providing a blended learning approach on electrical phenomena involved in electroporation-based therapies and treatments. Methods The learning effect was assessed via a pre- and post e-learning examination test composed of 10 multiple choice questions (i.e. items). The e-learning practical work session and both of the e-learning examination tests were carried out after the live EBTT lectures and other laboratory work. Statistical analysis was performed to compare and evaluate the learning effect measured in two groups of students: (1) electrical engineers and (2) natural scientists (i.e. medical doctors, biologists and chemists) undergoing the e-learning practical work in 2011–2014 academic years. Item analysis was performed to assess the difficulty of each item of the examination test. Results The results of our study show that the total score on the post examination test significantly improved and the item difficulty in both experimental groups decreased. The natural scientists reached the same level of knowledge (no statistical difference in total post-examination test score) on the post-course test take, as do electrical engineers, although the engineers started with statistically higher total pre-test examination score, as expected. Conclusions The main objective of this study was to investigate whether the educational content the e-learning practical work presented to the students with different professional backgrounds enhanced their knowledge acquired via lectures during EBTT. We compared the learning effect assessed in two experimental groups undergoing the e-learning practical work: electrical engineers and natural scientists. The same level of knowledge on the post-course examination was reached in both groups. The results indicate that our e-learning platform supported by blended learning approach provides an effective learning tool for populations with mixed professional backgrounds and thus plays an important role in bridging the gap between scientific domains involved in electroporation-based technologies and treatments. Electronic supplementary material The online version of this article (doi:10.1186/s12938-016-0152-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Selma Čorović
- Faculty of Electrical Engineering, University of Ljubljana, Tržaška c. 25, 1000, Ljubljana, Slovenia.
| | - Samo Mahnič-Kalamiza
- Faculty of Electrical Engineering, University of Ljubljana, Tržaška c. 25, 1000, Ljubljana, Slovenia
| | - Damijan Miklavčič
- Faculty of Electrical Engineering, University of Ljubljana, Tržaška c. 25, 1000, Ljubljana, Slovenia
| |
Collapse
|
430
|
Taghian T, Narmoneva DA, Kogan AB. Modulation of cell function by electric field: a high-resolution analysis. J R Soc Interface 2016; 12:rsif.2015.0153. [PMID: 25994294 DOI: 10.1098/rsif.2015.0153] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Regulation of cell function by a non-thermal, physiological-level electromagnetic field has potential for vascular tissue healing therapies and advancing hybrid bioelectronic technology. We have recently demonstrated that a physiological electric field (EF) applied wirelessly can regulate intracellular signalling and cell function in a frequency-dependent manner. However, the mechanism for such regulation is not well understood. Here, we present a systematic numerical study of a cell-field interaction following cell exposure to the external EF. We use a realistic experimental environment that also recapitulates the absence of a direct electric contact between the field-sourcing electrodes and the cells or the culture medium. We identify characteristic regimes and present their classification with respect to frequency, location, and the electrical properties of the model components. The results show a striking difference in the frequency dependence of EF penetration and cell response between cells suspended in an electrolyte and cells attached to a substrate. The EF structure in the cell is strongly inhomogeneous and is sensitive to the physical properties of the cell and its environment. These findings provide insight into the mechanisms for frequency-dependent cell responses to EF that regulate cell function, which may have important implications for EF-based therapies and biotechnology development.
Collapse
Affiliation(s)
- T Taghian
- Department of Physics, University of Cincinnati, 345 Clifton Court, RM 400 Geo/Physics Building, Cincinnati, OH 45221-0011, USA
| | - D A Narmoneva
- Department of Biomedical, Chemical, and Environmental Engineering, University of Cincinnati, 2901 Woodside Dr., ML 0012, Cincinnati, OH 45221, USA
| | - A B Kogan
- Department of Physics, University of Cincinnati, 345 Clifton Court, RM 400 Geo/Physics Building, Cincinnati, OH 45221-0011, USA
| |
Collapse
|
431
|
Bleomycin pharmacokinetics of bolus bleomycin dose in elderly cancer patients treated with electrochemotherapy. Cancer Chemother Pharmacol 2016; 77:939-47. [DOI: 10.1007/s00280-016-3004-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Accepted: 03/01/2016] [Indexed: 12/21/2022]
|
432
|
Effects of high voltage nanosecond electric pulses on eukaryotic cells (in vitro): A systematic review. Bioelectrochemistry 2016; 110:1-12. [PMID: 26946156 DOI: 10.1016/j.bioelechem.2016.02.011] [Citation(s) in RCA: 107] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Revised: 02/23/2016] [Accepted: 02/23/2016] [Indexed: 01/04/2023]
Abstract
For this systematic review, 203 published reports on effects of electroporation using nanosecond high-voltage electric pulses (nsEP) on eukaryotic cells (human, animal, plant) in vitro were analyzed. A field synopsis summarizes current published data in the field with respect to publication year, cell types, exposure configuration, and pulse duration. Published data were analyzed for effects observed in eight main target areas (plasma membrane, intracellular, apoptosis, calcium level and distribution, survival, nucleus, mitochondria, stress) and an additional 107 detailed outcomes. We statistically analyzed effects of nsEP with respect to three pulse duration groups: A: 1-10ns, B: 11-100ns and C: 101-999ns. The analysis confirmed that the plasma membrane is more affected with longer pulses than with short pulses, seen best in uptake of dye molecules after applying single pulses. Additionally, we have reviewed measurements of nsEP and evaluations of the electric fields to which cells were exposed in these reports, and we provide recommendations for assessing nanosecond pulsed electric field effects in electroporation studies.
