401
|
Galvani E, Giovannetti E, Saccani F, Cavazzoni A, Leon LG, Dekker H, Alfieri R, Carmi C, Mor M, Ardizzoni A, Petronini PG, Peters GJ. Molecular mechanisms underlying the antitumor activity of 3-aminopropanamide irreversible inhibitors of the epidermal growth factor receptor in non-small cell lung cancer. Neoplasia 2013; 15:61-72. [PMID: 23359111 PMCID: PMC3556939 DOI: 10.1593/neo.121434] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 10/31/2012] [Accepted: 11/12/2012] [Indexed: 01/05/2023]
Abstract
Overcoming the emergence of acquired resistance to clinically approved epidermal growth factor receptor (EGFR) inhibitors is a major challenge in the treatment of advanced non-small cell lung cancer (NSCLC). The aim of this study was to investigate the effects of a series of novel compounds affecting viability of NSCLC NCI-H1975 cells (carrying the EGFR T790M mutation). The inhibition of the autophosphorylation of EGFR occurred at nanomolar concentrations and both UPR1282 and UPR1268 caused a significant induction of apoptosis. Targeting of EGFR and downstream pathways was confirmed by a peptide substrate array, which highlighted the inhibition of other kinases involved in NSCLC cell aggressive behavior. Accordingly, the drugs inhibited migration (about 30% vs. control), which could be, in part, explained also by the increase of E-cadherin expression. Additionally, we observed a contraction of the volume of H1975 spheroids, associated with the reduction of the cancer stem-like cell hallmark CD133. The activity of UPR1282 was retained in H1975 xenograft models where it determined tumor shrinkage (P < .05) and resulted well tolerated compared to canertinib. Of note, the kinase activity profile of UPR1282 on xenograft tumor tissues showed overlapping results with respect to the activity in H1975 cells, unraveling the inhibition of kinases involved in pivotal proliferation and invasive signaling pathways. In conclusion, UPR1282 and UPR1268 are effective against various processes involved in malignancy transformation and progression and may be promising compounds for the future treatment of gefitinib-resistant NSCLCs.
Collapse
Affiliation(s)
- Elena Galvani
- Department of Clinical and Experimental Medicine, University of Parma, Parma, Italy
- Department Medical Oncology, VU University Medical Center, Amsterdam, The Netherlands
| | - Elisa Giovannetti
- Department Medical Oncology, VU University Medical Center, Amsterdam, The Netherlands
| | - Francesca Saccani
- Department of Clinical and Experimental Medicine, University of Parma, Parma, Italy
| | - Andrea Cavazzoni
- Department of Clinical and Experimental Medicine, University of Parma, Parma, Italy
| | - Leticia G Leon
- Biolab, Instituto Universitario de Bio-Orgánica Antonio Gonzalez, Universidad de La Laguna, Tenerife, Spain
| | - Henk Dekker
- Department Medical Oncology, VU University Medical Center, Amsterdam, The Netherlands
| | - Roberta Alfieri
- Department of Clinical and Experimental Medicine, University of Parma, Parma, Italy
| | - Caterina Carmi
- Pharmaceutical Department, University of Parma, Parma, Italy
| | - Marco Mor
- Pharmaceutical Department, University of Parma, Parma, Italy
| | - Andrea Ardizzoni
- Division of Medical Oncology, University Hospital of Parma, Parma, Italy
| | | | - Godefridus J Peters
- Department Medical Oncology, VU University Medical Center, Amsterdam, The Netherlands
| |
Collapse
|
402
|
|
403
|
Liu Z, Liu H, Desai S, Schmitt DC, Zhou M, Khong HT, Klos KS, McClellan S, Fodstad O, Tan M. miR-125b functions as a key mediator for snail-induced stem cell propagation and chemoresistance. J Biol Chem 2012; 288:4334-45. [PMID: 23255607 DOI: 10.1074/jbc.m112.419168] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Chemoresistance is a major obstacle in cancer treatment. Our previous studies have shown that miR-125b plays an important role in chemoresistance. Here we report a novel mechanism that up-regulation of miR-125b through Wnt signaling by Snail enriches cancer stem cells. Overexpression of Snail dramatically increases the expression of miR-125b through the Snail-activated Wnt/β-catenin/TCF4 axis. Snail confers chemoresistance by repressing Bak1 through up-regulation of miR-125b. Restoring the expression of Bak1 or depleting miR-125b re-sensitizes Snail-expressing cancer cells to Taxol, indicating that miR-125b is critical in Snail-induced chemoresistance. Moreover, overexpression of miR-125b significantly increases the cancer stem cell population (CD24-CD44+), while depletion of miR-125b or rescue of the expression of Bak1 increases the non-stem cell population (CD24+CD44+) in Snail-overexpressing cells. These findings strongly support that miR-125b functions as a key mediator in Snail-induced cancer stem cell enrichment and chemoresistance. This novel mechanism for Snail-induced stem cell propagation and chemoresistance may have important implications in the development of strategies for overcoming cancer cell resistance to chemotherapy.
Collapse
Affiliation(s)
- Zixing Liu
- Mitchell Cancer Institute, University of South Alabama, Mobile, Alabama 36604, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
404
|
Scatena R, Bottoni P, Giardina B. Circulating tumour cells and cancer stem cells: a role for proteomics in defining the interrelationships between function, phenotype and differentiation with potential clinical applications. Biochim Biophys Acta Rev Cancer 2012; 1835:129-43. [PMID: 23228700 DOI: 10.1016/j.bbcan.2012.12.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2012] [Revised: 11/29/2012] [Accepted: 12/01/2012] [Indexed: 01/22/2023]
Abstract
Research on the discovery and implementation of valid cancer biomarkers is one of the most challenging fields in oncology and oncoproteomics in particular. Moreover, it is generally accepted that an evaluation of cancer biomarkers from the blood could significantly enable biomarker assessments by providing a relatively non-invasive source of representative tumour material. In this regard, circulating tumour cells (CTCs) isolated from the blood of metastatic cancer patients have significant promise. It has been demonstrated that localised and metastatic cancers may give rise to CTCs, which are detectable in the bloodstream. Despite technical difficulties, recent studies have highlighted the prognostic significance of the presence and number of CTCs in the blood. Future studies are necessary not only to detect CTCs but also to characterise them. Furthermore, another pathogenically significant type of cancer cells, known as cancer stem cells (CSCs) or more recently termed circulating tumour stem cells (CTSCs), appears to have a significant role as a subpopulation of CTCs. This review discusses the potential application of proteomic methodologies to improve the isolation and characterisation of CTCs and to distinguish between CTCs with a poor clinical significance and those with important biological and clinical implications.
Collapse
|
405
|
Mann CD, Bastianpillai C, Neal CP, Masood MM, Jones DJL, Teichert F, Singh R, Karpova E, Berry DP, Manson MM. Notch3 and HEY-1 as prognostic biomarkers in pancreatic adenocarcinoma. PLoS One 2012; 7:e51119. [PMID: 23226563 PMCID: PMC3514220 DOI: 10.1371/journal.pone.0051119] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2012] [Accepted: 10/29/2012] [Indexed: 01/07/2023] Open
Abstract
In order to achieve a better outcome for pancreatic cancer patients, reliable biomarkers are required which allow for improved diagnosis. These may emanate from a more detailed molecular understanding of the aggressive nature of this disease. Having previously reported that Notch3 activation appeared to be associated with more aggressive disease, we have now examined components of this pathway (Notch1, Notch3, Notch4, HES-1, HEY-1) in more detail in resectable (n = 42) and non-resectable (n = 50) tumours compared to uninvolved pancreas. All three Notch family members were significantly elevated in tumour tissue, compared to uninvolved pancreas, with expression maintained within matched lymph node metastases. Furthermore, significantly higher nuclear expression of Notch1, -3 and -4, HES-1, and HEY-1 (all p≤0.001) was noted in locally advanced and metastatic tumours compared to resectable cancers. In survival analyses, nuclear Notch3 and HEY-1 expression were significantly associated with reduced overall and disease-free survival following tumour resection with curative intent, with nuclear HEY-1 maintaining independent prognostic significance for both outcomes on multivariate analysis. These data further support a central role for Notch signalling in pancreatic cancer and suggest that nuclear expression of Notch3 and its target gene, HEY-1, merit validation in biomarker panels for diagnosis, prognosis and treatment efficacy. A peptide fragment of Notch3 was detected in plasma from patients with inoperable pancreatic cancer, but due to wide inter-individual variation, mean levels were not significantly different compared to age-matched controls.
Collapse
Affiliation(s)
- Christopher D Mann
- Department of Cancer Studies and Molecular Medicine, University of Leicester, Leicester, Leicestershire, United Kingdom
| | | | | | | | | | | | | | | | | | | |
Collapse
|
406
|
Quint K, Tonigold M, Di Fazio P, Montalbano R, Lingelbach S, Rückert F, Alinger B, Ocker M, Neureiter D. Pancreatic cancer cells surviving gemcitabine treatment express markers of stem cell differentiation and epithelial-mesenchymal transition. Int J Oncol 2012; 41:2093-2102. [PMID: 23026911 DOI: 10.3892/ijo.2012.1648] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2012] [Accepted: 09/03/2012] [Indexed: 02/07/2023] Open
Abstract
Objective response rates to standard chemotherapeutic regimens remain low in pancreatic cancer. Subpopulations of cells have been identified in various solid tumors which express stem cell-associated markers and are associated with increased resistance against radiochemotherapy. We investigated the expression of stem cell genes and markers of epithelial-mesenchymal transition in pancreatic cancer cells that survived high concentrations of gemcitabine treatment. Capan-1 and Panc-1 cells were continuously incubated with 1 and 10 µM gemcitabine. Surviving cells were collected after 1, 3 and 6 days. Expression of PDX-1, SHH, CD24, CD44, CD133, EpCAM, CBX7, OCT4, SNAIL, SLUG, TWIST, Ki-67, E-cadherin, β-catenin and vimentin were quantified by qPCR or immunocytochemistry. Migration was assessed by wound‑healing assay. SHH was knocked down using RNA interference. Five primary pancreatic cancer cell lines were used to validate the qPCR results. All investigated genes were upregulated after 6 days of gemcitabine incubation. Highest relative expression levels were observed for OCT4 (13.4-fold), CD24 (47.3-fold) and EpCAM (15.9-fold) in Capan-1 and PDX-1 (13.3‑fold), SHH (24.1-fold), CD44 (17.4-fold), CD133 (20.2-fold) and SLUG (15.2-fold) in Panc-1 cells. Distinct upregulation patterns were observed in the primary cells. Migration was increased in Panc-1 cells and changes in the expression of E-cadherin and β-catenin were typical of epithelial-mesenchymal transition in both cell lines. SHH knockdown reduced IC(50) from 30.1 to 27.6 nM in Capan-1 while it strongly inhibited proli-feration in Panc-1 cells. Cells surviving high-dose gemcitabine treatment express increased levels of stem cell genes, show characteristics associated with epithelial-mesenchymal transition and retain their proliferative capacity.
