401
|
Meng H, Quan Q, Yuan X, Zheng Y, Peng J, Guo Q, Wang A, Lu S. Diffusion of neutral solutes within human osteoarthritic cartilage: Effect of loading patterns. J Orthop Translat 2019; 22:58-66. [PMID: 32440500 PMCID: PMC7231982 DOI: 10.1016/j.jot.2019.10.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 09/26/2019] [Accepted: 10/28/2019] [Indexed: 11/04/2022] Open
Abstract
Objective Variation of the solute diffusion within articular cartilage is an important feature of osteoarthritis (OA) progression. For in vitro study of monitoring of the diffusion process, it is essential to simulate physiological conditions as much as possible. Our objective was to investigate the effects of loading patterns on diffusion processes of neutral solutes within osteoarthritic cartilage. Methods Osteochondral plugs were harvested from human tibial plateaus and separated into three OA stages according to modified Mankin scoring system. The samples were subjected to static or cyclic compression using a carefully designed loading device. Contrast-enhanced micro-computed tomography (CEμCT) was applied to acquire image sequences while the cartilage was being compressed. The apparent diffusion maps and diffusion coefficients were analysed, as well as histological and stereological assessments of the plugs. Results The diffusion of neutral solutes was significantly affected by the loading patterns. For OA cartilage with early and middle stages, cyclic loading accelerated contrast agent infiltration compared with static loading. However, for late-stage OA samples, no acceleration of diffusion was observed in the first 2 h because of the insufficient resilience of compressed cartilage. The accumulation of neutral solutes in an upward invasive fissure also suggested that solutes could penetrate into the fissure under cyclic loading. Conclusions To our knowledge, this is the first study to combine the cyclic compression and CEμCT scanning in the diffusion testing of human OA cartilage. This loading pattern could simulate the physiological conditions and reduce the time to reach solute equilibrium within cartilage. The diffusion data may contribute to joint drug-injection therapies for early OA. The translational potential of this article The combination of cyclic loading and CEμCT scanning enabled diffusion analysis of osteoarthritic cartilage under different compressions. A comprehensive evaluation of OA cartilage and subchondral bone may benefit from this technique. The diffusion data provide theoretical support and reference for intra-articular injection of drugs.
Collapse
Affiliation(s)
- Haoye Meng
- School of Material Science and Engineering, University of Science and Technology Beijing, Beijing, China.,Institute of Orthopaedics, Chinese PLA General Hospital, Beijing, China.,Beijing Key Lab of Regenerative Medicine in Orthopaedics, Beijing, China
| | - Qi Quan
- Institute of Orthopaedics, Chinese PLA General Hospital, Beijing, China
| | - Xueling Yuan
- Institute of Orthopaedics, Chinese PLA General Hospital, Beijing, China
| | - Yudong Zheng
- School of Material Science and Engineering, University of Science and Technology Beijing, Beijing, China
| | - Jiang Peng
- Institute of Orthopaedics, Chinese PLA General Hospital, Beijing, China.,Beijing Key Lab of Regenerative Medicine in Orthopaedics, Beijing, China
| | - Quanyi Guo
- Institute of Orthopaedics, Chinese PLA General Hospital, Beijing, China.,Beijing Key Lab of Regenerative Medicine in Orthopaedics, Beijing, China
| | - Aiyuan Wang
- Institute of Orthopaedics, Chinese PLA General Hospital, Beijing, China.,Beijing Key Lab of Regenerative Medicine in Orthopaedics, Beijing, China
| | - Shibi Lu
- Institute of Orthopaedics, Chinese PLA General Hospital, Beijing, China.,Beijing Key Lab of Regenerative Medicine in Orthopaedics, Beijing, China
| |
Collapse
|
402
|
Subchondral bone deterioration in femoral heads in patients with osteoarthritis secondary to hip dysplasia: A case-control study. J Orthop Translat 2019; 24:190-197. [PMID: 33101970 PMCID: PMC7548347 DOI: 10.1016/j.jot.2019.10.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 08/20/2019] [Accepted: 10/28/2019] [Indexed: 11/23/2022] Open
Abstract
Objectives Residual hip dysplasia is the most common underlying condition leading to secondary osteoarthritis (OA) of the hip. Subchondral bone alterations in OA secondary to hip dysplasia (HD-OA) are poorly investigated. The aim of the present study was to analyse the microarchitecture, bone remodelling and pathological alterations of subchondral bone in femoral heads from patients with HD-OA. Methods Subchondral bone specimens were extracted from both weight-bearing and non–weight-bearing regions of femoral heads from 20 patients with HD-OA and 20 patients with osteoporotic femoral neck fracture, during hip replacement surgery. Micro-CT and histological examination were performed to assess the microarchitecture and histopathological changes. Results The weight-bearing subchondral bone showed significantly more sclerotic microarchitecture and higher bone remodelling level in HD-OA as compared with osteoporosis. In the non–weight-bearing region, the two diseases shared similar microarchitectural characteristics, but higher bone remodelling level was detected in HD-OA. Distinct regional differences were observed in HD-OA, whereas the two regions exhibited similar characteristics in osteoporosis. In addition, HD-OA displayed more serious pathological alterations, including subchondral bone cyst, metaplastic cartilaginous tissue, bone marrow oedema and fibrous tissue, especially in the weight-bearing region. Conclusions Osteoarthritic deteriorations of subchondral bone induced by hip dysplasia spread throughout the whole joint, but exhibit region-dependent variations, with the weight-bearing region more seriously affected. Biomechanical stress might exert a pivotal impact on subchondral bone homeostasis in hip dysplasia. The translational potential of this article The histomorphometric findings in the project indicate an early intervention for the development of hip dysplasia in clinic.
Collapse
|
403
|
SOST Deficiency Aggravates Osteoarthritis in Mice by Promoting Sclerosis of Subchondral Bone. BIOMED RESEARCH INTERNATIONAL 2019; 2019:7623562. [PMID: 31828128 PMCID: PMC6885161 DOI: 10.1155/2019/7623562] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 08/20/2019] [Accepted: 08/27/2019] [Indexed: 02/05/2023]
Abstract
As the initial part in the development of osteoarthritis (OA), subchondral bone sclerosis has been considered to be initiated by excess mechanical loading and proven to be correlated to other pathological changes. Sclerostin, which is an essential mechanical stress response protein, is encoded by the SOST gene. It is expressed in osteocytes and mature chondrocytes and has been proven to be closely correlated to OA. However, the relationship and mechanism between the SOST gene and the development of OA remain unclear. The aim of the present study was to investigate the role of the SOST gene in OA pathogenesis in the subchondral bone. A knee anterior cruciate ligament transection (ACLT) mouse osteoarthritis (OA) model on SOST-knockout (SOST KO) and wild-type (WT) mice was established. The pathogenic and phenotypic changes in the subchondral bone were investigated by histology, micro-CT, immunohistochemistry, TRAP staining, Masson staining, and Toluidine blue staining. It was found that sclerostin expression decreased in both the calcified cartilage and mineralized subchondral structures during the development of OA. Joint instability induced a severe cartilage degradation phenotype, with higher OARSI scores in SOST KO mice, when compared to WT mice. SOST KO mice with OA exhibited a higher BMD and BV/TV ratio, as well as a higher rate of bone remodeling and TRAP-positive cell number, when compared to the WT counterparts, but the difference was not significant between the sham-operation groups. It was concluded that loss of sclerostin aggravates knee OA in mice by promoting subchondral bone sclerosis and increasing catabolic activity of cartilage.
Collapse
|
404
|
Obeidat AM, Miller RE, Miller RJ, Malfait AM. The nociceptive innervation of the normal and osteoarthritic mouse knee. Osteoarthritis Cartilage 2019; 27:1669-1679. [PMID: 31351964 PMCID: PMC7020657 DOI: 10.1016/j.joca.2019.07.012] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 07/01/2019] [Accepted: 07/12/2019] [Indexed: 02/06/2023]
Abstract
OBJECTIVES To document the nociceptive innervation of the normal and osteoarthritic murine knee. METHODS Knees were collected from naïve male C57BL/6 NaV1.8-tdTomato reporter mice aged 10, 26, and 52 weeks (n = 5/group). Destabilization of the medial meniscus (DMM) or sham surgeries (n = 5/group) were performed in the right knee of 10-week old male NaV1.8-tdTomato mice, and knees were harvested 16 weeks later. Twenty 20-μm frozen sections from a 400-μm mid-joint region were collected for confocal microscopy. Integrated density of the tdTomato signal was calculated using Image J by two independent observers blinded to the groups. Consecutive sections were stained with hematoxylin & eosin. C57BL/6-Pirt-GCaMP3 mice (n = 5/group) and protein gene product 9.5 (PGP9.5) immunostaining of C57BL/6 wild type (WT) mice (n = 5/group) were used to confirm innervation patterns. RESULTS In naive 10-week old mice, nociceptive innervation was most dense in bone marrow cavities, lateral synovium and at the insertions of the cruciate ligaments. By age 26 weeks, unoperated knees showed a marked decline in nociceptors in the lateral synovium and cruciate ligament insertions. No further decline was observed by age 1 year. Sixteen weeks after DMM, the medial compartment of OA knees exhibited striking changes in NaV1.8+ innervation, including increased innervation of the medial synovium and meniscus, and nociceptors in subchondral bone channels. All results were confirmed through quantification, also in Pirt-GCaMP3 and PGP9.5-immunostained WT mice. CONCLUSIONS Nociceptive innervation of the mouse knee markedly declines by age 26 weeks, before onset of spontaneous OA. Late-stage surgically induced OA is associated with striking plasticity of joint afferents in the medial compartment of the knee.
