401
|
Wenstrup RJ, Fowlkes JL, Witte DP, Florer JB. Discordant expression of osteoblast markers in MC3T3-E1 cells that synthesize a high turnover matrix. J Biol Chem 1996; 271:10271-6. [PMID: 8626594 DOI: 10.1074/jbc.271.17.10271] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
To examine the autocrine effects that an organizing extracellular matrix has on osteoblast precursors, we created MC3T3-E1 cell lines that stably expressed pro-alpha1(I) collagen chains with a truncated triple helical domain. Cells that had incorporated the pro-alpha1(I) expression plasmid (pMG155) expressed shortened pro-alpha1(I) transcripts at high levels and efficiently secreted the expression gene products into culture media. Those cells lost over 30% of newly deposited collagenous matrix compared with virtually no loss in control cultures, and media from the abnormal cells had qualitative differences in matrix metalloprotinase production. Electron micrographs strongly suggested that type I collagen molecules containing the truncated pro-alpha1(I) chains dramatically interfered with collagen fibrillogenesis in newly forming osteoblast matrix. Abnormal collagen fibrillogenesis was also associated with altered characteristics of cellular differentiation in that abnormal cells displayed a delayed and attenuated increase in alkaline phosphatase activity. Surprisingly, synthesis of osteocalcin was more than 5-fold higher than control cultures. These findings demonstrate that osteoblasts require a normally structured collagenous matrix for up-regulation of alkaline phosphatase activity. However, in the presence of rapid turnover of osteoblast matrix, osteocalcin gene expression may be up-regulated in response to local signals by an unknown mechanism.
Collapse
Affiliation(s)
- R J Wenstrup
- Division of Human Genetics, Cincinnati Children's Hospital, Cincinnati, Ohio 45229, USA
| | | | | | | |
Collapse
|
402
|
Nanci A, Zalzal S, Gotoh Y, McKee MD. Ultrastructural characterization and immunolocalization of osteopontin in rat calvarial osteoblast primary cultures. Microsc Res Tech 1996; 33:214-31. [PMID: 8845520 DOI: 10.1002/(sici)1097-0029(19960201)33:2<214::aid-jemt11>3.0.co;2-x] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
As part of ongoing studies aimed at clarifying the early events of bone matrix deposition and mineralization, we have characterized primary osteoblast cultures using ultrastructural and immunocytochemical methods. Osteogenic cells were isolated by sequential enzymatic digestion of newborn rat (2-4-day-old) calvariae and grown for periods of 7 to 28 days on polystyrene, Thermanox plastic, or sputtered titanium. Bone-like nodules, showing a stratified organization of cells and collagen, were examined by scanning and transmission electron microscopy, and further characterized for mineral by backscattered electron imaging and X-ray microanalysis. Colloidal gold immunocytochemistry was used to examine the distribution of osteopontin in these nodules. Cells at the surface of the nodules were rounded, while those within the nodules generally appeared more flattened. Both cell types, particularly at early culture intervals, exhibited well-developed protein synthetic organelles. Collagen fibrils were present between the cell layers and some individual fibrils appeared mineralized. Aggregates of needle-shaped crystallites were sometimes apposed to the cell surface, frequently within invaginated regions of the cell membrane, while other mineralized masses of various sizes were present within the collagenous scaffolding. The periphery of the mineralized masses was often delimited by an electron-dense, lamina limitans-like layer. Focal accumulations and/or a more complete layer of afibrillar, mineralized organic matrix were sometimes observed at the interface between the cells and the surface of the culture dish. Osteopontin was immunodetected over the afibrillar and collagenous mineralized matrix throughout the cultures and, in some cases, labeling was concentrated over the peripheral, electron-dense material delimiting the mineralized masses. In conclusion, these data indicate that calvaria-derived osteoblasts produce an extracellular matrix with structural and compositional similarities to bone. Although not a regular observation, the accumulation of osteopontin on the surface of the culture substrate and at the periphery of masses of mineralized matrix may be analogous to what takes place in vivo at naturally occurring bone interfaces.