Collapse
|
433
|
Maglietti F, Tellado M, Olaiz N, Michinski S, Marshall G. Combined local and systemic bleomycin administration in electrochemotherapy to reduce the number of treatment sessions. Radiol Oncol 2016; 50:58-63. [PMID: 27069450 PMCID: PMC4825340 DOI: 10.1515/raon-2016-0015] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Accepted: 01/18/2016] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND Electrochemotherapy (ECT), a medical treatment widely used in human patients for tumor treatment, increases bleomycin toxicity by 1000 fold in the treated area with an objective response rate of around 80%. Despite its high response rate, there are still 20% of cases in which the patients are not responding. This could be ascribed to the fact that bleomycin, when administered systemically, is not reaching the whole tumor mass properly because of the characteristics of tumor vascularization, in which case local administration could cover areas that are unreachable by systemic administration. PATIENTS AND METHODS We propose combined bleomycin administration, both systemic and local, using companion animals as models. We selected 22 canine patients which failed to achieve a complete response after an ECT treatment session. Eleven underwent another standard ECT session (control group), while 11 received a combined local and systemic administration of bleomycin in the second treatment session. RESULTS According to the WHO criteria, the response rates in the combined administration group were: complete response (CR) 54% (6), partial response (PR) 36% (4), stable disease (SD) 10% (1). In the control group, these were: CR 0% (0), PR 19% (2), SD 63% (7), progressive disease (PD) 18% (2). In the combined group 91% objective responses (CR+PR) were obtained. In the control group 19% objective responses were obtained. The difference in the response rate between the treatment groups was significant (p < 0.01). CONCLUSIONS Combined local and systemic bleomycin administration was effective in previously to ECT non responding canine patients. The results indicate that this approach could be useful and effective in specific population of patients and reduce the number of treatment sessions needed to obtain an objective response.
Collapse
|
434
|
Kranjc S, Kranjc M, Scancar J, Jelenc J, Sersa G, Miklavcic D. Electrochemotherapy by pulsed electromagnetic field treatment (PEMF) in mouse melanoma B16F10 in vivo. Radiol Oncol 2016; 50:39-48. [PMID: 27069448 PMCID: PMC4825331 DOI: 10.1515/raon-2016-0014] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Accepted: 01/20/2016] [Indexed: 12/21/2022] Open
Abstract
Introduction Pulsed electromagnetic field (PEMF) induces pulsed electric field, which presumably increases membrane permeabilization of the exposed cells, similar to the conventional electroporation. Thus, contactless PEMF could represent a promising approach for drug delivery. Materials and methods Noninvasive electroporation was performed by magnetic field pulse generator connected to an applicator consisting of round coil. Subcutaneous mouse B16F10 melanoma tumors were treated with intravenously injection of cisplatin (CDDP) (4 mg/kg), PEMF (480 bipolar pulses, at frequency of 80 Hz, pulse duration of 340 μs) or with the combination of both therapies (electrochemotherapy − PEMF + CDDP). Antitumor effectiveness of treatments was evaluated by tumor growth delay assay. In addition, the platinum (Pt) uptake in tumors and serum, as well as Pt bound to the DNA in the cells and Pt in the extracellular fraction were measured by inductively coupled plasma mass spectrometry. Results The antitumor effectiveness of electrochemotherapy with CDDP mediated by PEMF was comparable to the conventional electrochemotherapy with CDDP, with the induction of 2.3 days and 3.0 days tumor growth delay, respectively. The exposure of tumors to PEMF only, had no effect on tumor growth, as well as the injection of CDDP only. The antitumor effect in combined treatment was related to increased drug uptake into the electroporated tumor cells, demonstrated by increased amount of Pt bound to the DNA. Approximately 2-fold increase in cellular uptake of Pt was measured. Conclusions The obtained results in mouse melanoma model in vivo demonstrate the possible use of PEMF induced electroporation for biomedical applications, such as electrochemotherapy. The main advantages of electroporation mediated by PEMF are contactless and painless application, as well as effective electroporation compared to conventional electroporation.
Collapse
Affiliation(s)
- Simona Kranjc
- Department of Experimental Oncology, Institute of Oncology Ljubljana, Ljubljana, Slovenia
| | - Matej Kranjc
- University of Ljubljana, Faculty of Electrical Engineering
| | | | | | - Gregor Sersa
- Department of Experimental Oncology, Institute of Oncology Ljubljana, Ljubljana, Slovenia
| | | |
Collapse
|
435
|
Sharabi S, Kos B, Last D, Guez D, Daniels D, Harnof S, Mardor Y, Miklavcic D. A statistical model describing combined irreversible electroporation and electroporation-induced blood-brain barrier disruption. Radiol Oncol 2016; 50:28-38. [PMID: 27069447 PMCID: PMC4825337 DOI: 10.1515/raon-2016-0009] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Accepted: 01/03/2016] [Indexed: 12/11/2022] Open
Abstract
Background Electroporation-based therapies such as electrochemotherapy (ECT) and irreversible electroporation (IRE) are emerging as promising tools for treatment of tumors. When applied to the brain, electroporation can also induce transient blood-brain-barrier (BBB) disruption in volumes extending beyond IRE, thus enabling efficient drug penetration. The main objective of this study was to develop a statistical model predicting cell death and BBB disruption induced by electroporation. This model can be used for individual treatment planning. Material and methods Cell death and BBB disruption models were developed based on the Peleg-Fermi model in combination with numerical models of the electric field. The model calculates the electric field thresholds for cell kill and BBB disruption and describes the dependence on the number of treatment pulses. The model was validated using in vivo experimental data consisting of rats brains MRIs post electroporation treatments. Results Linear regression analysis confirmed that the model described the IRE and BBB disruption volumes as a function of treatment pulses number (r2 = 0.79; p < 0.008, r2 = 0.91; p < 0.001). The results presented a strong plateau effect as the pulse number increased. The ratio between complete cell death and no cell death thresholds was relatively narrow (between 0.88-0.91) even for small numbers of pulses and depended weakly on the number of pulses. For BBB disruption, the ratio increased with the number of pulses. BBB disruption radii were on average 67% ± 11% larger than IRE volumes. Conclusions The statistical model can be used to describe the dependence of treatment-effects on the number of pulses independent of the experimental setup.