Collapse
Affiliation(s)
- Alia M. Obeidat
- Department of Internal Medicine, Division of Rheumatology, Rush University Medical Center, Chicago IL
| | - Rachel E. Miller
- Department of Internal Medicine, Division of Rheumatology, Rush University Medical Center, Chicago IL
| | | | - Anne-Marie Malfait
- Department of Internal Medicine, Division of Rheumatology, Rush University Medical Center, Chicago IL
| |
Collapse
|
405
|
Xu J, She G, Gui T, Hou H, Li J, Chen Y, Zha Z. Knee muscle atrophy is a risk factor for development of knee osteoarthritis in a rat model. J Orthop Translat 2019; 22:67-72. [PMID: 32440501 PMCID: PMC7231952 DOI: 10.1016/j.jot.2019.10.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 09/17/2019] [Accepted: 10/07/2019] [Indexed: 12/11/2022] Open
Abstract
Objectives The objective of this study was to investigate the effect of botulinum toxin type A (BTX-A)-induced quadriceps muscle atrophy on the cartilage and subchondral bone in an otherwise intact rat joint model. Methods The rat right quadriceps muscle atrophy was established by intramuscular injection of BTX-A. Twenty-four rats were divided randomly into 3 groups: The BTX-A-treated 4-week group; the BTX-A-treated 8-week group; and the control group injected with phosphate buffer saline were observed for 8 weeks. Muscle atrophy level was measured by weighing and histology examinations. Serum interleukin-1β level was tested by ELISA (enzyme linked immunosorbent assay); the subchondral bone was analysed by micro-computed tomography and the cartilage was measured by histology examinations (gross view, haematoxylin and eosin staining and Safranin-O/fast green staining) and immunohistochemistry test {collagen X [ColX]}. Results BTX-A intramuscular injection led to muscle atrophy. Characteristics of muscle atrophy appeared in two BTX-A-injected groups but not in the control group. Quadriceps atrophy did not affect interleukin-1β level in serum, but resulted in subchondral bone abnormal changes with reduced bone volume/total tissue volume and increased Structure Model Index. Furthermore, the more the severe cartilage damage, the higher the histologic damage scores, followed by the higher the percentage of collagen X-positive chondrocytes caused by muscle atrophy. Conclusions Quadriceps muscle atrophy triggered the subchondral bone abnormal change and cartilage degeneration, which would be a risk factor for development of osteoarthritis. The translational potential of this article Our results indicate that anti-quadriceps muscle atrophy can be a candidate therapeutic target in the prevention of knee osteoarthritis.
Collapse
Affiliation(s)
| | | | | | | | | | - Yuanfeng Chen
- Corresponding author. Institute of Orthopedic Diseases and Center for Joint Surgery and Sports Medicine, The First Affiliated Hospital, Jinan University, Guangzhou, PR China.
| | - Zhengang Zha
- Corresponding author. Institute of Orthopedic Diseases and Center for Joint Surgery and Sports Medicine, The First Affiliated Hospital, Jinan University, Guangzhou, PR China.
| |
Collapse
|
406
|
Muratovic D, Findlay DM, Cicuttini FM, Wluka AE, Lee YR, Edwards S, Kuliwaba JS. Bone marrow lesions in knee osteoarthritis: regional differences in tibial subchondral bone microstructure and their association with cartilage degeneration. Osteoarthritis Cartilage 2019; 27:1653-1662. [PMID: 31306782 DOI: 10.1016/j.joca.2019.07.004] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 06/19/2019] [Accepted: 07/03/2019] [Indexed: 02/02/2023]
Abstract
OBJECTIVE The aim of this study was to investigate how bone microstructure within bone marrow lesions (BMLs) relates to the bone and cartilage across the whole human tibial plateau. DESIGN Thirty-two tibial plateaus from patients with osteoarthritis (OA) at total knee arthroplasty and eleven age-matched non-OA controls, were scanned ex vivo by MRI to identify BMLs and by micro CT to quantitate the subchondral (plate and trabecular) bone microstructure. For cartilage evaluation, specimens were processed histologically. RESULTS BMLs were detected in 75% of the OA samples (OA-BML), located predominantly in the anterior-medial (AM) region. In contrast to non-OA control and OA-no BML, in OA-BML differences in microstructure were significantly more evident between subregions. In OA-BML, the AM region contained the most prominent structural alterations. Between-group comparisons showed that the AM region of the OA-BML group had significantly higher histological degeneration (OARSI grade) (P < .0001, P < .05), thicker subchondral plate (P < .05, P < .05), trabeculae that are more anisotropic (P < .0001, P < .05), well connected (P < .05, P = n.s), and more plate-like (P < 0.05, P < 0.05), compared to controls and OA-no BML at this site. Compared to controls, OA-no BML had significantly higher OARSI grade (P < .0001), and lower trabecular number (P < .05). CONCLUSION In established knee OA, both the extent of cartilage damage and microstructural degeneration of the subchondral bone were dependent on the presence of a BML. In OA-no BML, bone microstructural alterations are consistent with a bone attrition phase of the disease. Thus, the use of BMLs as MRI image-based biomarkers appear to inform on the degenerative state within the osteochondral unit.
Collapse
Affiliation(s)
- D Muratovic
- Centre for Orthopaedic and Trauma Research, Discipline of Orthopaedics and Trauma, The University of Adelaide, Adelaide, Australia.
| | - D M Findlay
- Centre for Orthopaedic and Trauma Research, Discipline of Orthopaedics and Trauma, The University of Adelaide, Adelaide, Australia.
| | - F M Cicuttini
- Department of Epidemiology and Preventive Medicine, Monash University, Melbourne, Australia.
| | - A E Wluka
- Department of Epidemiology and Preventive Medicine, Monash University, Melbourne, Australia.
| | - Y R Lee
- Centre for Orthopaedic and Trauma Research, Discipline of Orthopaedics and Trauma, The University of Adelaide, Adelaide, Australia.
| | - S Edwards
- Adelaide Health Technology Assessment (AHTA), School of Public Health, The University of Adelaide, Adelaide, Australia.
| | - J S Kuliwaba
- Centre for Orthopaedic and Trauma Research, Discipline of Orthopaedics and Trauma, The University of Adelaide, Adelaide, Australia.
| |
Collapse
|
407
|
Exosome-mediated Bidirectional Signaling between Mesenchymal Stem Cells and Chondrocytes for Enhanced Chondrogenesis. BIOTECHNOL BIOPROC E 2019. [DOI: 10.1007/s12257-019-0332-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
408
|
Horga LM, Henckel J, Fotiadou A, Hirschmann A, Torlasco C, Di Laura A, D'Silva A, Sharma S, Moon J, Hart A. Can marathon running improve knee damage of middle-aged adults? A prospective cohort study. BMJ Open Sport Exerc Med 2019; 5:e000586. [PMID: 31673407 PMCID: PMC6797328 DOI: 10.1136/bmjsem-2019-000586] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/29/2019] [Indexed: 01/18/2023] Open
Abstract
Objectives To evaluate the short-term impact of long-distance running on knee joints using MRI. Methods 82 healthy adults participating in their first marathon underwent 3T (Tesla) MRI of both knees 6 months before and half a month after the marathon: 71 completed both the 4 month-long standardised training programme and the marathon; and 11 dropped-out during training and did not run the marathon. Two senior musculoskeletal radiologists graded the internal knee structures using validated scoring systems. Participants completed Knee Injury and Osteoarthritis Outcome Score questionnaires at each visit for self-reporting knee function. Results Premarathon and pretraining MRI showed signs of damage, without symptoms, to several knee structures in the majority of the 82 middle-aged volunteers. However, after the marathon, MRI showed a reduction in the radiological score of damage in: subchondral bone marrow oedema in the condyles of the tibia (p=0.011) and femur (p=0.082). MRI did also show an increase in radiological scores to the following structures: cartilage of the lateral patella (p=0.0005); semimembranosus tendon (p=0.016); iliotibial band (p<0.0001) and the prepatellar bursa (p=0.016). Conclusion Improvement to damaged subchondral bone of the tibial and femoral condyles was found following the marathon in novice runners, as well as worsening of the patella cartilage although asymptomatic. This is the most robust evidence to link marathon running with knee joint health and provides important information for those seeking to understand the link between long distance running and osteoarthritis of the main weight-bearing areas of the knee.
Collapse
Affiliation(s)
- Laura Maria Horga
- Institute of Orthopaedics and Musculoskeletal Science, Royal National Orthopaedic Hospital, University College London, London, UK
| | - Johann Henckel
- Institute of Orthopaedics and Musculoskeletal Science, Royal National Orthopaedic Hospital, University College London, London, UK
| | - Anastasia Fotiadou
- Institute of Orthopaedics and Musculoskeletal Science, Royal National Orthopaedic Hospital, University College London, London, UK
| | - Anna Hirschmann
- Clinic of Radiology and Nuclear Medicine, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Camilla Torlasco
- Institute of Cardiovascular Science and Barts Heart Centre, University College London, London, UK
| | - Anna Di Laura
- Institute of Orthopaedics and Musculoskeletal Science, Royal National Orthopaedic Hospital, University College London, London, UK
| | - Andrew D'Silva
- Department of Cardiovascular Sciences, St. George's University of London, London, UK
| | - Sanjay Sharma
- Department of Cardiovascular Sciences, St. George's University of London, London, UK
| | - James Moon
- Institute of Cardiovascular Science and Barts Heart Centre, University College London, London, UK
| | - Alister Hart
- Institute of Orthopaedics and Musculoskeletal Science, Royal National Orthopaedic Hospital, University College London, London, UK
| |
Collapse
|
409
|
Abubacker S, Premnath P, Shonak A, Leonard C, Shah S, Zhu Y, Jay GD, Schmidt TA, Boyd S, Krawetz R. Absence of Proteoglycan 4 (Prg4) Leads to Increased Subchondral Bone Porosity Which Can Be Mitigated Through Intra-Articular Injection of PRG4. J Orthop Res 2019; 37:2077-2088. [PMID: 31119776 DOI: 10.1002/jor.24378] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 05/14/2019] [Indexed: 02/04/2023]
Abstract
Proteoglycan 4 (PRG4) is a mucin-like glycoprotein important for joint health. Mice lacking Prg4 demonstrate degeneration of the cartilage and altered skeletal morphology. The purpose of this study was to examine if Prg4 deficiency leads to subchondral bone defects and if these defects could be mitigated through intra-articular injection of recombinant human PRG4 (rhPRG4). Mice deficient in Prg4 expression demonstrated increased cartilage thickness and increased subchondral bone porosity compared with C57BL/6 controls. While the porosity of the subchondral bone of Prg4-/- mice decreased over time with maturation, intra-articular injection of rhPRG4 was able to forestall the increase in porosity. In contrast, neither hyaluronan (HA) nor methylprednisolone injections had beneficial effects on the subchondral bone porosity in the Prg4 knockout mice. Bone marrow progenitor cells from Prg4-/- mice demonstrated reduced osteogenic differentiation capacity at 4 weeks of age, but not at 16 weeks of age. While most studies on PRG4/lubricin focus on the health of the cartilage, this study demonstrates that PRG4 plays a role in the maturation of the subchondral bone. Furthermore, increasing joint lubrication/viscosupplementation through injection of HA or controlling joint inflammation through injection of methylprednisolone may help maintain the cartilage surface, but had no positive effect on the subchondral bone in animals lacking Prg4. Therefore, alterations in the subchondral bone in models with absent or diminished Prg4 expression should not be overlooked when investigating changes within the articular cartilage regarding the pathogenesis of osteoarthritis/arthrosis. © 2019 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 37:2077-2088, 2019.
