401
|
Parris BA, Shaw E, Pang B, Soong R, Fong K, Soo RA. Somatic mutations and immune checkpoint biomarkers. Respirology 2019; 24:215-226. [PMID: 30636374 DOI: 10.1111/resp.13463] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 11/02/2018] [Accepted: 12/09/2018] [Indexed: 01/10/2023]
Abstract
The development of molecular testing for identifying somatic mutations and immune checkpoint biomarkers has directed treatment towards personalized medicine for patients with non-small cell lung cancer. The choice of molecular testing in a clinical setting is influenced by cost, expertise in the technology, instrumentation setup and sample type availability. The molecular techniques described in this review include immunohistochemistry (IHC), fluorescent in situ hybridization, direct sequencing, real-time polymerase chain reaction (PCR), denaturing high-performance liquid chromatography, matrix-assisted laser desorption/ionization time of flight mass spectrometry and next-generation sequencing (NGS). IHC is routinely used in clinical practice for the classification, differentiation, histology and identification of targetable alterations of epidermal growth factor receptor (EGFR), anaplastic lymphoma kinase (ALK) and programmed death ligand-1 (PD-L1). Recently, the PD-L1 pathway was identified as being exploited by tumour cells, allowing immune resistance and tumour evasion. The development of immune checkpoint inhibitors as treatment for tumours expressing checkpoints has highlighted the need for standardized IHC assays to inform treatment decisions for patients. Direct sequencing was historically the gold standard for mutation testing for EGFR, KRAS (Kirsten rat sarcoma viral oncogene homologue) and BRAF (v-Raf murine sarcoma viral oncogene homologue B1) requiring a high ratio of tumour to normal cells, but this has been superseded by more sensitive methods. NGS is a new emerging technique, which allows high-throughput coverage of frequently mutated genes, including less common BRAF and MET mutations and alterations in tumour suppressor genes. When an NGS platform is unavailable, PCR-based technologies offer an efficient and cost-effective single gene test to guide patient treatment. This article will review these techniques and discuss the future of molecular platforms underpinning clinical management decisions.
Collapse
Affiliation(s)
- Brielle A Parris
- University of Queensland Thoracic Research Centre, Brisbane, QLD, Australia.,Department of Thoracic Medicine, The Prince Charles Hospital, Brisbane, QLD, Australia
| | - Eloise Shaw
- University of Queensland Thoracic Research Centre, Brisbane, QLD, Australia.,Department of Thoracic Medicine, The Prince Charles Hospital, Brisbane, QLD, Australia
| | - Brendan Pang
- Department of Pathology, National University Hospital, Singapore
| | - Richie Soong
- Department of Pathology, National University Hospital, Singapore
| | - Kwun Fong
- University of Queensland Thoracic Research Centre, Brisbane, QLD, Australia.,Department of Thoracic Medicine, The Prince Charles Hospital, Brisbane, QLD, Australia
| | - Ross A Soo
- Department of Haematology-Oncology, National University Hospital, Singapore
| |
Collapse
|
402
|
Davies KD, Lomboy A, Lawrence CA, Yourshaw M, Bocsi GT, Camidge DR, Aisner DL. DNA-Based versus RNA-Based Detection of MET Exon 14 Skipping Events in Lung Cancer. J Thorac Oncol 2019; 14:737-741. [PMID: 30639620 DOI: 10.1016/j.jtho.2018.12.020] [Citation(s) in RCA: 115] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 12/07/2018] [Accepted: 12/29/2018] [Indexed: 02/05/2023]
Abstract
INTRODUCTION Genomic variants that lead to MET proto-oncogenem receptor tyrosine kinase (MET) exon 14 skipping represent a potential targetable molecular abnormality in NSCLC. Consequently, reliable molecular diagnostic approaches that detect these variants are vital for patient care. METHODS We screened tumor samples from patients with NSCLC for MET exon 14 skipping by using two distinct approaches: a DNA-based next-generation sequencing assay that uses an amplicon-mediated target enrichment and an RNA-based next-generation sequencing assay that uses anchored multiplex polymerase chain reaction for target enrichment. RESULTS The DNA-based approach detected MET exon 14 skipping variants in 11 of 856 NSCLC samples (1.3%). The RNA-based approach detected MET exon 14 skipping in 17 of 404 samples (4.2%), which was a statistically significant increase compared with the DNA-based assay. Among 286 samples tested by both assays, RNA-based testing detected 10 positives, six of which were not detected by the DNA-based assay. Examination of primer binding sites in the DNA-based assay in comparison with published MET exon 14 skipping variants revealed genomic deletion involving primer binding sequences as the likely cause of false negatives. Two samples positive via the DNA-based approach were uninformative via the RNA-based approach due to poor-quality RNA. CONCLUSIONS By circumventing an inherent limitation of DNA-based amplicon-mediated testing, RNA-based analysis detected a higher proportion of MET exon 14 skipping cases. However, RNA-based analysis was highly reliant on RNA quality, which can be suboptimal in some clinical samples.
Collapse
Affiliation(s)
- Kurtis D Davies
- Department of Pathology, Division of Pathology, University of Colorado-Anschutz Medical Campus, Aurora, Colorado.
| | - Aprille Lomboy
- Department of Pathology, Division of Pathology, University of Colorado-Anschutz Medical Campus, Aurora, Colorado
| | - Carolyn A Lawrence
- Department of Pathology, Division of Pathology, University of Colorado-Anschutz Medical Campus, Aurora, Colorado
| | - Michael Yourshaw
- Department of Pathology, Division of Pathology, University of Colorado-Anschutz Medical Campus, Aurora, Colorado
| | - Gregary T Bocsi
- Department of Pathology, Division of Pathology, University of Colorado-Anschutz Medical Campus, Aurora, Colorado
| | - D Ross Camidge
- Department of Medicine, Division of Medical Oncology, University of Colorado-Anschutz Medical Campus, Aurora, Colorado
| | - Dara L Aisner
- Department of Pathology, Division of Pathology, University of Colorado-Anschutz Medical Campus, Aurora, Colorado
| |
Collapse
|
403
|
Hughes VS, Siemann DW. Failures in preclinical and clinical trials of c-Met inhibitors: evaluation of pathway activity as a promising selection criterion. Oncotarget 2019; 10:184-197. [PMID: 30719213 PMCID: PMC6349429 DOI: 10.18632/oncotarget.26546] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Accepted: 12/20/2018] [Indexed: 01/29/2023] Open
Abstract
C-Met is a frequently overexpressed or amplified receptor tyrosine kinase involved in metastatic-related functions, including migration, invasion, cell survival, and angiogenesis. Because of its role in cancer progression and metastasis, many inhibitors have been developed to target this pathway. Unfortunately, most c-Met inhibitor clinical trials have failed to show significant improvement in survival of cancer patients. In these trials tumor type, protein overexpression, or gene amplification are the primary selection criteria for patient inclusion. Our data show that none of these criteria are associated with c-Met pathway activation. Hence, it is conceivable that the majority of c-Met inhibitor clinical trial failures are the consequence of a lack of appropriate patient selection. Further complicating matters, c-Met inhibitors are routinely tested in preclinical studies in the presence of high levels of exogenous Hepatocyte Growth Factor (HGF), its activating ligand. In our studies, several tumor cell lines showed sensitivity to a c-Met inhibitor at high HGF concentrations (50 ng/mL). However, when the tumor lines were tested at HGF levels typically detected in human serum (0.4 to 0.8 ng/mL), inhibitor activity was lost. Thus testing c-Met inhibitors at non-physiological concentrations of HGF may lead to incorrect predictions of drug efficacy in vivo.
Collapse
Affiliation(s)
- Veronica S Hughes
- University of Florida, Department of Radiation Oncology, UF Health Cancer Center, Gainesville, FL 32608, USA
| | - Dietmar W Siemann
- University of Florida, Department of Radiation Oncology, UF Health Cancer Center, Gainesville, FL 32608, USA
| |
Collapse
|
404
|
Abstract
INTRODUCTION The receptor tyrosine kinase c-Met is involved in the formation, metastasis and invasion of various malignant tumors thus it has been an attractive target for anti-tumor drug designing. Many compositions targeting c-Met have been developed in pharmaceutical industry for cancer therapy and some of them are in clinical study now. Among them, Crizotinib was the first small molecular inhibitor approved by FDA in 2011. AREAS COVERED This review briefly summarizes the signal transduction pathway about c-Met, its role in oncogenesis, most recent patents of small-molecule inhibitors and antibodies of c-Met from 2014 to 2017. EXPERT OPINION To date, some c-Met inhibitors have been launched in the market. In addition, their clinical performances have shown encouraging value in cancer therapy. Many potential agents are still in preclinical or clinical study now and achieve some promising progressions. Some patients have developed resistance to c-Met inhibitors which results in the need to develop inhibitors with novel structures. Development of several potent drugs also tends to be pharmacodynamically active against multiple targets.
Collapse
Affiliation(s)
- Qing-Wen Zhang
- a Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry , China Pharmaceutical University , Nanjing , P. R. China
| | - Zi-Dan Ye
- a Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry , China Pharmaceutical University , Nanjing , P. R. China
| | - Lei Shi
- a Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry , China Pharmaceutical University , Nanjing , P. R. China
| |
Collapse
|
405
|
Hughes VS, Siemann DW. Have Clinical Trials Properly Assessed c-Met Inhibitors? Trends Cancer 2018; 4:94-97. [PMID: 29458966 DOI: 10.1016/j.trecan.2017.11.009] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Revised: 11/27/2017] [Accepted: 11/30/2017] [Indexed: 01/03/2023]
Abstract
The c-Met/HGF pathway is implicated in cancer progression and dissemination. Many inhibitors have been developed to target this pathway. Unfortunately, most trials have failed to demonstrate efficacy. However, clinical trials have not adequately tested the concept of c-Met pathway inhibition due to the lack of appropriate patient selection criteria.
Collapse
Affiliation(s)
- Veronica S Hughes
- Department of Radiation Oncology, University of Florida, 2033 Mowry Road, Cancer Genetic Research Complex, Room 485E, Gainesville, FL 32610, USA.
| | - Dietmar W Siemann
- Department of Radiation Oncology, University of Florida, 2033 Mowry Road, Cancer Genetic Research Complex, Room 485E, Gainesville, FL 32610, USA
| |
Collapse
|
406
|
Bahcall M, Awad MM, Sholl LM, Wilson FH, Xu M, Wang S, Palakurthi S, Choi J, Ivanova EV, Leonardi GC, Ulrich BC, Paweletz CP, Kirschmeier PT, Watanabe M, Baba H, Nishino M, Nagy RJ, Lanman RB, Capelletti M, Chambers ES, Redig AJ, VanderLaan PA, Costa DB, Imamura Y, Jänne PA. Amplification of Wild-type KRAS Imparts Resistance to Crizotinib in MET Exon 14 Mutant Non-Small Cell Lung Cancer. Clin Cancer Res 2018; 24:5963-5976. [PMID: 30072474 PMCID: PMC6279568 DOI: 10.1158/1078-0432.ccr-18-0876] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 06/19/2018] [Accepted: 07/23/2018] [Indexed: 01/06/2023]
Abstract
PURPOSE MET inhibitors can be effective therapies in patients with MET exon 14 (METex14) mutant non-small cell lung cancer (NSCLC). However, long-term efficacy is limited by the development of drug resistance. In this study, we characterize acquired amplification of wild-type (WT) KRAS as a molecular mechanism behind crizotinib resistance in three cases of METex14-mutant NSCLC and propose a combination therapy to target it. EXPERIMENTAL DESIGN The patient-derived cell line and xenograft (PDX) DFCI358 were established from a crizotinib-resistant METex14-mutant patient tumor with massive focal amplification of WT KRAS. To characterize the mechanism of KRAS-mediated resistance, molecular signaling was analyzed in the parental cell line and its KRAS siRNA-transfected derivative. Sensitivity of the cell line to ligand stimulation was assessed and KRAS-dependent expression of EGFR ligands was quantified. Drug combinations were screened for efficacy in vivo and in vitro using viability and apoptotic assays. RESULTS KRAS amplification is a recurrent genetic event in crizotinib-resistant METex14-mutant NSCLC. The key characteristics of this genetic signature include uncoupling MET from downstream effectors, relative insensitivity to dual MET/MEK inhibition due to compensatory induction of PI3K signaling, KRAS-induced expression of EGFR ligands and hypersensitivity to ligand-dependent and independent activation, and reliance on PI3K signaling upon MET inhibition. CONCLUSIONS Using patient-derived cell line and xenografts, we characterize the mechanism of crizotinib resistance mediated by KRAS amplification in METex14-mutant NSCLC and demonstrate the superior efficacy of the dual MET/PI3K inhibition as a therapeutic strategy addressing this resistance mechanism.
Collapse
Affiliation(s)
- Magda Bahcall
- Lowe Center for Thoracic Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts
| | - Mark M Awad
- Lowe Center for Thoracic Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts
| | - Lynette M Sholl
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Frederick H Wilson
- Lowe Center for Thoracic Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts
| | - Man Xu
- Belfer Center for Applied Cancer Science, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Stephen Wang
- Belfer Center for Applied Cancer Science, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Sangeetha Palakurthi
- Belfer Center for Applied Cancer Science, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Jihyun Choi
- Lowe Center for Thoracic Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts
| | - Elena V Ivanova
- Belfer Center for Applied Cancer Science, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Giulia C Leonardi
- Lowe Center for Thoracic Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts
| | - Bryan C Ulrich
- Belfer Center for Applied Cancer Science, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Cloud P Paweletz
- Belfer Center for Applied Cancer Science, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Paul T Kirschmeier
- Belfer Center for Applied Cancer Science, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Masayuki Watanabe
- Department of Gastroenterological Surgery, The Cancer Institute Hospital of Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Hideo Baba
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Mizuki Nishino
- Department of Radiology, Brigham And Women's Hospital and Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | | | | | - Marzia Capelletti
- Center for Hematologic Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts
| | - Emily S Chambers
- Lowe Center for Thoracic Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts
| | - Amanda J Redig
- Lowe Center for Thoracic Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Paul A VanderLaan
- Department of Pathology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts
| | - Daniel B Costa
- Thoracic Oncology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts
- Hematology/Oncology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts
| | - Yu Imamura
- Department of Gastroenterological Surgery, The Cancer Institute Hospital of Japanese Foundation for Cancer Research, Tokyo, Japan
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Pasi A Jänne
- Lowe Center for Thoracic Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts.
- Belfer Center for Applied Cancer Science, Dana-Farber Cancer Institute, Boston, Massachusetts
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
407
|
Escobar-Hoyos L, Knorr K, Abdel-Wahab O. Aberrant RNA Splicing in Cancer. ANNUAL REVIEW OF CANCER BIOLOGY-SERIES 2018; 3:167-185. [PMID: 32864546 DOI: 10.1146/annurev-cancerbio-030617-050407] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
RNA splicing, the enzymatic process of removing segments of premature RNA to produce mature RNA, is a key mediator of proteome diversity and regulator of gene expression. Increased systematic sequencing of the genome and transcriptome of cancers has identified a variety of means by which RNA splicing is altered in cancer relative to normal cells. These findings, in combination with the discovery of recurrent change-of-function mutations in splicing factors in a variety of cancers, suggest that alterations in splicing are drivers of tumorigenesis. Greater characterization of altered splicing in cancer parallels increasing efforts to pharmacologically perturb splicing and early-phase clinical development of small molecules that disrupt splicing in patients with cancer. Here we review recent studies of global changes in splicing in cancer, splicing regulation of mitogenic pathways critical in cancer transformation, and efforts to therapeutically target splicing in cancer.
Collapse
Affiliation(s)
- Luisa Escobar-Hoyos
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.,David M. Rubenstein Center for Pancreatic Cancer Research, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.,Department of Pathology, Stony Brook University, Stony Brook, NY 11794, USA
| | | | - Omar Abdel-Wahab
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.,Weill Cornell Medical College, New York, NY 10065, USA.,Leukemia Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| |
Collapse
|
408
|
Strickler JH, Weekes CD, Nemunaitis J, Ramanathan RK, Heist RS, Morgensztern D, Angevin E, Bauer TM, Yue H, Motwani M, Parikh A, Reilly EB, Afar D, Naumovski L, Kelly K. First-in-Human Phase I, Dose-Escalation and -Expansion Study of Telisotuzumab Vedotin, an Antibody–Drug Conjugate Targeting c-Met, in Patients With Advanced Solid Tumors. J Clin Oncol 2018; 36:3298-3306. [DOI: 10.1200/jco.2018.78.7697] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Purpose This first-in-human study evaluated telisotuzumab vedotin (Teliso-V), formerly called ABBV-399, an antibody–drug conjugate of the anti–c-Met monoclonal antibody ABT-700 and monomethyl auristatin E. Materials and Methods For dose escalation, three to six patients with advanced solid tumors were enrolled in eight cohorts (0.15 to 3.3 mg/kg). The dose-expansion phase enrolled patients with non–small-cell lung cancer (NSCLC) with c-Met–overexpressing tumors (c-Met positive; immunohistochemistry membrane H-score ≥ 150). Patients received Teliso-V monotherapy intravenously on day 1 once every 3 weeks. Safety, tolerability, pharmacokinetics, and maximum tolerated dose were determined. Results Forty-eight patients were enrolled (median age, 65 years; 35.4% NSCLC; median four prior therapies). One patient each in the 3.0-mg/kg (n = 9) and 3.3-mg/kg (n = 3) cohorts experienced dose-limiting toxicities. Although the maximum tolerated dose was not formally identified, the recommended phase II dose was defined as 2.7 mg/kg on the basis of overall safety and tolerability. The most frequent treatment-emergent adverse events (any grade) were fatigue (42%), nausea (27%), constipation (27%), decreased appetite (23%), vomiting (21%), dyspnea (21%), diarrhea (19%), peripheral edema (19%), and neuropathy (17%). The most frequent Teliso-V–related grade ≥ 3 adverse events were fatigue, anemia, neutropenia, and hypoalbuminemia (4% each). Teliso-V and total antibody pharmacokinetics were approximately dose proportional, with a mean harmonic half-life of 2 to 4 days each. Prospective screening identified 35 (60%) of 58 patients with c-Met–positive NSCLC. Of 16 patients with c-Met–positive NSCLC who were treated with Teliso-V 2.4 to 3.0 mg/kg, three (18.8%; 95% CI, 4.1% to 45.7%) achieved a partial response (median response duration, 4.8 months; median progression-free survival, 5.7 months; 95% CI, 1.2 months to 15.4 months). No other patients experienced a response. Conclusion Teliso-V monotherapy demonstrated favorable safety and tolerability profiles, with encouraging evidence of antitumor activity in patients with c-Met–positive NSCLC.