Collapse
Affiliation(s)
- A Nanci
- Faculty of Dentistry, Université de Montréal, Quebec, Canada
| | | | | | | |
Collapse
|
403
|
Abstract
Knowledge of the number and kinds of differentiation steps characterizing cells of the osteoblast lineage is inadequate. To analyze further osteoblast differentiation, a number of labs have generated monoclonal antibodies to osteogenic cells, derived from both normal bone and osteosarcomas. A variety of immunolabelling patterns on primary cell cultures, cell lines, and tissue sections has been reported, including cell surface, cytoplasmic, and extracellular matrix-associated patterns. Most of the antibodies selected recognize predominantly the mature osteoblast and osteocyte; in addition, however, antibodies have been generated that recognize pre-osteoblasts. Some recognize cells of both the osteoblast and chondroblast lineages and may contribute to a better understanding of the lineage and phenotypic relationships between these two cell types. In addition to recognition in vivo of cell subpopulations of discrete maturational stages, changes in the immunolabelling patterns in vitro have also documented a differentiation sequence in cells undergoing osteogenesis in cell and tissue cultures. In at least two cases, the antibodies have been used to isolate subpopulations of cells from bone, including relatively pure populations of osteocytes. With the exception of several antibodies that are against alkaline phosphatase or known matrix proteins including osteocalcin, the nature of the macromolecular species recognized by most of the antibodies generated to date are unknown. Recently, however, one antibody was used to clone the cDNA for the beta-galactoside-binding lectin, galectin 3 or epsilon binding protein (epsilon BP; IgE-binding protein; Mac-2), from a lambda gt11 osteoblast expression library; another was used to clone from an ROS 17/2.8-COS cell expression library the cDNA for OTS-8, a putative target gene of early response genes stimulated in response to phorbol esters in MC3T3-E1 cells. Neither of these macromolecules had previously been identified in bone cells, but the recent molecular and cellular analyses have shown them to be developmentally and/or hormonally regulated in osteoblastic cells. These antibodies extend the available markers and support earlier observations that a variety of molecules are differentially expressed by cells at different stages of the osteoblast lineage. This chapter will not be an exhaustive survey of all immunocytochemical and immunohistochemical analyses of osteogenic cells and tissues but will focus on the approach of eliciting novel monoclonal antibodies by the injection of osteogenic cells or crude bone extracts and its potential for establishing new markers of the osteoblast lineage. We have not included a large number of studies documenting the use of antibodies raised against several known bone matrix proteins; while these have been crucial in developing our current understanding of osteogenic differentiation, we sought rather to highlight the potential of the "random" injection approach.
Collapse
Affiliation(s)
- J E Aubin
- Department of Anatomy and Cell Biology, University of Toronto, Ontario, Canada
| | | |
Collapse
|
404
|
Hoerstrup SP, Lu L, Lysaght MJ, Mikos AG, Rein D, Schoen FJ, Temenoff JS, Tessmar JK, Vacanti JP. Tissue Engineering. Biomater Sci 1996. [DOI: 10.1016/b978-012582460-6/50011-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
405
|
Wenstrup RJ, Witte DP, Florer JB. Abnormal differentiation in MC3T3-E1 preosteoblasts expressing a dominant-negative type I collagen mutation. Connect Tissue Res 1996; 35:249-57. [PMID: 9084663 DOI: 10.3109/03008209609029198] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
To examine the effects that an organizing extracellular matrix might have on osteoblast precursors, we created MC3T3-E1 cell lines that stably incorporated a plasmid that expressed pro alpha 1 (I) collagen chains having a truncated triple helical domain. Cells that had incorporated the pro alpha 1 (I) expression plasmid (pMG155) efficiently secreted molecules with shortened pro alpha 1 (I) chains into culture media. Electron micrographs indicated that expression of the minigene dramatically interferes with normal type I collagen fibril architecture. The turnover of newly deposited collagenous matrix as measured by 3[H]-hydroxyproline release was 29% after a 14 day chase in cells expressing the minigene compared to essentially no turnover in control cultures. MC3T3-E1 cells in culture normally demonstrate a time dependent reduction of cell division followed by an increase in osteoblast characteristics. Cell number was consistently 20-25% higher than control in MC3T3-E1 cultures expressing the truncated pro alpha 1 (I) gene but ALP activity was only 45% of control. Secretion and steady state mRNA levels for osteocalcin were over fivefold higher than control cultures but expression of other extracellular matrix components was not changed. These findings demonstrate that osteoblasts require a normally structured collagenous matrix for inhibition of cellular proliferation and subsequent upregulation of ALP. However, in the presence of rapid turnover of osteoblast matrix, the gene for osteocalcin may be upregulated in response to local signals.