Collapse
Affiliation(s)
- Saleem Abubacker
- McCaig Institute for Bone and Joint Health, University of Calgary, Calgary, Alberta, Canada
| | - Priyatha Premnath
- McCaig Institute for Bone and Joint Health, University of Calgary, Calgary, Alberta, Canada
| | - Anchita Shonak
- McCaig Institute for Bone and Joint Health, University of Calgary, Calgary, Alberta, Canada
| | - Catherine Leonard
- McCaig Institute for Bone and Joint Health, University of Calgary, Calgary, Alberta, Canada
| | - Sophia Shah
- McCaig Institute for Bone and Joint Health, University of Calgary, Calgary, Alberta, Canada
| | - Ying Zhu
- McCaig Institute for Bone and Joint Health, University of Calgary, Calgary, Alberta, Canada
| | - Gregory D Jay
- Department of Emergency Medicine, Brown University, Providence, Rhode Island
| | - Tannin A Schmidt
- McCaig Institute for Bone and Joint Health, University of Calgary, Calgary, Alberta, Canada.,Graduate Program of Biomedical Engineering, University of Calgary, Calgary, Alberta, Canada.,Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada.,Department of Mechanical Engineering, Schulich School of Engineering, University of Calgary, Calgary, Alberta, Canada
| | - Steven Boyd
- McCaig Institute for Bone and Joint Health, University of Calgary, Calgary, Alberta, Canada.,Graduate Program of Biomedical Engineering, University of Calgary, Calgary, Alberta, Canada.,Department of Mechanical Engineering, Schulich School of Engineering, University of Calgary, Calgary, Alberta, Canada
| | - Roman Krawetz
- McCaig Institute for Bone and Joint Health, University of Calgary, Calgary, Alberta, Canada.,Graduate Program of Biomedical Engineering, University of Calgary, Calgary, Alberta, Canada.,Departments of Surgery, Faculty of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, Alberta, T2N 4N1, Canada.,Departments of Cell Biology & Anatomy, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
410
|
Martig S, Hitchens PL, Lee PVS, Whitton RC. The relationship between microstructure, stiffness and compressive fatigue life of equine subchondral bone. J Mech Behav Biomed Mater 2019; 101:103439. [PMID: 31557658 DOI: 10.1016/j.jmbbm.2019.103439] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 09/16/2019] [Accepted: 09/16/2019] [Indexed: 10/26/2022]
Abstract
Subchondral bone injuries often precede articular cartilage damage in osteoarthritis and are common in thoroughbred racehorses due to the accumulation of fatigue damage from high speed racing and training. Thus, racehorses provide a model to investigate the role of subchondral bone in joint disease. We assessed the association of horse and racing related factors and micro-CT based micromorphology of three separate subchondral bone layers with the initial stiffness and compressive fatigue life of bone plugs. Furthermore, we investigated three different definitions of fatigue failure of subchondral bone during compressive fatigue testing. Initial stiffness was 2,362 ± 443 MPa (mean ± standard deviation). Median compressive fatigue life during cyclic loading to -78 MPa was 16,879 (range 210 to 57,064). Subchondral bone stiffness increased over a median of 24% (range 3%-42%) of fatigue life to a maximum of 3,614 ± 635 MPa. Compressive fatigue life was positively associated with bone volume fraction in the deeper layers of subchondral bone, maximal stiffness, and the number of cycles to maximal stiffness. Initial stiffness was positively associated with tissue mineral density in the deeper layers and bone volume fraction in the superficial layer. Most specimens with a fatigue life of less than 5,500 cycles fractured grossly before reaching 30% reduction of maximal stiffness. Cycles to 10% reduction of maximal stiffness correlated strongly with cycles to lowest recorded stiffness at gross fracture and thus is a valid alternative failure definition for compressive fatigue testing of subchondral bone. Our results show that subchondral bone sclerosis as a result of high speed exercise and measured as bone volume fraction is positively associated with compressive fatigue life and thus has a protective effect on subchondral bone. Further research is required to reconcile this finding with the common collocation of fatigue damage in sclerotic subchondral bone of racehorses.
Collapse
Affiliation(s)
- Sandra Martig
- U-Vet Equine Centre, Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, 250 Princes Highway, Werribee, VIC, 3030, Australia.
| | - Peta L Hitchens
- U-Vet Equine Centre, Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, 250 Princes Highway, Werribee, VIC, 3030, Australia.
| | - Peter V S Lee
- Melbourne School of Engineering, Department of Biomedical Engineering, The University of Melbourne, Parkville, VIC, 3010, Australia.
| | - R Chris Whitton
- U-Vet Equine Centre, Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, 250 Princes Highway, Werribee, VIC, 3030, Australia.
| |
Collapse
|
411
|
Dung TT, Nang VSQ, Son DN, Du HG, Long NH, Son LM, Toan DD, Minh DV, Phuong NH, Thanh MN. Total knee arthroplasty using modified measured resection: a five-year retrospective review of midterm outcomes. Arch Med Sci 2019; 17:397-405. [PMID: 33747276 PMCID: PMC7959093 DOI: 10.5114/aoms.2019.87689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 05/22/2019] [Indexed: 11/17/2022] Open
Abstract
INTRODUCTION Deforming arthrosis, or osteoarthritis, is the most common rheumatic disease that involves the musculoskeletal system. The purpose of this research is to perform a retrospective review of the quality of life of patients with knee arthrosis, who underwent total knee arthroplasty (TKA) no less than 5 years ago, to evaluate, based on the Knee Society Scoring System, the efficacy of a modified measured resection technique, and to investigate factors that affect the outcomes. MATERIAL AND METHODS The research sample consisted of 44 patients who had severe osteoarthrosis, Kellgren-Lawrence grade III and grade IV. RESULTS The post-operative complications occurred in seven knee joints. Among them there were 2 cases of infection, 2 cases of periprosthesis fracture, and 2 cases of aseptic instability, each pair accounting for 4.3%, and 1 case of femoropatellar pain (2.3%). The remaining 38 knee joints (84.8%) were free of complications. CONCLUSIONS Knee arthrosis is a serious health problem, given the significant rate of disability among patients and the significant reduction in the quality of life. Patients often seek medical help at the later stages of the disease, when pain is strong and knee function is significantly reduced. The approach to rehabilitation procedures and, in some cases, to lifestyle improvement should be more responsible.
Collapse
Affiliation(s)
- Tran T. Dung
- Hanoi Medical University; Saint Paul University Hospital; Hanoi Medical University Hospital, Vietnam
| | - Vo S. Q. Nang
- Hanoi Medical University; Hanoi Medical University Hospital, Vietnam
| | - Dinh N. Son
- Hanoi Medical University; Vietduc University Hospital, Vietnam
| | - Hoang G. Du
- Hanoi Medical University; Bachmai University Hospital, Vietnam
| | | | - Le M. Son
- Vietduc University Hospital, Vietnam
| | - Duong D. Toan
- Hanoi Medical University; Vietduc University Hospital, Vietnam
| | - Do V. Minh
- Hanoi Medical University; Hanoi Medical University Hospital, Vietnam
| | - Nguyen H. Phuong
- Hanoi Medical University; Saint Paul University Hospital; Hanoi Medical University Hospital, Vietnam
| | - Ma N. Thanh
- Hanoi Medical University; Hanoi Medical University Hospital, Vietnam
| |
Collapse
|
412
|
Chen W, Sun Y, Gu X, Hao Y, Liu X, Lin J, Chen J, Chen S. Conditioned medium of mesenchymal stem cells delays osteoarthritis progression in a rat model by protecting subchondral bone, maintaining matrix homeostasis, and enhancing autophagy. J Tissue Eng Regen Med 2019; 13:1618-1628. [PMID: 31210406 DOI: 10.1002/term.2916] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 06/07/2019] [Accepted: 06/07/2019] [Indexed: 02/05/2023]
Abstract
Evidence accumulated that mesenchymal stem cell (MSC) therapy ameliorated osteoarthritis (OA) via paracrine effect, whereas conditioned medium (CM) of MSCs contains all the secretomes. In vitro studies have proved its therapeutic effect in OA, but few in vivo evidences were unveiled. This study investigated the effect of MSCs-CM in an animal model of OA. OA was induced by anterior cruciate ligament transaction and destabilization of the medial meniscus in 12 rats bilaterally. The CM group (N = 6) was administered with intraarticular injection of MSCs-CM weekly, whereas the phosphate-buffered saline (PBS) group (N = 6) was injected with PBS. Six rats served as normal control and received sham operation with weekly PBS injection. Rats were sacrificed 8 weeks postoperatively. Gross and histological morphology were analysed. Microcomputed tomography was applied to assess the subchondral bone. Components of extracellular matrix (ECM) including type II collagen (Col II) and aggrecan, and ECM homeostasis-related enzymes (metalloproteinase-13 [MMP-13] and tissue inhibitor of metalloproteinase-1 [TIMP-1]), as well as autophagy markers (Beclin-1 and microtubule-associated protein light chain 3) were evaluated immunohistochemically. Chondrocyte apoptosis was measured by terminal deoxynucleotidyl transferase dUTP nick-end labelling staining. Gene expression of Col II, aggrecan, MMP-13, and TIMP-1 was confirmed by real-time polymerase chain reaction. Morphological outcomes demonstrated remarkable articular-protective effect of MSCs-CM. Well-maintained subchondral bone structure, significantly more abundant cartilage matrix, notably decreased ratio of MMP-13 to TIMP-1, and inhibited chondrocyte apoptosis with enhanced autophagy were observed in the CM group compared with the PBS group. In conclusion, MSCs-CM demonstrated satisfactory effect in alleviating OA in rats via protecting the microarchitecture of subchondral bone, balancing the ratio of MMP-13 to TIMP-1 in cartilage, and enhancing autophagy, which might provide a new remedy against OA.