Collapse
Affiliation(s)
- John H. Strickler
- John H. Strickler, Duke University Medical Center, Durham, NC; Colin D. Weekes, University of Colorado, Aurora, CO; John Nemunaitis, Mary Crowley Cancer Research Center, Dallas, TX; Ramesh K. Ramanathan, Virginia Piper Cancer Center at Honor Health/Translational Genomics Research Institute, Scottsdale, AZ; Rebecca S. Heist, Massachusetts General Hospital Cancer Center, Boston, MA; Daniel Morgensztern, Washington University School of Medicine, St. Louis, MO; Eric Angevin, Gustave Roussy, Villejuif,
| | - Colin D. Weekes
- John H. Strickler, Duke University Medical Center, Durham, NC; Colin D. Weekes, University of Colorado, Aurora, CO; John Nemunaitis, Mary Crowley Cancer Research Center, Dallas, TX; Ramesh K. Ramanathan, Virginia Piper Cancer Center at Honor Health/Translational Genomics Research Institute, Scottsdale, AZ; Rebecca S. Heist, Massachusetts General Hospital Cancer Center, Boston, MA; Daniel Morgensztern, Washington University School of Medicine, St. Louis, MO; Eric Angevin, Gustave Roussy, Villejuif,
| | - John Nemunaitis
- John H. Strickler, Duke University Medical Center, Durham, NC; Colin D. Weekes, University of Colorado, Aurora, CO; John Nemunaitis, Mary Crowley Cancer Research Center, Dallas, TX; Ramesh K. Ramanathan, Virginia Piper Cancer Center at Honor Health/Translational Genomics Research Institute, Scottsdale, AZ; Rebecca S. Heist, Massachusetts General Hospital Cancer Center, Boston, MA; Daniel Morgensztern, Washington University School of Medicine, St. Louis, MO; Eric Angevin, Gustave Roussy, Villejuif,
| | - Ramesh K. Ramanathan
- John H. Strickler, Duke University Medical Center, Durham, NC; Colin D. Weekes, University of Colorado, Aurora, CO; John Nemunaitis, Mary Crowley Cancer Research Center, Dallas, TX; Ramesh K. Ramanathan, Virginia Piper Cancer Center at Honor Health/Translational Genomics Research Institute, Scottsdale, AZ; Rebecca S. Heist, Massachusetts General Hospital Cancer Center, Boston, MA; Daniel Morgensztern, Washington University School of Medicine, St. Louis, MO; Eric Angevin, Gustave Roussy, Villejuif,
| | - Rebecca S. Heist
- John H. Strickler, Duke University Medical Center, Durham, NC; Colin D. Weekes, University of Colorado, Aurora, CO; John Nemunaitis, Mary Crowley Cancer Research Center, Dallas, TX; Ramesh K. Ramanathan, Virginia Piper Cancer Center at Honor Health/Translational Genomics Research Institute, Scottsdale, AZ; Rebecca S. Heist, Massachusetts General Hospital Cancer Center, Boston, MA; Daniel Morgensztern, Washington University School of Medicine, St. Louis, MO; Eric Angevin, Gustave Roussy, Villejuif,
| | - Daniel Morgensztern
- John H. Strickler, Duke University Medical Center, Durham, NC; Colin D. Weekes, University of Colorado, Aurora, CO; John Nemunaitis, Mary Crowley Cancer Research Center, Dallas, TX; Ramesh K. Ramanathan, Virginia Piper Cancer Center at Honor Health/Translational Genomics Research Institute, Scottsdale, AZ; Rebecca S. Heist, Massachusetts General Hospital Cancer Center, Boston, MA; Daniel Morgensztern, Washington University School of Medicine, St. Louis, MO; Eric Angevin, Gustave Roussy, Villejuif,
| | - Eric Angevin
- John H. Strickler, Duke University Medical Center, Durham, NC; Colin D. Weekes, University of Colorado, Aurora, CO; John Nemunaitis, Mary Crowley Cancer Research Center, Dallas, TX; Ramesh K. Ramanathan, Virginia Piper Cancer Center at Honor Health/Translational Genomics Research Institute, Scottsdale, AZ; Rebecca S. Heist, Massachusetts General Hospital Cancer Center, Boston, MA; Daniel Morgensztern, Washington University School of Medicine, St. Louis, MO; Eric Angevin, Gustave Roussy, Villejuif,
| | - Todd M. Bauer
- John H. Strickler, Duke University Medical Center, Durham, NC; Colin D. Weekes, University of Colorado, Aurora, CO; John Nemunaitis, Mary Crowley Cancer Research Center, Dallas, TX; Ramesh K. Ramanathan, Virginia Piper Cancer Center at Honor Health/Translational Genomics Research Institute, Scottsdale, AZ; Rebecca S. Heist, Massachusetts General Hospital Cancer Center, Boston, MA; Daniel Morgensztern, Washington University School of Medicine, St. Louis, MO; Eric Angevin, Gustave Roussy, Villejuif,
| | - Huibin Yue
- John H. Strickler, Duke University Medical Center, Durham, NC; Colin D. Weekes, University of Colorado, Aurora, CO; John Nemunaitis, Mary Crowley Cancer Research Center, Dallas, TX; Ramesh K. Ramanathan, Virginia Piper Cancer Center at Honor Health/Translational Genomics Research Institute, Scottsdale, AZ; Rebecca S. Heist, Massachusetts General Hospital Cancer Center, Boston, MA; Daniel Morgensztern, Washington University School of Medicine, St. Louis, MO; Eric Angevin, Gustave Roussy, Villejuif,
| | - Monica Motwani
- John H. Strickler, Duke University Medical Center, Durham, NC; Colin D. Weekes, University of Colorado, Aurora, CO; John Nemunaitis, Mary Crowley Cancer Research Center, Dallas, TX; Ramesh K. Ramanathan, Virginia Piper Cancer Center at Honor Health/Translational Genomics Research Institute, Scottsdale, AZ; Rebecca S. Heist, Massachusetts General Hospital Cancer Center, Boston, MA; Daniel Morgensztern, Washington University School of Medicine, St. Louis, MO; Eric Angevin, Gustave Roussy, Villejuif,
| | - Apurvasena Parikh
- John H. Strickler, Duke University Medical Center, Durham, NC; Colin D. Weekes, University of Colorado, Aurora, CO; John Nemunaitis, Mary Crowley Cancer Research Center, Dallas, TX; Ramesh K. Ramanathan, Virginia Piper Cancer Center at Honor Health/Translational Genomics Research Institute, Scottsdale, AZ; Rebecca S. Heist, Massachusetts General Hospital Cancer Center, Boston, MA; Daniel Morgensztern, Washington University School of Medicine, St. Louis, MO; Eric Angevin, Gustave Roussy, Villejuif,
| | - Edward B. Reilly
- John H. Strickler, Duke University Medical Center, Durham, NC; Colin D. Weekes, University of Colorado, Aurora, CO; John Nemunaitis, Mary Crowley Cancer Research Center, Dallas, TX; Ramesh K. Ramanathan, Virginia Piper Cancer Center at Honor Health/Translational Genomics Research Institute, Scottsdale, AZ; Rebecca S. Heist, Massachusetts General Hospital Cancer Center, Boston, MA; Daniel Morgensztern, Washington University School of Medicine, St. Louis, MO; Eric Angevin, Gustave Roussy, Villejuif,
| | - Daniel Afar
- John H. Strickler, Duke University Medical Center, Durham, NC; Colin D. Weekes, University of Colorado, Aurora, CO; John Nemunaitis, Mary Crowley Cancer Research Center, Dallas, TX; Ramesh K. Ramanathan, Virginia Piper Cancer Center at Honor Health/Translational Genomics Research Institute, Scottsdale, AZ; Rebecca S. Heist, Massachusetts General Hospital Cancer Center, Boston, MA; Daniel Morgensztern, Washington University School of Medicine, St. Louis, MO; Eric Angevin, Gustave Roussy, Villejuif,
| | - Louie Naumovski
- John H. Strickler, Duke University Medical Center, Durham, NC; Colin D. Weekes, University of Colorado, Aurora, CO; John Nemunaitis, Mary Crowley Cancer Research Center, Dallas, TX; Ramesh K. Ramanathan, Virginia Piper Cancer Center at Honor Health/Translational Genomics Research Institute, Scottsdale, AZ; Rebecca S. Heist, Massachusetts General Hospital Cancer Center, Boston, MA; Daniel Morgensztern, Washington University School of Medicine, St. Louis, MO; Eric Angevin, Gustave Roussy, Villejuif,
| | - Karen Kelly
- John H. Strickler, Duke University Medical Center, Durham, NC; Colin D. Weekes, University of Colorado, Aurora, CO; John Nemunaitis, Mary Crowley Cancer Research Center, Dallas, TX; Ramesh K. Ramanathan, Virginia Piper Cancer Center at Honor Health/Translational Genomics Research Institute, Scottsdale, AZ; Rebecca S. Heist, Massachusetts General Hospital Cancer Center, Boston, MA; Daniel Morgensztern, Washington University School of Medicine, St. Louis, MO; Eric Angevin, Gustave Roussy, Villejuif,
| |
Collapse
|
409
|
Abstract
Non-small cell lung carcinoma (NSCLC) accounts for significant morbidity and mortality worldwide, with most patients diagnosed at advanced stages and managed increasingly with targeted therapies and immunotherapy. In this review, we discuss diagnostic and predictive immunohistochemical markers in NSCLC, one of the most common tumors encountered in surgical pathology. We highlight 2 emerging diagnostic markers: nuclear protein in testis (NUT) for NUT carcinoma; SMARCA4 for SMARCA4-deficient thoracic tumors. Given their highly aggressive behavior, proper recognition facilitates optimal management. For patients with advanced NSCLCs, we discuss the utility and limitations of immunohistochemistry (IHC) for the "must-test" predictive biomarkers: anaplastic lymphoma kinase, ROS1, programmed cell death protein 1, and epidermal growth factor receptor. IHC using mutant-specific BRAF V600E, RET, pan-TRK, and LKB1 antibodies can be orthogonal tools for screening or confirmation of molecular events. ERBB2 and MET alterations include both activating mutations and gene amplifications, detection of which relies on molecular methods with a minimal role for IHC in NSCLC. IHC sits at the intersection of an integrated surgical pathology and molecular diagnostic practice, serves as a powerful functional surrogate for molecular testing, and is an indispensable tool of precision medicine in the care of lung cancer patients.
Collapse
|
410
|
Suzawa K, Offin M, Lu D, Kurzatkowski C, Vojnic M, Smith RS, Sabari JK, Tai H, Mattar M, Khodos I, de Stanchina E, Rudin CM, Kris MG, Arcila ME, Lockwood WW, Drilon A, Ladanyi M, Somwar R. Activation of KRAS Mediates Resistance to Targeted Therapy in MET Exon 14-mutant Non-small Cell Lung Cancer. Clin Cancer Res 2018; 25:1248-1260. [PMID: 30352902 DOI: 10.1158/1078-0432.ccr-18-1640] [Citation(s) in RCA: 95] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 08/25/2018] [Accepted: 10/18/2018] [Indexed: 02/06/2023]
Abstract
PURPOSE MET exon 14 splice site alterations that cause exon skipping at the mRNA level (METex14) are actionable oncogenic drivers amenable to therapy with MET tyrosine kinase inhibitors (TKI); however, secondary resistance eventually arises in most cases while other tumors display primary resistance. Beyond relatively uncommon on-target MET kinase domain mutations, mechanisms underlying primary and acquired resistance remain unclear. EXPERIMENTAL DESIGN We examined clinical and genomic data from 113 patients with lung cancer with METex14. MET TKI resistance due to KRAS mutation was functionally evaluated using in vivo and in vitro models. RESULTS Five of 113 patients (4.4%) with METex14 had concurrent KRAS G12 mutations, a rate of KRAS cooccurrence significantly higher than in other major driver-defined lung cancer subsets. In one patient, the KRAS mutation was acquired post-crizotinib, while the remaining 4 METex14 patients harbored the KRAS mutation prior to MET TKI therapy. Gene set enrichment analysis of transcriptomic data from lung cancers with METex14 revealed preferential activation of the KRAS pathway. Moreover, expression of oncogenic KRAS enhanced MET expression. Using isogenic and patient-derived models, we show that KRAS mutation results in constitutive activation of RAS/ERK signaling and resistance to MET inhibition. Dual inhibition of MET or EGFR/ERBB2 and MEK reduced growth of cell line and xenograft models. CONCLUSIONS KRAS mutation is a recurrent mechanism of primary and secondary resistance to MET TKIs in METex14 lung cancers. Dual inhibition of MET or EGFR/ERBB2 and MEK may represent a potential therapeutic approach in this molecular cohort.
Collapse
Affiliation(s)
- Ken Suzawa
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York.,Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Michael Offin
- Thoracic Oncology Service, Division of Solid Tumor Oncology, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Daniel Lu
- Integrative Oncology, British Columbia Cancer Center, Vancouver, British Columbia, Canada
| | | | - Morana Vojnic
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Roger S Smith
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Joshua K Sabari
- Thoracic Oncology Service, Division of Solid Tumor Oncology, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Huichun Tai
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Marissa Mattar
- Anti-tumor Core Facility, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Inna Khodos
- Anti-tumor Core Facility, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Elisa de Stanchina
- Anti-tumor Core Facility, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Charles M Rudin
- Thoracic Oncology Service, Division of Solid Tumor Oncology, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York.,Weill Cornell Medical College, New York, New York
| | - Mark G Kris
- Thoracic Oncology Service, Division of Solid Tumor Oncology, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York.,Weill Cornell Medical College, New York, New York
| | - Maria E Arcila
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - William W Lockwood
- Integrative Oncology, British Columbia Cancer Center, Vancouver, British Columbia, Canada
| | - Alexander Drilon
- Thoracic Oncology Service, Division of Solid Tumor Oncology, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York.
| | - Marc Ladanyi
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York. .,Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Romel Somwar
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York. .,Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York
| |
Collapse
|
411
|
Valentino F, Borra G, Allione P, Rossi L. Emerging targets in advanced non-small-cell lung cancer. Future Oncol 2018; 14:61-72. [PMID: 29989453 DOI: 10.2217/fon-2018-0099] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
New therapeutic options in non-small-cell lung cancer have been available through a great in-depth and genomic research, improving preclinical disease patterns and identifying the specific toxicity of target therapy. The multidisciplinary approach, increasingly practiced among clinicians, researchers, pharmaceutical companies and ethics committees has allowed the emergence of a new generation of translational clinical trials and the adoption of new technologies (e.g., point-of-care sequencing), then speeding up the development and trade of these new drugs. Consequently, there is a long list of therapeutic candidates that need to be efficiently evaluated early in the context of Phase I clinical trials. In this review, we discuss some of the key developments and novelties in the main histological groups.
Collapse
|
412
|
Yin L, Lu Y. [MET Exon 14 Skipping Mutations in Non-small Cell Lung Cancer]. ZHONGGUO FEI AI ZA ZHI = CHINESE JOURNAL OF LUNG CANCER 2018; 21:553-559. [PMID: 30037377 PMCID: PMC6058657 DOI: 10.3779/j.issn.1009-3419.2018.07.09] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
近年来,靶向治疗在非小细胞肺癌(non-small cell lung cancer, NSCLC)患者的治疗中取得了巨大成功。间质-上皮细胞转化因子(mesenchymal-epithelial transition factor, MET)被认为是继表皮生长因子受体(epidermal growth factor receptor, EGFR)、间变性淋巴瘤激酶(anaplastic lymphoma kinase, ALK)之后又一重要的NSCLC分子治疗靶点。MET 14外显子跳跃突变患者在一些临床试验及个案报道中显示出对MET抑制剂良好的疗效,提示MET 14外显子跳跃突变或可成为靶向治疗的良好指标,但这仍需大样本量的临床研究来证实。本文就MET 14外显子跳跃突变的分子机制、人群特征、治疗策略及耐药机制作一综述。
Collapse
Affiliation(s)
- Limei Yin
- Department of Thoracic Oncology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - You Lu
- Department of Thoracic Oncology, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
413
|
Mutational Landscape of Secondary Glioblastoma Guides MET-Targeted Trial in Brain Tumor. Cell 2018; 175:1665-1678.e18. [PMID: 30343896 DOI: 10.1016/j.cell.2018.09.038] [Citation(s) in RCA: 233] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 09/04/2018] [Accepted: 09/18/2018] [Indexed: 12/14/2022]
Abstract
Low-grade gliomas almost invariably progress into secondary glioblastoma (sGBM) with limited therapeutic option and poorly understood mechanism. By studying the mutational landscape of 188 sGBMs, we find significant enrichment of TP53 mutations, somatic hypermutation, MET-exon-14-skipping (METex14), PTPRZ1-MET (ZM) fusions, and MET amplification. Strikingly, METex14 frequently co-occurs with ZM fusion and is present in ∼14% of cases with significantly worse prognosis. Subsequent studies show that METex14 promotes glioma progression by prolonging MET activity. Furthermore, we describe a MET kinase inhibitor, PLB-1001, that demonstrates remarkable potency in selectively inhibiting MET-altered tumor cells in preclinical models. Importantly, this compound also shows blood-brain barrier permeability and is subsequently applied in a phase I clinical trial that enrolls MET-altered chemo-resistant glioma patients. Encouragingly, PLB-1001 achieves partial response in at least two advanced sGBM patients with rarely significant side effects, underscoring the clinical potential for precisely treating gliomas using this therapy.
Collapse
|
414
|
Kim EK, Kim KA, Lee CY, Kim S, Chang S, Cho BC, Shim HS. Molecular Diagnostic Assays and Clinicopathologic Implications of MET Exon 14 Skipping Mutation in Non-small-cell Lung Cancer. Clin Lung Cancer 2018; 20:e123-e132. [PMID: 30391211 DOI: 10.1016/j.cllc.2018.10.004] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 09/27/2018] [Accepted: 10/02/2018] [Indexed: 12/24/2022]
Abstract
BACKGROUND Recent studies revealed MET exon 14 skipping (METex14) as a biomarker that predicts the response to MET inhibitors in non-small-cell lung cancer (NSCLC). However, METex14 genomic alterations exhibit a highly diverse sequence composition, posing a challenge for clinical diagnostic testing. This study aimed to find a reasonable diagnostic assay for METex14 and identify its clinicopathologic implications. MATERIALS AND METHODS We performed a comprehensive analysis of METex14 in 414 EGFR/KRAS/ALK/ROS1-negative (quadruple negative) surgically resected NSCLCs. We used real-time quantitative reverse transcription polymerase chain reaction (qRT-PCR) and Sanger sequencing for the first assay, followed by next-generation sequencing (NGS; hybrid-capture targeted DNA/RNA sequencing). Clinicopathologic implications of the METex14 group were analyzed in a total of 880 NSCLCs. RESULTS METex14 was confirmed in 13 (3.1%) patients by DNA- and RNA-NGS. After comparison of assay results, qRT-PCR and NGS demonstrated the highest concordance rate. The mean variant allele frequency was 10.5% and 49% in DNA- and RNA-NGS, respectively. DNA-NGS revealed various lengths of indel and substitutions around and in exon 14. Moreover, METex14 was associated with adenocarcinoma (4.8%; 11/230) or sarcomatoid carcinoma (9.5%; 2/21), old age, never-smokers, and early stage of disease. CONCLUSIONS METex14 occurs in about 3% of NSCLCs and has characteristic clinicopathologic features. NGS should be the first assay of choice as a multiplex testing. Sanger sequencing can detect METex14, but sensitivity can be hampered by large deletions or low allele frequency. qRT-PCR, an mRNA-based method, is sensitive and specific and can be appropriate for screening METex14 as a single gene testing.