Collapse
Affiliation(s)
| | - Bor Kos
- University of Ljubljana, Faculty of Electrical Engineering, Ljubljana, Slovenia
| | - David Last
- The Advanced Technology Center, Sheba Medical Center, Ramat-Gan, Israel
| | - David Guez
- The Advanced Technology Center, Sheba Medical Center, Ramat-Gan, Israel
| | | | | | | | - Damijan Miklavcic
- University of Ljubljana, Faculty of Electrical Engineering, Ljubljana, Slovenia
| |
Collapse
|
436
|
Local Ablative Strategies for Ductal Pancreatic Cancer (Radiofrequency Ablation, Irreversible Electroporation): A Review. Gastroenterol Res Pract 2016; 2016:4508376. [PMID: 26981115 PMCID: PMC4770121 DOI: 10.1155/2016/4508376] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Revised: 10/28/2015] [Accepted: 01/13/2016] [Indexed: 02/07/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) has still a dismal prognosis. Locally advanced pancreatic cancer (LAPC) accounts for the 40% of the new diagnoses. Current treatment options are based on chemo- and radiotherapy regimens. Local ablative techniques seem to be the future therapeutic option for stage-III patients with PDAC. Radiofrequency Ablation (RFA) and Irreversible Electroporation (IRE) are actually the most emerging local ablative techniques used on LAPC. Initial clinical studies on the use of these techniques have already demonstrated encouraging results in terms of safety and feasibility. Unfortunately, few studies on their efficacy are currently available. Even though some reports on the overall survival are encouraging, randomized studies are still required to corroborate these findings. This study provides an up-to-date overview and a thematic summary of the current available evidence on the application of RFA and IRE on PDAC, together with a comparison of the two procedures.
Collapse
|
437
|
Lai HC, Chan HW, Singh NP. Effects of radiation from a radiofrequency identification (RFID) microchip on human cancer cells. Int J Radiat Biol 2016; 92:156-61. [PMID: 26872622 DOI: 10.3109/09553002.2016.1135264] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
PURPOSE Radiofrequency identification (RFID) microchips are used to remotely identify objects, e.g. an animal in which a chip is implanted. A passive RFID microchip absorbs energy from an external source and emits a radiofrequency identification signal which is then decoded by a detector. In the present study, we investigated the effect of the radiofrequency energy emitted by a RFID microchip on human cancer cells. MATERIALS AND METHODS Molt-4 leukemia, BT474 breast cancer, and HepG2 hepatic cancer cells were exposed in vitro to RFID microchip-emitted radiofrequency field for 1 h. Cells were counted before and after exposure. Effects of pretreatment with the spin-trap compound N-tert-butyl-alpha-phenylnitrone or the iron-chelator deferoxamine were also investigated. Results We found that the energy effectively killed/retarded the growth of the three different types of cancer cells, and the effect was blocked by the spin-trap compound or the iron-chelator, whereas an inactive microchip and energy from the external source had no significant effect on the cells. Conclusions Data of the present study suggest that radiofrequency field from the microchip affects cancer cells via the Fenton Reaction. Implantation of RFID microchips in tumors may provide a new method for cancer treatment.
Collapse
Affiliation(s)
- Henry C Lai
- a Department of Bioengineering , University of Washington , Seattle , WA , USA
| | - Ho Wing Chan
- a Department of Bioengineering , University of Washington , Seattle , WA , USA
| | - Narendra P Singh
- a Department of Bioengineering , University of Washington , Seattle , WA , USA
| |
Collapse
|
438
|
Rosazza C, Deschout H, Buntz A, Braeckmans K, Rols MP, Zumbusch A. Endocytosis and Endosomal Trafficking of DNA After Gene Electrotransfer In Vitro. MOLECULAR THERAPY-NUCLEIC ACIDS 2016; 5:e286. [PMID: 26859199 PMCID: PMC4884790 DOI: 10.1038/mtna.2015.59] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Accepted: 12/18/2015] [Indexed: 01/08/2023]
Abstract
DNA electrotransfer is a successful technique for gene delivery into cells and represents an attractive alternative to virus-based methods for clinical applications including gene therapy and DNA vaccination. However, little is currently known about the mechanisms governing DNA internalization and its fate inside cells. The objectives of this work were to investigate the role of endocytosis and to quantify the contribution of different routes of cellular trafficking during DNA electrotransfer. To pursue these objectives, we performed flow cytometry and single-particle fluorescence microscopy experiments using inhibitors of endocytosis and endosomal markers. Our results show that ~50% of DNA is internalized by caveolin/raft-mediated endocytosis, 25% by clathrin-mediated endocytosis, and 25% by macropinocytosis. During active transport, DNA is routed through multiple endosomal compartments with, in the hour following electrotransfer, 70% found in Rab5 structures, 50% in Rab11-containing organelles and 30% in Rab9 compartments. Later, 60% of DNA colocalizes with Lamp1 vesicles. Because these molecular markers can overlap while following organelles through several steps of trafficking, the percentages do not sum up to 100%. We conclude that electrotransferred DNA uses the classical endosomal trafficking pathways. Our results are important for a generalized understanding of gene electrotransfer, which is crucial for its safe use in clinics.