Collapse
Affiliation(s)
- Wenbo Chen
- Department of Sports Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Yaying Sun
- Department of Sports Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Xueping Gu
- Department of Orthopaedics and Sports Medicine, The Northern Branch of Suzhou Municipal Hospital, Suzhou, China
| | - Yuefeng Hao
- Department of Orthopaedics and Sports Medicine, The Northern Branch of Suzhou Municipal Hospital, Suzhou, China
| | - Xingwang Liu
- Department of Sports Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Jinrong Lin
- Department of Sports Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Jiwu Chen
- Department of Sports Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Shiyi Chen
- Department of Sports Medicine, Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
413
|
Intraarticular Ligament Degeneration Is Interrelated with Cartilage and Bone Destruction in Osteoarthritis. Cells 2019; 8:cells8090990. [PMID: 31462003 PMCID: PMC6769780 DOI: 10.3390/cells8090990] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 08/18/2019] [Accepted: 08/20/2019] [Indexed: 12/16/2022] Open
Abstract
Osteoarthritis (OA) induces inflammation and degeneration of all joint components including cartilage, joint capsule, bone and bone marrow, and ligaments. Particularly intraarticular ligaments, which connect the articulating bones such as the anterior cruciate ligament (ACL) and meniscotibial ligaments, fixing the fibrocartilaginous menisci to the tibial bone, are prone to the inflamed joint milieu in OA. However, the pathogenesis of ligament degeneration on the cellular level, most likely triggered by OA associated inflammation, remains poorly understood. Hence, this review sheds light into the intimate interrelation between ligament degeneration, synovitis, joint cartilage degradation, and dysbalanced subchondral bone remodeling. Various features of ligament degeneration accompanying joint cartilage degradation have been reported including chondroid metaplasia, cyst formation, heterotopic ossification, and mucoid and fatty degenerations. The entheses of ligaments, fixing ligaments to the subchondral bone, possibly influence the localization of subchondral bone lesions. The transforming growth factor (TGF)β/bone morphogenetic (BMP) pathway could present a link between degeneration of the osteochondral unit and ligaments with misrouted stem cell differentiation as one likely reason for ligament degeneration, but less studied pathways such as complement activation could also contribute to inflammation. Facilitation of OA progression by changed biomechanics of degenerated ligaments should be addressed in more detail in the future.
Collapse
|
414
|
Unilateral Osteotomy of Lumbar Facet Joint Induces a Mouse Model of Lumbar Facet Joint Osteoarthritis. Spine (Phila Pa 1976) 2019; 44:E930-E938. [PMID: 30896583 DOI: 10.1097/brs.0000000000003023] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
STUDY DESIGN The lumbar facet joint (LFJ) osteoarthritis (OA) model that highly mimics the clinical conditions was established and evaluated. OBJECTIVE Here, we innovatively constructed and evaluated the aberrant mechanical loading-related LFJ OA model. SUMMARY OF BACKGROUND DATA LFJ is the only true synovial joint in a functional spinal unit in mammals. The LFJ osteoarthritis is considered to contribute 15% to 45% of low back pain. The establish of animal models highly mimicking the clinical conditions is a useful tool for the investigation of LFJ OA. However, the previously established animal models damaged the LFJ structure directly, which did not demonstrate the effect of aberrant mechanical loading on the development of LFJ osteoarthritis. METHODS In the present study, an animal model for LFJ degeneration was established by the unilateral osteotomy of LFJ (OLFJ) in L4/5 unit to induce the spine instability. Then, the change of contralateral LFJ was evaluated by morphological and molecular biological techniques. RESULTS We showed that the OLFJ induced instability accelerated the cartilage degeneration of the contralateral LFJ. Importantly, the SRμCT elucidated that the three-dimensional structure of the subchondral bone changed in contralateral LFJ, indicated as the abnormity of bone volume/total volume ratio (BV/TV), trabecular pattern factor (Tb. Pf), and the trabecular thickness (Tb. Th). Immunostaining further demonstrated the uncoupled osteoclastic bone resorption, and bone formation in the subchondral bone of contralateral LFJ, indicated as increased activity of osteoclast, osteoblast, and Type H vessels. CONCLUSION We develop a novel LFJ OA model demonstrating the effect of abnormal mechanical instability on the degeneration of LFJ. This LFJ degeneration model that highly mimics the clinical conditions is a valuable tool to investigate the LFJ osteoarthritis. LEVEL OF EVIDENCE N/A.
Collapse
|
415
|
Chin KY, Wong SK, Japar Sidik FZ, Abdul Hamid J, Abas NH, Mohd Ramli ES, Afian Mokhtar S, Rajalingham S, Ima Nirwana S. The Effects of Annatto Tocotrienol Supplementation on Cartilage and Subchondral Bone in an Animal Model of Osteoarthritis Induced by Monosodium Iodoacetate. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:ijerph16162897. [PMID: 31412648 PMCID: PMC6720523 DOI: 10.3390/ijerph16162897] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Revised: 08/08/2019] [Accepted: 08/09/2019] [Indexed: 12/18/2022]
Abstract
Osteoarthritis is a degenerative joint disease which primarily affects the articular cartilage and subchondral bones. Since there is an underlying localized inflammatory component in the pathogenesis of osteoarthritis, compounds like tocotrienol with anti-inflammatory properties may be able to retard its progression. This study aimed to determine the effects of oral tocotrienol supplementation on the articular cartilage and subchondral bone in a rat model of osteoarthritis induced by monosodium iodoacetate (MIA). Thirty male Sprague-Dawley rats (three-month-old) were randomized into five groups. Four groups were induced with osteoarthritis (single injection of MIA at week 0) and another served as the sham group. Three of the four groups with osteoarthritis were supplemented with annatto tocotrienol at 50, 100 and 150 mg/kg/day orally for five weeks. At week 5, all rats were sacrificed, and their tibial-femoral joints were harvested for analysis. The results indicated that the groups which received annatto tocotrienol at 100 and 150 mg/kg/day had lower histological scores and cartilage remodeling markers. Annatto tocotrienol at 150 mg/kg/day significantly lowered the osteocalcin levels and osteoclast surface of subchondral bone. In conclusion, annatto tocotrienol may potentially retard the progression of osteoarthritis. Future studies to confirm its mechanism of joint protection should be performed.
Collapse
Affiliation(s)
- Kok-Yong Chin
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras 56000, Malaysia.
| | - Sok Kuan Wong
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras 56000, Malaysia
| | | | - Juliana Abdul Hamid
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras 56000, Malaysia
| | - Nurul Hafizah Abas
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras 56000, Malaysia
| | - Elvy Suhana Mohd Ramli
- Department of Anatomy, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras 56000, Malaysia
| | - Sabarul Afian Mokhtar
- Department of Orthopedics and Traumatology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras 56000, Malaysia
| | - Sakthiswary Rajalingham
- Department of Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras 56000, Malaysia
| | - Soelaiman Ima Nirwana
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras 56000, Malaysia
| |
Collapse
|
416
|
Nelson BB, Mäkelä JTA, Lawson TB, Patwa AN, Barrett MF, McIlwraith CW, Hurtig MB, Snyder BD, Moorman VJ, Grinstaff MW, Goodrich LR, Kawcak CE. Evaluation of equine articular cartilage degeneration after mechanical impact injury using cationic contrast-enhanced computed tomography. Osteoarthritis Cartilage 2019; 27:1219-1228. [PMID: 31075424 DOI: 10.1016/j.joca.2019.04.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 04/13/2019] [Accepted: 04/16/2019] [Indexed: 02/02/2023]
Abstract
OBJECTIVE Cationic agent contrast-enhanced computed tomography (cationic CECT) characterizes articular cartilage ex vivo, however, its capacity to detect post-traumatic injury is unknown. The study objectives were to correlate cationic CECT attenuation with biochemical, mechanical and histological properties of cartilage and morphologic computed tomography (CT) measures of bone, and to determine the ability of cationic CECT to distinguish subtly damaged from normal cartilage in an in vivo equine model. DESIGN Mechanical impact injury was initiated in equine femoropatellar joints in vivo to establish subtle cartilage degeneration with site-matched controls. Cationic CECT was performed in vivo (clinical) and postmortem (microCT). Articular cartilage was characterized by glycosaminoglycan (GAG) content, biochemical moduli and histological scores. Bone was characterized by volume density (BV/TV) and trabecular number (Tb.N.), thickness (Tb.Th.) and spacing (Tb.Sp.). RESULTS Cationic CECT attenuation (microCT) of cartilage correlated with GAG (r = 0.74, P < 0.0001), compressive modulus (Eeq) (r = 0.79, P < 0.0001) and safranin-O histological score (r = -0.66, P < 0.0001) of cartilage, and correlated with BV/TV (r = 0.37, P = 0.0005), Tb.N. (r = 0.39, P = 0.0003), Tb.Th. (r = 0.28, P = 0.0095) and Tb.Sp. (r = -0.44, P < 0.0001) of bone. Mean [95% CI] cationic CECT attenuation at the impact site (2215 [1987, 2443] Hounsfield Units [HUs]) was lower than site-matched controls (2836 [2490, 3182] HUs, P = 0.036). Clinical cationic CECT attenuation correlated with GAG (r = 0.23, P = 0.049), Eeq (r = 0.26, P = 0.025) and safranin-O histology score (r = -0.32, P = 0.0046). CONCLUSIONS Cationic CECT (microCT) reflects articular cartilage properties enabling segregation of subtly degenerated from healthy tissue and also reflects bone morphometric properties on CT. Cationic CECT is capable of characterizing articular cartilage in clinical scanners.