Collapse
Affiliation(s)
- R J Wenstrup
- Division of Human Genetics, Children's Hospital, Cincinnati, Ohio, USA.
| | | | | |
Collapse
|
406
|
Cheifetz S, Li IW, McCulloch CA, Sampath K, Sodek J. Influence of osteogenic protein-1 (OP-1;BMP-7) and transforming growth factor-beta 1 on bone formation in vitro. Connect Tissue Res 1996; 35:71-8. [PMID: 9084644 DOI: 10.3109/03008209609029176] [Citation(s) in RCA: 51] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The bone morphogenetic proteins (BMPs) and transforming growth factor-beta s (TGF-beta s), are a group of structurally related proteins which have been shown to stimulate bone formation in vivo. Since these proteins are concentrated in the organic matrix of bone and would be released during bone resorption, they are likely to have a profound effect on the remodeling bone and may provide a link between bone resorption and bone formation. We are using primary cultures of fetal rat calvarial cells (FRCC) to study the independent and combined effects of OP-1/BMP-7 and TGF-beta 1 on bone cells at different stages of differentiation in order to identify responding cell populations and target genes. We have confirmed prior reports that OP-1 stimulates, while TGF-beta 1 inhibits, osteogenic differentiation in this system. The increase in both number and size of the mineralized nodules induced by OP-1 was accompanied by increased expression of alkaline phosphatase and type I collagen with an induction of bone sialoprotein (BSP) suggesting that OP-1 stimulates both differentiation and clonal expansion of osteoblastic cells. Interestingly, TGF-beta 1 abrogated OP-1 induced nodule formation. Despite these opposing effects on osteogenic differentiation, TGF-beta 1 (Wrana et al, 1991) and OP-1 both stimulated a rapid induction of osteopontin (OPN) mRNA in confluent FRCC cultures enriched in pre-osteoblastic cells. In contrast, when OP-1 was added to nodule-forming cultures which are enriched in osteoblastic cells, there was only a weak induction of OPN. Moreover, while the expression of one marker for mature osteoblasts (BSP) was refractory to OP-1, another (osteocalcin) was markedly stimulated. Thus OP-1 has selective effects on bone matrix protein expression that are dependent on the differentiated state of the cells.
Collapse
Affiliation(s)
- S Cheifetz
- MRC Group in Periodontal Physiology, Faculty of Dentistry, University of Toronto, Ont., Canada.
| | | | | | | | | |
Collapse
|
407
|
Li YP, Chen W, Stashenko P. Characterization of a silencer element in the first exon of the human osteocalcin gene. Nucleic Acids Res 1995; 23:5064-72. [PMID: 8559666 PMCID: PMC307514 DOI: 10.1093/nar/23.24.5064] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Osteocalcin, the major non-collagenous protein in bone, is transcribed in osteoblasts at the onset of extracellular matrix mineralization. In this study it was demonstrated that sequences located in the first exon of the human osteocalcin gene possess a differentiation-related osteocalcin silencer element (OSE). Osteocalcin was rendered transcribable in UMR-106 cells and proliferating normal osteoblasts after deletion of the -3 to +51 region. Site-specific mutagenesis of this region revealed that a 7 bp sequence (TGGCCCT) (+29 to +35) is critical for silencing function. Mobility shift assays demonstrated that a nuclear factor bound to the OSE. The OSE binding protein was present in proliferating normal pre-osteoblasts and in UMR-106 and ROS 17/2.8 osteosarcoma cells, but was absent from post-proliferative normal osteoblasts. The binding protein was inhibited by fragments containing the +29/+35 sequence, but not by other promoter fragments or by the consensus oligomers of unrelated nuclear factors AP-1 and Sp1. DNase 1 footprinting demonstrated that the OSE binding-protein protected the +17 to +36 portion of the first exon, consistent with the results of mapping studies and competitive mobility shift assays. It is hypothesized that this silencer is activated by complexing of the OSE binding protein to the OSE during the osteoblast proliferation stage and that the OSE binding protein is down-regulated at the onset of extracellular matrix mineralization.
Collapse
Affiliation(s)
- Y P Li
- Department of Cytokine Biology, Forsyth Dental Center, Boston, MA 02115, USA
| | | | | |
Collapse
|
408
|
Berrada S, Lefebvre F, Harmand MF. The effect of recombinant human basic fibroblast growth factor rhFGF-2 on human osteoblast in growth and phenotype expression. In Vitro Cell Dev Biol Anim 1995; 31:698-702. [PMID: 8564081 DOI: 10.1007/bf02634091] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
This paper describes the studies of human recombinant basic fibroblast growth factor (rhFGF-2) for its effects on human osteoblast growth and phenotype expression. During a 24-h period of treatment, rhFGF-2 highly stimulated DNA synthesis in a dose-related fashion with a maximum stimulation of 150% for 1 ng/ml. On the other hand, rhFGF-2 decreases alkaline phosphatase activity, synthesis of type I collagen, and cumulative amount of osteocalcin. Moreover, rhFGF-2 provoked a threefold increase in the amount of intracellular cAMP. Scatchard plots show the presence of two classes of [125I] rhFGF-2 receptors. This data suggests that rhFGF-2 which stimulate cell replication may act indirectly as an anabolic agent and stimulate some of the phenotypic expression markers.