Collapse
Affiliation(s)
- Karl Quint
- Institute for Surgical Research, Philipps University of Marburg, D-35043 Marburg, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
407
|
Muñoz P, Iliou MS, Esteller M. Epigenetic alterations involved in cancer stem cell reprogramming. Mol Oncol 2012; 6:620-36. [PMID: 23141800 PMCID: PMC5528346 DOI: 10.1016/j.molonc.2012.10.006] [Citation(s) in RCA: 155] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2012] [Accepted: 10/17/2012] [Indexed: 02/07/2023] Open
Abstract
Current hypotheses suggest that tumors originate from cells that carry out a process of "malignant reprogramming" driven by genetic and epigenetic alterations. Multiples studies reported the existence of stem-cell-like cells that acquire the ability to self-renew and are able to generate the bulk of more differentiated cells that form the tumor. This population of cancer cells, called cancer stem cells (CSC), is responsible for sustaining the tumor growth and, under determined conditions, can disseminate and migrate to give rise to secondary tumors or metastases to distant organs. Furthermore, CSCs have shown to be more resistant to anti-tumor treatments than the non-stem cancer cells, suggesting that surviving CSCs could be responsible for tumor relapse after therapy. These important properties have raised the interest in understanding the mechanisms that govern the generation and maintenance of this special population of cells, considered to lie behind the on/off switches of gene expression patterns. In this review, we summarize the most relevant epigenetic alterations, from DNA methylation and histone modifications to the recently discovered miRNAs that contribute to the regulation of cancer stem cell features in tumor progression, metastasis and response to chemotherapy.
Collapse
Affiliation(s)
- Purificación Muñoz
- Cancer Epigenetics and Biology Program, Bellvitge Biomedical Research Institute, Barcelona, Spain
| | | | | |
Collapse
|
408
|
Kang M, Jiang B, Xu B, Lu W, Guo Q, Xie Q, Zhang B, Dong X, Chen D, Wu Y. Delta like ligand 4 induces impaired chemo-drug delivery and enhanced chemoresistance in pancreatic cancer. Cancer Lett 2012. [PMID: 23200678 DOI: 10.1016/j.canlet.2012.11.015] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The stubborn chemoresistance of pancreatic ductal adenocarcinoma (PDA) is simultaneously influenced by tumor parenchymal and stromal factors, and the ctritical role of Notch ligand Delta-like 4 (DLL4) in the regulation of tumor malignancies has been observed. DLL4 positive expression ratio between duct cells from clinical tumor and adjacent tissues was statistically significant, and the overactivation of DLL4/Notch pathway enhanced the phenotype of EMT and cancer stem cell, even can induce multi-chemoresistance in vitro. Notably, the accompanied defective angiogenesis directly induced inefficient chemo-drug delivery in vivo. Collectively, overexpressed DLL4 on neoplastic cells can enhance chemoresistance through angiogenesis-dependent/independent mechanisms in PDA.
Collapse
MESH Headings
- Adaptor Proteins, Signal Transducing
- Animals
- Antibiotics, Antineoplastic/pharmacology
- Calcium-Binding Proteins
- Carcinoma, Pancreatic Ductal/drug therapy
- Carcinoma, Pancreatic Ductal/metabolism
- Carcinoma, Pancreatic Ductal/pathology
- Cell Line, Tumor
- Doxorubicin/pharmacology
- Drug Delivery Systems
- Drug Resistance, Neoplasm
- Female
- Humans
- Immunohistochemistry
- Intercellular Signaling Peptides and Proteins/biosynthesis
- Intercellular Signaling Peptides and Proteins/genetics
- Intercellular Signaling Peptides and Proteins/metabolism
- Mice
- Mice, Inbred BALB C
- Mice, SCID
- Pancreatic Neoplasms/drug therapy
- Pancreatic Neoplasms/metabolism
- Pancreatic Neoplasms/pathology
- Receptor, Notch1/biosynthesis
- Receptor, Notch2/biosynthesis
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- Muxing Kang
- Department of Surgery, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
409
|
Salinomycin as a drug for targeting human cancer stem cells. J Biomed Biotechnol 2012; 2012:950658. [PMID: 23251084 PMCID: PMC3516046 DOI: 10.1155/2012/950658] [Citation(s) in RCA: 255] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2012] [Accepted: 10/04/2012] [Indexed: 12/17/2022] Open
Abstract
Cancer stem cells (CSCs) represent a subpopulation of tumor cells that possess self-renewal and tumor initiation capacity and the ability to give rise to the heterogenous lineages of malignant cells that comprise a tumor. CSCs possess multiple intrinsic mechanisms of resistance to chemotherapeutic drugs, novel tumor-targeted drugs, and radiation therapy, allowing them to survive standard cancer therapies and to initiate tumor recurrence and metastasis. Various molecular complexes and pathways that confer resistance and survival of CSCs, including expression of ATP-binding cassette (ABC) drug transporters, activation of the Wnt/β-catenin, Hedgehog, Notch and PI3K/Akt/mTOR signaling pathways, and acquisition of epithelial-mesenchymal transition (EMT), have been identified recently. Salinomycin, a polyether ionophore antibiotic isolated from Streptomyces albus, has been shown to kill CSCs in different types of human cancers, most likely by interfering with ABC drug transporters, the Wnt/β-catenin signaling pathway, and other CSC pathways. Promising results from preclinical trials in human xenograft mice and a few clinical pilote studies reveal that salinomycin is able to effectively eliminate CSCs and to induce partial clinical regression of heavily pretreated and therapy-resistant cancers. The ability of salinomycin to kill both CSCs and therapy-resistant cancer cells may define the compound as a novel and an effective anticancer drug.
Collapse
|
410
|
Zhang TH, Liu HC, Liang YJ, Liang LZ, Zheng GS, Huang HZ, Wu JN, Liao GQ. Suppression of tongue squamous cell carcinoma growth by inhibition of Jagged1 in vitro and in vivo. J Oral Pathol Med 2012; 42:322-31. [PMID: 23157415 DOI: 10.1111/jop.12013] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/17/2012] [Indexed: 01/07/2023]
Abstract
BACKGROUND The changes in Notch signaling are closely related to the occurrence and development of many cancers. We have investigated Notch signaling receptor and its ligand expressions in TSCC cell lines, tissues and its significance. We clarified Notch signaling pathway in TSCC and its mechanism. We regulated Notch signaling pathway of tumor cells, thereby inhibiting tumor cell proliferation and differentiation. METHODS We detected Jagged1 protein and mRNA expression levels in specimens (tongue cancer and adjacent tissues) from 74 patients with tongue cancer and in TSCC cell line. The Jagged1-targeted lentiviral vector RNAi system was constructed, and its suppressive effects on the proliferation and invasion of tongue carcinoma cells in in vivo and ex vivo were determined. RESULTS Jagged1 was expressed in tongue squamous cell cancer tissues and cell line, but there were differences in its expression. Jagged1 was knocked down and the tumor growth was inhibited accompanying cell cycle changes. Animal studies also showed that the tumor growth was inhibited. CONCLUSIONS Jagged1 may be involved in the differentiation and proliferation of tongue cancer. Targeting Jagged1 RNA interference lentiviral vector can effectively lower Jagged1 mRNA and protein expression levels of Tca8113 cells, thereby preventing the proliferation of TSCC cells. Jagged1 is expected to be a promising new target for curing tongue cancer. In-depth study of the interaction between Jagged1 and other molecules of Notch signaling pathway in the process of carcinogenesis has important theoretical guidance and clinical significance in revealing the mechanism of Jagged1 and its application in the therapy for tongue cancer.
Collapse
Affiliation(s)
- Tong-han Zhang
- Department of Stomatology, Affiliated Zhongshan Hospital, Sun Yat-sen University, Zhongshan, China
| | | | | | | | | | | | | | | |
Collapse
|
411
|
Abstract
Studies of cell lines and of animal models of pancreatic cancer have raised a number of provocative questions about the nature and origins of human pancreatic cancer and have provided several leads into exciting new approaches for the treatment of this deadly cancer. In addition, clinicians with little or no contact with human pathology have challenged the way that pancreatic pathology is practiced, suggesting that "genetic signals" may be more accurate than today's multimodal approach to diagnoses. In this review, we consider 8 provocative issues in pancreas pathology, with an emphasis on "the evidence derived from man."
Collapse
|
412
|
Li XJ, Ji MH, Zhong SL, Zha QB, Xu JJ, Zhao JH, Tang JH. MicroRNA-34a modulates chemosensitivity of breast cancer cells to adriamycin by targeting Notch1. Arch Med Res 2012; 43:514-21. [PMID: 23085450 DOI: 10.1016/j.arcmed.2012.09.007] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2012] [Accepted: 09/14/2012] [Indexed: 01/16/2023]
Abstract
BACKGROUND AND AIMS MicroRNA-34a (miR-34a) as a tumor suppressor has been reported in many other studies. However, its role in modulating the sensitivity of breast cancer cells to adriamycin (ADR) remains unclear. The aim of this study is to evaluate the role of miR-34a in the sensitivity of breast cancer cells to ADR. METHODS The role of miR-34a in breast cancer cells was detected using MTT assay, flow cytometry assay, real-time PCR and Western blot, etc. The association of miR-34a and Notch1 was analyzed by dual-luciferase reporter assay and Notch1-siRNA technology. Real-time PCR assay was performed to test the expression of miR-34a and Notch1 in 38 selective breast cancer tissue samples. RESULTS Ectopic overexpression of miR-34a could sensitize MCF-7 breast cancer cells to ADR. MiR-34a mimic could inhibit the luciferase activity of the construct containing wild-type 3' UTR of Notch1 in MCF-7/ADR cells. Notch1-siRNA could partially reverse the effect of miR-34a inhibitor in inducing chemoresistance of MCF-7 cells to ADR. Further, there was an inverse association between Notch1 and miR-34a expression in breast cancer. CONCLUSION Dysregulation of miR-34a plays critical roles in the acquired ADR resistance of breast cancer, at least in part via targeting Notch1.
Collapse
Affiliation(s)
- Xiu-juan Li
- Department of Oncology, Xuzhou Medical College, Jiangsu, PR China
| | | | | | | | | | | | | |
Collapse
|
413
|
Hindriksen S, Bijlsma MF. Cancer Stem Cells, EMT, and Developmental Pathway Activation in Pancreatic Tumors. Cancers (Basel) 2012; 4:989-1035. [PMID: 24213498 PMCID: PMC3712732 DOI: 10.3390/cancers4040989] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2012] [Revised: 10/02/2012] [Accepted: 10/09/2012] [Indexed: 12/15/2022] Open
Abstract
Pancreatic cancer is a disease with remarkably poor patient survival rates. The frequent presence of metastases and profound chemoresistance pose a severe problem for the treatment of these tumors. Moreover, cross-talk between the tumor and the local micro-environment contributes to tumorigenicity, metastasis and chemoresistance. Compared to bulk tumor cells, cancer stem cells (CSC) have reduced sensitivity to chemotherapy. CSC are tumor cells with stem-like features that possess the ability to self-renew, but can also give rise to more differentiated progeny. CSC can be identified based on increased in vitro spheroid- or colony formation, enhanced in vivo tumor initiating potential, or expression of cell surface markers. Since CSC are thought to be required for the maintenance of a tumor cell population, these cells could possibly serve as a therapeutic target. There appears to be a causal relationship between CSC and epithelial-to-mesenchymal transition (EMT) in pancreatic tumors. The occurrence of EMT in pancreatic cancer cells is often accompanied by re-activation of developmental pathways, such as the Hedgehog, WNT, NOTCH, and Nodal/Activin pathways. Therapeutics based on CSC markers, EMT, developmental pathways, or tumor micro-environment could potentially be used to target pancreatic CSC. This may lead to a reduction of tumor growth, metastatic events, and chemoresistance in pancreatic cancer.