Collapse
Affiliation(s)
- Christelle Rosazza
- Department of Chemistry, University of Konstanz, Konstanz, Germany.,Department of Structural Biology and Biophysics, Institute of Pharmacology and Structural Biology (IPBS), CNRS UMR5089, Toulouse, France.,University of Toulouse III, UPS, Toulouse, France
| | - Hendrik Deschout
- Laboratory of General Biochemistry and Physical Pharmacy, Department of Pharmaceutics, University of Ghent, Ghent, Belgium
| | - Annette Buntz
- Department of Chemistry, University of Konstanz, Konstanz, Germany
| | - Kevin Braeckmans
- Laboratory of General Biochemistry and Physical Pharmacy, Department of Pharmaceutics, University of Ghent, Ghent, Belgium
| | - Marie-Pierre Rols
- Department of Structural Biology and Biophysics, Institute of Pharmacology and Structural Biology (IPBS), CNRS UMR5089, Toulouse, France.,University of Toulouse III, UPS, Toulouse, France
| | - Andreas Zumbusch
- Department of Chemistry, University of Konstanz, Konstanz, Germany
| |
Collapse
|
439
|
Zhao JY, Chen G, Gu YP, Cui R, Zhang ZL, Yu ZL, Tang B, Zhao YF, Pang DW. Ultrasmall Magnetically Engineered Ag2Se Quantum Dots for Instant Efficient Labeling and Whole-Body High-Resolution Multimodal Real-Time Tracking of Cell-Derived Microvesicles. J Am Chem Soc 2016; 138:1893-903. [DOI: 10.1021/jacs.5b10340] [Citation(s) in RCA: 110] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Jing-Ya Zhao
- Key
Laboratory of Analytical Chemistry for Biology and Medicine (Ministry
of Education), College of Chemistry and Molecular Sciences, State
Key Laboratory of Virology, The Institute for Advanced Studies, and
Wuhan Institute of Biotechnology, Wuhan University, Wuhan, 430072, P. R. China
| | - Gang Chen
- Key
Laboratory of Analytical Chemistry for Biology and Medicine (Ministry
of Education), College of Chemistry and Molecular Sciences, State
Key Laboratory of Virology, The Institute for Advanced Studies, and
Wuhan Institute of Biotechnology, Wuhan University, Wuhan, 430072, P. R. China
- Key
Laboratory of Oral Biomedicine (Ministry of Education) and Department
of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Wuhan University, Wuhan, 430079, P. R. China
| | - Yi-Ping Gu
- Key
Laboratory of Analytical Chemistry for Biology and Medicine (Ministry
of Education), College of Chemistry and Molecular Sciences, State
Key Laboratory of Virology, The Institute for Advanced Studies, and
Wuhan Institute of Biotechnology, Wuhan University, Wuhan, 430072, P. R. China
| | - Ran Cui
- Key
Laboratory of Analytical Chemistry for Biology and Medicine (Ministry
of Education), College of Chemistry and Molecular Sciences, State
Key Laboratory of Virology, The Institute for Advanced Studies, and
Wuhan Institute of Biotechnology, Wuhan University, Wuhan, 430072, P. R. China
| | - Zhi-Ling Zhang
- Key
Laboratory of Analytical Chemistry for Biology and Medicine (Ministry
of Education), College of Chemistry and Molecular Sciences, State
Key Laboratory of Virology, The Institute for Advanced Studies, and
Wuhan Institute of Biotechnology, Wuhan University, Wuhan, 430072, P. R. China
| | - Zi-Li Yu
- Key
Laboratory of Oral Biomedicine (Ministry of Education) and Department
of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Wuhan University, Wuhan, 430079, P. R. China
| | - Bo Tang
- Key
Laboratory of Analytical Chemistry for Biology and Medicine (Ministry
of Education), College of Chemistry and Molecular Sciences, State
Key Laboratory of Virology, The Institute for Advanced Studies, and
Wuhan Institute of Biotechnology, Wuhan University, Wuhan, 430072, P. R. China
| | - Yi-Fang Zhao
- Key
Laboratory of Oral Biomedicine (Ministry of Education) and Department
of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Wuhan University, Wuhan, 430079, P. R. China
| | - Dai-Wen Pang
- Key
Laboratory of Analytical Chemistry for Biology and Medicine (Ministry
of Education), College of Chemistry and Molecular Sciences, State
Key Laboratory of Virology, The Institute for Advanced Studies, and
Wuhan Institute of Biotechnology, Wuhan University, Wuhan, 430072, P. R. China
| |
Collapse
|
440
|
Casciola M, Kasimova MA, Rems L, Zullino S, Apollonio F, Tarek M. Properties of lipid electropores I: Molecular dynamics simulations of stabilized pores by constant charge imbalance. Bioelectrochemistry 2016; 109:108-16. [PMID: 26883056 DOI: 10.1016/j.bioelechem.2016.01.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Revised: 01/20/2016] [Accepted: 01/26/2016] [Indexed: 11/16/2022]
Abstract
Molecular dynamics (MD) simulations have become a powerful tool to study electroporation (EP) in atomic detail. In the last decade, numerous MD studies have been conducted to model the effect of pulsed electric fields on membranes, providing molecular models of the EP process of lipid bilayers. Here we extend these investigations by modeling for the first time conditions comparable to experiments using long (μs-ms) low intensity (~kV/cm) pulses, by studying the characteristics of pores formed in lipid bilayers maintained at a constant surface tension and subject to constant charge imbalance. This enables the evaluation of structural (size) and electrical (conductance) properties of the pores formed, providing information hardly accessible directly by experiments. Extensive simulations of EP of simple phosphatidylcholine bilayers in 1M NaCl show that hydrophilic pores with stable radii (1-2.5 nm) form under transmembrane voltages between 420 and 630 mV, allowing for ionic conductance in the range of 6.4-29.5 nS. We discuss in particular these findings and characterize both convergence and size effects in the MD simulations. We further extend these studies in a follow-up paper (Rems et al., Bioelectrochemistry, Submitted), by proposing an improved continuum model of pore conductance consistent with the results from the MD simulations.