Collapse
Affiliation(s)
- Eun Kyung Kim
- Department of Pathology, National Health Insurance Service Ilsan Hospital, Goyang, Gyeonggi, Republic of Korea
| | - Kyung A Kim
- Department of Pathology, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Chang Young Lee
- Department of Cardiovascular and Thoracic Surgery, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Sangwoo Kim
- Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Sunhee Chang
- Department of Pathology, Ilsan Paik Hospital, Inje University, Goyang, Gyeonggi, Republic of Korea
| | - Byoung Chul Cho
- Division of Medical Oncology, Department of Internal Medicine, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Hyo Sup Shim
- Department of Pathology, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
415
|
Kim S, Kim TM, Kim DW, Kim S, Kim M, Ahn YO, Keam B, Heo DS. Acquired Resistance of MET-Amplified Non-small Cell Lung Cancer Cells to the MET Inhibitor Capmatinib. Cancer Res Treat 2018; 51:951-962. [PMID: 30309221 PMCID: PMC6639226 DOI: 10.4143/crt.2018.052] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Accepted: 10/05/2018] [Indexed: 12/29/2022] Open
Abstract
Purpose Amplified mesenchymal-epithelial transition factor, MET, is a receptor tyrosine kinase (RTK) that has been considered a druggable target in non-small cell lung cancer (NSCLC). Although multiple MET tyrosine kinase inhibitors (TKIs) are being actively developed for MET-driven NSCLC, the mechanisms of acquired resistance to MET-TKIs have not been well elucidated. To understand the mechanisms of resistance and establish therapeutic strategies, we developed an in vitro model using the MET-amplified NSCLC cell line EBC-1. Materials and Methods We established capmatinib-resistant NSCLC cell lines and identified alternative signaling pathways using 3′ mRNA sequencing and human phospho-RTK arrays. Copy number alterations were evaluated by quantitative polymerase chain reaction and cell proliferation assay; activation of RTKs and downstream effectors were compared between the parental cell line EBC-1 and the resistant cell lines. Results We found that EBC-CR1 showed an epidermal growth factor receptor (EGFR)‒dependent growth and sensitivity to afatinib, an irreversible EGFR TKI. EBC-CR2 cells that had overexpression of EGFR-MET heterodimer dramatically responded to combined capmatinib with afatinib. In addition, EBC-CR3 cells derived from EBC-CR1 cells that activated EGFR with amplified phosphoinositide-3 kinase catalytic subunit α (PIK3CA) were sensitive to combined afatinib with BYL719, a phosphoinositide 3-kinase α (PI3Kα) inhibitor. Conclusion Our in vitro studies suggested that activation of EGFR signaling and/or genetic alteration of downstream effectors like PIK3CA were alternative resistance mechanisms used by capmatinib-resistant NSCLC cell lines. In addition, combined treatments with MET, EGFR, and PI3Kα inhibitors may be effective therapeutic strategies in capmatinib-resistant NSCLC patients.
Collapse
Affiliation(s)
- Seulki Kim
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Tae Min Kim
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea.,Department of Internal Medicine, Seoul National University Hospital, Seoul, Korea
| | - Dong-Wan Kim
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea.,Department of Internal Medicine, Seoul National University Hospital, Seoul, Korea
| | - Soyeon Kim
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Miso Kim
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Yong-Oon Ahn
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Bhumsuk Keam
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea.,Department of Internal Medicine, Seoul National University Hospital, Seoul, Korea
| | - Dae Seog Heo
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea.,Department of Internal Medicine, Seoul National University Hospital, Seoul, Korea
| |
Collapse
|
416
|
Feng Y, Feng G, Lu X, Qian W, Ye J, Manrique CA, Ma C, Lu Y. Exploratory analysis of introducing next-generation sequencing-based method to treatment-naive lung cancer patients. J Thorac Dis 2018; 10:5904-5912. [PMID: 30505499 DOI: 10.21037/jtd.2018.09.108] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Background The utilization of cancer-linked genetic alterations for categorizing patients against optimal treatment is becoming increasingly popular, especially in non-small cell lung cancer (NSCLC). However, disadvantages of the conventional techniques, such as the low throughput and limited detectable alteration types, lead to the demand of large-scale parallel sequencing for different forms of genetic variants. Methods We evaluated the potential of performing next-generation sequencing (NGS)-based methods in a cohort of 61 treatment-naive NSCLC patients to profile their driver mutations, using a panel consisting of 8 well-established driver genes of lung cancer. Results Our data revealed that 80% of patients harbored driver mutations. Moreover, our data revealed a few rare mutations, such as BRAF K601E and EGFR exon 20 insertion, which cannot be detected using commercially available single gene testing kits of conventional methods. We detected one patient with dual driver mutations. Next, correlations between driver mutations and clinical characteristics were interrogated in this cohort. Our results revealed that EGFR alterations were positively correlated with early stage, adenocarcinoma, alveolar and papillary component, TTF1 expression, and negatively correlated with P40 and Ki67 expression. ERBB2 alterations were associated with younger age and micro-invasive feature of tumor. Rearrangements of ALK indicated tumor relapse. Conclusions Our study highlights the potential of NGS-based methods in treatment-naive patients, thus paving its way for routine clinical use. Investigation of clinical correlation of driver mutations might be helpful for clinicians in cancer diagnosis and has implications for seeking patients with specific gene alteration in clinical studies.
Collapse
Affiliation(s)
- Yufang Feng
- Department of Pathology, Zhangjiagang First Peoples Hospital, Suzhou 215000, China
| | - Gaohua Feng
- Department of Respiratory Medicine, Zhangjiagang Hospital of Traditional Chinese Medicine, Suzhou 215000, China
| | - Xiaoling Lu
- Department of Oncology, Zhangjiagang First Peoples Hospital, Suzhou 215000, China
| | - Wenxia Qian
- Department of Respiratory Medicine, Zhangjiagang First Peoples Hospital, Suzhou 215000, China
| | - Junyi Ye
- Burning Rock Biotech, Guangzhou 510000, China
| | - Carmen Areses Manrique
- Complexo Hospitalario Universitario de Ourense, Calle Ramon Puga Noguerol, Ourense, Spain
| | - Chunping Ma
- Department of Thoracic Surgery, Zhangjiagang First Peoples Hospital, Suzhou 215000, China
| | - Yadong Lu
- Department of Thoracic Surgery, Zhangjiagang First Peoples Hospital, Suzhou 215000, China
| | | |
Collapse
|
417
|
Planchard D, Popat S, Kerr K, Novello S, Smit EF, Faivre-Finn C, Mok TS, Reck M, Van Schil PE, Hellmann MD, Peters S. Metastatic non-small cell lung cancer: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol 2018; 29:iv192-iv237. [PMID: 30285222 DOI: 10.1093/annonc/mdy275] [Citation(s) in RCA: 1588] [Impact Index Per Article: 226.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Affiliation(s)
- D Planchard
- Department of Medical Oncology, Thoracic Group, Gustave-Roussy Villejuif, France
| | - S Popat
- Royal Marsden Hospital, London
| | - K Kerr
- Aberdeen Royal Infirmary, Aberdeen University Medical School, Aberdeen, UK
| | - S Novello
- Department of Oncology, University of Turin, San Luigi Hospital, Orbassano, Italy
| | - E F Smit
- Thoracic Oncology Service, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - C Faivre-Finn
- Division of Cancer Sciences, University of Manchester, Manchester, UK
| | - T S Mok
- Department of Clinical Oncology, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong, China
| | - M Reck
- LungenClinic Airway Research Center North (ARCN), German Center for Lung Research, Grosshansdorf, Germany
| | - P E Van Schil
- Department of Thoracic and Vascular Surgery, Antwerp University Hospital and Antwerp University, Antwerp, Belgium
| | | | - S Peters
- Medical Oncology, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| |
Collapse
|
418
|
Kauffmann-Guerrero D, Kahnert K, Kumbrink J, Syunyaeva Z, Tufman A, Huber RM. Successful Treatment of a Patient With NSCLC Harboring an EGFR Mutation and a Concomitant Met Exon 14 Skipping Mutation Combining Afatinib and Crizotinib. Clin Lung Cancer 2018; 20:59-62. [PMID: 30341016 DOI: 10.1016/j.cllc.2018.09.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 08/26/2018] [Accepted: 09/15/2018] [Indexed: 12/26/2022]
Affiliation(s)
- Diego Kauffmann-Guerrero
- Department of Internal Medicine V, University of Munich (LMU), Comprehensive Pneumology Center, Member of the German Center for Lung Research (DZL), Munich, Germany.
| | - Kathrin Kahnert
- Department of Internal Medicine V, University of Munich (LMU), Comprehensive Pneumology Center, Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Jörg Kumbrink
- Institute of Pathology, Medical Faculty, Ludwig-Maximilians-University, Munich, Germany; German Cancer Consortium (DKTK), German Cancer Research Center, Heidelberg, Germany
| | - Zulfiya Syunyaeva
- Department of Internal Medicine V, University of Munich (LMU), Comprehensive Pneumology Center, Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Amanda Tufman
- Department of Internal Medicine V, University of Munich (LMU), Comprehensive Pneumology Center, Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Rudolf M Huber
- Department of Internal Medicine V, University of Munich (LMU), Comprehensive Pneumology Center, Member of the German Center for Lung Research (DZL), Munich, Germany
| |
Collapse
|
419
|
Kou J, Musich PR, Staal B, Kang L, Qin Y, Yao ZQ, Zhang B, Wu W, Tam A, Huang A, Hao HX, Vande Woude GF, Xie Q. Differential responses of MET activations to MET kinase inhibitor and neutralizing antibody. J Transl Med 2018; 16:253. [PMID: 30208970 PMCID: PMC6134500 DOI: 10.1186/s12967-018-1628-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2018] [Accepted: 09/05/2018] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Aberrant MET tyrosine kinase signaling is known to cause cancer initiation and progression. While MET inhibitors are in clinical trials against several cancer types, the clinical efficacies are controversial and the molecular mechanisms toward sensitivity remain elusive. METHODS With the goal to investigate the molecular basis of MET amplification (METamp) and hepatocyte growth factor (HGF) autocrine-driven tumors in response to MET tyrosine kinase inhibitors (TKI) and neutralizing antibodies, we compared cancer cells harboring METamp (MKN45 and MHCCH97H) or HGF-autocrine (JHH5 and U87) for their sensitivity and downstream biological responses to a MET-TKI (INC280) and an anti-MET monoclonal antibody (MetMab) in vitro, and for tumor inhibition in vivo. RESULTS We find that cancer cells driven by METamp are more sensitive to INC280 than are those driven by HGF-autocrine activation. In METamp cells, INC280 induced a DNA damage response with activation of repair through the p53BP1/ATM signaling pathway. Although MetMab failed to inhibit METamp cell proliferation and tumor growth, both INC280 and MetMab reduced HGF-autocrine tumor growth. In addition, we also show that HGF stimulation promoted human HUVEC cell tube formation via the Src pathway, which was inhibited by either INC280 or MetMab. These observations suggest that in HGF-autocrine tumors, the endothelial cells are the secondary targets MET inhibitors. CONCLUSIONS Our results demonstrate that METamp and HGF-autocrine activation favor different molecular mechanisms. While combining MET TKIs and ATM inhibitors may enhance the efficacy for treating tumors harboring METamp, a combined inhibition of MET and angiogenesis pathways may improve the therapeutic efficacy against HGF-autocrine tumors.
Collapse
Affiliation(s)
- Jianqun Kou
- Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, 37614, USA.,Center of Excellence for Inflammation, Infectious Disease and Immunity, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, 37614, USA
| | - Phillip R Musich
- Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, 37614, USA
| | - Ben Staal
- Center of Cell and Cancer Biology, Van Andel Research Institute, Grand Rapids, MI, 49503, USA
| | - Liang Kang
- Center of Cell and Cancer Biology, Van Andel Research Institute, Grand Rapids, MI, 49503, USA
| | - Yuan Qin
- Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, 37614, USA.,Center of Excellence for Inflammation, Infectious Disease and Immunity, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, 37614, USA
| | - Zhi Q Yao
- Center of Excellence for Inflammation, Infectious Disease and Immunity, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, 37614, USA.,Department of Internal Medicine, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, 37614, USA
| | - Boheng Zhang
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Weizhong Wu
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Angela Tam
- Novartis Institutes for BioMedical Research, Cambridge, MA, 02139, USA
| | - Alan Huang
- Novartis Institutes for BioMedical Research, Cambridge, MA, 02139, USA
| | - Huai-Xiang Hao
- Novartis Institutes for BioMedical Research, Cambridge, MA, 02139, USA
| | - George F Vande Woude
- Center of Cell and Cancer Biology, Van Andel Research Institute, Grand Rapids, MI, 49503, USA
| | - Qian Xie
- Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, 37614, USA. .,Center of Excellence for Inflammation, Infectious Disease and Immunity, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, 37614, USA.
| |
Collapse
|
420
|
Optimization of Routine Testing for MET Exon 14 Splice Site Mutations in NSCLC Patients. J Thorac Oncol 2018; 13:1873-1883. [PMID: 30195702 DOI: 10.1016/j.jtho.2018.08.2023] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 08/03/2018] [Accepted: 08/14/2018] [Indexed: 01/20/2023]
Abstract
INTRODUCTION Genomic alterations affecting splice sites of MNNG HOS transforming gene (MET) exon 14 were recently identified in NSCLC patients. Objective responses to MET tyrosine kinase inhibitors have been reported in these patients. Thus, detection of MET exon 14 splice site mutations represents a major challenge. So far, most of these alterations were found by full-exome sequencing or large capture-based next-generation sequencing (NGS) panels, which are not suitable for routine diagnosis. METHODS Aiming to provide a molecular testing method applicable in routine practice, we first developed a fragment-length analysis for detecting deletions in introns flanking MET exon 14. Second, we designed an optimized targeted NGS panel called CLAPv1, covering the MET exon 14 and flanking regions in addition to the main molecular targets usually covered in genomic testing. In patients with MET exon 14 mutations, MET gene amplification, gene copy number and MET receptor expression were also determined. RESULTS Among 1514 formalin-fixed paraffin-embedded NSCLC samples, nonoptimized NGS allowed detection of MET exon 14 mutations in only 0.3% of the patients, and fragment length analysis detected deletions in 1.1% of the patients. Combined, the optimized CLAPv1 panel and fragment-length analysis implemented for routine molecular testing revealed MET exon 14 alterations in 2.2% of 365 additional NSCLC patients. MET gene amplification or high gene copy number was observed in 6 of 30 patients (20%) harboring MET exon 14 mutations. CONCLUSIONS These results show that optimized targeted NGS and fragment-length analysis improve detection of MET alterations in routine practice.
Collapse
|
421
|
Baldacci S, Kherrouche Z, Descarpentries C, Wislez M, Dansin E, Furlan A, Tulasne D, Cortot AB. [MET exon 14 splicing sites mutations: A new therapeutic opportunity in lung cancer]. Rev Mal Respir 2018; 35:796-812. [PMID: 30174236 DOI: 10.1016/j.rmr.2018.01.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2017] [Accepted: 01/08/2018] [Indexed: 01/23/2023]
Abstract
The mutations leading to MET exon 14 skipping represent a new class of molecular alterations described in various cancers. These alterations are observed in 2 to 3 % of cases of non-small cell lung cancer (NSCLC). Several cases of NSCLC carrying such alterations and achieving objective response to MET tyrosine kinase inhibitorshave recently been published. This review summarizes the molecular mechanisms responsible for MET exon 14 skipping as well as the consequences of the loss of this exon on receptor activity. We also describe the clinical characteristics of patients with METΔ14 mutations. Finally, we address the issues related to the detection of these mutations in lung cancer, and the need to anticipate resistance to MET inhibitors.
Collapse
Affiliation(s)
- S Baldacci
- Université Lille, CNRS, UMR 8161-M3T, mécanismes de tumorigenèse et thérapies ciblées, Institut Pasteur de Lille, 59000 Lille, France; Service de pneumologie et oncologie thoracique, OncoLille, université de Lille, CHU de Lille, 59000 Lille, France
| | - Z Kherrouche
- Université Lille, CNRS, UMR 8161-M3T, mécanismes de tumorigenèse et thérapies ciblées, Institut Pasteur de Lille, 59000 Lille, France
| | - C Descarpentries
- Service de biochimie et biologie moléculaire, plateforme de biologie moléculaire des cancers, CHU de Lille, 59000 Lille, France
| | - M Wislez
- Service de pneumologie, hôpital Tenon, AP-HP, 75020 Paris , France
| | - E Dansin
- Département de cancérologie cervico-faciale & thoracique, CLCC Oscar Lambret, 59000 Lille, France
| | - A Furlan
- Université Lille, CNRS, UMR 8161-M3T, mécanismes de tumorigenèse et thérapies ciblées, Institut Pasteur de Lille, 59000 Lille, France; Équipe de biophotonique cellulaire fonctionnelle, université Lille, CNRS UMR 8523 PhLAM, 59000 Lille, France
| | - D Tulasne
- Université Lille, CNRS, UMR 8161-M3T, mécanismes de tumorigenèse et thérapies ciblées, Institut Pasteur de Lille, 59000 Lille, France
| | - A B Cortot
- Université Lille, CNRS, UMR 8161-M3T, mécanismes de tumorigenèse et thérapies ciblées, Institut Pasteur de Lille, 59000 Lille, France; Service de pneumologie et oncologie thoracique, OncoLille, université de Lille, CHU de Lille, 59000 Lille, France.
| |
Collapse
|
422
|
Wu YL, Zhang L, Kim DW, Liu X, Lee DH, Yang JCH, Ahn MJ, Vansteenkiste JF, Su WC, Felip E, Chia V, Glaser S, Pultar P, Zhao S, Peng B, Akimov M, Tan DSW. Phase Ib/II Study of Capmatinib (INC280) Plus Gefitinib After Failure of Epidermal Growth Factor Receptor (EGFR) Inhibitor Therapy in Patients With EGFR-Mutated, MET Factor-Dysregulated Non-Small-Cell Lung Cancer. J Clin Oncol 2018; 36:3101-3109. [PMID: 30156984 DOI: 10.1200/jco.2018.77.7326] [Citation(s) in RCA: 255] [Impact Index Per Article: 36.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
PURPOSE MET dysregulation occurs in up to 26% of non-small-cell lung cancers (NSCLCs) after epidermal growth factor receptor (EGFR)-tyrosine kinase inhibitor (TKI) treatment. Capmatinib (INC280) is a potent and selective MET inhibitor with preclinical activity in combination with gefitinib in EGFR-mutant, MET-amplified/overexpressing models of acquired EGFR-TKI resistance. This phase Ib/II study investigated the safety and efficacy of capmatinib plus gefitinib in patients with EGFR-mutated, MET-dysregulated (amplified/overexpressing) NSCLC who experienced disease progression while receiving EGFR-TKI treatment. METHODS Patients in phase Ib received capmatinib 100- to 800-mg capsules once per day or 200- to 600-mg capsules or tablets twice per day, plus gefitinib 250 mg once per day. Patients in phase II received the recommended phase II dose. The primary end point was the overall response rate (ORR) per Response Evaluation Criteria in Solid Tumors (RECIST) version 1.1. RESULTS Sixty-one patients were treated in phase Ib, and 100 were treated in phase II. The recommended phase II dose was capmatinib 400 mg twice per day plus gefitinib 250 mg once per day. Preliminary clinical activity was observed, with an ORR across phase Ib/II of 27%. Increased activity was seen in patients with high MET-amplified tumors, with a phase II ORR of 47% in patients with a MET gene copy number ≥ 6. Across phases Ib and II, the most common drug-related adverse events were nausea (28%), peripheral edema (22%), decreased appetite (21%), and rash (20%); the most common drug-related grade 3/4 adverse events were increased amylase and lipase levels (both 6%). No significant drug-drug interactions between capmatinib and gefitinib were evident. CONCLUSION This study, focused on a predominant EGFR-TKI resistance mechanism in patients with EGFR-mutated NSCLC, shows that the combination of capmatinib with gefitinib is a promising treatment for patients with EGFR-mutated, MET-dysregulated NSCLC, particularly MET-amplified disease.