Collapse
Affiliation(s)
- S Berrada
- INSERUM-U. 306, Université de Bordeaux II, France
| | | | | |
Collapse
|
409
|
Abstract
Recognition of discrete commitment and differentiation stages requires characterization of changes in proliferative capacity together with the temporal acquisition or loss of expression of molecular and morphological traits. Both cell lines and primary cultures have been useful for analysis of transitional steps in the chondroblast (CB) and osteoblast (OB) lineages. One striking feature is that OBs and CBs share expression of some molecules, including newer markers such as epsilon BP (galectin-3), while also having unique markers. The fact that hypertrophic chondrocytes appear able to downregulate cartilage markers and upregulate OB markers also points to an interesting lineage relationship that needs to be explored further. Recently, we have focused on the osteoprogenitors that divide and differentiate into mature OBs forming bone nodules in fetal rat calvaria cell cultures. We use cellular, immunocytochemical, and molecular approaches, including PCR on small numbers of cells, to discriminate stages. Nodule formation is characterized by loss of proliferative capacity and sequential increased marker expression, that is, alkaline phosphatase (AP), followed by bone sialoprotein (BSP), and osteocalcin. Upregulation of collagen type I and biphasic expression of osteopontin, with two peaks corresponding to proliferation and differentiation stages, also occurs. A variety of other molecules are also upregulated in the mature OB, including epsilon BP and CD44s. By replica plating and PCR, we have begun to study the expression of the messenger RNAs (mRNAs) for potential regulatory molecules (e.g., PTHrP) and their receptors (e.g., PTHR, FGFR-1, and PDGFR alpha) and have found all to be modulated during the progression from committed osteoprogenitor to mature OB.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- J E Aubin
- Department of Anatomy and Cell Biology, University of Toronto, Ontario, Canada
| | | | | | | |
Collapse
|
410
|
Sodek J, Chen J, Nagata T, Kasugai S, Todescan R, Li IW, Kim RH. Regulation of osteopontin expression in osteoblasts. Ann N Y Acad Sci 1995; 760:223-41. [PMID: 7785896 DOI: 10.1111/j.1749-6632.1995.tb44633.x] [Citation(s) in RCA: 124] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Osteopontin (OPN) is a prominent bone matrix protein that is synthesized by osteoblastic cells. To elucidate the function of OPN in bone we studied the regulated expression of the rat OPN protein during bone formation in vivo and in vitro. OPN mRNA is expressed by preosteoblastic cells early in bone formation, but the highest expression is observed in mature osteoblasts at sites of bone remodelling. A low-phosphorylated, 55-kDa form of OPN is produced by the preosteoblastic cells, whereas osteoblasts produce a highly phosphorylated, 44-kDa protein; the two forms of OPN corresponding to pp69 and pp62 in transformed rat cells. The synthesis of the 55-kDa OPN correlates with the formation of a 'cement' matrix that is synthesized prior to bone deposition, whereas the 44-kDa OPN synthesized by osteoblasts associates rapidly with hydroxyapatite, possibly regulating crystal growth, and may also provide a substratum for osteoclast attachment. Expression of OPN mRNA is upregulated by growth and differentiation factors (PDGF, EGF, TGF-beta and BMP-7/OP-1) and by mechanical stress, which promote bone formation, as well as by osteotropic hormones (retinoic acid and vitamin D3), which can promote bone resorption and remodelling. However, OPN mRNA is down-regulated by bisphosphonates, which abrogate bone resorption. Regulation of OPN expression is, therefore, consistent with a multiplicity of functions for OPN that involve specific structural motifs in both the synthesis and resorption of bone.
Collapse
Affiliation(s)
- J Sodek
- Medical Research Council Group in Periodontal Physiology, Faculty of Dentistry, University of Toronto, Ontario, Canada
| | | | | | | | | | | | | |
Collapse
|
411
|
Loza J, Marzec N, Simasko S, Dziak R. Role of epidermal growth factor-induced membrane depolarization and resulting calcium influx in osteoblastic cell proliferation. Cell Calcium 1995; 17:301-6. [PMID: 7664317 DOI: 10.1016/0143-4160(95)90076-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
This study investigated the effects of epidermal growth factor (EGF) on the membrane potential of rat calvarial osteoblasts, in order to understand the mechanism responsible for calcium influx and the role these EGF-induced events have in osteoblastic cell proliferation. Changes in plasma membrane potential were measured using patch clamp techniques in isolated cells. EGF induced changes in plasma membrane potential only after cells had been in culture for at least 6 days. EGF induced membrane depolarization in 55% of rat calvarial osteoblasts studied after 6 to 8 days in culture. This membrane event was dependent on extracellular calcium, therefore, one or more calcium conductances were involved. Nifedipine, a voltage-activated calcium channel blocker, significantly reduced membrane depolarization, and demonstrated the existence of a nifedipine-insensitive conductance. Osteoblastic cell proliferation was measured by cell count. The EGF-dependent increase in cell proliferation was blocked by addition of 10 microM nifedipine. Therefore, it appears that the mechanism of action of EGF-induced osteoblastic cell proliferation is mediated by changes in plasma membrane potential which result in extracellular calcium influx.