Collapse
Affiliation(s)
- Maura Casciola
- Université de Lorraine, UMR 7565, F-54506 Vandoeuvre les Nancy, France; Department of Information Engineering, Electronics and Telecommunications (D.I.E.T), Sapienza University of Rome, 00184 Rome, Italy; Center for Life Nano Science@Sapienza, Istituto Italiano di Tecnologia, 00161 Rome, Italy
| | - Marina A Kasimova
- Université de Lorraine, UMR 7565, F-54506 Vandoeuvre les Nancy, France
| | - Lea Rems
- University of Ljubljana, Faculty of Electrical Engineering, Tržaška 25, SI-1000 Ljubljana, Slovenia
| | - Sara Zullino
- Université de Lorraine, UMR 7565, F-54506 Vandoeuvre les Nancy, France; Department of Information Engineering, Electronics and Telecommunications (D.I.E.T), Sapienza University of Rome, 00184 Rome, Italy
| | - Francesca Apollonio
- Department of Information Engineering, Electronics and Telecommunications (D.I.E.T), Sapienza University of Rome, 00184 Rome, Italy
| | - Mounir Tarek
- Université de Lorraine, UMR 7565, F-54506 Vandoeuvre les Nancy, France; CNRS, UMR 7565, F-54506 Vandoeuvre les Nancy, France.
| |
Collapse
|
441
|
Golberg A, Bruinsma BG, Jaramillo M, Yarmush ML, Uygun BE. Rat liver regeneration following ablation with irreversible electroporation. PeerJ 2016; 4:e1571. [PMID: 26819842 PMCID: PMC4727979 DOI: 10.7717/peerj.1571] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Accepted: 12/14/2015] [Indexed: 12/18/2022] Open
Abstract
During the past decade, irreversible electroporation (IRE) ablation has emerged as a promising tool for the treatment of multiple diseases including hepatic cancer. However, the mechanisms behind the tissue regeneration following IRE ablation have not been investigated. Our results indicate that IRE treatment immediately kills the cells at the treatment site preserving the extracellular architecture, in effect causing in vivo decellularization. Over the course of 4 weeks, progenitor cell differentiation, through YAP and notch pathways, together with hepatocyte expansion led to almost complete regeneration of the ablated liver leading to the formation of hepatocyte like cells at the ablated zone. We did not observe significant scarring or tumor formation at the regenerated areas 6 months post IRE. Our study suggests a new model to study the regeneration of liver when the naïve extracellular matrix is decellularized in vivo with completely preserved extracellular architecture.
Collapse
Affiliation(s)
- Alexander Golberg
- Center for Engineering in Medicine, Massachusetts General Hospital, Harvard Medical School, and Shriners Hospitals for Children in Boston, Boston, MA, United States; Porter School of Environmental Studies, Tel Aviv University, Tel Aviv, Israel
| | - Bote G Bruinsma
- Center for Engineering in Medicine, Massachusetts General Hospital, Harvard Medical School, and Shriners Hospitals for Children in Boston, Boston, MA, United States; Department of Surgery (Surgical Laboratory), Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Maria Jaramillo
- Center for Engineering in Medicine, Massachusetts General Hospital, Harvard Medical School, and Shriners Hospitals for Children in Boston , Boston, MA , United States
| | - Martin L Yarmush
- Center for Engineering in Medicine, Massachusetts General Hospital, Harvard Medical School, and Shriners Hospitals for Children in Boston, Boston, MA, United States; Department of Biomedical Engineering, Rutgers University, Piscataway, New Jersey, United States
| | - Basak E Uygun
- Center for Engineering in Medicine, Massachusetts General Hospital, Harvard Medical School, and Shriners Hospitals for Children in Boston , Boston, MA , United States
| |
Collapse
|
442
|
A Flow-Through Cell Electroporation Device for Rapidly and Efficiently Transfecting Massive Amounts of Cells in vitro and ex vivo. Sci Rep 2016; 6:18469. [PMID: 26728941 PMCID: PMC4700452 DOI: 10.1038/srep18469] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Accepted: 11/17/2015] [Indexed: 11/16/2022] Open
Abstract
Continuous cell electroporation is an appealing non-viral approach for genetically transfecting a large number of cells. Yet the traditional macro-scale devices suffer from the unsatisfactory transfection efficiency and/or cell viability due to their high voltage, while the emerging microfluidic electroporation devices is still limited by their low cell processing speed. Here we present a flow-through cell electroporation device integrating large-sized flow tube and small-spaced distributed needle electrode array. Relatively large flow tube enables high flow rate, simple flow characterization and low shear force, while well-organized needle array electrodes produce an even-distributed electric field with low voltage. Thus the difficulties for seeking the fine balance between high flow rate and low electroporation voltage were steered clear. Efficient in vitro electrotransfection of plasmid DNA was demonstrated in several hard-to-transfect cell lines. Furthermore, we also explored ex vivo electroporated mouse erythrocyte as the carrier of RNA. The strong ability of RNA loading and short exposure time of freshly isolated cells jointly ensured a high yield of valid carrier erythrocytes, which further successfully delivered RNA into targeted tissue. Both in vitro and ex vivo electrotransfection could be accomplished at high cell processing speed (20 million cells per minute) which remarkably outperforms previous devices.