Collapse
Affiliation(s)
- Yi-Long Wu
- Yi-Long Wu, Guangdong General Hospital and Guangdong Academy of Medical Sciences; Li Zhang, Sun Yat-sen University Cancer Center, Guangdong; Xiaoqing Liu, Affiliated Hospital of the Chinese Academy of Military Medical Sciences, Beijing; Sylvia Zhao and Bin Peng, Novartis Institutes for Biomedical Research, Shanghai, People's Republic of China; Dong-Wan Kim, Seoul National University Hospital; Dae Ho Lee, University of Ulsan College of Medicine; Myung-Ju Ahn, Samsung Medical Center, Seoul, Republic of Korea; James Chih-Hsin Yang, National Taiwan University Hospital, Taipei; Wu-Chou Su, National Cheng Kung University Hospital, Tainan, Taiwan; Johan F. Vansteenkiste, University Hospital KU Leuven, Leuven, Belgium; Enriqueta Felip, Vall d'Hebron University Hospital, Barcelona, Spain; Vincent Chia and Philippe Pultar, Novartis Pharmaceuticals, East Hanover, NJ; Sabine Glaser and Mikhail Akimov, Novartis Pharma AG, Basel, Switzerland; and Daniel S.W. Tan, National Cancer Centre Singapore, Singapore
| | - Li Zhang
- Yi-Long Wu, Guangdong General Hospital and Guangdong Academy of Medical Sciences; Li Zhang, Sun Yat-sen University Cancer Center, Guangdong; Xiaoqing Liu, Affiliated Hospital of the Chinese Academy of Military Medical Sciences, Beijing; Sylvia Zhao and Bin Peng, Novartis Institutes for Biomedical Research, Shanghai, People's Republic of China; Dong-Wan Kim, Seoul National University Hospital; Dae Ho Lee, University of Ulsan College of Medicine; Myung-Ju Ahn, Samsung Medical Center, Seoul, Republic of Korea; James Chih-Hsin Yang, National Taiwan University Hospital, Taipei; Wu-Chou Su, National Cheng Kung University Hospital, Tainan, Taiwan; Johan F. Vansteenkiste, University Hospital KU Leuven, Leuven, Belgium; Enriqueta Felip, Vall d'Hebron University Hospital, Barcelona, Spain; Vincent Chia and Philippe Pultar, Novartis Pharmaceuticals, East Hanover, NJ; Sabine Glaser and Mikhail Akimov, Novartis Pharma AG, Basel, Switzerland; and Daniel S.W. Tan, National Cancer Centre Singapore, Singapore
| | - Dong-Wan Kim
- Yi-Long Wu, Guangdong General Hospital and Guangdong Academy of Medical Sciences; Li Zhang, Sun Yat-sen University Cancer Center, Guangdong; Xiaoqing Liu, Affiliated Hospital of the Chinese Academy of Military Medical Sciences, Beijing; Sylvia Zhao and Bin Peng, Novartis Institutes for Biomedical Research, Shanghai, People's Republic of China; Dong-Wan Kim, Seoul National University Hospital; Dae Ho Lee, University of Ulsan College of Medicine; Myung-Ju Ahn, Samsung Medical Center, Seoul, Republic of Korea; James Chih-Hsin Yang, National Taiwan University Hospital, Taipei; Wu-Chou Su, National Cheng Kung University Hospital, Tainan, Taiwan; Johan F. Vansteenkiste, University Hospital KU Leuven, Leuven, Belgium; Enriqueta Felip, Vall d'Hebron University Hospital, Barcelona, Spain; Vincent Chia and Philippe Pultar, Novartis Pharmaceuticals, East Hanover, NJ; Sabine Glaser and Mikhail Akimov, Novartis Pharma AG, Basel, Switzerland; and Daniel S.W. Tan, National Cancer Centre Singapore, Singapore
| | - Xiaoqing Liu
- Yi-Long Wu, Guangdong General Hospital and Guangdong Academy of Medical Sciences; Li Zhang, Sun Yat-sen University Cancer Center, Guangdong; Xiaoqing Liu, Affiliated Hospital of the Chinese Academy of Military Medical Sciences, Beijing; Sylvia Zhao and Bin Peng, Novartis Institutes for Biomedical Research, Shanghai, People's Republic of China; Dong-Wan Kim, Seoul National University Hospital; Dae Ho Lee, University of Ulsan College of Medicine; Myung-Ju Ahn, Samsung Medical Center, Seoul, Republic of Korea; James Chih-Hsin Yang, National Taiwan University Hospital, Taipei; Wu-Chou Su, National Cheng Kung University Hospital, Tainan, Taiwan; Johan F. Vansteenkiste, University Hospital KU Leuven, Leuven, Belgium; Enriqueta Felip, Vall d'Hebron University Hospital, Barcelona, Spain; Vincent Chia and Philippe Pultar, Novartis Pharmaceuticals, East Hanover, NJ; Sabine Glaser and Mikhail Akimov, Novartis Pharma AG, Basel, Switzerland; and Daniel S.W. Tan, National Cancer Centre Singapore, Singapore
| | - Dae Ho Lee
- Yi-Long Wu, Guangdong General Hospital and Guangdong Academy of Medical Sciences; Li Zhang, Sun Yat-sen University Cancer Center, Guangdong; Xiaoqing Liu, Affiliated Hospital of the Chinese Academy of Military Medical Sciences, Beijing; Sylvia Zhao and Bin Peng, Novartis Institutes for Biomedical Research, Shanghai, People's Republic of China; Dong-Wan Kim, Seoul National University Hospital; Dae Ho Lee, University of Ulsan College of Medicine; Myung-Ju Ahn, Samsung Medical Center, Seoul, Republic of Korea; James Chih-Hsin Yang, National Taiwan University Hospital, Taipei; Wu-Chou Su, National Cheng Kung University Hospital, Tainan, Taiwan; Johan F. Vansteenkiste, University Hospital KU Leuven, Leuven, Belgium; Enriqueta Felip, Vall d'Hebron University Hospital, Barcelona, Spain; Vincent Chia and Philippe Pultar, Novartis Pharmaceuticals, East Hanover, NJ; Sabine Glaser and Mikhail Akimov, Novartis Pharma AG, Basel, Switzerland; and Daniel S.W. Tan, National Cancer Centre Singapore, Singapore
| | - James Chih-Hsin Yang
- Yi-Long Wu, Guangdong General Hospital and Guangdong Academy of Medical Sciences; Li Zhang, Sun Yat-sen University Cancer Center, Guangdong; Xiaoqing Liu, Affiliated Hospital of the Chinese Academy of Military Medical Sciences, Beijing; Sylvia Zhao and Bin Peng, Novartis Institutes for Biomedical Research, Shanghai, People's Republic of China; Dong-Wan Kim, Seoul National University Hospital; Dae Ho Lee, University of Ulsan College of Medicine; Myung-Ju Ahn, Samsung Medical Center, Seoul, Republic of Korea; James Chih-Hsin Yang, National Taiwan University Hospital, Taipei; Wu-Chou Su, National Cheng Kung University Hospital, Tainan, Taiwan; Johan F. Vansteenkiste, University Hospital KU Leuven, Leuven, Belgium; Enriqueta Felip, Vall d'Hebron University Hospital, Barcelona, Spain; Vincent Chia and Philippe Pultar, Novartis Pharmaceuticals, East Hanover, NJ; Sabine Glaser and Mikhail Akimov, Novartis Pharma AG, Basel, Switzerland; and Daniel S.W. Tan, National Cancer Centre Singapore, Singapore
| | - Myung-Ju Ahn
- Yi-Long Wu, Guangdong General Hospital and Guangdong Academy of Medical Sciences; Li Zhang, Sun Yat-sen University Cancer Center, Guangdong; Xiaoqing Liu, Affiliated Hospital of the Chinese Academy of Military Medical Sciences, Beijing; Sylvia Zhao and Bin Peng, Novartis Institutes for Biomedical Research, Shanghai, People's Republic of China; Dong-Wan Kim, Seoul National University Hospital; Dae Ho Lee, University of Ulsan College of Medicine; Myung-Ju Ahn, Samsung Medical Center, Seoul, Republic of Korea; James Chih-Hsin Yang, National Taiwan University Hospital, Taipei; Wu-Chou Su, National Cheng Kung University Hospital, Tainan, Taiwan; Johan F. Vansteenkiste, University Hospital KU Leuven, Leuven, Belgium; Enriqueta Felip, Vall d'Hebron University Hospital, Barcelona, Spain; Vincent Chia and Philippe Pultar, Novartis Pharmaceuticals, East Hanover, NJ; Sabine Glaser and Mikhail Akimov, Novartis Pharma AG, Basel, Switzerland; and Daniel S.W. Tan, National Cancer Centre Singapore, Singapore
| | - Johan F Vansteenkiste
- Yi-Long Wu, Guangdong General Hospital and Guangdong Academy of Medical Sciences; Li Zhang, Sun Yat-sen University Cancer Center, Guangdong; Xiaoqing Liu, Affiliated Hospital of the Chinese Academy of Military Medical Sciences, Beijing; Sylvia Zhao and Bin Peng, Novartis Institutes for Biomedical Research, Shanghai, People's Republic of China; Dong-Wan Kim, Seoul National University Hospital; Dae Ho Lee, University of Ulsan College of Medicine; Myung-Ju Ahn, Samsung Medical Center, Seoul, Republic of Korea; James Chih-Hsin Yang, National Taiwan University Hospital, Taipei; Wu-Chou Su, National Cheng Kung University Hospital, Tainan, Taiwan; Johan F. Vansteenkiste, University Hospital KU Leuven, Leuven, Belgium; Enriqueta Felip, Vall d'Hebron University Hospital, Barcelona, Spain; Vincent Chia and Philippe Pultar, Novartis Pharmaceuticals, East Hanover, NJ; Sabine Glaser and Mikhail Akimov, Novartis Pharma AG, Basel, Switzerland; and Daniel S.W. Tan, National Cancer Centre Singapore, Singapore
| | - Wu-Chou Su
- Yi-Long Wu, Guangdong General Hospital and Guangdong Academy of Medical Sciences; Li Zhang, Sun Yat-sen University Cancer Center, Guangdong; Xiaoqing Liu, Affiliated Hospital of the Chinese Academy of Military Medical Sciences, Beijing; Sylvia Zhao and Bin Peng, Novartis Institutes for Biomedical Research, Shanghai, People's Republic of China; Dong-Wan Kim, Seoul National University Hospital; Dae Ho Lee, University of Ulsan College of Medicine; Myung-Ju Ahn, Samsung Medical Center, Seoul, Republic of Korea; James Chih-Hsin Yang, National Taiwan University Hospital, Taipei; Wu-Chou Su, National Cheng Kung University Hospital, Tainan, Taiwan; Johan F. Vansteenkiste, University Hospital KU Leuven, Leuven, Belgium; Enriqueta Felip, Vall d'Hebron University Hospital, Barcelona, Spain; Vincent Chia and Philippe Pultar, Novartis Pharmaceuticals, East Hanover, NJ; Sabine Glaser and Mikhail Akimov, Novartis Pharma AG, Basel, Switzerland; and Daniel S.W. Tan, National Cancer Centre Singapore, Singapore
| | - Enriqueta Felip
- Yi-Long Wu, Guangdong General Hospital and Guangdong Academy of Medical Sciences; Li Zhang, Sun Yat-sen University Cancer Center, Guangdong; Xiaoqing Liu, Affiliated Hospital of the Chinese Academy of Military Medical Sciences, Beijing; Sylvia Zhao and Bin Peng, Novartis Institutes for Biomedical Research, Shanghai, People's Republic of China; Dong-Wan Kim, Seoul National University Hospital; Dae Ho Lee, University of Ulsan College of Medicine; Myung-Ju Ahn, Samsung Medical Center, Seoul, Republic of Korea; James Chih-Hsin Yang, National Taiwan University Hospital, Taipei; Wu-Chou Su, National Cheng Kung University Hospital, Tainan, Taiwan; Johan F. Vansteenkiste, University Hospital KU Leuven, Leuven, Belgium; Enriqueta Felip, Vall d'Hebron University Hospital, Barcelona, Spain; Vincent Chia and Philippe Pultar, Novartis Pharmaceuticals, East Hanover, NJ; Sabine Glaser and Mikhail Akimov, Novartis Pharma AG, Basel, Switzerland; and Daniel S.W. Tan, National Cancer Centre Singapore, Singapore
| | - Vincent Chia
- Yi-Long Wu, Guangdong General Hospital and Guangdong Academy of Medical Sciences; Li Zhang, Sun Yat-sen University Cancer Center, Guangdong; Xiaoqing Liu, Affiliated Hospital of the Chinese Academy of Military Medical Sciences, Beijing; Sylvia Zhao and Bin Peng, Novartis Institutes for Biomedical Research, Shanghai, People's Republic of China; Dong-Wan Kim, Seoul National University Hospital; Dae Ho Lee, University of Ulsan College of Medicine; Myung-Ju Ahn, Samsung Medical Center, Seoul, Republic of Korea; James Chih-Hsin Yang, National Taiwan University Hospital, Taipei; Wu-Chou Su, National Cheng Kung University Hospital, Tainan, Taiwan; Johan F. Vansteenkiste, University Hospital KU Leuven, Leuven, Belgium; Enriqueta Felip, Vall d'Hebron University Hospital, Barcelona, Spain; Vincent Chia and Philippe Pultar, Novartis Pharmaceuticals, East Hanover, NJ; Sabine Glaser and Mikhail Akimov, Novartis Pharma AG, Basel, Switzerland; and Daniel S.W. Tan, National Cancer Centre Singapore, Singapore
| | - Sabine Glaser
- Yi-Long Wu, Guangdong General Hospital and Guangdong Academy of Medical Sciences; Li Zhang, Sun Yat-sen University Cancer Center, Guangdong; Xiaoqing Liu, Affiliated Hospital of the Chinese Academy of Military Medical Sciences, Beijing; Sylvia Zhao and Bin Peng, Novartis Institutes for Biomedical Research, Shanghai, People's Republic of China; Dong-Wan Kim, Seoul National University Hospital; Dae Ho Lee, University of Ulsan College of Medicine; Myung-Ju Ahn, Samsung Medical Center, Seoul, Republic of Korea; James Chih-Hsin Yang, National Taiwan University Hospital, Taipei; Wu-Chou Su, National Cheng Kung University Hospital, Tainan, Taiwan; Johan F. Vansteenkiste, University Hospital KU Leuven, Leuven, Belgium; Enriqueta Felip, Vall d'Hebron University Hospital, Barcelona, Spain; Vincent Chia and Philippe Pultar, Novartis Pharmaceuticals, East Hanover, NJ; Sabine Glaser and Mikhail Akimov, Novartis Pharma AG, Basel, Switzerland; and Daniel S.W. Tan, National Cancer Centre Singapore, Singapore
| | - Philippe Pultar
- Yi-Long Wu, Guangdong General Hospital and Guangdong Academy of Medical Sciences; Li Zhang, Sun Yat-sen University Cancer Center, Guangdong; Xiaoqing Liu, Affiliated Hospital of the Chinese Academy of Military Medical Sciences, Beijing; Sylvia Zhao and Bin Peng, Novartis Institutes for Biomedical Research, Shanghai, People's Republic of China; Dong-Wan Kim, Seoul National University Hospital; Dae Ho Lee, University of Ulsan College of Medicine; Myung-Ju Ahn, Samsung Medical Center, Seoul, Republic of Korea; James Chih-Hsin Yang, National Taiwan University Hospital, Taipei; Wu-Chou Su, National Cheng Kung University Hospital, Tainan, Taiwan; Johan F. Vansteenkiste, University Hospital KU Leuven, Leuven, Belgium; Enriqueta Felip, Vall d'Hebron University Hospital, Barcelona, Spain; Vincent Chia and Philippe Pultar, Novartis Pharmaceuticals, East Hanover, NJ; Sabine Glaser and Mikhail Akimov, Novartis Pharma AG, Basel, Switzerland; and Daniel S.W. Tan, National Cancer Centre Singapore, Singapore
| | - Sylvia Zhao
- Yi-Long Wu, Guangdong General Hospital and Guangdong Academy of Medical Sciences; Li Zhang, Sun Yat-sen University Cancer Center, Guangdong; Xiaoqing Liu, Affiliated Hospital of the Chinese Academy of Military Medical Sciences, Beijing; Sylvia Zhao and Bin Peng, Novartis Institutes for Biomedical Research, Shanghai, People's Republic of China; Dong-Wan Kim, Seoul National University Hospital; Dae Ho Lee, University of Ulsan College of Medicine; Myung-Ju Ahn, Samsung Medical Center, Seoul, Republic of Korea; James Chih-Hsin Yang, National Taiwan University Hospital, Taipei; Wu-Chou Su, National Cheng Kung University Hospital, Tainan, Taiwan; Johan F. Vansteenkiste, University Hospital KU Leuven, Leuven, Belgium; Enriqueta Felip, Vall d'Hebron University Hospital, Barcelona, Spain; Vincent Chia and Philippe Pultar, Novartis Pharmaceuticals, East Hanover, NJ; Sabine Glaser and Mikhail Akimov, Novartis Pharma AG, Basel, Switzerland; and Daniel S.W. Tan, National Cancer Centre Singapore, Singapore
| | - Bin Peng
- Yi-Long Wu, Guangdong General Hospital and Guangdong Academy of Medical Sciences; Li Zhang, Sun Yat-sen University Cancer Center, Guangdong; Xiaoqing Liu, Affiliated Hospital of the Chinese Academy of Military Medical Sciences, Beijing; Sylvia Zhao and Bin Peng, Novartis Institutes for Biomedical Research, Shanghai, People's Republic of China; Dong-Wan Kim, Seoul National University Hospital; Dae Ho Lee, University of Ulsan College of Medicine; Myung-Ju Ahn, Samsung Medical Center, Seoul, Republic of Korea; James Chih-Hsin Yang, National Taiwan University Hospital, Taipei; Wu-Chou Su, National Cheng Kung University Hospital, Tainan, Taiwan; Johan F. Vansteenkiste, University Hospital KU Leuven, Leuven, Belgium; Enriqueta Felip, Vall d'Hebron University Hospital, Barcelona, Spain; Vincent Chia and Philippe Pultar, Novartis Pharmaceuticals, East Hanover, NJ; Sabine Glaser and Mikhail Akimov, Novartis Pharma AG, Basel, Switzerland; and Daniel S.W. Tan, National Cancer Centre Singapore, Singapore
| | - Mikhail Akimov
- Yi-Long Wu, Guangdong General Hospital and Guangdong Academy of Medical Sciences; Li Zhang, Sun Yat-sen University Cancer Center, Guangdong; Xiaoqing Liu, Affiliated Hospital of the Chinese Academy of Military Medical Sciences, Beijing; Sylvia Zhao and Bin Peng, Novartis Institutes for Biomedical Research, Shanghai, People's Republic of China; Dong-Wan Kim, Seoul National University Hospital; Dae Ho Lee, University of Ulsan College of Medicine; Myung-Ju Ahn, Samsung Medical Center, Seoul, Republic of Korea; James Chih-Hsin Yang, National Taiwan University Hospital, Taipei; Wu-Chou Su, National Cheng Kung University Hospital, Tainan, Taiwan; Johan F. Vansteenkiste, University Hospital KU Leuven, Leuven, Belgium; Enriqueta Felip, Vall d'Hebron University Hospital, Barcelona, Spain; Vincent Chia and Philippe Pultar, Novartis Pharmaceuticals, East Hanover, NJ; Sabine Glaser and Mikhail Akimov, Novartis Pharma AG, Basel, Switzerland; and Daniel S.W. Tan, National Cancer Centre Singapore, Singapore