Collapse
Affiliation(s)
- J Loza
- Department of Oral Biology, School of Dental Medicine, State University of New York at Buffalo, USA
| | | | | | | |
Collapse
|
412
|
Long MW, Robinson JA, Ashcraft EA, Mann KG. Regulation of human bone marrow-derived osteoprogenitor cells by osteogenic growth factors. J Clin Invest 1995; 95:881-7. [PMID: 7860771 PMCID: PMC295576 DOI: 10.1172/jci117738] [Citation(s) in RCA: 188] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Human bone marrow contains a distinct cell population that expresses bone proteins and responds to transforming growth factor beta 1 (TGF-beta), but not to hematopoietic growth factors (Long, M. W., J. L. Williams, and K. G. Mann. 1990. J. Clin. Invest. 86:1387-1395). We now report the isolation, characterization, and growth factor responsiveness of these precursors to human osteoblasts and the identification of a human osteoprogenitor cell. Immunological separation of human bone marrow nonadherent low-density (NALD) cells results in a marked enrichment of cells that express osteocalcin, osteonectin, and bone alkaline phosphatase. Flow cytometric analyses show that distinct cell subpopulations exist among these isolated cells. The majority of the bone antigen-positive cells are approximately the size of a lymphocyte, whereas other, less frequent antibody-separated subpopulations consist of osteoblast-like cells and osteoprogenitor cells. In serum-free cultures, TGF-beta stimulates the small, antigen-positive cells to become osteoblast-like, as these cells both increase in size, and express increased levels of osteocalcin and alkaline phosphatase. Antibody-separated cells also contain a separate population of clonal progenitor cells that form colonies of osteoblast-like cells when cultured in serum-free, semi-solid media. Two types of human osteoprogenitor cells are observed: a colony-forming cell (CFC) that generates several hundred bone antigen-positive cells, and a more mature cluster-forming cell that has a lesser proliferative potential and thus generates clusters of 20-50 antigen-positive cells. Osteopoietic colony-forming cells and cluster-forming cells have an obligate but differential requirement for osteogenic growth factors. The CFCs respond to TGF-beta, basic fibroblast growth factor (bFGF), bone morphogenic protein-2 (BMP-2), and 1, 25-dihydroxy vitamin D3 (1,25-OH D3). In contrast to the colony-forming cells, cluster-forming cells are regulated predominantly by 1,25-OH D3 and TGF-beta, but fail to respond to bFGF. We conclude that human bone marrow contains a nonhematogenous, heterogeneous population of bone precursor cells among which exists a population of proliferating osteoprogenitor cells. Further characterization of these bone precursor cell populations should yield important information on their role in osteogenesis in both health and disease.
Collapse
Affiliation(s)
- M W Long
- Department of Pediatrics, University of Michigan, Ann Arbor 48109, USA
| | | | | | | |
Collapse
|
413
|
Amédée J, Bareille R, Rouais F, Cunningham N, Reddi H, Harmand MF. Osteogenin (bone morphogenic protein 3) inhibits proliferation and stimulates differentiation of osteoprogenitors in human bone marrow. Differentiation 1995. [DOI: 10.1046/j.1432-0436.1995.5820157.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
414
|
Slater M, Patava J, Kingham K, Mason RS. Modulation of growth factor incorporation into ECM of human osteoblast-like cells in vitro by 17 beta-estradiol. THE AMERICAN JOURNAL OF PHYSIOLOGY 1994; 267:E990-1001. [PMID: 7810645 DOI: 10.1152/ajpendo.1994.267.6.e990] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Human fetal osteoblast-like cells formed a regular multilayered structure in vitro with an extensive collagen-based extracellular matrix. With colloidal gold immunocytochemistry, labels for alkaline phosphatase and osteocalcin were distributed in a relatively diffuse pattern, in contrast to the bone growth factors, insulin-like growth factors I and II (IGF-I and IGF-II), transforming growth factor-beta 1 (TGF-beta 1), and basic fibroblast growth factor, which were colocalized in the collagenous matrix of the multilayer. The inclusion of 17 beta-estradiol (10(-11) to 10(-9) M) in the culture medium increased multilayer depths, increased labeling for IGF-I, IGF-II, and TGF-beta 1, and resulted in earlier detection of TGF-beta 1 label. In contrast, the increase in multilayer depth resulting from treatment with human platelets, an exogenous source of growth factors, was not accompanied by an increase in matrix IGF-I, IGF-II, or TGF-beta 1 label, suggesting a particular effect of estradiol to facilitate this process. Because growth factors in bone matrix may act as coupling agents when released during resorption, reduced growth factor incorporation in the presence of reduced sex steroid concentrations may lead to uncoupling of resorption and subsequent formation.