Collapse
|
443
|
Wegner LH, Frey W, Silve A. Electroporation of DC-3F cells is a dual process. Biophys J 2016; 108:1660-1671. [PMID: 25863058 DOI: 10.1016/j.bpj.2015.01.038] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Revised: 11/21/2014] [Accepted: 01/29/2015] [Indexed: 01/25/2023] Open
Abstract
Treatment of biological material by pulsed electric fields is a versatile technique in biotechnology and biomedicine used, for example, in delivering DNA into cells (transfection), ablation of tumors, and food processing. Field exposure is associated with a membrane permeability increase usually ascribed to electroporation, i.e., formation of aqueous membrane pores. Knowledge of the underlying processes at the membrane level is predominantly built on theoretical considerations and molecular dynamics (MD) simulations. However, experimental data needed to monitor these processes with sufficient temporal resolution are scarce. The whole-cell patch-clamp technique was employed to investigate the effect of millisecond pulsed electric fields on DC-3F cells. Cellular membrane permeabilization was monitored by a conductance increase. For the first time, to our knowledge, it could be established experimentally that electroporation consists of two clearly separate processes: a rapid membrane poration (transient electroporation) that occurs while the membrane is depolarized or hyperpolarized to voltages beyond so-called threshold potentials (here, +201 mV and -231 mV, respectively) and is reversible within ∼100 ms after the pulse, and a long-term, or persistent, permeabilization covering the whole voltage range. The latter prevailed after the pulse for at least 40 min, the postpulse time span tested experimentally. With mildly depolarizing or hyperpolarizing pulses just above threshold potentials, the two processes could be separated, since persistent (but not transient) permeabilization required repetitive pulse exposure. Conductance increased stepwise and gradually with depolarizing and hyperpolarizing pulses, respectively. Persistent permeabilization could also be elicited by single depolarizing/hyperpolarizing pulses of very high field strength. Experimental measurements of propidium iodide uptake provided evidence of a real membrane phenomenon, rather than a mere patch-clamp artifact. In short, the response of DC-3F cells to strong pulsed electric fields was separated into a transient electroporation and a persistent permeabilization. The latter dominates postpulse membrane properties but to date has not been addressed by electroporation theory or MD simulations.
Collapse
Affiliation(s)
- Lars H Wegner
- Karlsruhe Institute of Technology, Institute for Pulsed Power and Microwave Technology (IHM), Campus North, Eggenstein-Leopoldshafen, Germany.
| | - Wolfgang Frey
- Karlsruhe Institute of Technology, Institute for Pulsed Power and Microwave Technology (IHM), Campus North, Eggenstein-Leopoldshafen, Germany
| | - Aude Silve
- Karlsruhe Institute of Technology, Institute for Pulsed Power and Microwave Technology (IHM), Campus North, Eggenstein-Leopoldshafen, Germany
| |
Collapse
|
444
|
Selmeczi D, Hansen TS, Met Ö, Svane IM, Larsen NB. Large-Scale mRNA Transfection of Dendritic Cells by Electroporation in Continuous Flow Systems. Methods Mol Biol 2016; 1428:151-161. [PMID: 27236798 DOI: 10.1007/978-1-4939-3625-0_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Electroporation is well established for transient mRNA transfection of many mammalian cells, including immune cells such as dendritic cells used in cancer immunotherapy. Therapeutic application requires methods to efficiently electroporate and transfect millions of immune cells in a fast process with high cell survival. Continuous flow of suspended dendritic cells through a channel incorporating spatially separated microporous meshes with a synchronized electrical pulsing sequence can yield dendritic cell transfection rates of >75 % with survival rates of >90 %. This chapter describes the instrumentation and methods needed for the efficient transfection by electroporation of millions of dendritic cells in one continuous flow process.
Collapse
Affiliation(s)
- David Selmeczi
- Department of Micro- and Nanotechnology, DTU Nanotech, Technical University of Denmark, Ørsteds Plads 345B, 2800, Kgs. Lyngby, Denmark
| | - Thomas Steen Hansen
- Department of Micro- and Nanotechnology, DTU Nanotech, Technical University of Denmark, Ørsteds Plads 345B, 2800, Kgs. Lyngby, Denmark
| | - Özcan Met
- Center for Cancer Immune Therapy, Department of Hematology, Herlev Hospital, Copenhagen University, Copenhagen, Denmark
- Department of Oncology, Herlev Hospital, Copenhagen University, Copenhagen, Denmark
| | - Inge Marie Svane
- Center for Cancer Immune Therapy, Department of Hematology, Herlev Hospital, Copenhagen University, Copenhagen, Denmark
- Department of Oncology, Herlev Hospital, Copenhagen University, Copenhagen, Denmark
| | - Niels B Larsen
- Department of Micro- and Nanotechnology, DTU Nanotech, Technical University of Denmark, Ørsteds Plads 345B, 2800, Kgs. Lyngby, Denmark.