| | - Daniel S W Tan
- Yi-Long Wu, Guangdong General Hospital and Guangdong Academy of Medical Sciences; Li Zhang, Sun Yat-sen University Cancer Center, Guangdong; Xiaoqing Liu, Affiliated Hospital of the Chinese Academy of Military Medical Sciences, Beijing; Sylvia Zhao and Bin Peng, Novartis Institutes for Biomedical Research, Shanghai, People's Republic of China; Dong-Wan Kim, Seoul National University Hospital; Dae Ho Lee, University of Ulsan College of Medicine; Myung-Ju Ahn, Samsung Medical Center, Seoul, Republic of Korea; James Chih-Hsin Yang, National Taiwan University Hospital, Taipei; Wu-Chou Su, National Cheng Kung University Hospital, Tainan, Taiwan; Johan F. Vansteenkiste, University Hospital KU Leuven, Leuven, Belgium; Enriqueta Felip, Vall d'Hebron University Hospital, Barcelona, Spain; Vincent Chia and Philippe Pultar, Novartis Pharmaceuticals, East Hanover, NJ; Sabine Glaser and Mikhail Akimov, Novartis Pharma AG, Basel, Switzerland; and Daniel S.W. Tan, National Cancer Centre Singapore, Singapore
| |
Collapse
|
423
|
Mignard X, Ruppert AM, Antoine M, Vasseur J, Girard N, Mazières J, Moro-Sibilot D, Fallet V, Rabbe N, Thivolet-Bejui F, Rouquette I, Lantuejoul S, Cortot A, Saffroy R, Cadranel J, Lemoine A, Wislez M. c-MET Overexpression as a Poor Predictor of MET Amplifications or Exon 14 Mutations in Lung Sarcomatoid Carcinomas. J Thorac Oncol 2018; 13:1962-1967. [PMID: 30149144 DOI: 10.1016/j.jtho.2018.08.008] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 07/01/2018] [Accepted: 08/10/2018] [Indexed: 10/28/2022]
Abstract
INTRODUCTION MNNG HOS transforming gene (MET) abnormalities such as amplification and exon 14 mutations may be responsive to targeted therapies. They are prevalent in lung sarcomatoid carcinomas (LSCs) and must be diagnosed as efficiently as possible. Hypothetically, c-MET overexpression by immunohistochemistry (IHC) may prove effective as a screening test for MET abnormalities. METHODS Tissue samples were obtained from consecutive patients with a resected LSC in four oncologic centers. IHC was performed using the SP44 antibody (Ventana, Tucson, Arizona) and evaluated using the MetMab score and H-score. Fluorescence in situ hybridization was applied with the dual color probe set from Zytovision (Clinisciences, Nanterre, France). True MET amplification was diagnosed when MET gene copy number was 5 or greater and the ratio between MET gene copy number and chromosome 7 number was greater than 2. All MET exon 14 alterations including those affecting splice sites occurring within splice donor and acceptor sites were detected in the routine molecular testing on genetic platforms. RESULTS A total of 81 LSCs were included. Fourteen (17%) exhibited positive IHC using the MetMab score and 15 (18.5%) using the H-score. MET amplification was detected in six tumors (8.5%) and MET exon 14 mutation in five (6%). A weak positive correlation between IHC and fluorescence in situ hybridization was found (r = 0.27, p = 0.0001). IHC sensitivity for MET amplification was 50%, with a specificity of 83%, positive predictive value of 21.4%, and negative predictive value of 94.7%. IHC sensitivity for MET exon 14 mutations was 20%, with a specificity of 83%, positive predictive value of 7%, and negative predictive value of 94%. CONCLUSION IHC is not a relevant screening tool for MET abnormalities in LSC.
Collapse
Affiliation(s)
- Xavier Mignard
- Sorbonne University, GRC n°04, Theranoscan, F-75252, Paris, France
| | - Anne-Marie Ruppert
- Sorbonne University, GRC n°04, Theranoscan, F-75252, Paris, France; AP-HP, GH HUEP, Tenon Hospital, Chest Department and Thoracic Oncology, F-75970, Paris, France
| | - Martine Antoine
- Sorbonne University, GRC n°04, Theranoscan, F-75252, Paris, France; AP-HP, GH HUEP, Tenon Hospital, Cytology and Pathology Department, F-75970, Paris, France
| | - Julie Vasseur
- AP-HP, GH Paris-Sud, Paul Brousse Hospital, Department of Biochiemistry and Oncogenetics, Platform Oncomolpath/INCa, Villejuif, France
| | - Nicolas Girard
- Respiratory Medicine and Thoracic Oncology Service, Louis Pradel Hospital, Hospices Civils de Lyon, Lyon, France
| | | | | | - Vincent Fallet
- AP-HP, GH HUEP, Tenon Hospital, Chest Department and Thoracic Oncology, F-75970, Paris, France
| | - Nathalie Rabbe
- AP-HP, GH HUEP, Tenon Hospital, Chest Department and Thoracic Oncology, F-75970, Paris, France
| | | | - Isabelle Rouquette
- Toulouse Universitary Cancer Institute, IUCT-Oncopole, Pathology Department, Toulouse, France
| | - Sylvie Lantuejoul
- Biopathology Department, Léon Bérard Center, Unicancer Grenoble, France; Grenoble Alpes University, Grenoble, France
| | - Alexis Cortot
- CHU Lille, Thoracic Oncology Department, Univ. Lille, Siric ONCOLille, Lille, France
| | - Raphaël Saffroy
- AP-HP, GH Paris-Sud, Paul Brousse Hospital, Department of Biochiemistry and Oncogenetics, Platform Oncomolpath/INCa, Villejuif, France
| | - Jacques Cadranel
- Sorbonne University, GRC n°04, Theranoscan, F-75252, Paris, France; AP-HP, GH HUEP, Tenon Hospital, Chest Department and Thoracic Oncology, F-75970, Paris, France
| | - Antoinette Lemoine
- AP-HP, GH Paris-Sud, Paul Brousse Hospital, Department of Biochiemistry and Oncogenetics, Platform Oncomolpath/INCa, Villejuif, France
| | - Marie Wislez
- Sorbonne University, GRC n°04, Theranoscan, F-75252, Paris, France; AP-HP, GH HUEP, Tenon Hospital, Chest Department and Thoracic Oncology, F-75970, Paris, France.
| |
Collapse
|
424
|
Anderson CM, Laeremans A, Wang XMM, Wu X, Zhang B, Doolittle E, Kim J, Li N, Pimentel HXY, Park E, Ma XJ. Visualizing Genetic Variants, Short Targets, and Point Mutations in the Morphological Tissue Context with an RNA In Situ Hybridization Assay. J Vis Exp 2018. [PMID: 30176002 PMCID: PMC6126797 DOI: 10.3791/58097] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Because precision medicine is highly dependent on the accurate detection of biomarkers, there is an increasing need for standardized and robust technologies that measure RNA biomarkers in situ in clinical specimens. While grind-and-bind assays like RNAseq and quantitative RT-PCR enable highly sensitive gene expression measurements, they also require RNA extraction and thus prevent valuable expression analysis within the morphological tissue context. The in situ hybridization (ISH) assay described here can detect RNA target sequences as short as 50 nucleotides at single-nucleotide resolution and at the single-cell level. This assay is complementary to the previously developed commercial assay and enables sensitive and specific in situ detection of splice variants, short targets, and point mutations within the tissue. In this protocol, probes were designed to target unique exon junctions for two clinically important splice variants, EGFRvIII and METΔ14. The detection of short target sequences was demonstrated by the specific detection of CDR3 sequences of T-cell receptors α and β in the Jurkat T-cell line. Also shown is the utility of this ISH assay for the distinction of RNA target sequences at single-nucleotide resolution (point mutations) through the visualization of EGFR L858R and KRAS G12A single-nucleotide variations in cell lines using automated staining platforms. In summary, the protocol shows a specialized RNA ISH assay that enables the detection of splice variants, short sequences, and mutations in situ for manual performance and on automated stainers.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Na Li
- Advanced Cell Diagnostics, Inc
| | | | | | | |
Collapse
|
425
|
Kahles A, Lehmann KV, Toussaint NC, Hüser M, Stark SG, Sachsenberg T, Stegle O, Kohlbacher O, Sander C, Rätsch G. Comprehensive Analysis of Alternative Splicing Across Tumors from 8,705 Patients. Cancer Cell 2018; 34:211-224.e6. [PMID: 30078747 PMCID: PMC9844097 DOI: 10.1016/j.ccell.2018.07.001] [Citation(s) in RCA: 621] [Impact Index Per Article: 88.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Revised: 03/30/2018] [Accepted: 07/02/2018] [Indexed: 01/19/2023]
Abstract
Our comprehensive analysis of alternative splicing across 32 The Cancer Genome Atlas cancer types from 8,705 patients detects alternative splicing events and tumor variants by reanalyzing RNA and whole-exome sequencing data. Tumors have up to 30% more alternative splicing events than normal samples. Association analysis of somatic variants with alternative splicing events confirmed known trans associations with variants in SF3B1 and U2AF1 and identified additional trans-acting variants (e.g., TADA1, PPP2R1A). Many tumors have thousands of alternative splicing events not detectable in normal samples; on average, we identified ≈930 exon-exon junctions ("neojunctions") in tumors not typically found in GTEx normals. From Clinical Proteomic Tumor Analysis Consortium data available for breast and ovarian tumor samples, we confirmed ≈1.7 neojunction- and ≈0.6 single nucleotide variant-derived peptides per tumor sample that are also predicted major histocompatibility complex-I binders ("putative neoantigens").
Collapse
Affiliation(s)
- André Kahles
- ETH Zurich, Department of Computer Science, Zurich, Switzerland; Memorial Sloan Kettering Cancer Center, Computational Biology Department, New York, USA; University Hospital Zurich, Biomedical Informatics Research, Zurich, Switzerland; SIB Swiss Institute of Bioinformatics, Zurich, Switzerland
| | - Kjong-Van Lehmann
- ETH Zurich, Department of Computer Science, Zurich, Switzerland; Memorial Sloan Kettering Cancer Center, Computational Biology Department, New York, USA; University Hospital Zurich, Biomedical Informatics Research, Zurich, Switzerland; SIB Swiss Institute of Bioinformatics, Zurich, Switzerland
| | - Nora C Toussaint
- ETH Zurich, NEXUS Personalized Health Technologies, Zurich, Switzerland; SIB Swiss Institute of Bioinformatics, Zurich, Switzerland
| | - Matthias Hüser
- ETH Zurich, Department of Computer Science, Zurich, Switzerland; University Hospital Zurich, Biomedical Informatics Research, Zurich, Switzerland; SIB Swiss Institute of Bioinformatics, Zurich, Switzerland
| | - Stefan G Stark
- ETH Zurich, Department of Computer Science, Zurich, Switzerland; Memorial Sloan Kettering Cancer Center, Computational Biology Department, New York, USA; University Hospital Zurich, Biomedical Informatics Research, Zurich, Switzerland; SIB Swiss Institute of Bioinformatics, Zurich, Switzerland
| | - Timo Sachsenberg
- University of Tübingen, Department of Computer Science, Tübingen, Germany
| | - Oliver Stegle
- European Molecular Biology Laboratory, European Bioinformatics Institute, Hinxton, Cambridge, UK
| | - Oliver Kohlbacher
- University of Tübingen, Department of Computer Science, Tübingen, Germany; Center for Bioinformatics, University of Tübingen, Tübingen, Germany; Quantitative Biology Center, University of Tübingen, Tübingen, Germany; Biomolecular Interactions, Max Planck Institute for Developmental Biology, Tübingen, Germany; Institute for Translational Bioinformatics, University Medical Center, Tübingen, Germany
| | - Chris Sander
- Dana-Farber Cancer Institute, cBio Center, Department of Biostatistics and Computational Biology, Boston, MA, USA; Harvard Medical School, CompBio Collaboratory, Department of Cell Biology, Boston, USA
| | - Gunnar Rätsch
- ETH Zurich, Department of Computer Science, Zurich, Switzerland; Memorial Sloan Kettering Cancer Center, Computational Biology Department, New York, USA; University Hospital Zurich, Biomedical Informatics Research, Zurich, Switzerland; ETH Zurich, Department of Biology, Zurich, Switzerland; SIB Swiss Institute of Bioinformatics, Zurich, Switzerland.
| |
Collapse
|
426
|
Zhou F, Zhou C. Lung cancer in never smokers-the East Asian experience. Transl Lung Cancer Res 2018; 7:450-463. [PMID: 30225210 PMCID: PMC6131183 DOI: 10.21037/tlcr.2018.05.14] [Citation(s) in RCA: 121] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2018] [Accepted: 05/17/2018] [Indexed: 12/26/2022]
Abstract
Approximately one third of all lung cancer patients in East Asia are never-smokers. Furthermore, the proportion of lung cancer in never smokers (LCINS) has been increasing over time. Never-smokers are more often diagnosed with adenocarcinoma in East Asia, a subtype largely defined by oncogenic drivers. In this subgroup of patients, as high as 90% of patients have been found to harbor well-known oncogenic mutations and can be successfully managed with targeted therapies inhibiting specific oncogenic mutant kinases. EGFR tyrosine kinase inhibitor (EGFR-TKI) treatment has been the most important targeted therapy in lung adenocarcinoma from East Asian never-smokers as approximately 70% of these patients have the opportunity to receive EGFR-TKI treatment. Lung squamous cell carcinoma (SQCC) and small cell lung cancer (SCLC) are two common histologic types of smoking-related non-small cell lung cancer (NSCLC). The proportion of never-smokers with SQCC and SCLC in East Asian patients seems to be higher than that in Caucasian patients. Recent studies also suggest that lung SQCC and SCLC in never-smokers may be distinct subtypes. Therefore, better understanding of the biologic characteristics of these subtypes of patients may provide new insights for the treatment. In this review, we will provide an overview of East Asian experience in the treatment of advanced, never-smoking lung cancer, focusing on etiologic factors in the development of LCINS, targeted therapy for never-smokers with adenocarcinoma, distinct characteristics of never-smokers with lung SQCC and SCLC, and the role of immunotherapy in never-smokers with NSCLC.
Collapse
Affiliation(s)
- Fei Zhou
- Department of Oncology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China
| | - Caicun Zhou
- Department of Oncology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China
| |
Collapse
|
427
|
Gow CH, Liu YN, Li HY, Hsieh MS, Chang SH, Luo SC, Tsai TH, Chen PL, Tsai MF, Shih JY. Oncogenic Function of a KIF5B-MET Fusion Variant in Non-Small Cell Lung Cancer. Neoplasia 2018; 20:838-847. [PMID: 30015159 PMCID: PMC6068088 DOI: 10.1016/j.neo.2018.06.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 06/26/2018] [Accepted: 06/26/2018] [Indexed: 01/12/2023]
Abstract
A kinesin family member 5b (KIF5B)-MET proto-oncogene, receptor tyrosine kinase (MET) rearrangement was reported in patients with lung adenocarcinoma but its oncogenic function was not fully evaluated. We used one-step reverse transcription-polymerase chain reaction for RNA samples to screen for the KIF5B-MET fusion in 206 lung adenocarcinoma and 28 pulmonary sarcomatoid carcinoma patients. Genomic breakpoints of KIF5B-MET were determined by targeted next-generation sequencing. Soft agar colony formation assays, proliferation assays, and a xenograft mouse model were used to investigate its oncogenic activity. In addition, specific MET inhibitors were administered to evaluate their anti-tumor activities. A KIF5B-MET fusion variant in a patient with a mixed-type adenocarcinoma and sarcomatoid tumor was identified, and another case was found in a pulmonary sarcomatoid carcinoma patient. Both cases carried the same chimeric gene, a fusion between exons 1-24 of KIF5B and exons 15-21 of MET. KIF5B-MET-overexpressing cells exhibited significantly increased proliferation and colony-forming ability. Xenograft tumors harboring the fusion gene demonstrated significantly elevated tumor growth. Ectopic expression of the fusion gene stimulated the phosphorylation of KIF5B-MET as well as downstream STAT3, AKT, and ERK1/2 signaling pathways. The MET inhibitors significantly repressed cell proliferation; phosphorylation of downstream STAT3, AKT, and ERK1/2; and xenograft tumorigenicity. In conclusion, the KIF5B-MET variant was demonstrated to have an oncogenic function in cancer cells. These findings have immediate clinical implications for the targeted therapy of subgroups of non-small cell lung cancer patients.