Collapse
Affiliation(s)
- B B Nelson
- Equine Orthopaedic Research Center, Colorado State University, Fort Collins, CO, USA
| | - J T A Mäkelä
- Center for Advanced Orthopaedic Studies, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA; Department of Chemistry, Boston University, Boston, MA, USA
| | - T B Lawson
- Center for Advanced Orthopaedic Studies, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA; Department of Mechanical Engineering, Boston University, Boston, MA, USA
| | - A N Patwa
- Department of Chemistry, Boston University, Boston, MA, USA; SLSE (Chemistry), Navrachana University, Vadodara, Gujarat, India
| | - M F Barrett
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO, USA
| | - C W McIlwraith
- Equine Orthopaedic Research Center, Colorado State University, Fort Collins, CO, USA
| | - M B Hurtig
- Department of Clinical Studies, University of Guelph, Ontario, Canada
| | - B D Snyder
- Center for Advanced Orthopaedic Studies, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
| | - V J Moorman
- Equine Orthopaedic Research Center, Colorado State University, Fort Collins, CO, USA
| | - M W Grinstaff
- Department of Chemistry, Boston University, Boston, MA, USA; Department of Mechanical Engineering, Boston University, Boston, MA, USA; Departments of Biomedical Engineering, and Medicine, Boston University, Boston, MA, USA
| | - L R Goodrich
- Equine Orthopaedic Research Center, Colorado State University, Fort Collins, CO, USA
| | - C E Kawcak
- Equine Orthopaedic Research Center, Colorado State University, Fort Collins, CO, USA.
| |
Collapse
|
417
|
Abstract
OBJECTIVE. The purpose of this article is to summarize the nomenclature of nonneoplastic conditions affecting subchondral bone through a review of the medical literature and expert opinion of the Society of Skeletal Radiology Subchondral Bone Nomenclature Committee. CONCLUSION. This consensus statement summarizes current understanding of the pathophysiologic characteristics and imaging findings of subchondral nonneoplastic bone lesions and proposes nomenclature to improve effective communication across clinical specialties and help avoid diagnostic errors that could affect patient care.
Collapse
|
418
|
Liu F, Xu H, Huang H. A novel kartogenin-platelet-rich plasma gel enhances chondrogenesis of bone marrow mesenchymal stem cells in vitro and promotes wounded meniscus healing in vivo. Stem Cell Res Ther 2019; 10:201. [PMID: 31287023 PMCID: PMC6615105 DOI: 10.1186/s13287-019-1314-x] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 06/10/2019] [Accepted: 06/26/2019] [Indexed: 12/11/2022] Open
Abstract
Background The meniscus tear is one of the most common knee injuries particularly seen in athletes and aging populations. Subchondral bone sclerosis, irreparable joint damage, and the early onset of osteoarthritis make the injured meniscus heal difficultly. Methods The study was performed by in vitro and in vivo experiments. The in vitro experiments were carried out using the bone marrow stem cells (BMSCs) isolated from the rabbits, and the stemness of the BMSCs was tested by immunostaining. The BMSCs positively expressed stem cell markers were cultured with various concentrations of kartogenin (KGN) for 2 weeks. The chondrogenesis of BMSCs induced by KGN was examined by histochemical staining and quantitative RT-PCR. The in vivo experiments were completed by a rabbit model. Three holes were created in each meniscus by a biopsy punch. The rabbits were treated with four different conditions in each group. Group 1 was treated with 20 μl of saline (saline); group 2 was treated with 5 μl of 100 μM KGN and 15 μl saline (KGN); group 3 was treated with 5 μl of 100 μM KGN, 5 μl of 10,000 U/ ml thrombin, and 10 μl of PRP (KGN+PRP); group 4 was treated with 10,000 BMSCs in 10 μl of PRP, 5 μl of saline solution, and 5 μl of 10,000 U/ml thrombin (PRP+BMSC); group 5 was treated with 10,000 BMSCs in 10 μl of PRP, 5 μl of 100 μM KGN, and 5 μl of 10,000 U/ml thrombin (KGN+PRP+BMSC). The menisci were collected at day 90 post-surgery for gross inspection and histochemical analysis. Results The histochemical staining showed that KGN induced chondrogenesis of BMSCs in a concentration-dependent manner. The RT-PCR results indicated that chondrocyte-related genes were also increased in the BMSCs cultured with KGN in a dose-dependent manner. The in vivo results showed that large unhealed wound areas were still found in the wounds treated with saline and KGN groups. The wounds treated with BMSCs-containing PRP gel healed much faster than the wounds treated without BMSCs. Furthermore, the wounds treated with BMSCs-containing KGN-PRP gel have healed completely and formed more cartilage-like tissues than the wounds treated with BMSCs-containing PRP gel. Conclusions BMSCs could be differentiated into chondrocytes when they were cultured with KGN-PRP gel in vitro and formed more cartilage-like tissues in the wounded rabbit meniscus when the wounds were treated with BMSCs-containing KGN-PRP gel. The results indicated that the BMSCs-containing KGN-PRP gel is a good substitute for injured meniscus repair and regeneration.
Collapse
Affiliation(s)
- Feng Liu
- Department of Orthopaedics, The First Affiliated Hospital with Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu, China
| | - Hongyao Xu
- Department of Sports Medicine and Joint Surgery, Nanjing First Hospital, Nanjing Medical University, 68 Changle Road, Nanjing, 210006, Jiangsu, China
| | - He Huang
- Department of Sports Medicine and Joint Surgery, Nanjing First Hospital, Nanjing Medical University, 68 Changle Road, Nanjing, 210006, Jiangsu, China. .,China Orthopaedic Regeneration Medicine Group, Zhejiang, 310000, Hangzhou, China.
| |
Collapse
|
419
|
Zhang N, Tian F, Gou Y, Chen T, Kong Q, Lv Q, Li H, Zhang L. Protective Effect of Alendronate on Lumbar Facet Degeneration in Ovariectomized Rats. Med Sci Monit 2019; 25:4907-4915. [PMID: 31265447 PMCID: PMC6618338 DOI: 10.12659/msm.916978] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Background Facet joint degeneration (FJD) is a potential source of lower back pain, and estrogen deficiency can accelerate FJD. The present study aimed to investigate the effects of alendronate (ALN) on FJD induced by ovariectomy (OVX) in rats. Material/Methods Thirty female Sprague-Dawley rats underwent either bilateral OVX (n=20) or sham surgery (n=10). The OVX rats subsequently received either subcutaneous ALN (70 μg/kg/week) or vehicle for 12 weeks. Subchondral bone mass and microarchitecture were evaluated by micro-computed tomography. Cartilage degradation was evaluated by toluidine blue staining and histological scoring. Results Compared with the Sham group, the OVX group had significantly decreased bone mineral density, bone volume/trabecular volume, and trabecular thickness, significantly increased trabecular separation in subchondral bone, and significantly higher histological score for cartilage degeneration, particularly loss of cartilage thickness. ALN treatment significantly reversed the changes in subchondral bone, preserved cartilage thickness, and reduced the histological score. Immunohistochemical analyses showed significantly decreased expression of ADAMTS-4, MMP-13, and caspase-3 in the OVX+ALN group compared with the OVX group. Conclusions Treatment with ALN suppressed bone loss, subchondral bone architecture deterioration, and cartilage degeneration in OVX rats, which can be explained by roles of ALN in preservation of subchondral bone mass and microarchitecture, and counteraction of catabolism and chondrocyte apoptosis in cartilage.
Collapse
Affiliation(s)
- Nan Zhang
- Department of Orthopedic Surgery, Hebei Medical University, Shijiazhuang, Hebei, China (mainland).,Department of Orthopedic Surgery, Kailuan General Hospital, Tangshan, Hebei, China (mainland)
| | - Faming Tian
- Medical Research Center, North China University of Science and Technology, Tangshan, Hebei, China (mainland)
| | - Yu Gou
- Department of Orthopedic Surgery, Hebei Medical University, Shijiazhuang, Hebei, China (mainland).,Department of Orthopedic Surgery, Tianjin Hospital, Tianjin, China (mainland)
| | - Tiangang Chen
- Department of Orthopedic Surgery, The Affiliated Hospital of North China University of Science and Technology, Tangshan, Hebei, China (mainland)
| | - Qingfu Kong
- Department of Orthopedic Surgery, The Affiliated Hospital of North China University of Science and Technology, Tangshan, Hebei, China (mainland)
| | - Qinglie Lv
- Department of Orthopedic Surgery, The Affiliated Hospital of North China University of Science and Technology, Tangshan, Hebei, China (mainland)
| | - Hetong Li
- Department of Orthopedic Surgery, The Affiliated Hospital of North China University of Science and Technology, Tangshan, Hebei, China (mainland)
| | - Liu Zhang
- Department of Orthopedic Surgery, Hebei Medical University, Shijiazhuang, Hebei, China (mainland).,Department of Orthopedic Surgery, Meitan General Hospital, Beijing, China (mainland)
| |
Collapse
|
420
|
Rhee SM, Lee JY, Song KS, Lee GY, Lee JS. Lunate subchondral cysts: Are there specific radiologic findings for patients with symptomatic ulnocarpal impaction? J Orthop Sci 2019; 24:636-642. [PMID: 30606647 DOI: 10.1016/j.jos.2018.12.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 10/16/2018] [Accepted: 12/05/2018] [Indexed: 11/29/2022]
Abstract
BACKGROUND There are few clinical studies evaluating the relationship between lunate cysts and symptomatic ulnar impaction syndrome (UIS). The purpose of this study was to investigate the prevalence and relationship between lunate cysts and UIS by comparing data from patients with UIS against those without. MATERIALS AND METHODS From March 2012 to January 2015, 375 patients who had undergone MRI or CT for reasons other than ulnar-sided wrist pain were classified into the 'asymptomatic group' (Group I). Thirty three patients who had been diagnosed with UIS were classified in the 'UIS group' (Group II). We determined whether any differences were present between the two groups and evaluated prognostic factors for lunate cysts. RESULTS The prevalence of lunate cysts was significantly higher in Group II but only reached just above 50% (10.4% vs. 57.6%, p < 0.001]. Dorsal-side lunate cysts were more frequent than palmar side in Group I, while Group II had more cysts on the palmar side (74.4% vs. 52.6%, p = 0.001). Logistic regression analysis revealed that UIS and patient age was a significant factor for the presence of lunate cysts (odds ratio: 11.692, p < 0.001; odds ratio: 1.063, p < 0.001, respectively). However, positive ulnar variance or duration of symptom in Group II was not a predisposing factor for lunate cysts (odds ratio: 1.035, p = 0.598; odds ratio: 1.007, p = 0.877, respectively). CONCLUSION Since positive ulnar variance or duration of symptom did not affect the formation of the lunate cyst and only slightly more than 50% (57.6%) of patients with UIS had a lunate cyst, it seems unlikely that these cysts are a pathognomonic finding. Surgeons can obtain some evidence from lunate cysts on radiographic exams, but care must be taken that this diagnosis is not made hastily or without due consideration.