| |
Collapse
|
445
|
Passive and electro-assisted delivery of hydrogel nanoparticles in solid tumors, visualized by optical and magnetic resonance imaging in vivo. Anal Bioanal Chem 2015; 408:905-14. [DOI: 10.1007/s00216-015-9182-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Revised: 11/02/2015] [Accepted: 11/09/2015] [Indexed: 10/22/2022]
|
446
|
McConnell LC, Miksis MJ, Vlahovska PM. Continuum modeling of the electric-field-induced tension in deforming lipid vesicles. J Chem Phys 2015; 143:243132. [DOI: 10.1063/1.4935826] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Affiliation(s)
- Lane C. McConnell
- Department of Mathematics and Statistics, University of New Mexico, Albuquerque, New Mexico 87131, USA
| | - Michael J. Miksis
- Engineering Sciences and Applied Mathematics, Northwestern University, Evanston, Illinois 60208, USA
| | - Petia M. Vlahovska
- School of Engineering, Brown University, Providence, Rhode Island 02912, USA
| |
Collapse
|
447
|
Growth Inhibition and Membrane Permeabilization of Candida lusitaniae Using Varied Pulse Shape Electroporation. BIOMED RESEARCH INTERNATIONAL 2015; 2015:457896. [PMID: 26697485 PMCID: PMC4678064 DOI: 10.1155/2015/457896] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Accepted: 11/23/2015] [Indexed: 12/21/2022]
Abstract
Candida lusitaniae is an opportunistic yeast pathogen, which can readily develop resistance to antifungal compounds and result in a complex long-term treatment. The efficient treatment is difficult since structure and metabolic properties of the fungal cells are similar to those of eukaryotic host. One of the potential methods to improve the inhibition rate or the cell permeability to inhibitors is the application of electroporation. In this work we investigated the dynamics of the growth inhibition and membrane permeabilization of C. lusitaniae by utilizing the various pulse shape and duration electric field pulses. Our results indicated that single electroporation procedure using 8 kV/cm electric field may result in up to 51 ± 5% inhibition rate. Also it has been experimentally shown that the electroporation pulse shape may influence the inhibitory effect; however, the amplitude of the electric field and the pulse energy remain the most important parameters for definition of the treatment outcome. The dynamics of the cell membrane permeabilization in the 2–8 kV/cm electric field were overviewed.
Collapse
|
448
|
Lambricht L, Lopes A, Kos S, Sersa G, Préat V, Vandermeulen G. Clinical potential of electroporation for gene therapy and DNA vaccine delivery. Expert Opin Drug Deliv 2015; 13:295-310. [PMID: 26578324 DOI: 10.1517/17425247.2016.1121990] [Citation(s) in RCA: 152] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION Electroporation allows efficient delivery of DNA into cells and tissues, thereby improving the expression of therapeutic or immunogenic proteins that are encoded by plasmid DNA. This simple and versatile method holds a great potential and could address unmet medical needs such as the prevention or treatment of many cancers or infectious diseases. AREAS COVERED This review explores the electroporation mechanism and the parameters affecting its efficacy. An analysis of past and current clinical trials focused on DNA electroporation is presented. The pathologies addressed, the protocol used, the treatment outcome and the tolerability are highlighted. In addition, several of the possible optimization strategies for improving patient compliance and therapeutic efficacy are discussed such as plasmid design, use of genetic adjuvants for DNA vaccines, choice of appropriate delivery site and electrodes as well as pulse parameters. EXPERT OPINION The growing number of clinical trials and the results already available underline the strong potential of DNA electroporation which combines both safety and efficiency. Nevertheless, it remains critical to further increase fundamental knowledge to refine future strategies, to develop concerted and common DNA electroporation protocols and to continue exploring new electroporation-based therapeutic options.
Collapse
Affiliation(s)
- Laure Lambricht
- a Université catholique de Louvain, Louvain Drug Research Institute , Advanced Drug Delivery and Biomaterials , Brussels , Belgium
| | - Alessandra Lopes
- a Université catholique de Louvain, Louvain Drug Research Institute , Advanced Drug Delivery and Biomaterials , Brussels , Belgium
| | - Spela Kos
- b Institute of Oncology Ljubljana , Department of Experimental Oncology , Ljubljana , Slovenia
| | - Gregor Sersa
- b Institute of Oncology Ljubljana , Department of Experimental Oncology , Ljubljana , Slovenia
| | - Véronique Préat
- a Université catholique de Louvain, Louvain Drug Research Institute , Advanced Drug Delivery and Biomaterials , Brussels , Belgium
| | - Gaëlle Vandermeulen
- a Université catholique de Louvain, Louvain Drug Research Institute , Advanced Drug Delivery and Biomaterials , Brussels , Belgium
| |
Collapse
|
449
|
Song Y, Zheng J, Yan M, Ding W, Xu K, Fan Q, Li Z. The Effect of Irreversible Electroporation on the Femur: Experimental Study in a Rabbit Model. Sci Rep 2015; 5:18187. [PMID: 26655843 PMCID: PMC4674754 DOI: 10.1038/srep18187] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Accepted: 11/12/2015] [Indexed: 12/18/2022] Open
Abstract
Irreversible electroporation (IRE) is a novel ablation method that has been tested in humans with lung, prostate, kidney, liver, lymph node and presacral cancers. As a new non-thermal treatment, the use of IRE to ablate tumors in the musculoskeletal system might reduce the incidence of fractures. We aimed to determine the ablation threshold of cortical bone and to evaluate the medium- and long-term healing process and mechanical properties of the femur in a rabbit model post-IRE ablation. The ablation threshold of cortical bone was between 1090 V/cm and 1310 V/cm (120 pulses). IRE-ablated femurs displayed no detectable fracture but did exhibit signs of recovery, including osteoblast regeneration, angiogenesis and bone remodeling. In the ablation area, revascularization appeared at 4 weeks post-IRE. Osteogenic activity peaked 8 weeks post-IRE and remained high at 12 weeks. The mechanical strength decreased briefly 4 weeks post-IRE but returned to normal levels within 8 weeks. Our experiment revealed that IRE ablation preserved the structural integrity of the bone cortex, and the ablated bone was able to regenerate rapidly. IRE may hold unique promise for in situ bone tissue ablation because rapid revascularization and active osteogenesis in the IRE ablation area are possible.