Collapse
Key Words
- adc, adenocarcinoma
- alk, anaplastic lymphoma kinase
- ct, computed tomography
- hgf, hepatocyte growth factor
- ihc, immunohistochemical
- kif5b, kinesin family member 5b
- met, met proto-oncogene, receptor tyrosine kinase
- nsclc, non-small cell lung cancer
- ptk, protein tyrosine kinase
- ret, ret proto-oncogene
- tki, tyrosine kinase inhibitor
- ttf-1, thyroid transcription factor-1
Collapse
Affiliation(s)
- Chien-Hung Gow
- Department of Internal Medicine, Far Eastern Memorial Hospital, New Taipei City, Taiwan; Department of Internal Medicine, National Taiwan University Hospital and College of Medicine, National Taiwan University, Taipei, Taiwan; Department of Healthcare Information and Management, Ming-Chuan University, Taiwan.
| | - Yi-Nan Liu
- Department of Internal Medicine, National Taiwan University Hospital and College of Medicine, National Taiwan University, Taipei, Taiwan.
| | - Huei-Ying Li
- Medical Microbiota Center of the First Core Laboratory, National Taiwan University College of Medicine, Taipei, Taiwan.
| | - Min-Shu Hsieh
- Department of Pathology, National Taiwan University Hospital, Taipei, Taiwan.
| | - Shih-Han Chang
- Department of Internal Medicine, National Taiwan University Hospital and College of Medicine, National Taiwan University, Taipei, Taiwan.
| | - Sheng-Ching Luo
- Department of Internal Medicine, National Taiwan University Hospital and College of Medicine, National Taiwan University, Taipei, Taiwan.
| | - Tzu-Hsiu Tsai
- Department of Internal Medicine, National Taiwan University Hospital and College of Medicine, National Taiwan University, Taipei, Taiwan.
| | - Pei-Lung Chen
- Department of Internal Medicine, National Taiwan University Hospital and College of Medicine, National Taiwan University, Taipei, Taiwan; Graduate Institute of Medical Genomics and Proteomics, National Taiwan University Hospital, Taipei, Taiwan; Department of Medical Genetics, National Taiwan University Hospital, Taipei, Taiwan.
| | - Meng-Feng Tsai
- Department of Molecular Biotechnology, Da-Yeh University, Changhua, Taiwan.
| | - Jin-Yuan Shih
- Department of Internal Medicine, National Taiwan University Hospital and College of Medicine, National Taiwan University, Taipei, Taiwan; Graduate Institute of Clinical Medicine, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
428
|
Deep analysis of acquired resistance to FGFR1 inhibitor identifies MET and AKT activation and an expansion of AKT1 mutant cells. Oncotarget 2018; 9:31549-31558. [PMID: 30140389 PMCID: PMC6101141 DOI: 10.18632/oncotarget.25862] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 07/16/2018] [Indexed: 11/25/2022] Open
Abstract
The development of acquired resistance (AR) to tyrosine kinase inhibitors (TKIs) of FGFR1 activation is currently not well understood. To gain a deeper insight into this matter in lung cancer, we used the FGFR1-amplified DMS114 cell line and generated multiple clones with AR to an FGFR1-TKI. We molecularly scrutinized the resistant cells, using whole-exome sequencing, RNA sequencing and global DNA methylation analysis. Our results show a de novo activation of AKT and ERK, and a reactivation of mTOR. Furthermore, the resistant cells exhibited strong upregulation and activation of MET, indicating crosstalk between the FGFR1 and MET axes. The resistant cells also underwent a global decrease in promoter hypermethylation of the CpG islands. Finally, we observed clonal expansion of a pre-existing change in AKT1, leading to S266L substitution, within the kinase domain of AKT. Our results demonstrate that AR to FGFR1-TKI involves deep molecular changes that promote the activation of MET and AKT, coupled with common gene expression and DNA methylation profiles. The expansion of a substitution at AKT1 was the only shared genetic change, and this may have contributed to the AR.
Collapse
|
429
|
Vuong HG, Ho ATN, Altibi AMA, Nakazawa T, Katoh R, Kondo T. Clinicopathological implications of MET exon 14 mutations in non-small cell lung cancer - A systematic review and meta-analysis. Lung Cancer 2018; 123:76-82. [PMID: 30089599 DOI: 10.1016/j.lungcan.2018.07.006] [Citation(s) in RCA: 93] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 07/03/2018] [Accepted: 07/04/2018] [Indexed: 11/26/2022]
Abstract
MET exon 14 mutation is an uncommon genomic alteration in non-small cell lung cancer (NSCLC). This meta-analysis aimed at investigating the clinicopathological and prognostic features of NSCLCs with MET exon 14 mutation in comparison with other genetic events. We performed a search in four electronic databases including PubMed, Web of Science, Scopus, and Virtual Health Library from inception to February 2018. Relevant data were extracted and pooled into odds ratio (OR), mean differences (MD), and corresponding 95% confidence intervals (CI) using the random-effect model. From 168 studies, we included 12 studies comprising of 18,464 NSCLCs for final analyses. Overall, the prevalence of MET exon 14 mutation in NSCLC was 3% (95% CI = 2-3), with being most commonly found in pulmonary sarcomatoid carcinoma (13%; 95% CI = 4-21). The mutation was more likely to occur in females (OR = 0.55; 95% CI = 0.33 - 0.90), patients with advanced age (MD = 7.48; 95% CI = 3.99-10.98), non-smoker (OR = 0.48; 95% CI = 0.28 - 0.83), and was associated with a worse prognosis (HR = 1.82; 95% CI = 1.04-3.19). Patients with MET exon 14 mutation had a distinct clinicopathological profile compared to other NSCLC genetic events. To summarize, MET exon 14 is a rare mutation in NSCLC and might be associated with a dismal survival. Patients harboring MET exon 14 skipping are eligible for targeted therapy with c-MET inhibitors, thus emphasizing the need to screen for this mutation in advanced NSCLCs.
Collapse
Affiliation(s)
- Huy Gia Vuong
- Department of Pathology, University of Yamanashi, Chuo, Yamanashi, 409-3898, Japan
| | - An Thi Nhat Ho
- Department of Medicine, Medstar Harbor Hospital, Baltimore, MD, 21225, United States
| | - Ahmed M A Altibi
- Department of Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA, 15213, United States
| | - Tadao Nakazawa
- Department of Pathology, University of Yamanashi, Chuo, Yamanashi, 409-3898, Japan
| | - Ryohei Katoh
- Department of Pathology, University of Yamanashi, Chuo, Yamanashi, 409-3898, Japan
| | - Tetsuo Kondo
- Department of Pathology, University of Yamanashi, Chuo, Yamanashi, 409-3898, Japan.
| |
Collapse
|
430
|
Kohsaka S, Nagano M, Ueno T, Suehara Y, Hayashi T, Shimada N, Takahashi K, Suzuki K, Takamochi K, Takahashi F, Mano H. A method of high-throughput functional evaluation of EGFR gene variants of unknown significance in cancer. Sci Transl Med 2018; 9:9/416/eaan6566. [PMID: 29141884 DOI: 10.1126/scitranslmed.aan6566] [Citation(s) in RCA: 167] [Impact Index Per Article: 23.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Accepted: 10/15/2017] [Indexed: 12/12/2022]
Abstract
Numerous variants of unknown significance (VUS) have been identified through large-scale cancer genome projects, although their functional relevance remains uninvestigated. We developed a mixed-all-nominated-mutants-in-one (MANO) method to evaluate the transforming potential and drug sensitivity of oncogene VUS in a high-throughput manner and applied this method to 101 nonsynonymous epidermal growth factor receptor (EGFR) mutants. We discovered a number of mutations conferring resistance to EGFR tyrosine kinase inhibitors (TKIs), including gefitinib- and erlotinib-insensitive missense mutations within exon 19 and other gefitinib-resistant mutations, such as L833V, A839T, V851I, A871T, and G873E. L858R-positive tumors (12.8%) harbored compound mutations primarily in the cis allele, which decreased the gefitinib sensitivity of these tumors. The MANO method further revealed that some EGFR mutants that are highly resistant to all types of TKIs are sensitive to cetuximab. Thus, these data support the importance of examining the clinical relevance of uncommon mutations within EGFR and of evaluating the functions of such mutations in combination. This method may become a foundation for the in vitro and in vivo assessment of variants of cancer-related genes and help customize cancer therapy for individual patients.
Collapse
Affiliation(s)
- Shinji Kohsaka
- Department of Medical Genomics, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
| | - Masaaki Nagano
- Department of Cellular Signaling, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.,Department of Thoracic Surgery, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Toshihide Ueno
- Department of Cellular Signaling, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Yoshiyuki Suehara
- Department of Orthopedic Surgery, Graduate School of Medicine, Juntendo University, Bunkyo-ku, Tokyo 113-8431, Japan
| | - Takuo Hayashi
- Department of Human Pathology, Graduate School of Medicine, Juntendo University, Bunkyo-ku, Tokyo 113-8431, Japan
| | - Naoko Shimada
- Department of Respiratory Medicine, Graduate School of Medicine, Juntendo University, Bunkyo-ku, Tokyo 113-8431, Japan
| | - Kazuhisa Takahashi
- Department of Respiratory Medicine, Graduate School of Medicine, Juntendo University, Bunkyo-ku, Tokyo 113-8431, Japan
| | - Kenji Suzuki
- Department of General Thoracic Surgery, Graduate School of Medicine, Juntendo University, Bunkyo-ku, Tokyo 113-8431, Japan
| | - Kazuya Takamochi
- Department of General Thoracic Surgery, Graduate School of Medicine, Juntendo University, Bunkyo-ku, Tokyo 113-8431, Japan
| | - Fumiyuki Takahashi
- Department of Respiratory Medicine, Graduate School of Medicine, Juntendo University, Bunkyo-ku, Tokyo 113-8431, Japan
| | - Hiroyuki Mano
- Department of Cellular Signaling, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan. .,National Cancer Center Research Institute, Chuo-ku, Tokyo 104-0045, Japan
| |
Collapse
|
431
|
Qiu T, Li W, Zhang T, Xing P, Huang W, Wang B, Chu L, Guo L, Liu X, Li Y, Ying J, Li J. Distinct MET Protein Localization Associated With MET Exon 14 Mutation Types in Patients With Non-small-cell Lung Cancer. Clin Lung Cancer 2018; 19:e391-e398. [PMID: 29338938 DOI: 10.1016/j.cllc.2017.12.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 12/04/2017] [Accepted: 12/17/2017] [Indexed: 01/03/2023]
Abstract
BACKGROUND The MET gene has been recognized as a potential important therapeutic target in non-small-cell lung cancer (NSCLC). We sought to investigate the MET exon 14 mutations in a cohort of Chinese patients with NSCLC. METHODS We tested 461 NSCLCs for MET exon 14 mutations by sequencing whole exon 14 and its flanking introns. The protein expression was determined by immunohistochemical analysis. RESULTS In this study, we identified MET exon 14 mutations in 9 (2.0%) of 461 NSCLCs. Of these 9 mutations, 7 (77.8%) were located in the splice sites of MET exon 14, with MET overexpression in 6. One point mutation c.3010C>T (p.Arg1004Ter) was nonsense mutation with no MET expression. One insertion mutation was within exon 14 of MET with MET overexpression. MET protein localization in tumor cells with MET exon 14 mutations was different between mutation types. Three point mutations that disrupted the splice donor site of intron 14 were membranous staining, whereas the other mutations were cytoplasmic staining. Patients with MET exon 14 splice site mutations were significantly older. The incidence of MET exon 14 mutations in sarcomatoid carcinoma was significantly higher than in other histologic types (P = .034). CONCLUSION Distinct MET protein localization is associated with MET exon 14 mutation types in patients with NSCLC. Different MET exon 14 mutation types were identified in a subset of Chinese patients with NSCLC who could possibly benefit from MET targeted therapy.
Collapse
Affiliation(s)
- Tian Qiu
- Department of Pathology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Weihua Li
- Department of Pathology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Tongtong Zhang
- Department of Medical Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Puyuan Xing
- Department of Medical Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Wenting Huang
- Department of Pathology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Bingning Wang
- Department of Pathology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Lixia Chu
- Department of Pathology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Lei Guo
- Department of Pathology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiuyun Liu
- Department of Pathology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yan Li
- Department of Pathology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jianming Ying
- Department of Pathology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| | - Junling Li
- Department of Medical Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| |
Collapse
|
432
|
Wang SXY, Lei L, Guo HH, Shrager J, Kunder CA, Neal JW. Synchronous primary lung adenocarcinomas harboring distinct MET Exon 14 splice site mutations. Lung Cancer 2018; 122:187-191. [PMID: 30032829 DOI: 10.1016/j.lungcan.2018.06.019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 05/19/2018] [Accepted: 06/13/2018] [Indexed: 01/10/2023]
Abstract
When a patient is found to have multiple lung tumors, distinguishing whether they represent metastatic nodules or separate primary cancers is crucial for staging and therapy. We report the case of a 79-year-old patient with two surgically resected synchronous left upper lobe adenocarcinomas initially pathologically staged as T3 (IIB), indicating adjuvant chemotherapy should be recommended. However, the tumors appeared radiographically distinct, so next-generation sequencing was performed on each nodule. Each tumor harbored a different mesenchymal-to-epithelial transition (MET) exon 14 skipping mutation, an emerging targetable mutation, suggestive of distinct clonality. While the in frame protein deletion was the same in each tumor, the nucleotide base substitutions were different. Thus, the patient was down-staged to having two separate IA tumors, spared of adjuvant chemotherapy, and routine surveillance was recommended. This case highlights the utility of using molecular analysis in diagnosing and treating multifocal lung tumors, and the process of convergent molecular evolution toward a common oncogenic driver mutation. This is the first case of multiple synchronous lung tumors each harboring a distinct MET exon 14 splice site mutation.
Collapse
Affiliation(s)
- Samantha X Y Wang
- Department of Medicine, Division of Oncology, Stanford University School of Medicine, Stanford, CA, United States
| | - Li Lei
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, United States
| | - Haiwei H Guo
- Department of Radiology, Stanford University School of Medicine, Stanford, CA, United States
| | - Joseph Shrager
- Department of Cardiothoracic Surgery, Stanford University School of Medicine, Stanford, CA, United States
| | - Christian A Kunder
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, United States
| | - Joel W Neal
- Department of Medicine, Division of Oncology, Stanford University School of Medicine, Stanford, CA, United States.
| |
Collapse
|
433
|
Saigi M, Alburquerque-Bejar JJ, Mc Leer-Florin A, Pereira C, Pros E, Romero OA, Baixeras N, Esteve-Codina A, Nadal E, Brambilla E, Sanchez-Cespedes M. MET-Oncogenic and JAK2-Inactivating Alterations Are Independent Factors That Affect Regulation of PD-L1 Expression in Lung Cancer. Clin Cancer Res 2018; 24:4579-4587. [PMID: 29898990 DOI: 10.1158/1078-0432.ccr-18-0267] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Revised: 05/10/2018] [Accepted: 06/06/2018] [Indexed: 11/16/2022]
Abstract
Purpose: The blockade of immune checkpoints such as PD-L1 and PD-1 is being exploited therapeutically in several types of malignancies. Here, we aimed to understand the contribution of the genetics of lung cancer to the ability of tumor cells to escape immunosurveillance checkpoints.Experimental Design: More than 150 primary non-small cell lung cancers, including pulmonary sarcomatoid carcinomas, were tested for levels of the HLA-I complex, PD-L1, tumor-infiltrating CD8+ lymphocytes, and alterations in main lung cancer genes. Correlations were validated in cancer cell lines using appropriate treatments to activate or inhibit selected pathways. We also performed RNA sequencing to assess changes in gene expression after these treatments.Results:MET-oncogenic activation tended to associate with positive PD-L1 immunostaining, whereas STK11 mutations were correlated with negative immunostaining. In MET-altered cancer cells, MET triggered a transcriptional increase of PD-L1 that was independent of the IFNγ-mediated JAK/STAT pathway. The activation of MET also upregulated other immunosuppressive genes (PDCD1LG2 and SOCS1) and transcripts involved in angiogenesis (VEGFA and NRP1) and in cell proliferation. We also report recurrent inactivating mutations in JAK2 that co-occur with alterations in MET and STK11, which prevented the induction of immunoresponse-related genes following treatment with IFNγ.Conclusions: We show that MET activation promotes the expression of several negative checkpoint regulators of the immunoresponse, including PD-L1. In addition, we report inactivation of JAK2 in lung cancer cells that prevented the response to IFNγ. These alterations are likely to facilitate tumor growth by enabling immune tolerance and may affect the response to immune checkpoint inhibitors. Clin Cancer Res; 24(18); 4579-87. ©2018 AACR.
Collapse
Affiliation(s)
- Maria Saigi
- Genes and Cancer Group, Cancer Epigenetics and Biology Program (PEBC), Bellvitge Biomedical Research Institute (IDIBELL), Hospitalet de Llobregat, Barcelona, Spain
| | - Juan J Alburquerque-Bejar
- Genes and Cancer Group, Cancer Epigenetics and Biology Program (PEBC), Bellvitge Biomedical Research Institute (IDIBELL), Hospitalet de Llobregat, Barcelona, Spain
| | - Anne Mc Leer-Florin
- Département d'Anatomie et Cytologie Pathologiques, Pôle de Biologie et Pathologie, CHU Grenoble Alpes, Grenoble and Université Grenoble Alpes, Grenoble, France
| | - Carolina Pereira
- Genes and Cancer Group, Cancer Epigenetics and Biology Program (PEBC), Bellvitge Biomedical Research Institute (IDIBELL), Hospitalet de Llobregat, Barcelona, Spain
| | - Eva Pros
- Genes and Cancer Group, Cancer Epigenetics and Biology Program (PEBC), Bellvitge Biomedical Research Institute (IDIBELL), Hospitalet de Llobregat, Barcelona, Spain
| | - Octavio A Romero
- Genes and Cancer Group, Cancer Epigenetics and Biology Program (PEBC), Bellvitge Biomedical Research Institute (IDIBELL), Hospitalet de Llobregat, Barcelona, Spain
| | - Nuria Baixeras
- Pathology Department, Bellvitge University Hospital, Hospitalet de Llobregat, Barcelona, Spain
| | - Anna Esteve-Codina
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain.,Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Ernest Nadal
- Department of Medical Oncology, Catalan Institute of Oncology (ICO), Hospitalet de Llobregat, Barcelona, Spain.,Clinical Research in Solid Tumors (CReST) Group, OncoBell Program, Bellvitge Biomedical Research Institute (IDIBELL), Hospitalet de Llobregat, Barcelona, Spain
| | - Elisabeth Brambilla
- Département d'Anatomie et Cytologie Pathologiques, Pôle de Biologie et Pathologie, CHU Grenoble Alpes, Grenoble and Université Grenoble Alpes, Grenoble, France
| | - Montse Sanchez-Cespedes
- Genes and Cancer Group, Cancer Epigenetics and Biology Program (PEBC), Bellvitge Biomedical Research Institute (IDIBELL), Hospitalet de Llobregat, Barcelona, Spain.
| |
Collapse
|
434
|
Herbst RS, Morgensztern D, Boshoff C. The biology and management of non-small cell lung cancer. Nature 2018; 553:446-454. [PMID: 29364287 DOI: 10.1038/nature25183] [Citation(s) in RCA: 3024] [Impact Index Per Article: 432.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Accepted: 11/29/2017] [Indexed: 12/17/2022]
Abstract
Important advancements in the treatment of non-small cell lung cancer (NSCLC) have been achieved over the past two decades, increasing our understanding of the disease biology and mechanisms of tumour progression, and advancing early detection and multimodal care. The use of small molecule tyrosine kinase inhibitors and immunotherapy has led to unprecedented survival benefits in selected patients. However, the overall cure and survival rates for NSCLC remain low, particularly in metastatic disease. Therefore, continued research into new drugs and combination therapies is required to expand the clinical benefit to a broader patient population and to improve outcomes in NSCLC.