Collapse
Affiliation(s)
- Sung-Min Rhee
- Department of Orthopaedic Surgery, Seoul National University College of Medicine, Seoul National University Bundang Hospital, 13620 82, Gumi-ro 173 Beon-gil, Bundang-gu, Seongnam-si, Gyeonggi-do, South Korea
| | - Jung-Yeop Lee
- Department of Orthopaedic Surgery, Medical Center of Chung-Ang University, 06973 102, Heukseok-ro, Dongjak-gu, Seoul, South Korea
| | - Kwang-Sup Song
- Department of Orthopaedic Surgery, Medical Center of Chung-Ang University, 06973 102, Heukseok-ro, Dongjak-gu, Seoul, South Korea
| | - Geun Young Lee
- Department of Orthopaedic Surgery, Medical Center of Chung-Ang University, 06973 102, Heukseok-ro, Dongjak-gu, Seoul, South Korea
| | - Jae Sung Lee
- Department of Orthopaedic Surgery, Medical Center of Chung-Ang University, 06973 102, Heukseok-ro, Dongjak-gu, Seoul, South Korea.
| |
Collapse
|
421
|
Li Y, Mu W, Xu B, Ren J, Wahafu T, Wuermanbieke S, Ma H, Gao H, Liu Y, Zhang K, Amat A, Cao L. Artesunate, an Anti-Malaria Agent, Attenuates Experimental Osteoarthritis by Inhibiting Bone Resorption and CD31 hiEmcn hi Vessel Formation in Subchondral Bone. Front Pharmacol 2019; 10:685. [PMID: 31258481 PMCID: PMC6587439 DOI: 10.3389/fphar.2019.00685] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 05/27/2019] [Indexed: 12/11/2022] Open
Abstract
Osteoarthritis (OA) is a common and debilitating joint disease worldwide without interventions available to reverse its progression. Artesunate (ART), an anti-malaria agent, possesses diverse biological activities, including the inhibition of osteoclastogenesis and angiogenesis in various cells, but its role in subchondral bone during OA progression is not known. Here, we explored the curative effects of ART on the pathogenesis of OA in anterior cruciate ligament transection (ACLT) mice models. We found that ART attenuated articular cartilage degeneration, defined by lowered histologic scoring of OA and retarded calcification of the cartilage zone. Moreover, ART improved the expression of lubricin and aggrecan and reduced the expression of collagen X (Col X) and matrix metalloproteinase-13 (MMP-13). In parallel, ART normalized abnormal subchondral bone remodeling by maintaining bone volume fraction (BV/TV) and subchondral bone plate thickness (SBP Th) and reducing trabecular pattern factor (Tb.pf) compared to the vehicle-treated mice. Our results indicated that ART suppressed osteoclastic bone resorption through regulating RANKL-OPG system, restored coupled bone remodeling by indirectly inhibiting TGF-β/Smad2/3 signaling. Additionally, ART abrogated CD31hiEmcnhi vessel formation via downregulating the expression of vascular endothelial growth factor (VEGF) and angiogenin-1 in subchondral bone. In conclusion, ART attenuates ACLT-induced OA by blocking bone resorption and CD31hiEmcnhi vessel formation in subchondral bone, indicating that this may be a new therapeutic alternative for OA.
Collapse
Affiliation(s)
- Yicheng Li
- Department of Orthopaedics, First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Wenbo Mu
- Department of Orthopaedics, First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Boyong Xu
- Department of Orthopaedics, First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Jiangdong Ren
- Department of Orthopaedics, First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Tuerhongjiang Wahafu
- Department of Orthopaedics, First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Shalitanati Wuermanbieke
- Department of Orthopaedics, First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Hairong Ma
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asian Xinjiang Key Laboratory of Echinococcosis, Clinical Medical Research Institute, First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Hongwei Gao
- School of Life Sciences, Ludong University, Jinan, China
| | - Yang Liu
- Department of Orthopaedics, First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Keyuan Zhang
- Department of Orthopaedics, First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Abdusami Amat
- Department of Orthopaedics, First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Li Cao
- Department of Orthopaedics, First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| |
Collapse
|
422
|
O’Brien MS, McDougall JJ. Age and frailty as risk factors for the development of osteoarthritis. Mech Ageing Dev 2019; 180:21-28. [DOI: 10.1016/j.mad.2019.03.003] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 02/28/2019] [Accepted: 03/15/2019] [Indexed: 12/31/2022]
|
423
|
Zhao GH, Yang L, Lammi MJ, Guo X. A preliminary analysis of microRNA profiles in the subchondral bone between Kashin-Beck disease and primary knee osteoarthritis. Clin Rheumatol 2019; 38:2637-2645. [DOI: 10.1007/s10067-019-04580-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2018] [Revised: 04/07/2019] [Accepted: 04/16/2019] [Indexed: 12/13/2022]
|
424
|
Haltmayer E, Ribitsch I, Gabner S, Rosser J, Gueltekin S, Peham J, Giese U, Dolezal M, Egerbacher M, Jenner F. Co-culture of osteochondral explants and synovial membrane as in vitro model for osteoarthritis. PLoS One 2019; 14:e0214709. [PMID: 30939166 PMCID: PMC6445514 DOI: 10.1371/journal.pone.0214709] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 03/16/2019] [Indexed: 01/15/2023] Open
Abstract
The purpose of the current study was to establish an in vitro model for osteoarthritis (OA) by co-culture of osteochondral and synovial membrane explants. Osteochondral explants were cultured alone (control-1) or in co-culture with synovial membrane explants (control-2) in standard culture medium or with interleukin-1β (IL1β) and tumor necrosis factor (TNFα) added to the culture medium (OA-model-1 = osteochondral explant; OA-model-2 = osteochondroal-synovial explant). In addition, in OA-model groups a 2-mm partial-thickness defect was created in the centre of the cartilage explant. Changes in the expression of extracellular matrix (ECM) genes (collagen type-1 (Col1), Col2, Col10 and aggrecan) as well as presence and quantity of inflammatory marker genes (IL6, matrix metalloproteinase-1 (MMP1), MMP3, MMP13, a disintegrin and metalloproteinase with-thrombospondin-motif-5 (ADAMTS5) were analysed by immunohistochemistry, qPCR and ELISA. To monitor the activity of classically-activated pro-inflammatory (M1) versus alternatively-activated anti-inflammatory/repair (M2) synovial macrophages, the nitric oxide/urea ratio in the supernatant of osteochondral-synovial explant co-cultures was determined. In both OA-model groups immunohistochemistry and qPCR showed a significantly increased expression of MMPs and IL6 compared to their respective control group. ELISA results confirmed a statistically significant increase in MMP1and MMP3 production over the culturing period. In the osteochondral-synovial explant co-culture OA-model the nitric oxide/urea ratio was increased compared to the control group, indicating a shift toward M1 synovial macrophages. In summary, chemical damage (TNFα, IL1β) in combination with a partial-thickness cartilage defect elicits an inflammatory response similar to naturally occurring OA in osteochondral explants with and without osteochondral-synovial explant co-cultures and OA-model-2 showing a closer approximation of OA due to the additional shift of synovial macrophages toward the pro-inflammatory M1 phenotype.
Collapse
Affiliation(s)
- Eva Haltmayer
- Department for Companion Animals and Horses, University Equine Hospital, Equine Surgery, University of Veterinary Medicine, Vienna, Austria
- * E-mail:
| | - Iris Ribitsch
- Department for Companion Animals and Horses, University Equine Hospital, Equine Surgery, University of Veterinary Medicine, Vienna, Austria
| | - Simone Gabner
- Department of Pathobiology, Histology and Embryology, University of Veterinary Medicine, Vienna, Austria
| | - Julie Rosser
- Institute of Applied Synthetic Chemistry, Technical University, Vienna, Austria
| | - Sinan Gueltekin
- Department for Companion Animals and Horses, University Equine Hospital, Equine Surgery, University of Veterinary Medicine, Vienna, Austria
| | - Johannes Peham
- Molecular Diagnostics, Center for Health and Bioresources, AIT Austrian Institute of Technology, Vienna, Austria
| | - Ulrich Giese
- Molecular Diagnostics, Center for Health and Bioresources, AIT Austrian Institute of Technology, Vienna, Austria
| | - Marlies Dolezal
- Department of Biomedical Sciences, Bioinformatics and Biostatistics Platform, University of Veterinary Medicine, Vienna, Austria
| | - Monika Egerbacher
- Department of Pathobiology, Histology and Embryology, University of Veterinary Medicine, Vienna, Austria
| | - Florien Jenner
- Department for Companion Animals and Horses, University Equine Hospital, Equine Surgery, University of Veterinary Medicine, Vienna, Austria
| |
Collapse
|
425
|
Jia D, Li Y, Han R, Wang K, Cai G, He C, Yang L. miR‑146a‑5p expression is upregulated by the CXCR4 antagonist TN14003 and attenuates SDF‑1‑induced cartilage degradation. Mol Med Rep 2019; 19:4388-4400. [PMID: 30942441 PMCID: PMC6472139 DOI: 10.3892/mmr.2019.10076] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Accepted: 03/06/2019] [Indexed: 12/20/2022] Open
Abstract
Osteoarthritis (OA) is an aseptic inflammatory disease which is associated with the stromal cell-derived factor 1/C-X-C chemokine receptor type 4 (SDF-1/CXCR4) axis. Accumulating studies have identified numbers of microRNAs (miRNAs) that serve important roles in the pathogenesis of OA. However, whether and how the inhibition of the SDF-1/CXCR4 axis induces alterations in miRNA expression remains largely unclear. miRNA profiling was performed in OA chondrocytes stimulated with SDF-1 alone, or SDF-1 with the CXCR4 antagonist TN14003 by miRNA microarray. Candidate miRNAs were verified by reverse transcription quantitative polymerase chain reaction. Bioinformatic analyses including target prediction, gene ontology (GO) and pathway analysis were performed to explore the potential functions of candidate miRNAs. Notably, 7 miRNAs (miR-146a-5p, miR-221-3p, miR-126-3p, miR-185-5p, miR-155-5p, miR-124-3p and miR-130a-3p) were significantly differentially expressed. GO analysis indicated that miR-146a-5p and its associated genes were enriched in receptor regulatory activity, nuclear factor-kappa-light-chain-enhancer of activated B cells (NF-κB)-inducing kinase activity, cellular response to interleukin-1, cytokine-cytokine receptor interaction, NF-κB signaling pathway and osteoclast differentiation pathways. CXCR4 was predicted to be a target of miR-146a-5p with high importance. The mRNA and protein levels of key factors involved in cartilage degeneration were measured following manipulation of the expression levels of miR-146a-5p in OA chondrocytes. CXCR4 and MMP-3 levels were negatively associated with miR-146a-5p expression, while the levels of type II collagen and aggrecan were positively associated. These data reveal that TN14003 upregulates miR-146a-5p expression, and also pinpoints a novel role of miR-146a-5p in inhibiting cartilage degeneration by directly targeting the SDF-1/CXCR4 axis.