Collapse
Affiliation(s)
- M Slater
- Department of Physiology, University of Sydney, New South Wales, Australia
| | | | | | | |
Collapse
|
415
|
Frenkel B, Montecino M, Stein JL, Lian JB, Stein GS. A composite intragenic silencer domain exhibits negative and positive transcriptional control of the bone-specific osteocalcin gene: promoter and cell type requirements. Proc Natl Acad Sci U S A 1994; 91:10923-7. [PMID: 7971985 PMCID: PMC45138 DOI: 10.1073/pnas.91.23.10923] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The osteocalcin (OC) silencer is a unique example of exonic sequences contributing to negative transcriptional control of mammalian gene expression. In this paper we demonstrate, using a reporter transfection assay, that multiple elements reside within the OC +24/+151 domain. Thirty-fold repression is mediated by the +49/+104 fragment, experimentally relocated 3' of the poly(A) signal. Deletion of either the +49/+54 protein-coding sequence or the +98/+104 intronic part of this fragment results in loss of repression activity, suggesting a bipartite organization of the +49/+104 silencer. Of particular interest, we have mapped an antisilencer activity to the ACCCTCTCT motif (+40/+48), found in silencers associated with several other genes. Extension of the +49/+104 silencer to include the +24/+48 and/or the +105/+151 sequences results in increased silencer activity up to 170-fold, suggesting the presence of additional silencer elements within these sequences. The activity of the silencer contained within the +24/+151 OC sequence is directed to the basal promoter and is not dependent on 5' distal enhancer elements, including those that mediate responsiveness of OC transcription to vitamin D. The OC silencer represses the heterologous thymidine kinase promoter and is operative in osseous (normal diploid osteoblasts, ROS 17/2.8 osteosarcoma) as well as HeLa cells. Our results, which suggest the presence of at least five regulatory elements downstream of the OC transcription start site, indicate the complexity of sequences that mediate repression of OC promoter activity.
Collapse
Affiliation(s)
- B Frenkel
- Department of Cell Biology, University of Massachusetts Medical Center, Worcester 01655
| | | | | | | | | |
Collapse
|
416
|
McCabe LR, Last TJ, Lynch M, Lian J, Stein J, Stein G. Expression of cell growth and bone phenotypic genes during the cell cycle of normal diploid osteoblasts and osteosarcoma cells. J Cell Biochem 1994; 56:274-82. [PMID: 7829587 DOI: 10.1002/jcb.240560221] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Establishing regulatory mechanisms that mediate proliferation of osteoblasts while restricting expression of genes associated with mature bone cell phenotypic properties to post-proliferative cells is fundamental to understanding skeletal development. To gain insight into relationships between growth control and the developmental expression of genes during osteoblast differentiation, we have examined expression of three classes of genes during the cell cycle of normal diploid rat calvarial-derived osteoblasts and rat osteosarcoma cells (ROS 17/2.8): cell cycle and growth-related genes (e.g., histone), genes that encode major structural proteins (e.g., actin and vimentin), and genes related to the biosynthesis, organization, and mineralization of the bone extracellular matrix (e.g., alkaline phosphatase, collagen I, osteocalcin, and osteopontin). In normal diploid osteoblasts as well as in osteosarcoma cells we found that histone genes, required for cell progression, are selectively expressed during S phase. All other genes studied were constitutively expressed both at the transcriptional and posttranscriptional levels. Alkaline phosphatase, an integral membrane protein in both osteoblasts and osteosarcoma cells, exhibited only minimal changes in activity during the osteoblast and osteosarcoma cell cycles. Our findings clearly indicate that despite the loss of normal proliferation-differentiation interrelationships in osteosarcoma cells, cell cycle regulation or constitutive expression of growth and phenotypic genes is maintained.