Collapse
Affiliation(s)
- Roy S Herbst
- Yale Cancer Center, Yale School of Medicine, New Haven, Connecticut, USA
| | | | - Chris Boshoff
- Yale Cancer Center, Yale School of Medicine, New Haven, Connecticut, USA.,Pfizer, Inc. New York City, New York, USA
| |
Collapse
|
435
|
Hypoxia leads to decreased autophosphorylation of the MET receptor but promotes its resistance to tyrosine kinase inhibitors. Oncotarget 2018; 9:27039-27058. [PMID: 29930749 PMCID: PMC6007473 DOI: 10.18632/oncotarget.25472] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Accepted: 05/08/2018] [Indexed: 12/16/2022] Open
Abstract
The receptor tyrosine kinase MET and its ligand, the Hepatocyte Growth Factor/Scattor Factor (HGF/SF), are essential to the migration, morphogenesis, and survival of epithelial cells. In addition, dysregulation of MET signaling has been shown to promote tumor progression and invasion in many cancers. Therefore, HGF/SF and MET are major targets for chemotherapies. Improvement of targeted therapies requires a perfect understanding of tumor microenvironment that strongly modifies half-life, bio-accessibility and thus, efficacy of treatments. In particular, hypoxia is a crucial microenvironmental phenomenon promoting invasion and resistance to treatments. Under hypoxia, MET auto-phosphorylation resulting from ligand stimulation or from receptor overexpression is drastically decreased within minutes of oxygen deprivation but is quickly reversible upon return to normoxia. Besides a decreased phosphorylation of its proximal adaptor GAB1 under hypoxia, activation of the downstream kinases Erk and Akt is maintained, while still being dependent on MET receptor. Consistently, several cellular responses induced by HGF/SF, including motility, morphogenesis, and survival are effectively induced under hypoxia. Interestingly, using a semi-synthetic ligand, we show that HGF/SF binding to MET is strongly impaired during hypoxia but can be quickly restored upon reoxygenation. Finally, we show that two MET-targeting tyrosine kinase inhibitors (TKIs) are less efficient on MET signalling under hypoxia. Like MET loss of phosphorylation, this hypoxia-induced resistance to TKIs is reversible under normoxia. Thus, although hypoxia does not affect downstream signaling or cellular responses induced by MET, it causes immediate resistance to TKIs. These results may prove useful when designing and evaluation of MET-targeted therapies against cancer.
Collapse
|
436
|
Chaaya G, Abdelghani R, Kheir F, Komiya T, Vander Velde N. NSCLC: State of the Art Diagnosis, Treatment, and Outcomes. CURRENT PULMONOLOGY REPORTS 2018. [DOI: 10.1007/s13665-018-0198-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
437
|
Comoglio PM, Trusolino L, Boccaccio C. Known and novel roles of the MET oncogene in cancer: a coherent approach to targeted therapy. Nat Rev Cancer 2018; 18:341-358. [PMID: 29674709 DOI: 10.1038/s41568-018-0002-y] [Citation(s) in RCA: 245] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The MET oncogene encodes an unconventional receptor tyrosine kinase with pleiotropic functions: it initiates and sustains neoplastic transformation when genetically altered ('oncogene addiction') and fosters cancer cell survival and tumour dissemination when transcriptionally activated in the context of an adaptive response to adverse microenvironmental conditions ('oncogene expedience'). Moreover, MET is an intrinsic modulator of the self-renewal and clonogenic ability of cancer stem cells ('oncogene inherence'). Here, we provide the latest findings on MET function in cancer by focusing on newly identified genetic abnormalities in tumour cells and recently described non-mutational MET activities in stromal cells and cancer stem cells. We discuss how MET drives cancer clonal evolution and progression towards metastasis, both ab initio and under therapeutic pressure. We then elaborate on the use of MET inhibitors in the clinic with a critical appraisal of failures and successes. Ultimately, we advocate a rationale to improve the outcome of anti-MET therapies on the basis of thorough consideration of the entire spectrum of MET-mediated biological responses, which implicates adequate patient stratification, meaningful biomarkers and appropriate clinical end points.
Collapse
Affiliation(s)
- Paolo M Comoglio
- Exploratory Research and Molecular Cancer Therapy, Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Italy.
| | - Livio Trusolino
- Translational Cancer Medicine, Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Italy
- Department of Oncology, University of Torino Medical School, Candiolo, Italy
| | - Carla Boccaccio
- Cancer Stem Cell Research, Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Italy
- Department of Oncology, University of Torino Medical School, Candiolo, Italy
| |
Collapse
|
438
|
Yu HA, Planchard D, Lovly CM. Sequencing Therapy for Genetically Defined Subgroups of Non-Small Cell Lung Cancer. Am Soc Clin Oncol Educ Book 2018; 38:726-739. [PMID: 30231382 PMCID: PMC10172876 DOI: 10.1200/edbk_201331] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/29/2023]
Abstract
The practice of precision medicine for patients with metastatic non-small cell lung cancer (NSCLC), particularly those patients with adenocarcinoma histology (the predominant subtype of NSCLC), has become the accepted standard of care worldwide. Implementation of prospective tumor molecular profiling and rational therapeutic decision-making based on the presence of recurrently detected oncogenic "driver" alterations in the tumor genome has revolutionized the way that lung cancer is diagnosed and treated in the clinic. Over the past two decades, there has been a deluge of therapeutically actionable driver alterations and accompanying small molecule inhibitors to target these drivers. Herein, we synthesize a large and rapidly growing body of literature regarding therapeutic inhibition of driver mutations. We focus on established targets, including EGFR, anaplastic lymphoma kinase (ALK), ROS1, BRAF, RET, MET, HER2, and neurotrophic tyrosine kinase receptor (NTRK), with a particular emphasis on the sequencing of small molecule inhibitors in these genetically defined cohorts of patients with lung cancer.
Collapse
Affiliation(s)
- Helena A Yu
- From the Department of Medicine, Memorial Sloan Kettering Cancer Center, Weil Cornell Medical College, New York, NY; Department of Medical Oncology, Institut Gustave Roussy, Villejuif, France; Department of Medicine, Division of Hematology and Oncology, Vanderbilt University Medical Center, Vanderbilt Ingram Cancer Center, Nashville, TN
| | - David Planchard
- From the Department of Medicine, Memorial Sloan Kettering Cancer Center, Weil Cornell Medical College, New York, NY; Department of Medical Oncology, Institut Gustave Roussy, Villejuif, France; Department of Medicine, Division of Hematology and Oncology, Vanderbilt University Medical Center, Vanderbilt Ingram Cancer Center, Nashville, TN
| | - Christine M Lovly
- From the Department of Medicine, Memorial Sloan Kettering Cancer Center, Weil Cornell Medical College, New York, NY; Department of Medical Oncology, Institut Gustave Roussy, Villejuif, France; Department of Medicine, Division of Hematology and Oncology, Vanderbilt University Medical Center, Vanderbilt Ingram Cancer Center, Nashville, TN
| |
Collapse
|
439
|
Mehrad M, Roy S, LaFramboise WA, Petrosko P, Miller C, Incharoen P, Dacic S. KRAS mutation is predictive of outcome in patients with pulmonary sarcomatoid carcinoma. Histopathology 2018; 73:207-214. [PMID: 29489023 DOI: 10.1111/his.13505] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2017] [Accepted: 02/24/2018] [Indexed: 12/31/2022]
Abstract
AIMS Pulmonary sarcomatoid carcinoma (PSC) is a poorly differentiated non-small-cell lung carcinoma (NSCLC) with aggressive behaviour. This study aimed to evaluate the prognostic clinicopathological and genetic characteristics of PSCs. METHODS AND RESULTS Fifty-three cases of surgically treated PSCs were selected, 23 of which were subjected to mutation and copy number variation analysis using the 50-gene Ion AmpliSeq Cancer Panel. The majority of the patients were male (32 of 53, 60.3%) and smokers (51 of 53, 96.2%). Overall, 25 (47.1%) patients died within 2-105 months (mean = 22.7 months, median = 15 months) after diagnosis, and 28 were alive 3-141 months (mean = 38.7 months, median = 21.5 months) after diagnosis. Five-year overall survival was 12.5%. KRAS codon 12/13 mutation in adenocarcinomas (P = 0.01), age more than 70 years (P = 0.008) and tumour size ≥4.0 cm (P = 0.02) were associated strongly with worse outcome. TP53 (17 of 23, 74.0%) and KRAS codon 12 of 13 mutations (10 of 23, 43.4%) were the most common genetic alterations. Potentially actionable variants were identified including ATM (four of 23, 17.3%), MET, FBXW7 and EGFR (two of 23, 8.7%), AKT1, KIT, PDGFRA, HRAS, JAK3 and SMAD4 (one of 23, 4.3%). MET exon 14 skipping and missense mutations were identified in two (11.1%) cases with adenocarcinoma histology. Copy number analysis showed loss of RB1 (three of 23, 13%) and ATM (two of 23, 8.7%). Copy number gains were seen in EGFR (two of 23, 13.0%) and in one (4.3%) of each PIK3CA, KRAS, MET and STK11. CONCLUSIONS Potentially targetable mutations can be identified in a subset of PSC, although most tumours harbour currently untargetable prognostically adverse TP53 and KRAS mutations.
Collapse
Affiliation(s)
- Mitra Mehrad
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Somak Roy
- Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - William A LaFramboise
- Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Patti Petrosko
- Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Caitlyn Miller
- Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | | | - Sanja Dacic
- Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| |
Collapse
|
440
|
Quantification and localization of oncogenic receptor tyrosine kinase variant transcripts using molecular inversion probes. Sci Rep 2018; 8:7072. [PMID: 29728634 PMCID: PMC5935718 DOI: 10.1038/s41598-018-25328-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2018] [Accepted: 04/20/2018] [Indexed: 12/27/2022] Open
Abstract
Oncogenic membrane receptor tyrosine kinases such as MET and EGFR, or auto-active variants thereof, are important targets for cancer precision therapy. Targeted inhibition of these oncogenic receptors however invariably leads to resistance, resulting from acquisition of resistance-inducing mutations or from selective outgrowth of a priori resistant tumour cells. Most applied molecular protocols cannot distinguish between intracellular and intercellular heterogeneity of oncogene (variant) expression, which may lead to misinterpretation of the molecular make-up of a cancer and suboptimal application of targeted therapies. We here combined two related techniques to allow semiquantitative and localized in situ detection of specific transcript splice variants using single molecule molecular inversion probe (smMIP)-based next generation sequencing and padlock probe-based rolling circle amplification, respectively. We show highly specific padlock probe-based multiplex detection of MET, METΔ7-8 and METΔ14 transcripts, lacking exons 7-8 and exon 14 respectively, and of EGFR and the auto-active EGFRvIII, lacking exons 2-7. The combination of quantitative transcript variant detection with smMIPs and transcript localization using padlock probes can be used for detection of oncogenic transcripts on the single-cell level, allowing study of tumour heterogeneity. Visualization of tumour heterogeneity can shed light on the biology underlying drug resistance and potentially improve targeted therapeutics.
Collapse
|
441
|
Henzler C, Schomaker M, Yang R, Lambert AP, LaRue R, Kincaid R, Beckman K, Kemmer T, Wilson J, Yohe S, Thyagarajan B, Nelson AC. Optimization of a microfluidics-based next generation sequencing assay for clinical oncology diagnostics. ANNALS OF TRANSLATIONAL MEDICINE 2018; 6:162. [PMID: 29911110 DOI: 10.21037/atm.2018.05.07] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Background Massively parallel, or next-generation, sequencing is a powerful technique for the assessment of somatic genomic alterations in cancer samples. Numerous gene targets can be interrogated simultaneously with a high degree of sensitivity. The clinical standard of care for many advanced solid and hematologic malignancies currently requires mutation analysis of several genes in the front-line setting, making focused next generation sequencing (NGS) assays an effective tool for clinical molecular diagnostic laboratories. Methods We have utilized an integrated microfluidics circuit (IFC) technology for multiplex PCR-based library preparation coupled with a bioinformatic method designed to enhance indel detection. A parallel low input PCR-based library preparation method was developed for challenging specimens with low DNA yield. Computational data filters were written to optimize analytic sensitivity and specificity for clinically relevant variants. Results Minimum sequencing coverage and precision of variant calls were the two primary criteria used to establish minimum DNA mass input onto the IFC. Wet-bench and bioinformatics protocols were modified based on data from the optimization and familiarization process to improve assay performance. The NGS platform was then clinically validated for single nucleotide and indel (up to 93 base pair) variant detection with overall analytic accuracy of 98% (97% sensitivity; 100% specificity) using as little as 3 ng of formalin-fixed, paraffin-embedded DNA or 0.3 ng of unfixed DNA. Conclusions We created a targeted clinical NGS assay for common solid and hematologic cancers with high sensitivity, high specificity, and the flexibility to test very limited tissue samples often encountered in routine clinical practice.
Collapse
Affiliation(s)
- Christine Henzler
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN, USA.,Research Informatics Solutions, Minnesota Supercomputing Institute, University of Minnesota, Minneapolis, MN, USA
| | - Matthew Schomaker
- M Health University of Minnesota Medical Center-Fairview, Minneapolis, MN, USA
| | - Rendong Yang
- Research Informatics Solutions, Minnesota Supercomputing Institute, University of Minnesota, Minneapolis, MN, USA.,The Hormel Institute, Austin, MN, USA
| | - Aaron P Lambert
- M Health University of Minnesota Medical Center-Fairview, Minneapolis, MN, USA
| | - Rebecca LaRue
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN, USA.,Research Informatics Solutions, Minnesota Supercomputing Institute, University of Minnesota, Minneapolis, MN, USA
| | - Robyn Kincaid
- M Health University of Minnesota Medical Center-Fairview, Minneapolis, MN, USA
| | - Kenneth Beckman
- University of Minnesota Genomics Center, Minneapolis, MN, USA
| | - Teresa Kemmer
- M Health University of Minnesota Medical Center-Fairview, Minneapolis, MN, USA
| | - Jon Wilson
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN, USA
| | - Sophia Yohe
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN, USA
| | - Bharat Thyagarajan
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN, USA
| | - Andrew C Nelson
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
442
|
Zhang Y, Gao X, Zhu Y, Kadel D, Sun H, Chen J, Luo Q, Sun H, Yang L, Yang J, Sheng Y, Zheng Y, Zhu K, Dong Q, Qin L. The dual blockade of MET and VEGFR2 signaling demonstrates pronounced inhibition on tumor growth and metastasis of hepatocellular carcinoma. J Exp Clin Cancer Res 2018; 37:93. [PMID: 29712569 PMCID: PMC5925844 DOI: 10.1186/s13046-018-0750-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Accepted: 04/03/2018] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND The application of VEGF signaling inhibitors have been associated with more invasive or metastatic behavior of cancers including hepatocellular carcinoma (HCC). We explored the contribution of MET pathway to the enhanced HCC invasion and metastasis by VEGF signaling inhibition, and investigated the antitumor effects of NZ001, a novel dual inhibitor of MET and VEGFR2, in HCC. METHODS Immunocompetent orthotopic mice model of hepal-6 was established to investigate the effects of either VEGF antibody alone or in combination with the selective MET inhibitor on tumor aggressiveness. The antitumor effects of NZ001 were examined in cultured HCC cells as well as in vivo models. MET gene amplification was determined by SNP 6.0 assay. MET/P-MET expression was detected by IHC. RESULTS Selective VEGF signaling inhibition by VEGF antibody significantly reduced in vivo tumor growth of the orthotopic mice models, simultaneously also enhanced tumor invasion and metastasis, but inhibiting MET signaling attenuated this side-effect. Further study revealed that hypoxia caused by VEGF signaling inhibition induced HIF-1α nuclear accumulation, subsequently leading to elevated total-MET expression, and synergized with HGF in inducing invasion. NZ001, a novel dual inhibitor of MET and VEGFR2, markedly inhibited both tumor growth and metastasis of HCC, which showed obvious advantages over sorafenib in not inducing more invasive and metastatic behaviors. This effect is more pronounced in HCC with MET amplification and overexpression. CONCLUSIONS The activation of MET is responsible for the metastasis-promoting effects induced by VEGF inhibition. MET and VEGFR2 dual blockade, NZ001, has advantages over sorafenib in not inducing more invasive and metastatic behaviors; MET amplification and overexpression can be used to identify the subgroup of patients most likely to get the optimal benefit from NZ001 treatment.