Collapse
Affiliation(s)
- Sanne Hindriksen
- Laboratory for Experimental Oncology and Radiobiology, Academic Medical Centre, Meibergdreef 9, 1105AZ Amsterdam, The Netherlands.
| | | |
Collapse
|
414
|
Liang WS, Craig DW, Carpten J, Borad MJ, Demeure MJ, Weiss GJ, Izatt T, Sinari S, Christoforides A, Aldrich J, Kurdoglu A, Barrett M, Phillips L, Benson H, Tembe W, Braggio E, Kiefer JA, Legendre C, Posner R, Hostetter GH, Baker A, Egan JB, Han H, Lake D, Stites EC, Ramanathan RK, Fonseca R, Stewart AK, Von Hoff D. Genome-wide characterization of pancreatic adenocarcinoma patients using next generation sequencing. PLoS One 2012; 7:e43192. [PMID: 23071490 PMCID: PMC3468610 DOI: 10.1371/journal.pone.0043192] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2012] [Accepted: 07/19/2012] [Indexed: 12/24/2022] Open
Abstract
Pancreatic adenocarcinoma (PAC) is among the most lethal malignancies. While research has implicated multiple genes in disease pathogenesis, identification of therapeutic leads has been difficult and the majority of currently available therapies provide only marginal benefit. To address this issue, our goal was to genomically characterize individual PAC patients to understand the range of aberrations that are occurring in each tumor. Because our understanding of PAC tumorigenesis is limited, evaluation of separate cases may reveal aberrations, that are less common but may provide relevant information on the disease, or that may represent viable therapeutic targets for the patient. We used next generation sequencing to assess global somatic events across 3 PAC patients to characterize each patient and to identify potential targets. This study is the first to report whole genome sequencing (WGS) findings in paired tumor/normal samples collected from 3 separate PAC patients. We generated on average 132 billion mappable bases across all patients using WGS, and identified 142 somatic coding events including point mutations, insertion/deletions, and chromosomal copy number variants. We did not identify any significant somatic translocation events. We also performed RNA sequencing on 2 of these patients' tumors for which tumor RNA was available to evaluate expression changes that may be associated with somatic events, and generated over 100 million mapped reads for each patient. We further performed pathway analysis of all sequencing data to identify processes that may be the most heavily impacted from somatic and expression alterations. As expected, the KRAS signaling pathway was the most heavily impacted pathway (P<0.05), along with tumor-stroma interactions and tumor suppressive pathways. While sequencing of more patients is needed, the high resolution genomic and transcriptomic information we have acquired here provides valuable information on the molecular composition of PAC and helps to establish a foundation for improved therapeutic selection.
Collapse
Affiliation(s)
- Winnie S. Liang
- Translational Genomics Research Institute (TGen), Phoenix, Arizona, United States of America
| | - David W. Craig
- Translational Genomics Research Institute (TGen), Phoenix, Arizona, United States of America
| | - John Carpten
- Translational Genomics Research Institute (TGen), Phoenix, Arizona, United States of America
| | | | - Michael J. Demeure
- Translational Genomics Research Institute (TGen), Phoenix, Arizona, United States of America
- Virginia G. Piper Cancer Center Clinical Trials, Scottsdale Healthcare, Scottsdale, Arizona, United States of America
| | - Glen J. Weiss
- Translational Genomics Research Institute (TGen), Phoenix, Arizona, United States of America
- Virginia G. Piper Cancer Center Clinical Trials, Scottsdale Healthcare, Scottsdale, Arizona, United States of America
| | - Tyler Izatt
- Translational Genomics Research Institute (TGen), Phoenix, Arizona, United States of America
| | - Shripad Sinari
- Translational Genomics Research Institute (TGen), Phoenix, Arizona, United States of America
| | - Alexis Christoforides
- Translational Genomics Research Institute (TGen), Phoenix, Arizona, United States of America
| | - Jessica Aldrich
- Translational Genomics Research Institute (TGen), Phoenix, Arizona, United States of America
| | - Ahmet Kurdoglu
- Translational Genomics Research Institute (TGen), Phoenix, Arizona, United States of America
| | - Michael Barrett
- Translational Genomics Research Institute (TGen), Phoenix, Arizona, United States of America
| | - Lori Phillips
- Translational Genomics Research Institute (TGen), Phoenix, Arizona, United States of America
| | - Hollie Benson
- Translational Genomics Research Institute (TGen), Phoenix, Arizona, United States of America
| | - Waibhav Tembe
- Translational Genomics Research Institute (TGen), Phoenix, Arizona, United States of America
| | | | - Jeffrey A. Kiefer
- Translational Genomics Research Institute (TGen), Phoenix, Arizona, United States of America
| | - Christophe Legendre
- Translational Genomics Research Institute (TGen), Phoenix, Arizona, United States of America
| | - Richard Posner
- Translational Genomics Research Institute (TGen), Phoenix, Arizona, United States of America
| | - Galen H. Hostetter
- Translational Genomics Research Institute (TGen), Phoenix, Arizona, United States of America
| | - Angela Baker
- Translational Genomics Research Institute (TGen), Phoenix, Arizona, United States of America
| | - Jan B. Egan
- Translational Genomics Research Institute (TGen), Phoenix, Arizona, United States of America
- Mayo Clinic, Scottsdale, Arizona, United States of America
| | - Haiyong Han
- Translational Genomics Research Institute (TGen), Phoenix, Arizona, United States of America
| | - Douglas Lake
- Arizona State University, Tempe, Arizona, United States of America
| | - Edward C. Stites
- Translational Genomics Research Institute (TGen), Phoenix, Arizona, United States of America
| | - Ramesh K. Ramanathan
- Translational Genomics Research Institute (TGen), Phoenix, Arizona, United States of America
- Virginia G. Piper Cancer Center Clinical Trials, Scottsdale Healthcare, Scottsdale, Arizona, United States of America
| | - Rafael Fonseca
- Mayo Clinic, Scottsdale, Arizona, United States of America
| | | | - Daniel Von Hoff
- Translational Genomics Research Institute (TGen), Phoenix, Arizona, United States of America
- Mayo Clinic, Scottsdale, Arizona, United States of America
- Virginia G. Piper Cancer Center Clinical Trials, Scottsdale Healthcare, Scottsdale, Arizona, United States of America
- * E-mail:
| |
Collapse
|
415
|
Liang WS, Craig DW, Carpten J, Borad MJ, Demeure MJ, Weiss GJ, Izatt T, Sinari S, Christoforides A, Aldrich J, Kurdoglu A, Barrett M, Phillips L, Benson H, Tembe W, Braggio E, Kiefer JA, Legendre C, Posner R, Hostetter GH, Baker A, Egan JB, Han H, Lake D, Stites EC, Ramanathan RK, Fonseca R, Stewart AK, Von Hoff D. Genome-wide characterization of pancreatic adenocarcinoma patients using next generation sequencing. PLoS One 2012. [PMID: 23071490 DOI: 10.137/journal.pone.0043192] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Pancreatic adenocarcinoma (PAC) is among the most lethal malignancies. While research has implicated multiple genes in disease pathogenesis, identification of therapeutic leads has been difficult and the majority of currently available therapies provide only marginal benefit. To address this issue, our goal was to genomically characterize individual PAC patients to understand the range of aberrations that are occurring in each tumor. Because our understanding of PAC tumorigenesis is limited, evaluation of separate cases may reveal aberrations, that are less common but may provide relevant information on the disease, or that may represent viable therapeutic targets for the patient. We used next generation sequencing to assess global somatic events across 3 PAC patients to characterize each patient and to identify potential targets. This study is the first to report whole genome sequencing (WGS) findings in paired tumor/normal samples collected from 3 separate PAC patients. We generated on average 132 billion mappable bases across all patients using WGS, and identified 142 somatic coding events including point mutations, insertion/deletions, and chromosomal copy number variants. We did not identify any significant somatic translocation events. We also performed RNA sequencing on 2 of these patients' tumors for which tumor RNA was available to evaluate expression changes that may be associated with somatic events, and generated over 100 million mapped reads for each patient. We further performed pathway analysis of all sequencing data to identify processes that may be the most heavily impacted from somatic and expression alterations. As expected, the KRAS signaling pathway was the most heavily impacted pathway (P<0.05), along with tumor-stroma interactions and tumor suppressive pathways. While sequencing of more patients is needed, the high resolution genomic and transcriptomic information we have acquired here provides valuable information on the molecular composition of PAC and helps to establish a foundation for improved therapeutic selection.
Collapse
Affiliation(s)
- Winnie S Liang
- Translational Genomics Research Institute (TGen), Phoenix, Arizona, United States of America
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
416
|
Latifi A, Luwor RB, Bilandzic M, Nazaretian S, Stenvers K, Pyman J, Zhu H, Thompson EW, Quinn MA, Findlay JK, Ahmed N. Isolation and characterization of tumor cells from the ascites of ovarian cancer patients: molecular phenotype of chemoresistant ovarian tumors. PLoS One 2012; 7:e46858. [PMID: 23056490 PMCID: PMC3466197 DOI: 10.1371/journal.pone.0046858] [Citation(s) in RCA: 180] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2012] [Accepted: 09/10/2012] [Indexed: 02/07/2023] Open
Abstract
Tumor cells in ascites are a major source of disease recurrence in ovarian cancer patients. In an attempt to identify and profile the population of ascites cells obtained from ovarian cancer patients, a novel method was developed to separate adherent (AD) and non-adherent (NAD) cells in culture. Twenty-five patients were recruited to this study; 11 chemonaive (CN) and 14 chemoresistant (CR). AD cells from both CN and CR patients exhibited mesenchymal morphology with an antigen profile of mesenchymal stem cells and fibroblasts. Conversely, NAD cells had an epithelial morphology with enhanced expression of cancer antigen 125 (CA125), epithelial cell adhesion molecule (EpCAM) and cytokeratin 7. NAD cells developed infiltrating tumors and ascites within 12-14 weeks after intraperitoneal (i.p.) injections into nude mice, whereas AD cells remained non-tumorigenic for up to 20 weeks. Subsequent comparison of selective epithelial, mesenchymal and cancer stem cell (CSC) markers between AD and NAD populations of CN and CR patients demonstrated an enhanced trend in mRNA expression of E-cadherin, EpCAM, STAT3 and Oct4 in the NAD population of CR patients. A similar trend of enhanced mRNA expression of CD44, MMP9 and Oct4 was observed in the AD population of CR patients. Hence, using a novel purification method we demonstrate for the first time a distinct separation of ascites cells into epithelial tumorigenic and mesenchymal non-tumorigenic populations. We also demonstrate that cells from the ascites of CR patients are predominantly epithelial and show a trend towards increased mRNA expression of genes associated with CSCs, compared to cells isolated from the ascites of CN patients. As the tumor cells in the ascites of ovarian cancer patients play a dominant role in disease recurrence, a thorough understanding of the biology of the ascites microenvironment from CR and CN patients is essential for effective therapeutic interventions.