Collapse
Affiliation(s)
- Di Jia
- Department of Sports Medicine, The First Affiliated Hospital, Kunming Medical University, Kunming, Yunnan 650000, P.R. China
| | - Yanlin Li
- Department of Sports Medicine, The First Affiliated Hospital, Kunming Medical University, Kunming, Yunnan 650000, P.R. China
| | - Rui Han
- Department of Diabetology, The First Affiliated Hospital, Kunming Medical University, Kunming, Yunnan 650000, P.R. China
| | - Kun Wang
- Department of Sports Medicine, The First Affiliated Hospital, Kunming Medical University, Kunming, Yunnan 650000, P.R. China
| | - Guofeng Cai
- Department of Sports Medicine, The First Affiliated Hospital, Kunming Medical University, Kunming, Yunnan 650000, P.R. China
| | - Chuan He
- Department of Sports Medicine, The First Affiliated Hospital, Kunming Medical University, Kunming, Yunnan 650000, P.R. China
| | - Lingjian Yang
- Department of Sports Medicine, The First Affiliated Hospital, Kunming Medical University, Kunming, Yunnan 650000, P.R. China
| |
Collapse
|
426
|
Ansari S, Khorshidi S, Karkhaneh A. Engineering of gradient osteochondral tissue: From nature to lab. Acta Biomater 2019; 87:41-54. [PMID: 30721785 DOI: 10.1016/j.actbio.2019.01.071] [Citation(s) in RCA: 94] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2018] [Revised: 12/22/2018] [Accepted: 01/31/2019] [Indexed: 12/11/2022]
Abstract
The osteochondral tissue is an interface between two distinct tissues: articular cartilage and bone. These two tissues are significantly diverse with regard to their chemical compositions, mechanical properties, structure, electrical properties, and the amount of nutrient and oxygen consumption. Thus, transition from the surface of the articular cartilage to the subchondral bone needs to face several smooth gradients. These gradients are imperative to study to generate a scaffold suitable for the reconstruction of the cartilaginous and osseous layers of a defected osteochondral tissue, simultaneously. The aim of this review is to peruse the alternation of biochemical, biomechanical, structural, electrical, and metabolic properties of the osteochondral tissue moving from the surface of the articular cartilage to the subchondral bone. Moreover, this review also discusses currently developed approaches and ideal techniques with a focus on gradients present in the interface of the cartilage and bone. STATEMENT OF SIGNIFICANCE: The submitted review paper entitled as "Engineering of the gradient osteochondral tissue: from nature to lab" is a complete review with regard to the osteochondral tissue and transition of different properties between the cartilage and bone tissues. Moreover, previous studies on the osteochondral tissue engineering have been reviewed in this paper. This complete information can be a valuable and useful source for current and future researchers and scientists. Considering the scope of the submitted paper, Acta Biomaterialia would be a suitable journal for publishing this article.
Collapse
|
427
|
Fell NLA, Lawless BM, Cox SC, Cooke ME, Eisenstein NM, Shepherd DET, Espino DM. The role of subchondral bone, and its histomorphology, on the dynamic viscoelasticity of cartilage, bone and osteochondral cores. Osteoarthritis Cartilage 2019; 27:535-543. [PMID: 30576795 PMCID: PMC6414396 DOI: 10.1016/j.joca.2018.12.006] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 11/19/2018] [Accepted: 12/10/2018] [Indexed: 02/02/2023]
Abstract
OBJECTIVE Viscoelastic properties of articular cartilage have been characterised at physiological frequencies. However, studies investigating the interaction between cartilage and subchondral bone and the influence of underlying bone histomorphometry on the viscoelasticity of cartilage are lacking. METHOD Dynamic Mechanical Analysis (DMA) has been used to quantify the dynamic viscoelasticity of bovine tibial plateau osteochondral cores, over a frequency sweep from 1 to 88 Hz. Specimens (approximately aged between 18 and 30 months) were neither osteoarthritic nor otherwise compromised. A maximum nominal stress of 1.7 MPa was induced. Viscoelastic properties of cores have been compared with that of its components (cartilage and bone) in terms of the elastic and viscous components of both structural stiffness and material modulus. Micro-computed tomography scans were used to quantify the histomorphological properties of the subchondral bone. RESULTS Opposing frequency-dependent loss stiffness, and modulus, trends were witnessed for osteochondral tissues: for cartilage it increased logarithmically (P < 0.05); for bone it decreased logarithmically (P < 0.05). The storage stiffness of osteochondral cores was logarithmically frequency-dependent (P < 0.05), however, the loss stiffness was typically frequency-independent (P > 0.05). A linear relationship between the subchondral bone plate (SBP) thickness and cartilage thickness (P < 0.001) was identified. Cartilage loss modulus was linearly correlated to bone mineral density (BMD) (P < 0.05) and bone volume (P < 0.05). CONCLUSION The relationship between the subchondral bone histomorphometry and cartilage viscoelasticity (namely loss modulus) and thickness, have implications for the initiation and progression of osteoarthritis (OA) through an altered ability of cartilage to dissipate energy.
Collapse
Affiliation(s)
- N L A Fell
- Department of Mechanical Engineering, University of Birmingham, United Kingdom
| | - B M Lawless
- Department of Mechanical Engineering, University of Birmingham, United Kingdom
| | - S C Cox
- School of Chemical Engineering, University of Birmingham, United Kingdom
| | - M E Cooke
- School of Chemical Engineering, University of Birmingham, United Kingdom; Institute of Inflammation and Ageing, Queen Elizabeth Hospital Birmingham, United Kingdom
| | - N M Eisenstein
- Royal Centre for Defence Medicine, Birmingham Research Park, United Kingdom
| | - D E T Shepherd
- Department of Mechanical Engineering, University of Birmingham, United Kingdom
| | - D M Espino
- Department of Mechanical Engineering, University of Birmingham, United Kingdom.
| |
Collapse
|
428
|
Hackl W, Henninger B, Liebensteiner M, Ferlic P. Bildgebung des Knochenmarködems. ARTHROSKOPIE 2019. [DOI: 10.1007/s00142-018-0258-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
429
|
Votava L, Schwartz AG, Harasymowicz NS, Wu CL, Guilak F. Effects of dietary fatty acid content on humeral cartilage and bone structure in a mouse model of diet-induced obesity. J Orthop Res 2019; 37:779-788. [PMID: 30644575 PMCID: PMC6662729 DOI: 10.1002/jor.24219] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 01/08/2019] [Indexed: 02/04/2023]
Abstract
Obesity is a primary risk factor for osteoarthritis (OA), and previous studies have shown that dietary content may play an important role in the pathogenesis of cartilage and bone in knee OA. Several previous studies have shown that the ratio of ω-3 polyunsaturated fatty acids (PUFAs), ω-6 PUFAs, and saturated fatty acids can significantly influence bone structure and OA progression. However, the influence of obesity or dietary fatty acid content on shoulder OA is not well understood. The goal of this study was to investigate the role of dietary fatty acid content on bone and cartilage structure in the mouse shoulder in a model of diet-induced obesity. For 24 weeks, mice were fed control or high-fat diets supplemented with ω-3 PUFAs, ω-6 PUFAs, or saturated fatty acids. The humeral heads were analyzed for bone morphometry and mineral density by microCT. Cartilage structure and joint synovitis were determined by histological grading, and microscale mechanical properties of the cartilage extracellular and pericellular matrices were quantified using atomic force microscopy. Diet-induced obesity significantly altered bone morphology and mineral density in a manner that was dependent on dietary free fatty acid content. In general, high-fat diet groups showed decreased bone quality, with the ω-3 diet being partially protective. Cartilage mechanical properties and OA scores showed no changes with obesity or diet. These findings are consistent with clinical literature showing little if any relationship between obesity and shoulder OA (unlike knee OA), but suggest that diet-induced obesity may influence other joint tissues. © 2019 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res.
Collapse
Affiliation(s)
- Lauren Votava
- Department of Orthopaedic Surgery, Washington University, Saint Louis, MO 63110,Shriners Hospitals for Children – St. Louis, St. Louis MO 63110,Department of Biomedical Engineering, Washington University, Saint Louis, MO 63110
| | - Andrea G. Schwartz
- Department of Orthopaedic Surgery, Washington University, Saint Louis, MO 63110,Shriners Hospitals for Children – St. Louis, St. Louis MO 63110
| | - Natalia S. Harasymowicz
- Department of Orthopaedic Surgery, Washington University, Saint Louis, MO 63110,Shriners Hospitals for Children – St. Louis, St. Louis MO 63110
| | - Chia-Lung Wu
- Department of Orthopaedic Surgery, Washington University, Saint Louis, MO 63110,Shriners Hospitals for Children – St. Louis, St. Louis MO 63110
| | - Farshid Guilak
- Department of Orthopaedic Surgery, Washington University, Saint Louis, MO 63110,Shriners Hospitals for Children – St. Louis, St. Louis MO 63110,Department of Biomedical Engineering, Washington University, Saint Louis, MO 63110
| |
Collapse
|
430
|
Activation of mTORC1 in subchondral bone preosteoblasts promotes osteoarthritis by stimulating bone sclerosis and secretion of CXCL12. Bone Res 2019; 7:5. [PMID: 30792936 PMCID: PMC6381187 DOI: 10.1038/s41413-018-0041-8] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 11/02/2018] [Accepted: 11/14/2018] [Indexed: 01/05/2023] Open
Abstract
Increasing evidences show that aberrant subchondral bone remodeling plays an important role in the development of osteoarthritis (OA). However, how subchondral bone formation is activated and the mechanism by which increased subchondral bone turnover promotes cartilage degeneration during OA remains unclear. Here, we show that the mechanistic target of rapamycin complex 1 (mTORC1) pathway is activated in subchondral bone preosteoblasts (Osterix+) from OA patients and mice. Constitutive activation of mTORC1 in preosteoblasts by deletion of the mTORC1 upstream inhibitor, tuberous sclerosis 1, induced aberrant subchondral bone formation, and sclerosis with little-to-no effects on articular cartilage integrity, but accelerated post-traumatic OA development in mice. In contrast, inhibition of mTORC1 in preosteoblasts by disruption of Raptor (mTORC1-specific component) reduced subchondral bone formation and cartilage degeneration, and attenuated post-traumatic OA in mice. Mechanistically, mTORC1 activation promoted preosteoblast expansion and Cxcl12 secretion, which induced subchondral bone remodeling and cartilage degeneration during OA. A Cxcl12-neutralizing antibody reduced cartilage degeneration and alleviated OA in mice. Altogether, these findings demonstrate that mTORC1 activation in subchondral preosteoblasts is not sufficient to induce OA, but can induce aberrant subchondral bone formation and secrete of Cxcl12 to accelerate disease progression following surgical destabilization of the joint. Pharmaceutical inhibition of the pathway presents a promising therapeutic approach for OA treatment.