Collapse
Affiliation(s)
- L R McCabe
- Department of Cell Biology, University of Massachusetts Medical Center, Worcester 01655
| | | | | | | | | | | |
Collapse
|
417
|
Stein GS, van Wijnen AJ, Stein JL, Lian JB, Bidwell JP, Montecino M. Nuclear architecture supports integration of physiological regulatory signals for transcription of cell growth and tissue-specific genes during osteoblast differentiation. J Cell Biochem 1994; 55:4-15. [PMID: 8083299 DOI: 10.1002/jcb.240550103] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
During the past several years it has become increasingly evident that the three-dimensional organization of the nucleus plays a critical role in transcriptional control. The principal theme of this prospect will be the contribution of nuclear structure to the regulation of gene expression as functionally related to development and maintenance of the osteoblast phenotype during establishment of bone tissue-like organization. The contributions of nuclear structure as it regulates and is regulated by the progressive developmental expression of cell growth and bone cell related genes will be examined. We will consider signalling mechanisms that integrate the complex and interdependent responsiveness to physiological mediators of osteoblast proliferation and differentiation. The focus will be on the involvement of the nuclear matrix, chromatin structure, and nucleosome organization in transcriptional control of cell growth and bone cell related genes. Findings are presented which are consistent with involvement of nuclear structure in gene regulatory mechanisms which support osteoblast differentiation by addressing four principal questions: 1) Does the representation of nuclear matrix proteins reflect the developmental stage-specific requirements for modifications in transcription during osteoblast differentiation? 2) Are developmental stage-specific transcription factors components of nuclear matrix proteins? 3) Can the nuclear matrix facilitate interrelationships between physiological regulatory signals that control transcription and the integration of activities of multiple promoter regulatory elements? 4) Are alterations in gene expression and cell phenotypic properties in transformed osteoblasts and osteosarcoma cells reflected by modifications in nuclear matrix proteins? There is a striking representation of nuclear matrix proteins unique to cells, tissues as well as developmental stages of differentiation, and tissue organization. Together with selective association of regulatory molecules with the nuclear matrix in a growth and differentiation-specific manner, there is a potential for application of nuclear matrix proteins in tumor diagnosis, assessment of tumor progression, and prognosis of therapies where properties of the transformed state of cells is modified. It is realistic to consider the utilization of nuclear matrix proteins for targeting regions of cell nuclei and specific genomic domains on the basis of developmental phenotypic properties or tissue pathology.
Collapse
Affiliation(s)
- G S Stein
- Department of Cell Biology, University of Massachusetts Medical Center, Worcester 01655
| | | | | | | | | | | |
Collapse
|
418
|
Stein GS, Stein JL, van Wijnen AJ, Lian JB. Histone gene transcription: a model for responsiveness to an integrated series of regulatory signals mediating cell cycle control and proliferation/differentiation interrelationships. J Cell Biochem 1994; 54:393-404. [PMID: 8014188 DOI: 10.1002/jcb.240540406] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Histone gene expression is restricted to the S-phase of the cell cycle. Control is at multiple levels and is mediated by the integration of regulatory signals in response to cell cycle progression and the onset of differentiation. The H4 gene promoter is organized into a series of independent and overlapping regulatory elements which exhibit selective, phosphorylation-dependent interactions with multiple transactivation factors. The three-dimensional organization of the promoter and, in particular, its chromatin structure, nucleosome organization, and interactions with the nuclear matrix may contribute to interrelationships of activities at multiple promoter elements. Molecular mechanisms are discussed that may participate in the coordinate expression of S-phase-specific core and H1 histone genes, together with other genes functionally coupled with DNA replication.
Collapse
Affiliation(s)
- G S Stein
- Department of Cell Biology, University of Massachusetts Medical Center, Worcester 01655
| | | | | | | |
Collapse
|
419
|
Gierthy JF, Silkworth JB, Tassinari M, Stein GS, Lian JB. 2,3,7,8-Tetrachlorodibenzo-p-dioxin inhibits differentiation of normal diploid rat osteoblasts in vitro. J Cell Biochem 1994; 54:231-8. [PMID: 8175897 DOI: 10.1002/jcb.240540211] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The influence of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), a potent halogenated aromatic hydrocarbon, on the development of bone tissue-like organization in primary cultures of normal diploid calvarial-derived rat osteoblasts was examined. Initially, when placed in culture, these cells actively proliferate while expressing genes associated with biosynthesis of the bone extracellular matrix. Then, post-proliferatively, genes are expressed that render the osteoblast competent for extracellular matrix mineralization and maintenance of structural as well as functional properties of the mature bone-cell phenotype. Our results indicate that, in the presence of TCDD, proliferation of osteoblasts was not inhibited but post-confluent formation of multicellular nodules that develop bone tissue-like organization was dramatically suppressed. Consistent with TCDD-mediated abrogation of bone nodule formation, expression of alkaline phosphatase and osteocalcin was not upregulated post-proliferatively. These findings are discussed within the context of TCDD effects on estrogens and vitamin D-responsive developmental gene expression during osteoblast differentiation and, from a broader biological perspective, on steroid hormone control of differentiation.