Collapse
Affiliation(s)
- Ardian Latifi
- Women's Cancer Research Centre, Royal Women's Hospital, Victoria, Australia
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
417
|
Sánchez-Tilló E, Liu Y, de Barrios O, Siles L, Fanlo L, Cuatrecasas M, Darling DS, Dean DC, Castells A, Postigo A. EMT-activating transcription factors in cancer: beyond EMT and tumor invasiveness. Cell Mol Life Sci 2012; 69:3429-56. [PMID: 22945800 PMCID: PMC11115078 DOI: 10.1007/s00018-012-1122-2] [Citation(s) in RCA: 406] [Impact Index Per Article: 31.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2012] [Revised: 07/20/2012] [Accepted: 08/09/2012] [Indexed: 12/13/2022]
Abstract
Cancer is a complex multistep process involving genetic and epigenetic changes that eventually result in the activation of oncogenic pathways and/or inactivation of tumor suppressor signals. During cancer progression, cancer cells acquire a number of hallmarks that promote tumor growth and invasion. A crucial mechanism by which carcinoma cells enhance their invasive capacity is the dissolution of intercellular adhesions and the acquisition of a more motile mesenchymal phenotype as part of an epithelial-to-mesenchymal transition (EMT). Although many transcription factors can trigger it, the full molecular reprogramming occurring during an EMT is mainly orchestrated by three major groups of transcription factors: the ZEB, Snail and Twist families. Upregulated expression of these EMT-activating transcription factors (EMT-ATFs) promotes tumor invasiveness in cell lines and xenograft mice models and has been associated with poor clinical prognosis in human cancers. Evidence accumulated in the last few years indicates that EMT-ATFs also regulate an expanding set of cancer cell capabilities beyond tumor invasion. Thus, EMT-ATFs have been shown to cooperate in oncogenic transformation, regulate cancer cell stemness, override safeguard programs against cancer like apoptosis and senescence, determine resistance to chemotherapy and promote tumor angiogenesis. This article reviews the expanding portfolio of functions played by EMT-ATFs in cancer progression.
Collapse
Affiliation(s)
- Ester Sánchez-Tilló
- Group of Transcriptional Regulation of Gene Expression, Department of Oncology and Hematology, IDIBAPS, 08036 Barcelona, Spain
- CIBERehd (Gastrointestinal and Pancreatic Oncology), IDIBAPS, 08036 Barcelona, Spain
| | - Yongqing Liu
- James Graham Brown Cancer Center, Louisville Health Science Center, Louisville, KY 40202 USA
- Department of Ophthalmology and Birth Defects Center, Louisville Health Science Center, Louisville, KY 40202 USA
| | - Oriol de Barrios
- Group of Transcriptional Regulation of Gene Expression, Department of Oncology and Hematology, IDIBAPS, 08036 Barcelona, Spain
| | - Laura Siles
- Group of Transcriptional Regulation of Gene Expression, Department of Oncology and Hematology, IDIBAPS, 08036 Barcelona, Spain
| | - Lucia Fanlo
- Group of Transcriptional Regulation of Gene Expression, Department of Oncology and Hematology, IDIBAPS, 08036 Barcelona, Spain
- Master Program in Biomedical Research, University Pompeu Fabra, 08003 Barcelona, Spain
| | - Miriam Cuatrecasas
- Department of Pathology, Hospital Clinic and IDIBAPS’ Tumor Bank, 08036 Barcelona, Spain
| | - Douglas S. Darling
- Department of Oral Health and Rehabilitation, Center for Genetics and Molecular Medicine, University of Louisville, Louisville, KY 40202 USA
| | - Douglas C. Dean
- James Graham Brown Cancer Center, Louisville Health Science Center, Louisville, KY 40202 USA
- Department of Ophthalmology and Birth Defects Center, Louisville Health Science Center, Louisville, KY 40202 USA
| | - Antoni Castells
- CIBERehd (Gastrointestinal and Pancreatic Oncology), IDIBAPS, 08036 Barcelona, Spain
- Institute of Digestive and Metabolic Diseases, Hospital Clinic, 08036 Barcelona, Spain
| | - Antonio Postigo
- Group of Transcriptional Regulation of Gene Expression, Department of Oncology and Hematology, IDIBAPS, 08036 Barcelona, Spain
- CIBERehd (Gastrointestinal and Pancreatic Oncology), IDIBAPS, 08036 Barcelona, Spain
- James Graham Brown Cancer Center, Louisville Health Science Center, Louisville, KY 40202 USA
- ICREA, 08010 Barcelona, Spain
| |
Collapse
|
418
|
Zhou Y, Kopeček J. Biological rationale for the design of polymeric anti-cancer nanomedicines. J Drug Target 2012; 21:1-26. [PMID: 23009337 DOI: 10.3109/1061186x.2012.723213] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Understanding the biological features of cancer is the basis for designing efficient anti-cancer nanomedicines. On one hand, important therapeutic targets for anti-cancer nanomedicines need to be identified based on cancer biology, to address the unmet medical needs. On the other hand, the unique pathophysiological properties of cancer affect the delivery and interactions of anti-cancer nanomedicines with their therapeutic targets. This review discusses several critical cancer biological properties that challenge the currently available anti-cancer treatments, including cancer heterogeneity and cancer stem cells, the complexcity of tumor microenvironment, and the inevitable cancer metastases. In addition, the biological bases of the enhanced permeability and retention (EPR) effect and tumor-specific active targeting, as well as the physiological barriers for passive and active targeting of anti-cancer nanomedicines are covered in this review. Correspondingly, possible nanomedicine strategies to target cancer heterogeneity, cancer stem cells and metastases, to overcome the challenges related to tumor passive targeting and tumor penetration, and to improve the interactions of therapeutic payloads with the therapeutic targets are discussed. The focus is mainly on the designs of polymeric anti-cancer nanomedicines.
Collapse
Affiliation(s)
- Yan Zhou
- Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, UT 84112, USA
| | | |
Collapse
|
419
|
Kong D, Ahmad A, Bao B, Li Y, Banerjee S, Sarkar FH. Histone deacetylase inhibitors induce epithelial-to-mesenchymal transition in prostate cancer cells. PLoS One 2012; 7:e45045. [PMID: 23024790 PMCID: PMC3443231 DOI: 10.1371/journal.pone.0045045] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2012] [Accepted: 08/11/2012] [Indexed: 12/18/2022] Open
Abstract
Clinical experience of histone deacetylase inhibitors (HDACIs) in patients with solid tumors has been disappointing; however, the molecular mechanism of treatment failure is not known. Therefore, we sought to investigate the molecular mechanism of treatment failure of HDACIs in the present study. We found that HDACIs Trichostatin A (TSA) and Suberoylanilide hydroxamic acid (SAHA) could induce epithelial-to-mesenchymal transition (EMT) phenotype in prostate cancer (PCa) cells, which was associated with changes in cellular morphology consistent with increased expression of transcription factors ZEB1, ZEB2 and Slug, and mesenchymal markers such as vimentin, N-cadherin and Fibronectin. CHIP assay showed acetylation of histone 3 on proximal promoters of selected genes, which was in part responsible for increased expression of EMT markers. Moreover, TSA treatment led to further increase in the expression of Sox2 and Nanog in PCa cells with EMT phenotype, which was associated with cancer stem-like cell (CSLC) characteristics consistent with increased cell motility. Our results suggest that HDACIs alone would lead to tumor aggressiveness, and thus strategies for reverting EMT-phenotype to mesenchymal-to-epithelial transition (MET) phenotype or the reversal of CSLC characteristics prior to the use of HDACIs would be beneficial to realize the value of HDACIs for the treatment of solid tumors especially PCa.
Collapse
Affiliation(s)
- Dejuan Kong
- Department of Pathology, Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, Michigan, United States of America
| | - Aamir Ahmad
- Department of Pathology, Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, Michigan, United States of America
| | - Bin Bao
- Department of Pathology, Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, Michigan, United States of America
| | - Yiwei Li
- Department of Pathology, Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, Michigan, United States of America
| | - Sanjeev Banerjee
- Department of Pathology, Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, Michigan, United States of America
| | - Fazlul H. Sarkar
- Department of Pathology, Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, Michigan, United States of America
- * E-mail:
| |
Collapse
|
420
|
Shimasaki T, Kitano A, Motoo Y, Minamoto T. Aberrant glycogen synthase kinase 3β in the development of pancreatic cancer. J Carcinog 2012; 11:15. [PMID: 23230392 PMCID: PMC3516047 DOI: 10.4103/1477-3163.100866] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2012] [Accepted: 07/15/2012] [Indexed: 12/18/2022] Open
Abstract
Development and progression of pancreatic cancer involves general metabolic disorder, local chronic inflammation, and multistep activation of distinct oncogenic molecular pathways. These pathologic processes result in a highly invasive and metastatic tumor phenotype that is a major obstacle to curative surgical intervention, infusional gemcitabine-based chemotherapy, and radiation therapy. Many clinical trials with chemical compounds and therapeutic antibodies targeting growth factors, angiogenic factors, and matrix metalloproteinases have failed to demonstrate definitive therapeutic benefits to refractory pancreatic cancer patients. Glycogen synthase kinase 3β (GSK3β), a serine/threonine protein kinase, has emerged as a therapeutic target in common chronic and progressive diseases, including cancer. Here we review accumulating evidence for a pathologic role of GSK3β in promoting tumor cell survival, proliferation, invasion, and resistance to chemotherapy and radiation in pancreatic cancer. We also discuss the putative involvement of GSK3β in mediating metabolic disorder, local inflammation, and molecular alteration leading to pancreatic cancer development. Taken together, we highlight potential therapeutic as well as preventive effects of GSK3β inhibition in pancreatic cancer.