Collapse
Affiliation(s)
- Yu Zhang
- Department of General Surgery, Huashan Hospital, Cancer Metastasis Institute and Institutes of Biomedical Sciences, Fudan University, 12 Urumqi Road (M), Shanghai, 200040, China
| | - Xiaomei Gao
- Department of General Surgery, Huashan Hospital, Cancer Metastasis Institute and Institutes of Biomedical Sciences, Fudan University, 12 Urumqi Road (M), Shanghai, 200040, China
| | - Ying Zhu
- Department of General Surgery, Huashan Hospital, Cancer Metastasis Institute and Institutes of Biomedical Sciences, Fudan University, 12 Urumqi Road (M), Shanghai, 200040, China
| | - Dhruba Kadel
- Department of General Surgery, Huashan Hospital, Cancer Metastasis Institute and Institutes of Biomedical Sciences, Fudan University, 12 Urumqi Road (M), Shanghai, 200040, China
| | - Haoran Sun
- Department of General Surgery, Huashan Hospital, Cancer Metastasis Institute and Institutes of Biomedical Sciences, Fudan University, 12 Urumqi Road (M), Shanghai, 200040, China
| | - Jing Chen
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Duke University, Durham, NC, USA
- Duke Cancer Institute, Duke University, Durham, NC, USA
| | - Qin Luo
- Department of General Surgery, Huashan Hospital, Cancer Metastasis Institute and Institutes of Biomedical Sciences, Fudan University, 12 Urumqi Road (M), Shanghai, 200040, China
| | - Haoting Sun
- Department of General Surgery, Huashan Hospital, Cancer Metastasis Institute and Institutes of Biomedical Sciences, Fudan University, 12 Urumqi Road (M), Shanghai, 200040, China
| | - Luyu Yang
- Department of General Surgery, Huashan Hospital, Cancer Metastasis Institute and Institutes of Biomedical Sciences, Fudan University, 12 Urumqi Road (M), Shanghai, 200040, China
| | - Jing Yang
- Department of General Surgery, Huashan Hospital, Cancer Metastasis Institute and Institutes of Biomedical Sciences, Fudan University, 12 Urumqi Road (M), Shanghai, 200040, China
| | - Yuanyuan Sheng
- Department of General Surgery, Huashan Hospital, Cancer Metastasis Institute and Institutes of Biomedical Sciences, Fudan University, 12 Urumqi Road (M), Shanghai, 200040, China
| | - Yan Zheng
- Department of General Surgery, Huashan Hospital, Cancer Metastasis Institute and Institutes of Biomedical Sciences, Fudan University, 12 Urumqi Road (M), Shanghai, 200040, China
| | - Kejin Zhu
- Kanion Research Institute, 58 Kangyuan Road, Lianyungang, 222002, Jiangsu, China.
| | - Qiongzhu Dong
- Department of General Surgery, Huashan Hospital, Cancer Metastasis Institute and Institutes of Biomedical Sciences, Fudan University, 12 Urumqi Road (M), Shanghai, 200040, China.
| | - Lunxiu Qin
- Department of General Surgery, Huashan Hospital, Cancer Metastasis Institute and Institutes of Biomedical Sciences, Fudan University, 12 Urumqi Road (M), Shanghai, 200040, China.
| |
Collapse
|
443
|
Raghav K, Bailey AM, Loree JM, Kopetz S, Holla V, Yap TA, Wang F, Chen K, Salgia R, Hong D. Untying the gordion knot of targeting MET in cancer. Cancer Treat Rev 2018; 66:95-103. [PMID: 29730462 DOI: 10.1016/j.ctrv.2018.04.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 04/23/2018] [Accepted: 04/24/2018] [Indexed: 01/30/2023]
Abstract
Despite compelling evidence backing the crucial role of a dysregulated MET axis in cancer and a myriad of agents targeting this pathway in active clinical development, the therapeutic value of MET inhibition in cancer oncology remains to be established. Although a series of disappointing clinical trials, at first, lessened fervor for targeting this pathway, investigations continue unabated with a number of novel active compounds entering clinical trials. Suboptimal designs which lacked biomarker selection have been the main reason for these early failures and this has stimulated a more biomarker enriched approach lately. Fresh insights into the mechanics of diverse MET aberrations (amplifications and mutations) have allowed trial enrichment for appropriate patients in appropriate disease settings. Development of MET inhibition as a therapeutic strategy in cancer has been a lesson in itself reflecting the challenging opportunities enclosed in the genetic landscape of cancer. Here, we will review the status of MET targeted therapy in development as it stands today, discuss emerging paradigms in MET inhibition and theorize on concepts for future development. We venture to propose that in spite of early disappointments, the future of this therapeutic strategy is promising with use of appropriate predictive biomarker in the right clinical context.
Collapse
Affiliation(s)
- Kanwal Raghav
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Ann Marie Bailey
- Institute for Personalized Cancer Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Jonathan M Loree
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Scott Kopetz
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Vijaykumar Holla
- Institute for Personalized Cancer Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Timothy Anthony Yap
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Fang Wang
- Department of Bioinformatics & Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Ken Chen
- Department of Bioinformatics & Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Ravi Salgia
- Department of Medical Oncology & Therapeutics Research, City of Hope Comprehensive Cancer Center, Duarte, CA, United States
| | - David Hong
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, United States.
| |
Collapse
|
444
|
Marguet F, Piton N, Adle-Biassette H, Renaud F, Bohers E, Boyer T, Zarea A, Derrey S, Sabourin JC, Laquerrière A. Molecular characteristics of multifocal brain histiocytic sarcoma. Neuropathol Appl Neurobiol 2018; 45:309-313. [PMID: 29679510 DOI: 10.1111/nan.12490] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Accepted: 03/17/2018] [Indexed: 12/30/2022]
Affiliation(s)
- F Marguet
- Department of Pathology, UNIROUEN, INSERM U1245, Rouen University Hospital, Normandie Université, Rouen, France
| | - N Piton
- Department of Pathology, UNIROUEN, INSERM U1245, Rouen University Hospital, Normandie Université, Rouen, France
| | - H Adle-Biassette
- Department of Pathology, Lariboisière Hospital, APHP, Paris, France.,Diderot University, Sorbonne Paris Cité, PROTECT INSERM, Paris, France
| | - F Renaud
- Department of Pathology, JPARC - Jean-Pierre Aubert Research Center, Univ. Lille, UMR-S 1172 - Team 'Mucins, Epithelial Differentiation and Carcinogenesis', Lille, France
| | - E Bohers
- INSERM U918, Cancer Research Centre Henri Becquerel, Rouen University, IRIB, Rouen, France
| | - T Boyer
- Cellular Hematology Laboratory, Institute of Hematology, Lille, France
| | - A Zarea
- Department of Neurology, Rouen University Hospital, Rouen, France
| | - S Derrey
- Department of Neurosurgery, Rouen University Hospital, Rouen, France
| | - J C Sabourin
- Department of Pathology, UNIROUEN, INSERM U1245, Rouen University Hospital, Normandie Université, Rouen, France
| | - A Laquerrière
- Department of Pathology, UNIROUEN, INSERM U1245, Rouen University Hospital, Normandie Université, Rouen, France
| |
Collapse
|
445
|
Abstract
Targeted therapy and immunotherapy have changed the treatment paradigm of non-small cell lung cancer (NSCLC). Distinct molecular subtypes of NSCLC have been described over the past 20 years, enabling the emergence of treatments specific to that subtype. Agents targeting the driver mutations in NSCLC have revolutionized the approach to patients with metastatic disease, because oncologists now select a treatment based on the profile of that particular tumor. More recently, an understanding of immune checkpoints has led to the development of checkpoint inhibitors that enable the host immune system to better recognize tumor cells as foreign and to destroy them.
Collapse
Affiliation(s)
- Evan C Naylor
- Hematology and Oncology, Southern Ocean Medical Center, Meridian Cancer Care, 1140 Route 72 West, Manahawkin, NJ 08050, USA.
| | - Jatin K Desani
- Hematology and Oncology, Southern Ocean Medical Center, Meridian Cancer Care, 1140 Route 72 West, Manahawkin, NJ 08050, USA
| | - Paul K Chung
- Hematology and Oncology, Southern Ocean Medical Center, Meridian Cancer Care, 1140 Route 72 West, Manahawkin, NJ 08050, USA
| |
Collapse
|
446
|
MET exon 14 mutations as targets in routine molecular analysis of primary sarcomatoid carcinoma of the lung. Oncotarget 2018; 8:42428-42437. [PMID: 28418914 PMCID: PMC5522077 DOI: 10.18632/oncotarget.16403] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Accepted: 02/20/2017] [Indexed: 11/25/2022] Open
Abstract
MET exon 14 splicing mutations are new targetable oncogenic drivers reported in 3% of non-small cell lung cancer (NSCLC) cases and have been shown to be more common in pulmonary sarcomatoid carcinomas (PSCs). This study sought to screen mutations affecting MET exon 14 splice sites in a large SC cohort of Caucasian patients, with a large adenocarcinoma cohort as internal control. We tested 81 patients with SC and 150 with adenocarcinoma for splice site DNA mutations leading to RNA splicing-based skipping of MET exon 14. To this end, we employed a mass spectrometry-based custom-designed PCR assay for routine analysis of whole MET exon 14 and flanking intronic regions using formalin-fixed paraffin-embedded (FFPE) tumor samples. Our results revealed a 4.9% mutation rate for MET exon 14 mutations in Caucasian SC patients, which is, though highly variable, within the usual range reported in NSCLC. Discrepancies with previous results reported in SC could be accounted for the small number of cases, ethnicity, epithelial component, and percentage of other driver mutations, such as KRAS, in the patient populations studied. Based on our study findings, SC patients should be screened for MET exon 14 mutations in the same manner as adenocarcinoma patients.
Collapse
|
447
|
The multiple paths towards MET receptor addiction in cancer. Oncogene 2018; 37:3200-3215. [PMID: 29551767 DOI: 10.1038/s41388-018-0185-4] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 01/30/2018] [Accepted: 01/30/2018] [Indexed: 12/14/2022]
Abstract
Targeted therapies against receptor tyrosine kinases (RTKs) are currently used with success on a small proportion of patients displaying clear oncogene activation. Lung cancers with a mutated EGFR provide a good illustration. The efficacy of targeted treatments relies on oncogene addiction, a situation in which the growth or survival of the cancer cells depends on a single deregulated oncogene. MET, a member of the RTK family, is a promising target because it displays many deregulations in a broad panel of cancers. Although clinical trials having evaluated MET inhibitors in large populations have yielded disappointing results, many recent case reports suggest that MET inhibition may be effective in a subset of patients with unambiguous MET activation and thus, most probably, oncogene addiction. Interestingly, preclinical studies have revealed a particularity of MET addiction: it can arise through several mechanisms, and the mechanism involved can differ according to the cancer type. The present review describes the different mechanisms of MET addiction and their consequences for diagnosis and therapeutic strategies. Although in each cancer type MET addiction affects a restricted number of patients, pooling of these patients across all cancer types yields a targetable population liable to benefit from addiction-targeting therapies.
Collapse
|
448
|
Reis H, Metzenmacher M, Goetz M, Savvidou N, Darwiche K, Aigner C, Herold T, Eberhardt WE, Skiba C, Hense J, Virchow I, Westerwick D, Bogner S, Ting S, Kasper S, Stuschke M, Nensa F, Herrmann K, Hager T, Schmid KW, Schuler M, Wiesweg M. MET Expression in Advanced Non-Small-Cell Lung Cancer: Effect on Clinical Outcomes of Chemotherapy, Targeted Therapy, and Immunotherapy. Clin Lung Cancer 2018; 19:e441-e463. [PMID: 29631966 DOI: 10.1016/j.cllc.2018.03.010] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 02/08/2018] [Accepted: 03/10/2018] [Indexed: 11/28/2022]
Abstract
BACKGROUND The receptor tyrosine kinase MET is implicated in malignant transformation, tumor progression, metastasis, and acquired treatment resistance. We conducted an analysis of the effect of MET expression and MET genomic aberrations on the outcome of patients with advanced or metastatic pulmonary adenocarcinomas prospectively enrolled in an institutional precision oncology program. PATIENTS AND METHODS Standardized immunohistochemistry (IHC) analyses of MET and markers of pathway activation were available in 384 patients, and next-generation sequencing-based MET hotspot mutation analyses were available from 892 patients. Clinical data were retrieved with a median follow-up from initial diagnosis of 37 months. RESULTS High MET expression, defined as MET IHC 3+ or MET H-Score in the upper quartile, was observed in 102 of 384 patients (26.6%). MET exon 14 mutations were only detected in 7 of 892 patients (0.78%). High MET expression correlated with activation markers of the mitogen-activated protein kinase (MAPK) and phosphatidylinositol 3-kinase/protein kinase B (PI3K/AKT) pathways only in cases without Kirsten rat sarcoma viral oncogene homolog (KRAS), epidermal growth factor receptor (EGFR), v-Raf murine sarcoma viral oncogene homolog B (BRAF), anaplastic lymphoma kinase (ALK) and proto-oncogene tyrosine-protein kinase ROS (ROS1) aberrations. There was no association of MET expression with outcome during chemotherapy. High MET expression negatively affected the outcome during EGFR-targeting therapy but was associated with more favorable results with programmed death 1/programmed death ligand 1 (PD-L1)-directed therapy, independent of smoking history, PD-L1 expression or KRAS mutation. Two patients with MET exon 14 mutation and high PD-L1 expression failed to respond to pembrolizumab. CONCLUSION MET expression affects the outcomes of targeted therapies in non-small-cell lung cancer, thus supporting the development of biomarker-informed combination strategies. The interaction of MET expression and MET mutation with immune checkpoint inhibitor therapy is novel and merits further investigation.
Collapse
Affiliation(s)
- Henning Reis
- Institute of Pathology, West German Cancer Centre, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Martin Metzenmacher
- Department of Medical Oncology, West German Cancer Centre, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Moritz Goetz
- Institute of Pathology, West German Cancer Centre, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Nikoleta Savvidou
- Department of Medical Oncology, West German Cancer Centre, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Kaid Darwiche
- Department of Pulmonary Medicine, Section of Interventional Pneumology, Ruhrlandklinik - University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Clemens Aigner
- Department of Thoracic Surgery and Endoscopy, Ruhrlandklinik - University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Thomas Herold
- Institute of Pathology, West German Cancer Centre, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Wilfried E Eberhardt
- Department of Medical Oncology, West German Cancer Centre, University Hospital Essen, University of Duisburg-Essen, Essen, Germany; Division of Thoracic Oncology, Ruhrlandklinik - University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Charlotte Skiba
- Department of Medical Oncology, West German Cancer Centre, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Jörg Hense
- Department of Medical Oncology, West German Cancer Centre, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Isabel Virchow
- Department of Medical Oncology, West German Cancer Centre, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Daniela Westerwick
- Institute of Pathology, West German Cancer Centre, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Simon Bogner
- Department of Medical Oncology, West German Cancer Centre, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Saskia Ting
- Institute of Pathology, West German Cancer Centre, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Stefan Kasper
- Department of Medical Oncology, West German Cancer Centre, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Martin Stuschke
- Department of Radiotherapy, West German Cancer Centre, University Hospital Essen, University of Duisburg-Essen, Essen, Germany; German Cancer Consortium (DKTK), Partner Site University Hospital Essen, Essen, Germany
| | - Felix Nensa
- Institute of Diagnostic and Interventional Radiology and Neuroradiology, West German Cancer Centre, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Ken Herrmann
- German Cancer Consortium (DKTK), Partner Site University Hospital Essen, Essen, Germany; Department of Nuclear Medicine, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Thomas Hager
- Institute of Pathology, West German Cancer Centre, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Kurt W Schmid
- Institute of Pathology, West German Cancer Centre, University Hospital Essen, University of Duisburg-Essen, Essen, Germany; German Cancer Consortium (DKTK), Partner Site University Hospital Essen, Essen, Germany
| | - Martin Schuler
- Department of Medical Oncology, West German Cancer Centre, University Hospital Essen, University of Duisburg-Essen, Essen, Germany; Division of Thoracic Oncology, Ruhrlandklinik - University Hospital Essen, University of Duisburg-Essen, Essen, Germany; German Cancer Consortium (DKTK), Partner Site University Hospital Essen, Essen, Germany.
| | - Marcel Wiesweg
- Department of Medical Oncology, West German Cancer Centre, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| |
Collapse
|
449
|
Hayashi T, Desmeules P, Smith RS, Drilon A, Somwar R, Ladanyi M. RASA1 and NF1 are Preferentially Co-Mutated and Define A Distinct Genetic Subset of Smoking-Associated Non-Small Cell Lung Carcinomas Sensitive to MEK Inhibition. Clin Cancer Res 2018; 24:1436-1447. [PMID: 29127119 PMCID: PMC6440215 DOI: 10.1158/1078-0432.ccr-17-2343] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2017] [Revised: 10/24/2017] [Accepted: 11/06/2017] [Indexed: 12/31/2022]
Abstract
Purpose: Ras-GTPase-activating proteins (RasGAP), notably NF1 and RASA1, mediate negative control of the RAS/MAPK pathway. We evaluated clinical and molecular characteristics of non-small cell lung carcinoma (NSCLC) with RASA1 mutations in comparison with NF1-mutated cases.Experimental Design: Large genomic datasets of NSCLC [MSK-IMPACT dataset at MSKCC (n = 2,004), TCGA combined lung cancer dataset (n = 1,144)] were analyzed to define concurrent mutations and clinical features of RASA1-mutated NSCLCs. Functional studies were performed using immortalized human bronchial epithelial cells (HBEC) and NSCLC lines with truncating mutations in RASA1, NF1, or both.Results: Overall, approximately 2% of NSCLCs had RASA1-truncating mutations, and this alteration was statistically, but not completely, mutually exclusive with known activating EGFR (P = 0.02) and KRAS (P = 0.02) mutations. Unexpectedly, RASA1-truncating mutations had a strong tendency to co-occur with NF1-truncating mutations (P < 0.001). Furthermore, all patients (16/16) with concurrent RASA1/NF1-truncating mutations lacked other known lung cancer drivers. Knockdown of RASA1 in HBECs activated signaling downstream of RAS and promoted cell growth. Conversely, restoration of RASA1 expression in RASA1-mutated cells reduced MAPK and PI3K signaling. Although growth of cell lines with inactivation of only one of these two RasGAPs showed moderate and variable sensitivity to inhibitors of MEK or PI3K, cells with concurrent RASA1/NF1 mutations were profoundly more sensitive (IC50: 0.040 μmol/L trametinib). Finally, simultaneous genetic silencing of RASA1 and NF1 sensitized both HBECs and NSCLC cells to MEK inhibition.Conclusions: Cancer genomic and functional data nominate concurrent RASA1/NF1 loss-of-function mutations as a strong mitogenic driver in NSCLC, which may sensitize to trametinib. Clin Cancer Res; 24(6); 1436-47. ©2017 AACRSee related commentary by Kitajima and Barbie, p. 1243.
Collapse
Affiliation(s)
- Takuo Hayashi
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Patrice Desmeules
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Roger S Smith
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Alexander Drilon
- Thoracic Oncology Service, Division of Solid Tumor Oncology, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Romel Somwar
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Marc Ladanyi
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York.
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York
| |
Collapse
|
450
|
Mazzarella L. Are we ready for routine precision medicine? Highlights from the Milan Summit on Precision Medicine, Milan, Italy, 8-9 February 2018. Ecancermedicalscience 2018; 12:817. [PMID: 29662530 PMCID: PMC5880225 DOI: 10.3332/ecancer.2018.817] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Indexed: 01/08/2023] Open
Abstract
On 8 and 9 February 2018, the IFOM-IEO campus in Milan hosted the Milan summit on Precision Medicine, which gathered clinical and translational research experts from academia, industry and regulatory bodies to discuss the state of the art of precision medicine in Europe. The meeting was pervaded by a generalised feeling of excitement for a field that is perceived to be technologically mature for the transition into clinical routine but still hampered by numerous obstacles of a methodological, ethical, regulatory and possibly cultural nature. Through lively discussions, the attendees tried to identify realistic ways to implement a technology-rich precision approach to cancer patients.
Collapse
Affiliation(s)
- Luca Mazzarella
- European Institute of Oncology, Via Ripamonti 435, Milan 20141, Italy
| |
Collapse
|