Collapse
Affiliation(s)
- J F Gierthy
- Wadsworth Center for Laboratories and Research, New York State Department of Health, Albany 12201-0509
| | | | | | | | | |
Collapse
|
420
|
Kockx M, McCabe L, Stein JL, Lian JB, Stein GS. Influence of DNA replication inhibition on expression of cell growth and tissue-specific genes in osteoblasts and osteosarcoma cells. J Cell Biochem 1994; 54:47-55. [PMID: 8126086 DOI: 10.1002/jcb.240540106] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Interrelationships between proliferation and expression of cell growth as well as bone cell-related genes were examined from two standpoints. First, the consequence of downregulating proliferation by DNA synthesis inhibition on expression of a cell cycle-regulated histone gene and genes associated with development of the bone cell phenotype (type I collagen, alkaline phosphatase, osteopontin, and osteocalcin) was investigated. Second, the requirement for stringent growth control to support functional relationships between expression of proliferation and differentiation-related genes was explored. Parameters of cell growth and osteoblast-related gene expression in primary cultures of normal diploid osteoblasts, that initially express proliferation-dependent genes and subsequently postproliferative genes associated with mature bone cell phenotypic properties, were compared to those operative in ROS 17/2.8 osteosarcoma cells that concomitantly express cell growth and mature osteoblast phenotypic genes. Our findings indicate that in both normal diploid osteoblasts and osteosarcoma cells, expression of the cell cycle regulated histone genes is tightly coupled with DNA synthesis and controlled predominantly at a posttranscriptional level. Inhibition of proliferation by blocking DNA synthesis with hydroxyurea upregulates a subset of developmentally expressed genes that postproliferatively support progressive establishment of mature osteoblast phenotypic properties (e.g., alkaline phosphatase, type 1 collagen, and osteopontin). However, the osteocalcin gene, which is expressed during the final stage of osteoblast differentiation when extracellular matrix mineralization occurs, is not upregulated. Variations in the extent to which inhibition of proliferation in normal diploid osteoblasts and in ROS 17/2.8 osteosarcoma cells selectively affects transcription and cellular levels of mRNA transcripts from bone cell-related genes (e.g., osteocalcin) may reflect modifications in proliferation/differentiation interrelationships when stringent growth control is abrogated.
Collapse
Affiliation(s)
- M Kockx
- University of Massachusetts Medical Center, Worcester 01655
| | | | | | | | | |
Collapse
|
421
|
Atencio IA, Shadan FF, Zhou XJ, Vaziri ND, Villarreal LP. Adult mouse kidneys become permissive to acute polyomavirus infection and reactivate persistent infections in response to cellular damage and regeneration. J Virol 1993; 67:1424-32. [PMID: 8382304 PMCID: PMC237512 DOI: 10.1128/jvi.67.3.1424-1432.1993] [Citation(s) in RCA: 123] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Kidneys of newborn (but not adult) mice are normally high permissive for polyomavirus (Py) infection and readily establish persistent infections. We have proposed that ongoing cellular differentiation, which occurs in newborn mice, may be necessary for a high level of in vivo Py replication (R. Rochford, J. P. Moreno, M. L. Peake, and L. P. Villarreal, J. Virol. 66:3287-3297, 1992). This cellular differentiation requirement may also be necessary for the reactivation of a persistent Py kidney infection and could provide an alternative to the accepted view that reactivation results from immunosuppression. To examine this proposal, the ability of adult BALB/c mouse kidneys to support primary acute Py infection or to reactivate previously established persistent Py infections after kidney-specific damage was investigated. Kidney damage was induced by both chemical (glycerol, cisplatin, or methotrexate) and mechanical (through renal artery clamping to produce unilateral renal ischemia) treatments. We also examined the effects of epidermal growth factor (EGF), which enhances the rate of kidney regeneration, on Py replication. Using histopathologic techniques, in situ hybridization for Py DNA, and immunofluorescence for Py VP1 production, we established that both chemical damage and damage through renal artery clamping of adult kidneys promoted high levels of primary Py replication in these normally nonpermissive cells. This damage also promoted the efficient reactivation of Py replication from persistently infected kidneys, in the absence of immunosuppression. EGF treatment significantly increased acute Py replication and also reactivation in damaged kidneys. These results support the view that ongoing cellular division and differentiation may be needed both for high levels of acute Py replication and for reactivation of persistent infections in vivo.
Collapse
Affiliation(s)
- I A Atencio
- Department of Molecular Biology and Biochemistry, University of California, Irvine 92715
| | | | | | | | | |
Collapse
|