Collapse
Affiliation(s)
- Takeo Shimasaki
- Department of Advanced Medicine, Medical Research Institute, Kanazawa Medical University and Hospital, 13-1 Takara-machi, Kanazawa 920-0934, Japan ; Division of Translational and Clinical Oncology, Cancer Research Institute and Cancer Center, Kanazawa University and Hospital, 13-1 Takara-machi, Kanazawa 920-0934, Japan
| | | | | | | |
Collapse
|
421
|
Danquah M, Singh S, Behrman SW, Mahato RI. Role of miRNA and cancer stem cells in chemoresistance and pancreatic cancer treatment. Expert Opin Drug Deliv 2012; 9:1443-7. [DOI: 10.1517/17425247.2012.722079] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
422
|
Yen WC, Fischer MM, Hynes M, Wu J, Kim E, Beviglia L, Yeung VP, Song X, Kapoun AM, Lewicki J, Gurney A, Simeone DM, Hoey T. Anti-DLL4 has broad spectrum activity in pancreatic cancer dependent on targeting DLL4-Notch signaling in both tumor and vasculature cells. Clin Cancer Res 2012; 18:5374-86. [PMID: 22952347 DOI: 10.1158/1078-0432.ccr-12-0736] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE We previously showed that targeting Delta-like ligand 4 (DLL4) in colon and breast tumors inhibited tumor growth and reduced tumor initiating cell frequency. In this report, we have extended these studies to pancreatic cancer and probed the mechanism of action in tumor and stromal cells involved in antitumor efficacy. EXPERIMENTAL DESIGN Patient-derived pancreatic xenograft tumor models were used to evaluate the antitumor effect of anti-DLL4. To investigate the mechanism of action, we compared the activity of targeting DLL4 in tumor cells with an anti-human DLL4 antibody (anti-hDLL4) and in the host stroma/vasculature with an anti-mouse DLL4 antibody (anti-mDLL4). The effect of these antibodies on cancer stem cell frequency was examined by in vivo limiting dilution assays. RESULTS The combination of anti-hDLL4 and anti-mDLL4 was efficacious in a broad spectrum of pancreatic tumor xenografts and showed additive antitumor activity together with gemcitabine. Treatment with either anti-hDLL4 or anti-mDLL4 delayed pancreatic tumor recurrence following termination of gemcitabine treatment, and the two together produced an additive effect. Anti-hDLL4 had a pronounced effect in reducing the tumorigenicity of pancreatic cancer cells based on serial transplantation and tumorsphere assays. In contrast, disruption of tumor angiogenesis with anti-mDLL4 alone or with anti-VEGF had minimal effects on tumorigenicity. Gene expression analyses indicated that anti-DLL4 treatment regulated genes that participate in Notch signaling, pancreatic differentiation, and epithelial-to-mesenchymal transition. CONCLUSIONS Our findings suggest a novel therapeutic approach for pancreatic cancer treatment through antagonism of DLL4/Notch signaling.
Collapse
|
423
|
Abstract
Prostate cancer is the second most frequently diagnosed cancer and the sixth leading cause of death from cancer in men. Epithelial-mesenchymal transition (EMT) is a process by which cancer cells invade and migrate, and is characterized by loss of cell-cell adhesion molecules such as E-cadherin and increased expression of mesenchymal proteins such as vimentin; EMT is also associated with resistance to therapy. Snail, a master regulator of EMT, has been extensively studied and reported in cancers such as breast and colon; however, its role in prostate cancer is not as widely reported. The purpose of this review is to put together recent facts that summarize Snail signaling in human prostate cancer. Snail is overexpressed in prostate cancer and its expression and activity is controlled via phosphorylation and growth factor signaling. Snail is involved in its canonical role of inducing EMT in prostate cancer cells; however, it plays a role in non-canonical pathways that do not involve EMT such regulation of bone turnover and neuroendocrine differentiation. Thus, studies indicate that Snail signaling contributes to prostate cancer progression and metastasis and therapeutic targeting of Snail in prostate cancer holds promise in future.
Collapse
Affiliation(s)
- Bethany N Smith
- Center for Cancer Research and Therapeutic Development, Clark Atlanta University, Atlanta, GA, USA
| | | |
Collapse
|
424
|
Pan JJ, Yang MH. The role of epithelial-mesenchymal transition in pancreatic cancer. J Gastrointest Oncol 2012; 2:151-6. [PMID: 22811845 DOI: 10.3978/j.issn.2078-6891.2011.022] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2011] [Accepted: 05/16/2011] [Indexed: 12/21/2022] Open
Abstract
Pancreatic cancer is the fourth leading cause of cancer related death in the US. Despite the advances in medical and surgical treatment, the 5-year survival rate for such cancer is only approximately 5% when considering all stages of disease. The lethal nature of pancreatic cancer stems from its high metastatic potential to the lymphatic system and distant organs. Lack of effective chemotherapies, which is believed to be due to drug-resistance, also contributes to the high mortality of pancreatic cancer. Recent evidence suggests that epithelial-mesenchymal transition of pancreatic cancer cells contributes to the development of drug resistance and an increase in invasiveness. Future strategies that specifically target against epithelial-mesenchymal transition phenotype could potentially reduce tumoral drug resistance and invasiveness and hence prolong the survival of patients with pancreatic cancer.
Collapse
Affiliation(s)
- Jen-Jung Pan
- Division of Gastroenterology, Hepatology and Nutrition, Department of Internal Medicine, University of Texas Health Science Center at Houston, Texas, USA
| | | |
Collapse
|
425
|
Xiao D, He J. Epithelial mesenchymal transition and lung cancer. J Thorac Dis 2012; 2:154-9. [PMID: 22263037 DOI: 10.3978/j.issn.2072-1439.2010.02.03.7] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2010] [Accepted: 08/30/2010] [Indexed: 12/24/2022]
Abstract
Despite the therapeutic advances, lung cancer remains the leading cause of cancer-related death in the United States and worldwide. Metastasis and recurrence are considered to be responsible for the failure of treatment. Recent studies indicate Epithelial mesenchymal transition, an evolutionarily conserved process, plays an important role in the embryonic development and cancer progression and is involved in the metastasis, drug resistance and correlated with progression of many tumors. Of importance, EMT is also involved in the acquisition of stemness phenotype of tumor cells. Although a growing body of evidence supports the role of EMT in the progression of many cancers, and a number of signal pathways, transcriptional factors and microRNAs involved in EMT process have been identified. However, the role of EMT in lung cancer is elusive. In this review, we present the recent findings in EMT including the molecular mechanisms of EMT, and the involvement of EMT in cancer progression, cancer stem cells and drug resistance, especially focusing on the correlation of EMT and lung cancer.
Collapse
Affiliation(s)
- Dakai Xiao
- Department of Cardiothoracic Surgery, the First Affiliated Hospital of Guangzhou Medical College
| | | |
Collapse
|
426
|
Chu PY, Hu FW, Yu CC, Tsai LL, Yu CH, Wu BC, Chen YW, Huang PI, Lo WL. Epithelial-mesenchymal transition transcription factor ZEB1/ZEB2 co-expression predicts poor prognosis and maintains tumor-initiating properties in head and neck cancer. Oral Oncol 2012; 49:34-41. [PMID: 22892238 DOI: 10.1016/j.oraloncology.2012.07.012] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2012] [Revised: 07/08/2012] [Accepted: 07/11/2012] [Indexed: 12/30/2022]
Abstract
OBJECTIVES Both epithelial-mesenchymal transition (EMT) and cancer stem cell (CSC) properties may be involved in metastasis, which contributes to the high mortality rate of patients with head and neck cancers (HNCs). However, the mechanisms through which the EMT transcription factors ZEB1 and ZEB2 regulate HNC are still unclear. METHODS Tumor initiating capability of HNC-CH133(+) cells with ZEB1/2 knockdown or co-overexpression was presented in vitro and in vivo. RESULTS In the present study, we demonstrated that ZEB1/ZEB2 expression was significantly increased in HNC-CD133(+) CSC-like cells compared with HNC-CD133(-) cells. The small interfering RNA (siRNA)-mediated co-knockdown of ZEB1 and ZEB2 (siZEB1/2) in HNC-CH133(+) cells suppressed their CSC-like properties, including self-renewal ability, the expression of stemness markers, and drug resistance. In contrast, the co-overexpression of ZEB1/ZEB2 in HNC-CD133(-) cells enhanced their sphere-forming ability and increased the percentage of CD44-positive cells and side population cells. In vivo studies showed that the delivery of siZEB1/2 to xenograft tumors in nude mice reduced tumor growth and the rate of distant metastasis. In clinical samples, the levels of ZEB1/ZEB2 expression were low in local lesions but high in metastatic lymph nodes in HNC tissues. Patients with tumors that co-expressed ZEB1(high) and ZEB2(high) had especially poor survival rates. CONCLUSION Therapies targeting ZEB1/ZEB2 in HNC-CD133(+) cells may provide a new approach for HNC therapy in the future.
Collapse
Affiliation(s)
- Pen-Yuan Chu
- Department of Otolaryngology, Taipei Veterans General Hospital and National Yang-Ming University, Taipei, Taiwan.
| | | | | | | | | | | | | | | | | |
Collapse
|
427
|
Abstract
The discovery of tumor-initiating cells endowed with stem-like features has added a further level of complexity to the pathobiology of neoplastic diseases. In the attempt of dissecting the functional properties of this uncommon cellular subpopulation, investigators are taking full advantage of a body of knowledge about adult stem cells, as the "cancer stem cell model" implies that tissue-resident stem cells are the target of the oncogenic process. It is emerging that a plethora of molecular mechanisms protect cancer stem cells (CSC) against chemotherapy- and radiotherapy-induced death stimuli. The ability of CSCs to survive stressful conditions is correlated, among others, with a multifaceted protection of genome integrity by a prompt activation of the DNA damage sensor and repair machinery. Nevertheless, many molecular-targeted agents directed against DNA repair effectors are in late preclinical or clinical development while the identification of predictive biomarkers of response coupled with the validation of robust assays for assessing biomarkers is paving the way for biology-driven clinical trials.
Collapse
Affiliation(s)
- Marcello Maugeri-Saccà
- Department of Hematology Oncology and Molecular Medicine, Istituto Superiore di Sanità, Viale Regina Elena 299, Rome 00161, Italy.
| | | | | |
Collapse
|
428
|
Voutsadakis IA. The ubiquitin-proteasome system and signal transduction pathways regulating Epithelial Mesenchymal transition of cancer. J Biomed Sci 2012; 19:67. [PMID: 22827778 PMCID: PMC3418218 DOI: 10.1186/1423-0127-19-67] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2012] [Accepted: 07/09/2012] [Indexed: 02/08/2023] Open
Abstract
Epithelial to Mesenchymal transition (EMT) in cancer, a process permitting cancer cells to become mobile and metastatic, has a signaling hardwire forged from development. Multiple signaling pathways that regulate carcinogenesis enabling characteristics in neoplastic cells such as proliferation, resistance to apoptosis and angiogenesis are also the main players in EMT. These pathways, as almost all cellular processes, are in their turn regulated by ubiquitination and the Ubiquitin-Proteasome System (UPS). Ubiquitination is the covalent link of target proteins with the small protein ubiquitin and serves as a signal to target protein degradation by the proteasome or to other outcomes such as endocytosis, degradation by the lysosome or specification of cellular localization. This paper reviews signal transduction pathways regulating EMT and being regulated by ubiquitination.
Collapse
Affiliation(s)
- Ioannis A Voutsadakis
- Centre Pluridisciplinaire d'Oncologie, BH06, Centre Hospitalier Universitaire Vaudois, Bugnon 46, Lausanne, 1011, Switzerland.
| |
Collapse
|
429
|
Hill L, Browne G, Tulchinsky E. ZEB/miR-200 feedback loop: at the crossroads of signal transduction in cancer. Int J Cancer 2012; 132:745-54. [PMID: 22753312 DOI: 10.1002/ijc.27708] [Citation(s) in RCA: 204] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2012] [Accepted: 06/19/2012] [Indexed: 12/17/2022]
Abstract
Embryonic differentiation programs of epithelial-mesenchymal and mesenchymal-epithelial transition (EMT and MET) represent a mechanistic basis for epithelial cell plasticity implicated in cancer. Transcription factors of the ZEB protein family (ZEB1 and ZEB2) and several microRNA species (predominantly miR-200 family members) form a double negative feedback loop, which controls EMT and MET programs in both development and tumorigenesis. In this article, we review crosstalk between the ZEB/miR-200 axis and several signal transduction pathways activated at different stages of tumor development. The close association of ZEB proteins with these pathways is indirect evidence for the involvement of a ZEB/miR-200 loop in tumor initiation, progression and spread. Additionally, the configuration of signaling pathways involving ZEB/miR-200 loop suggests that ZEB1 and ZEB2 may have different, possibly even opposing, roles in some forms of human cancer.