Collapse
Affiliation(s)
- Yue Song
- Department of Urologic and Pediatric Surgery, NO. 202 Hospital of People's Liberation Army, NO. 5 Guangrong Street, Shenyang, 110003, P.R.China.,Orthopedics Oncology Institute of Chinese People's Liberation Army and Department of Orthopedics, Tangdu Hospital, Fourth Military Medical University, NO. 1 Xinsi Road, Xi'an, 710038, P.R.China
| | - Jingjing Zheng
- Department of Anesthesiology, The General Hospital of Shenyang Military Command, NO. 83 Wenhua Road, Shenyang, 110840, P.R.China
| | - Mingwei Yan
- Department of Electrical Engineering, Xi'an Jiaotong University, NO. 28 Xianning Road, Xi'an, 710049, P.R.China
| | - Weidong Ding
- Department of Electrical Engineering, Xi'an Jiaotong University, NO. 28 Xianning Road, Xi'an, 710049, P.R.China
| | - Kui Xu
- Orthopedics Oncology Institute of Chinese People's Liberation Army and Department of Orthopedics, Tangdu Hospital, Fourth Military Medical University, NO. 1 Xinsi Road, Xi'an, 710038, P.R.China
| | - Qingyu Fan
- Orthopedics Oncology Institute of Chinese People's Liberation Army and Department of Orthopedics, Tangdu Hospital, Fourth Military Medical University, NO. 1 Xinsi Road, Xi'an, 710038, P.R.China
| | - Zhao Li
- Orthopedics Oncology Institute of Chinese People's Liberation Army and Department of Orthopedics, Tangdu Hospital, Fourth Military Medical University, NO. 1 Xinsi Road, Xi'an, 710038, P.R.China
| |
Collapse
|
450
|
Frandsen SK, Gibot L, Madi M, Gehl J, Rols MP. Calcium Electroporation: Evidence for Differential Effects in Normal and Malignant Cell Lines, Evaluated in a 3D Spheroid Model. PLoS One 2015; 10:e0144028. [PMID: 26633834 PMCID: PMC4669124 DOI: 10.1371/journal.pone.0144028] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Accepted: 11/12/2015] [Indexed: 12/21/2022] Open
Abstract
Background Calcium electroporation describes the use of high voltage electric pulses to introduce supraphysiological calcium concentrations into cells. This promising method is currently in clinical trial as an anti-cancer treatment. One very important issue is the relation between tumor cell kill efficacy–and normal cell sensitivity. Methods Using a 3D spheroid cell culture model we have tested the effect of calcium electroporation and electrochemotherapy using bleomycin on three different human cancer cell lines: a colorectal adenocarcinoma (HT29), a bladder transitional cell carcinoma (SW780), and a breast adenocarcinoma (MDA-MB231), as well as on primary normal human dermal fibroblasts (HDF-n). Results The results showed a clear reduction in spheroid size in all three cancer cell spheroids three days after treatment with respectively calcium electroporation (p<0.0001) or electrochemotherapy using bleomycin (p<0.0001). Strikingly, the size of normal fibroblast spheroids was neither affected after calcium electroporation nor electrochemotherapy using bleomycin, indicating that calcium electroporation, like electrochemotherapy, will have limited adverse effects on the surrounding normal tissue when treating with calcium electroporation. The intracellular ATP level, which has previously been shown to be depleted after calcium electroporation, was measured in the spheroids after treatment. The results showed a dramatic decrease in the intracellular ATP level (p<0.01) in all four spheroid types—malignant as well as normal. Conclusion In conclusion, calcium electroporation seems to be more effective in inducing cell death in cancer cell spheroids than in a normal fibroblast spheroid, even though intracellular ATP level is depleted in all spheroid types after treatment. These results may indicate an important therapeutic window for this therapy; although further studies are needed in vivo and in patients to investigate the effect of calcium electroporation on surrounding normal tissue when treating tumors.
Collapse
Affiliation(s)
- Stine Krog Frandsen
- Center for Experimental Drug and Gene Electrotransfer, Department of Oncology, Copenhagen University Hospital Herlev, 2730 Herlev, Denmark
| | - Laure Gibot
- CNRS, Institut de Pharmacologie et de Biologie Structurale, Toulouse, France
- Université de Toulouse, UPS, Institut de Pharmacologie et de Biologie Structurale, Toulouse, France
| | - Moinecha Madi
- CNRS, Institut de Pharmacologie et de Biologie Structurale, Toulouse, France
- Université de Toulouse, UPS, Institut de Pharmacologie et de Biologie Structurale, Toulouse, France
| | - Julie Gehl
- Center for Experimental Drug and Gene Electrotransfer, Department of Oncology, Copenhagen University Hospital Herlev, 2730 Herlev, Denmark
- * E-mail: (JG); (MPR)
| | - Marie-Pierre Rols
- CNRS, Institut de Pharmacologie et de Biologie Structurale, Toulouse, France
- Université de Toulouse, UPS, Institut de Pharmacologie et de Biologie Structurale, Toulouse, France
- * E-mail: (JG); (MPR)
| |
Collapse
|