Collapse
Affiliation(s)
- Louise Hill
- Department of Cancer Studies and Molecular Medicine, University of Leicester, United Kingdom
| | | | | |
Collapse
|
430
|
Hamada S, Satoh K, Masamune A, Shimosegawa T. Regulators of epithelial mesenchymal transition in pancreatic cancer. Front Physiol 2012; 3:254. [PMID: 22934011 PMCID: PMC3429031 DOI: 10.3389/fphys.2012.00254] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2012] [Accepted: 06/19/2012] [Indexed: 12/21/2022] Open
Abstract
Pancreatic cancer is a leading cause of cancer-related death due to its invasive nature. Despite the improvement of diagnostic strategy, early diagnosis of pancreatic cancer is still challenging. Surgical resection is the only curative therapy, while vast majority of patients are not eligible for this therapeutic option. Complex biological processes are involved in the establishment of invasion and metastasis of pancreatic cancer and epithelial-mesenchymal transition (EMT) has been reported to play crucial role. EMT is part of the normal developmental processes which mobilizes epithelial cells and yields mesenchymal phenotype. Deregulation of EMT inducing molecules in pancreatic cancer is reported, such as multiple cytokines, growth factors and downstream transcriptional factors. In addition to these molecules, non-coding RNA including miRNA also contributes to EMT. EMT of cancer cell also correlates with cancer stem cell (CSC) properties such as chemoresistance or tumorigenicity, therefore these upstream regulators of EMT could be attractive therapeutic targets and several candidates are examined for clinical application. This review summarizes recent advances in this field, focusing the regulatory molecules of EMT and their downstream targets. Further understanding and research advances will clarify the cryptic mechanism of cancer metastasis and delineate novel therapeutic targets.
Collapse
Affiliation(s)
- Shin Hamada
- Division of Gastroenterology, Tohoku University Graduate School of Medicine, Sendai Miyagi, Japan
| | | | | | | |
Collapse
|
431
|
Wang G, Kang MX, Lu WJ, Chen Y, Zhang B, Wu YL. MACC1: A potential molecule associated with pancreatic cancer metastasis and chemoresistance. Oncol Lett 2012. [PMID: 23205101 DOI: 10.3892/ol.2012.784] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
It has been suggested that the newly identified metastasis-associated in colon cancer-1 (MACC1) oncogene is involved in the progression and metastasis of cancer. Several studies have indicated that MACC1 has potential as a novel biomarker. In this study, we aimed to investigate the functions and serum expression levels of MACC1 in pancreatic cancer patients. Blood serum samples from 60 cancer patients and 49 controls were analyzed for serum MACC1 by ELISA. The results revealed that high expression levels of MACC1 were correlated with lymph node metastasis, distant metastasis and a later TNM stage. Inhibition of MACC1 by siRNAs significantly suppressed pancreatic cancer cell proliferation and migration. Furthermore, it was found that the downregulation of MACC1 sensitized pancreatic cancer cells to gemcitabine treatment through the inhibition of the Ras/ERK signaling pathway. Our findings suggest that MACC1 may aid in the diagnosis of pancreatic cancer and serve as a potential therapeutic target.
Collapse
Affiliation(s)
- Gang Wang
- Department of Surgery, The Second Affiliated Hospital, College of Medicine, Zhejiang University, Cancer Institute of Zhejiang University, Hangzhou, Zhejiang 310009, P.R. China
| | | | | | | | | | | |
Collapse
|
432
|
Xia J, Chen C, Chen Z, Miele L, Sarkar FH, Wang Z. Targeting pancreatic cancer stem cells for cancer therapy. Biochim Biophys Acta Rev Cancer 2012; 1826:385-99. [PMID: 22728049 DOI: 10.1016/j.bbcan.2012.06.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2012] [Revised: 04/14/2012] [Accepted: 06/13/2012] [Indexed: 12/15/2022]
Abstract
Pancreatic cancer (PC) is the fourth most frequent cause of cancer death in the United States. Emerging evidence suggests that pancreatic cancer stem cells (CSCs) play a crucial role in the development and progression of PC. Recently, there is increasing evidence showing that chemopreventive agents commonly known as nutraceuticals could target and eliminate CSCs that have been proposed as the root of the tumor progression, which could be partly due to attenuating cell signaling pathways involved in CSCs. Therefore, targeting pancreatic CSCs by nutraceuticals for the prevention of tumor progression and treatment of PC may lead to the development of novel strategy for achieving better treatment outcome of PC patients. In this review article, we will summarize the most recent advances in the pancreatic CSC field, with particular emphasis on nutraceuticals that target CSCs, for fighting this deadly disease.
Collapse
Affiliation(s)
- Jun Xia
- Department of Biochemistry and Molecular Biology, Bengbu Medical College, Anhui, People's Republic of China
| | | | | | | | | | | |
Collapse
|
433
|
Xue Z, Yan H, Li J, Liang S, Cai X, Chen X, Wu Q, Gao L, Wu K, Nie Y, Fan D. Identification of cancer stem cells in vincristine preconditioned SGC7901 gastric cancer cell line. J Cell Biochem 2012; 113:302-12. [PMID: 21913215 DOI: 10.1002/jcb.23356] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Cancer stem cells (CSCs), or tumor initiating cells, are a subpopulation of cancer cells with self-renewal and differentiation properties. However, there has been no direct observation of the properties of gastric CSCs in vitro. Here we describe a vincristine (VCR)-preconditioning approach to obtain cancer stem-like cells (CSLCs) from the gastric cancer cell line SGC7901. The CSLCs displayed mesenchymal characteristics, including the up-regulated mesenchymal markers Snail, Twist, and vimentin, and the down-regulated epithelial marker E-cadherin. Using a Matrigel-based differentiation assay, CSLCs formed 2D tube-like and 3D complex lumen-like structures, which resembled differentiated gastric crypts. The characteristic of cellular differentiation was also found by transmission electron microscopy and up-regulation of gastrointestinal genes CDX2 and SOX2. We further showed that CSLCs could self-renew through significant asymmetric division compared with parent cells by tracing PKH-26, BrdU, and EDU label-retaining cells. In addition, these CSLCs also increased expression of CD44, CD90, and CXCR4 at the mRNA level, which was identified as novel targets. Furthermore, drug sensitivity assays and xenograft experiments demonstrated that the cells developed multi-drug resistance (MDR) and significant tumorigenicity in vivo. In summary, gastric CSCs were identified from VCR-preconditioned SGC7901 cell line, characterized by high tumorigenicity and the capacity for self-renewal and differentiation.
Collapse
Affiliation(s)
- Zengfu Xue
- State Key Laboratory of Cancer Biology & Institute of Digestive Diseases, Xijing Hospital of Digestive Diseases, Xi'an 710032, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
434
|
Soubani O, Ali AS, Logna F, Ali S, Philip PA, Sarkar FH. Re-expression of miR-200 by novel approaches regulates the expression of PTEN and MT1-MMP in pancreatic cancer. Carcinogenesis 2012; 33:1563-71. [PMID: 22637745 DOI: 10.1093/carcin/bgs189] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Membrane type-1 matrix metalloproteinase (MT1-MMP) is often activated and expressed in tumor cells with significant invasive properties, and is associated with poor prognosis of patients. This could partly be due to deregulated expression of microRNAs (miRNAs) which regulates the expression of MT1-MMP and PTEN (phosphatase and tensin homolog) contributing to tumor invasion and metastasis. We initially compared the expression profile of miR-200 family, PTEN and MT1-MMP expression in six pancreatic cancer (PC) cell lines by qRT-PCR and western blot analysis. We found loss of expression of miR-200a, b and c in chemo-resistant PC cell lines, which was correlated with loss of PTEN and over-expression of MT1-MMP. Based on our initial findings, we chose BxPC-3, MIAPaCa-2 and MIAPaCa-2-GR cells for further mechanistic studies We assessed the effect of two separate novel agents CDF (a synthetic analog of curcumin) and BR-DIM (a natural agent) on PC cells. The expression of miR-200 family and PTEN was significantly re-expressed whereas the expression of MT1-MMP was down-regulated by CDF and BR-DIM treatment. Forced over-expression or silencing of miR-200c, followed by either CDF or BR-DIM treatment of MIAPaCa-2 cells, altered the morphology of cells, wound-healing capacity, colony formation and the expression of MT1-MMP and PTEN. These results provide strong experimental evidence showing that the loss of miR-200 family and PTEN expression and increased level of MT1-MMP leads to aggressive behavior of PC cells, which could be attenuated through re-expression of miR-200c by CDF and/or BR-DIM treatment, suggesting that these agents could be useful for PC treatment.
Collapse
Affiliation(s)
- Omar Soubani
- Department of Pathology, Wayne State University School of Medicine, 740 Hudson Webber Cancer Research Center, 4100 John R Street, Detroit, MI 48201, USA
| | | | | | | | | | | |
Collapse
|
435
|
Talbot LJ, Bhattacharya SD, Kuo PC. Epithelial-mesenchymal transition, the tumor microenvironment, and metastatic behavior of epithelial malignancies. INTERNATIONAL JOURNAL OF BIOCHEMISTRY AND MOLECULAR BIOLOGY 2012; 3:117-136. [PMID: 22773954 PMCID: PMC3388731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 03/19/2012] [Accepted: 04/02/2012] [Indexed: 06/01/2023]
Abstract
OBJECTIVE The mechanisms of cancer metastasis have been intensely studied recently and may provide vital therapeutic targets for metastasis prevention. We sought to review the contribution of epithelial-mesenchymal transition and the tumor microenvironment to cancer metastasis. SUMMARY BACKGROUND DATA Epithelial-mesenchymal transition is the process by which epithelial cells lose cell-cell junctions and baso-apical polarity and acquire plasticity, mobility, invasive capacity, stemlike characteristics, and resistance to apoptosis. This cell biology program is active in embryology, wound healing, and pathologically in cancer metastasis, and along with the mechanical and cellular components of the tumor microenvironment, provides critical impetus for epithelial malignancies to acquire metastatic capability. METHODS A literature review was performed using PubMed for "epithelial-mesenchymal transition", "tumor microenvironment", "TGF-β and cancer", "Wnt and epithelial-mesenchymal transition", "Notch and epithelial-mesenchymal transition", "Hedgehog and epithelial-mesenchymal transition" and "hypoxia and metastasis". Relevant primary studies and review articles were assessed. RESULTS Major signaling pathways involved in epithelial-mesenchymal transition include TGF-β, Wnt, Notch, Hedgehog, and others. These pathways converge on several transcription factors, including zinc finger proteins Snail and Slug, Twist, ZEB 1/2, and Smads. These factors interact with one another and others to provide crosstalk between the relevant signaling pathways. MicroRNA suppression and epigenetic changes also influence the changes involved in epithelial-mesenchymal transition. Cellular and mechanical components of the tumor microenvironment are also critical in determining metastatic potential. CONCLUSIONS While the mechanisms promoting metastasis are extremely wide ranging and still under intense investigation, the epithelial-mesenchymal transition program and the tumor microenvironment are both critically involved in the acquisition of metastatic potential. As our understanding of these complexities increases, the ability to target these processes for therapy will offer new promise in the treatment of epithelial malignancy and metastasis.
Collapse
Affiliation(s)
| | | | - Paul C Kuo
- Department of Surgery, Loyola University Medical CenterMaywood, IL
- Department of Molecular Pharmacology and Therapeutics, Loyola University Medical CenterMaywood, IL, USA
| |
Collapse
|
436
|
Abstract
Why are many metastases differentiated? Invading and disseminating carcinoma cells can undergo an epithelial-mesenchymal transition (EMT), which is associated with a gain of stem cell-like behaviour. Therefore, EMT has been linked to the cancer stem cell concept. However, it is a matter of debate how subsequent mesenchymal-epithelial transition (MET) fits into the metastatic process and whether a MET is essential. In this Opinion article, I propose two principle types of metastatic progression: phenotypic plasticity involving transient EMT-MET processes and intrinsic genetic alterations keeping cells in an EMT and stemness state. This simplified classification integrates clinically relevant aspects of dormancy, metastatic tropism and therapy resistance, and implies perspectives on treatment strategies against metastasis.
Collapse
Affiliation(s)
- Thomas Brabletz
- Department of General and Visceral Surgery and Comprehensive Cancer Center, University of Freiburg Medical Center, Hugstetter Str. 55, 79106 Freiburg, Germany.
| |
Collapse
|
437
|
Cancer stem cells and epithelial-mesenchymal transition: concepts and molecular links. Semin Cancer Biol 2012; 22:396-403. [PMID: 22554795 DOI: 10.1016/j.semcancer.2012.04.001] [Citation(s) in RCA: 698] [Impact Index Per Article: 53.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2011] [Accepted: 04/16/2012] [Indexed: 12/18/2022]
Abstract
The epithelial-mesenchymal transition (EMT) confers mesenchymal properties on epithelial cells and has been closely associated with the acquisition of aggressive traits by carcinoma cells. EMT programs are orchestrated by a set of pleiotropically acting transcription factors (TFs). The actions of these EMT-TFs enable the early steps of metastasis: local invasion and subsequent dissemination of carcinoma cells to distant sites. However, in most malignancies, the subsequent outgrowth of micrometastatic deposits into macroscopic metastases has the greatest impact on clinical progression. Such metastatic "colonization" reflects the ability of disseminated tumor cells to adapt to a foreign tissue microenvironment. The outgrowth of a metastasis is also thought to be associated with self-renewal, the defining cellular trait of cancer stem cells (CSCs), also termed tumor-initiating cells. Importantly, molecular links between EMT-TFs and self-renewal have emerged, suggesting that EMT programs play critical roles both early and late in the metastatic cascade. The genetic and epigenetic mechanisms that regulate the activation of EMT-TFs and the traits they induce are areas under intensive investigation. Such studies may provide new opportunities for therapeutic intervention and help to overcome tumor heterogeneity and therapeutic resistance.
Collapse
|
438
|
Kircher SM, Krantz SB, Nimeiri HS, Mulcahy MF, Munshi HG, Benson AB. Therapy of locally advanced pancreatic adenocarcinoma: unresectable and borderline patients. Expert Rev Anticancer Ther 2012; 11:1555-65. [PMID: 21999129 DOI: 10.1586/era.11.125] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Systemic chemotherapy for advanced pancreatic cancer is commonly used in practice; however, the optimal strategy for both neoadjuvant and adjuvant therapy in this disease remains controversial. A particular challenge remains in patients who are considered to be locally advanced and either unresectable or borderline resectable. Offering optimal neoadjuvant therapy to this group of patients may give them the opportunity to have a curative surgical approach. This article will discuss the potential role of neoadjuvant therapy in borderline, potentially resectable pancreatic cancer. It will also discuss areas of interest in potential targets as the biology of pancreatic adenocarcinoma is further explored.
Collapse
Affiliation(s)
- Sheetal M Kircher
- Division of Hematology/Oncology, Northwestern University, Chicago, IL 60611, USA
| | | | | | | | | | | |
Collapse
|
439
|
Stroma and pancreatic ductal adenocarcinoma: an interaction loop. Biochim Biophys Acta Rev Cancer 2012; 1826:170-8. [PMID: 22521638 DOI: 10.1016/j.bbcan.2012.04.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2012] [Revised: 04/06/2012] [Accepted: 04/08/2012] [Indexed: 02/07/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDA) has two exceptional features. First, it is a highly lethal disease, with a median survival of less than 6 months and a 5-year survival rate less than 5%. Second, PDA tumor cells are surrounded by an extensive stroma, which accounts for up to 90% of the tumor volume. It is well recognized that stromal microenvironment can accelerate malignant transformation, tumor growth and progression. More importantly, the interaction loop between PDA and its stroma greatly contributes to tumor growth and progression. We propose that the extensive stroma of PDA is closely linked to its poor prognosis. An improved understanding of the mechanisms that contribute to pancreatic tumor growth and progression is therefore urgently needed. Targeting the stroma may thus provide novel prevention, earlier detection and therapeutic options to this deadly malignancy. Accordingly, in this review, we will summarize the mechanism of PDA stroma formation, the role of the stroma in tumor progression and therapy resistance and the potential of stroma-targeted therapeutics strategies.
Collapse
|
440
|
Latifi A, Abubaker K, Castrechini N, Ward AC, Liongue C, Dobill F, Kumar J, Thompson EW, Quinn MA, Findlay JK, Ahmed N. Cisplatin treatment of primary and metastatic epithelial ovarian carcinomas generates residual cells with mesenchymal stem cell-like profile. J Cell Biochem 2012; 112:2850-64. [PMID: 21618587 DOI: 10.1002/jcb.23199] [Citation(s) in RCA: 200] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Epithelial mesenchymal transition (EMT) and cancer stem cells (CSC) have been associated with resistance to chemotherapy. Eighty percent of ovarian cancer patients initially respond to platinum-based combination therapy but most return with recurrence and ultimate demise. To better understand such chemoresistance we have assessed the potential role of EMT in tumor cells collected from advanced-stage ovarian cancer patients and the ovarian cancer cell line OVCA 433 in response to cisplatin in vitro. We demonstrate that cisplatin-induced transition from epithelial to mesenchymal morphology in residual cancer cells correlated with reduced E-cadherin, and increased N-cadherin and vimentin expression. The mRNA expression of Snail, Slug, Twist, and MMP-2 were significantly enhanced in response to cisplatin and correlated with increased migration. This coincided with increased cell surface expression of CSC-like markers such as CD44, α2 integrin subunit, CD117, CD133, EpCAM, and the expression of stem cell factors Nanog and Oct-4. EMT and CSC-like changes in response to cisplatin correlated with enhanced activation of extracellular signal-regulated kinase (ERK)1/2. The selective MEK inhibitor U0126 inhibited ERK2 activation and partially suppressed cisplatin-induced EMT and CSC markers. In vivo xenotransplantation of cisplatin-treated OVCA 433 cells in zebrafish embryos demonstrated significantly enhanced migration of cells compared to control untreated cells. U0126 inhibited cisplatin-induced migration of cells in vivo, suggesting that ERK2 signaling is critical to cisplatin-induced EMT and CSC phenotypes, and that targeting ERK2 in the presence of cisplatin may reduce the burden of residual tumor, the ultimate cause of recurrence in ovarian cancer patients.
Collapse
Affiliation(s)
- Ardian Latifi
- Women's Cancer Research Centre, Royal Women's Hospital, Victoria 3052, Australia
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
441
|
Abstract
Properties of the small group of cancer cells called tumor-initiating or cancer stem cells (CSCs) involved in drug resistance, metastasis and relapse of cancers can significantly affect tumor therapy. Importantly, tumor drug resistance seems to be closely related to many intrinsic or acquired properties of CSCs, such as quiescence, specific morphology, DNA repair ability and overexpression of antiapoptotic proteins, drug efflux transporters and detoxifying enzymes. The specific microenvironment (niche) and hypoxic stability provide additional protection against anticancer therapy for CSCs. Thus, CSC-focused therapy is destined to form the core of any effective anticancer strategy. Nanomedicine has great potential in the development of CSC-targeting drugs, controlled drug delivery and release, and the design of novel gene-specific drugs and diagnostic modalities. This review is focused on tumor drug resistance-related properties of CSCs and describes current nanomedicine approaches, which could form the basis of novel combination therapies for eliminating metastatic and CSCs.
Collapse
Affiliation(s)
- Serguei Vinogradov
- Department of Pharmaceutical Sciences & Center for Drug Delivery & Nanomedicine, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE 68198-6025, USA.
| | | |
Collapse
|
442
|
Developmental pathways in breast cancer and breast tumor-initiating cells: Therapeutic implications. Cancer Lett 2012; 317:115-26. [DOI: 10.1016/j.canlet.2011.11.028] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2011] [Accepted: 11/20/2011] [Indexed: 12/13/2022]
|
443
|
Li Y, Kong D, Ahmad A, Bao B, Sarkar FH. Pancreatic cancer stem cells: emerging target for designing novel therapy. Cancer Lett 2012; 338:94-100. [PMID: 22445908 DOI: 10.1016/j.canlet.2012.03.018] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2012] [Revised: 03/13/2012] [Accepted: 03/14/2012] [Indexed: 12/11/2022]
Abstract
In the past few years, there have been significant advances in the research on cancer stem cells (CSCs). The emerging evidences have demonstrated that CSCs and epithelial-mesenchymal transition (EMT)-type cells, which share molecular characteristics with CSCs, play critical roles in drug resistance, invasion, and metastasis. Pancreatic cancer (PC) has a high mortality due to both intrinsic (de novo) and extrinsic (acquired) drug resistance, leading to increased invasive and metastatic potential of PC cells. Therefore, targeting pancreatic CSCs and EMT-type cells could be a novel therapeutic strategy for the treatment of PC. In this article, we will review the current state of our knowledge on the role of pancreatic CSCs and EMT-type cells, and summarize the novel therapeutic strategies that could target pancreatic CSCs and EMT-type cells, leading to the reversal of EMT phenotype, the induction of drug sensitivity, and the inhibition of invasion and metastasis of PC, which is expected to yield better treatment outcome.
Collapse
Affiliation(s)
- Yiwei Li
- Department of Pathology, Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | | | | | | | | |
Collapse
|
444
|
Ubiquitination and the Ubiquitin-Proteasome System as regulators of transcription and transcription factors in epithelial mesenchymal transition of cancer. Tumour Biol 2012; 33:897-910. [PMID: 22399444 DOI: 10.1007/s13277-012-0355-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2011] [Accepted: 02/09/2012] [Indexed: 02/06/2023] Open
Abstract
Epithelial to Mesenchymal Transition (EMT) in cancer is a process that allows cancer cells to detach from neighboring cells, become mobile and metastasize and shares many signaling pathways with development. Several molecular mechanisms which regulate oncogenic properties in neoplastic cells such as proliferation, resistance to apoptosis and angiogenesis through transcription factors or other mediators are also regulators of EMT. These pathways and downstream transcription factors are, in their turn, regulated by ubiquitination and the Ubiquitin-Proteasome System (UPS). Ubiquitination, the covalent link of the small 76-amino acid protein ubiquitin to target proteins, serves as a signal for protein degradation by the proteasome or for other outcomes such as endocytosis, degradation by the lysosome or directing these proteins to specific cellular compartments. This review discusses aspects of the regulation of EMT by ubiquitination and the UPS and underlines its complexity focusing on transcription and transcription factors regulating EMT and are being regulated by ubiquitination.
Collapse
|
445
|
Shimasaki T, Ishigaki Y, Nakamura Y, Takata T, Nakaya N, Nakajima H, Sato I, Zhao X, Kitano A, Kawakami K, Tanaka T, Takegami T, Tomosugi N, Minamoto T, Motoo Y. Glycogen synthase kinase 3β inhibition sensitizes pancreatic cancer cells to gemcitabine. J Gastroenterol 2012; 47:321-33. [PMID: 22041920 DOI: 10.1007/s00535-011-0484-9] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2011] [Accepted: 09/16/2011] [Indexed: 02/04/2023]
Abstract
BACKGROUND Pancreatic cancer is obstinate and resistant to gemcitabine, a standard chemotherapeutic agent for the disease. We previously showed a therapeutic effect of glycogen synthase kinase-3β (GSK3β) inhibition against gastrointestinal cancer and glioblastoma. Here, we investigated the effect of GSK3β inhibition on pancreatic cancer cell sensitivity to gemcitabine and the underlying molecular mechanism. METHODS Expression, phosphorylation, and activity of GSK3β in pancreatic cancer cells (PANC-1) were examined by Western immunoblotting and in vitro kinase assay. The combined effect of gemcitabine and a GSK3β inhibitor (AR-A014418) against PANC-1 cells was examined by isobologram and PANC-1 xenografts in mice. Changes in gene expression in PANC-1 cells following GSK3β inhibition were studied by cDNA microarray and reverse transcription (RT)-PCR. RESULTS PANC-1 cells showed increased GSK3β expression, phosphorylation at tyrosine 216 (active form), and activity compared with non-neoplastic HEK293 cells. Administration of AR-A014418 at pharmacological doses attenuated proliferation of PANC-1 cells and xenografts, and significantly sensitized them to gemcitabine. Isobologram analysis determined that the combined effect was synergistic. DNA microarray analysis detected GSK3β inhibition-associated changes in gene expression in gemcitabine-treated PANC-1 cells. Among these changes, RT-PCR and Western blotting showed that expression of tumor protein 53-induced nuclear protein 1, a gene regulating cell death and DNA repair, was increased by gemcitabine treatment and substantially decreased by GSK3β inhibition. CONCLUSIONS The results indicate that GSK3β inhibition sensitizes pancreatic cancer cells to gemcitabine with altered expression of genes involved in DNA repair. This study provides insight into the molecular mechanism of gemcitabine resistance and thus a new strategy for pancreatic cancer chemotherapy.
Collapse
Affiliation(s)
- Takeo Shimasaki
- Department of Medical Oncology, Kanazawa Medical University, 1-1 Daigaku, Uchinada, Ishikawa 920-0293, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
446
|
Acquisition of EMT phenotype in the gefitinib-resistant cells of a head and neck squamous cell carcinoma cell line through Akt/GSK-3β/snail signalling pathway. Br J Cancer 2012; 106:1196-204. [PMID: 22315058 PMCID: PMC3304404 DOI: 10.1038/bjc.2012.24] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Epithelial mesenchymal transition (EMT) is known to be associated with chemoresistance as well as increased invasion/metastasis. However, the relationship between EMT and resistance to an epidermal growth factor receptor (EGFR) -targeting drug in head and neck squamous cell carcinoma (HNSCC) remains unknown. In this study, we investigated the acquisition of EMT by gefitinib in HNSCC cell line (UMSCC81B). METHODS We isolated fibroblastoid variant (81B-Fb) from gefitinib-resistant UMSCC81B-GR3 cells obtained after increasing the doses of gefitinib treatment in vitro and examined EMT and its underlying mechanism. RESULT 81B-Fb cells exhibited fibroblast-like morphology, increased motility, loss of E-cadherin, acquisition of vimentin and snail expression. In 81B-Fb cells, downregulation of EGFR, which is mediated by increased ubiquitination, and activation of downstream protein kinase B (Akt), glycogen synthase kinase-beta (GSK-3β) signalling and upregulation of snail expression were observed compared with UMSCC81B cells. LY294002, but not U0126, suppressed foetal bovine serum or heregulin-β1-induced phosphorylation of Akt/GSK-3β and snail expression together with the inhibition of 81B-Fb cell motility. Furthermore, forced expression of EGFR resulted in partial restoration of gefitinib sensitivity and reversal of EMT. CONCLUSION These results suggest that EMT in the gefitinib-resistant cells is mediated by the downregulation of EGFR and compensatory activation of Akt/GSK-3β/snail pathway.
Collapse
|
447
|
Gasperini P, Espigol-Frigole G, McCormick PJ, Salvucci O, Maric D, Uldrick TS, Polizzotto MN, Yarchoan R, Tosato G. Kaposi sarcoma herpesvirus promotes endothelial-to-mesenchymal transition through Notch-dependent signaling. Cancer Res 2012; 72:1157-69. [PMID: 22237624 DOI: 10.1158/0008-5472.can-11-3067] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Endothelial-to-mesenchymal transition (EndMT) is now widely considered a pivotal contributor to cancer progression. In this study, we show that the Kaposi's sarcoma (KS)-associated herpesvirus (KSHV) is a sufficient cause of EndMT, potentially helping to explain the aggressiveness of KS that occurs commonly in AIDS patients. Upon KSHV infection, primary dermal microvascular endothelial cells lost expression of endothelial markers and acquired expression of mesenchymal markers, displaying new invasive and migratory properties along with increased survival. KSHV activated Notch-induced transcription factors Slug and ZEB1, and canonical Notch signaling was required for KSHV-induced EndMT. In contrast, KSHV did not utilize the TGFβ signaling pathway, which has also been linked to EndMT. Within KS lesions, KSHV-infected spindle cells displayed features compatible with KSHV-induced EndMT including a complex phenotype of endothelial and mesenchymal properties, Notch activity, and nuclear ZEB1 expression. Our results show that KSHV engages the EndMT program to increase the invasiveness and survival of infected endothelial cells, traits that likely contribute to viral persistence and malignant progression. One important implication of our findings is that therapeutic approaches to disrupt the Notch pathway may offer novel approaches for KS treatment.
Collapse
Affiliation(s)
- Paola Gasperini
- Laboratory of Cellular Oncology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland 20892, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
448
|
Wu Q, Miele L, Sarkar FH, Wang Z. The Role of EMT in Pancreatic Cancer Progression. ACTA ACUST UNITED AC 2012; 2. [PMID: 23145368 DOI: 10.4172/2165-7092.1000e121] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Qiong Wu
- Department of Medical Oncology, Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, PR 233004, China
| | | | | | | |
Collapse
|
449
|
Funamizu N, Kamata Y, Misawa T, Uwagawa T, Lacy CR, Yanaga K, Manome Y. Hydroxyurea decreases gemcitabine resistance in pancreatic carcinoma cells with highly expressed ribonucleotide reductase. Pancreas 2012; 41:107-113. [PMID: 21926937 DOI: 10.1097/mpa.0b013e318224b5fb] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
OBJECTIVES This study aimed to determine whether the treatment of pancreatic carcinoma can be defined on the basis of the expression of genes involved in gemcitabine metabolism and whether combination treatment is more effective than conventional treatment. METHODS Four pancreatic carcinoma cell lines (Panc-1, MIAPaCa-2, BxPC-3, and Capan-2) were used to determine the patterns of gemcitabine-metabolizing genes and mesenchymal marker gene expressions using quantitative real-time polymerase chain reaction. Chemosensitivity and cell proliferation were measured using colorimetric assay. Gemcitabine was combined with hydroxyurea or small interfering RNA targeting ribonucleotide reductase to assess changes in chemoresistance. RESULTS Panc-1 and MIAPaCa-2 cell lines were profoundly chemoresistant and expressed genes corresponding to cells with distinct mesenchymal phenotypes. In addition, Panc-1 highly expressed ribonucleotide reductase and showed a 4-fold increase in gemcitabine sensitivity after treatment with hydroxyurea. CONCLUSIONS Combination treatment tailored to cells with highly expressed ribonucleotide reductase was more effective than treatment with gemcitabine alone. Moreover, phenotype and gemcitabine metabolism may independently confer chemoresistance.
Collapse
Affiliation(s)
- Naotake Funamizu
- Department of Molecular Cell Biology, Institute of DNA Medicine, The Jikei University School of Medicine, Tokyo, Japan.
| | | | | | | | | | | | | |
Collapse
|
450
|
Kurahara H, Takao S, Maemura K, Mataki Y, Kuwahata T, Maeda K, Ding Q, Sakoda M, Iino S, Ishigami S, Ueno S, Shinchi H, Natsugoe S. Epithelial-mesenchymal transition and mesenchymal-epithelial transition via regulation of ZEB-1 and ZEB-2 expression in pancreatic cancer. J Surg Oncol 2011; 105:655-61. [PMID: 22213144 DOI: 10.1002/jso.23020] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2011] [Accepted: 12/04/2011] [Indexed: 12/28/2022]
Abstract
UNLABELLED BACKGROUND AND OBJECTIES: Phenotypic plasticity of cancer cells via epithelial-mesenchymal transition (EMT) and mesenchymal-epithelial transition (MET) is essential for tumor progression and metastasis. METHODS Tissue samples were obtained from 76 pancreatic head cancers. We assessed the expression of E-cadherin, vimentin, ZEB-1, and ZEB-2 by immunohistochemical and immunofluorescence staining. Next, 147 metastatic lymph nodes from 45 pancreatic cancers with low expression of E-cadherin were obtained and divided into two categories according to the maximum diameter of the metastases: 2 mm or more and less than 2 mm. RESULTS High expressions of ZEB-1 and ZEB-2 in the primary tumors were significantly associated with repression of E-cadherin (P = 0.0007), and poorer prognosis (P = 0.0322). Forty-three (29.3%) of the 147 metastatic tumors from pancreatic cancers with low expression of E-cadherin showed high E-cadherin expression. Cancer cells in the larger metastases showed high expression of E-cadherin (P = 0.0061) and low expression of ZEB-1 (P = 0.0170) and ZEB-2 (P = 0.0036) compared with those in the smaller metastases. CONCLUSIONS In primary pancreatic tumors and metastatic lymph nodes, high and low expression of ZEB-1 and ZEB-2 was associated with mesenchymal and epithelial phenotype of cancer cells, respectively.
Collapse
Affiliation(s)
- Hiroshi Kurahara
- Department of Surgical Oncology and Digestive Surgery, Graduate School of Medical Sciences, Kagoshima University, Kagoshima, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|