Collapse
|
431
|
Kumai T, Yui N, Yatabe K, Sasaki C, Fujii R, Takenaga M, Fujiya H, Niki H, Yudoh K. A novel, self-assembled artificial cartilage-hydroxyapatite conjugate for combined articular cartilage and subchondral bone repair: histopathological analysis of cartilage tissue engineering in rat knee joints. Int J Nanomedicine 2019; 14:1283-1298. [PMID: 30863061 PMCID: PMC6391143 DOI: 10.2147/ijn.s193963] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Purpose We previously created a self-assembled cartilage-like complex in vitro from only three cartilage components, hyaluronic acid (HA), aggrecan (AG) and type II collagen, without other materials such as cross-linking agents. Based on this self-organized AG/HA/collagen complex, we have created three novel types of biphasic cartilage and bone-like scaffolds combined with hydroxyapatite (HAP) for osteochondral tissue engineering. These scaffolds have been developed from self-assembled cartilage component molecules and HAP at the nanometer scale by manipulating the intermolecular relations. Patients and methods The surface structure of each self-organized biphasic cartilage and bone-like scaffold was evaluated by scanning electron microscopy, whereas the viscoelasticity was also analyzed in vitro. Three types of artificial cartilage–HAP conjugates were implanted into an osteochondral defect in rat knee joints, and bone and cartilage tissues of the implanted site were examined 4 and 8 weeks after implantation. The tissues were examined histopathologically to evaluate the effects of the implantation on the articular cartilage and subchondral bone tissues. Results Our in vitro and in vivo data reveal that the self-organized biphasic cartilage and bone-like scaffold conjugated with HAP are superior to the scaffold with no HAP in both cartilage regeneration and subchondral bone regeneration. Conclusion Our present study indicates that the self-organized biphasic cartilage and bone-like scaffold, which is conjugated with an HAP layer, may have potential not only to repair articular cartilage defects but also to ameliorate the degeneration of subchondral bone in the diseases with osteochondral defect.
Collapse
Affiliation(s)
- Takanori Kumai
- Department of Sports Medicine, St Marianna University School of Medicine, Miyamae-ku, Kawasaki 216-8511, Japan
| | - Naoko Yui
- Department of Sports Medicine, St Marianna University School of Medicine, Miyamae-ku, Kawasaki 216-8511, Japan
| | - Kanaka Yatabe
- Department of Sports Medicine, St Marianna University School of Medicine, Miyamae-ku, Kawasaki 216-8511, Japan
| | - Chizuko Sasaki
- Institute for Ultrastructural Morphology, St Marianna University Graduate School of Medicine, Miyamae-ku, Kawasaki 216-8512, Japan
| | - Ryoji Fujii
- Department of Frontier Medicine, Institute of Medical Science, St Marianna University School of Medicine, Miyamae-ku, Kawasaki 216-8512, Japan,
| | - Mitsuko Takenaga
- Department of Frontier Medicine, Institute of Medical Science, St Marianna University School of Medicine, Miyamae-ku, Kawasaki 216-8512, Japan,
| | - Hiroto Fujiya
- Department of Sports Medicine, St Marianna University School of Medicine, Miyamae-ku, Kawasaki 216-8511, Japan
| | - Hisateru Niki
- Department of Orthopaedic Surgery, St Marianna University School of Medicine, Miyamae-ku, Kawasaki 216-8512, Japan
| | - Kazuo Yudoh
- Department of Frontier Medicine, Institute of Medical Science, St Marianna University School of Medicine, Miyamae-ku, Kawasaki 216-8512, Japan,
| |
Collapse
|
432
|
Li L, Yang X, Yang L, Zhang K, Shi J, Zhu L, Liang H, Wang X, Jiang Q. Biomechanical analysis of the effect of medial meniscus degenerative and traumatic lesions on the knee joint. Am J Transl Res 2019; 11:542-556. [PMID: 30899361 PMCID: PMC6413253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Accepted: 12/23/2018] [Indexed: 06/09/2023]
Abstract
The purpose of this study was to determine the effect of the degenerative medial meniscus and traumatic lesions on the biomechanical behavior of the knee. An elaborate three-dimensional (3D) finite element model of the total knee joint containing bones, articular cartilages, main ligaments, and menisci was developed from a combination of magnetic resonance images and computed tomography. Three types of meniscus tears were employed to represent the degenerative and traumatic lesions. The stress and meniscus extrusion of healthy and injured knees were investigated under the posture of static stance. The traumatic longitudinal tear demonstrated the highest stress and the largest meniscus extrusion displacement. The degenerative horizontal and peripheral tears also showed an irregular biomechanical balance in the knee joint. Despite the damaged hemijoint, the stress on the healthy lateral hemijoint was increased. Although the biomechanics was deteriorated in all meniscus tear models, the variation degree was diverse. The transfixion damage could potentially cause future injury in the knee joint and accelerate the progress of osteoarthritis. Moreover, the meniscus injury may cause high-stress concentration on the contralateral side of the joint. The current results revealed the cause of different clinical manifestation after meniscus tears and the risk of knee osteoarthritis through biomechanical aspects.
Collapse
Affiliation(s)
- Lan Li
- School of Mechanical Engineering, Southeast UniversityChina
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Sports Medicine and Adult Reconstructive Surgery, Drum Tower Hospital Affiliated to Medical School of Nanjing UniversityNanjing, China
- Institute of Medical 3D Printing, Nanjing UniversityNanjing, China
| | - Xianfeng Yang
- Department of Radiology, Drum Tower Hospital Affiliated to Medical School of Nanjing UniversityNanjing, China
| | - Longfei Yang
- School of Mechanical Engineering, Southeast UniversityChina
| | - Kaijia Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Sports Medicine and Adult Reconstructive Surgery, Drum Tower Hospital Affiliated to Medical School of Nanjing UniversityNanjing, China
| | - Jianping Shi
- School of Electrical and Automation Engineering, Nanjing Normal UniversityNanjing, China
| | - Liya Zhu
- School of Electrical and Automation Engineering, Nanjing Normal UniversityNanjing, China
| | - Huixin Liang
- School of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and AstronauticsNanjing, China
| | - Xingsong Wang
- School of Mechanical Engineering, Southeast UniversityChina
| | - Qing Jiang
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Sports Medicine and Adult Reconstructive Surgery, Drum Tower Hospital Affiliated to Medical School of Nanjing UniversityNanjing, China
- Institute of Medical 3D Printing, Nanjing UniversityNanjing, China
| |
Collapse
|
433
|
Developmental Transformation and Reduction of Connective Cavities within the Subchondral Bone. Int J Mol Sci 2019; 20:ijms20030770. [PMID: 30759738 PMCID: PMC6387253 DOI: 10.3390/ijms20030770] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 02/04/2019] [Accepted: 02/09/2019] [Indexed: 11/16/2022] Open
Abstract
It is widely accepted that the subchondral bone (SCB) plays a crucial role in the physiopathology of osteoarthritis (OA), although its contribution is still debated. Much of the pre-clinical research on the role of SCB is concentrated on comparative evaluations of healthy vs. early OA or early OA vs. advanced OA cases, while neglecting how pure maturation could change the SCB’s microstructure. To assess the transformations of the healthy SCB from young age to early adulthood, we examined the microstructure and material composition of the medial condyle of the femur in calves (three months) and cattle (18 months) for the calcified cartilage (CC) and the subchondral bone plate (SCBP). The entire subchondral zone (SCZ) was significantly thicker in cattle compared to calves, although the proportion of the CC and SCBP thicknesses were relatively constant. The trabecular number (Tb.N.) and the connectivity density (Conn.D) were significantly higher in the deeper region of the SCZ, while the bone volume fraction (BV/TV), and the degree of anisotropy (DA) were more affected by age rather than the region. The mineralization increased within the first 250 µm of the SCZ irrespective of sample type, and became stable thereafter. Cattle exhibited higher mineralization than calves at all depths, with a mean Ca/P ratio of 1.59 and 1.64 for calves and cattle, respectively. Collectively, these results indicate that the SCZ is highly dynamic at early age, and CC is the most dynamic layer of the SCZ.
Collapse
|
434
|
Silicate-based bioceramic scaffolds for dual-lineage regeneration of osteochondral defect. Biomaterials 2019; 192:323-333. [DOI: 10.1016/j.biomaterials.2018.11.025] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 11/12/2018] [Accepted: 11/14/2018] [Indexed: 01/26/2023]
|
435
|
Parween R, Shriram D, Mohan RE, Lee YHD, Subburaj K. Methods for evaluating effects of unloader knee braces on joint health: a review. Biomed Eng Lett 2019; 9:153-168. [PMID: 31168421 DOI: 10.1007/s13534-019-00094-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 12/13/2018] [Accepted: 01/08/2019] [Indexed: 02/01/2023] Open
Abstract
The paper aims to provide a state-of-the-art review of methods for evaluating the effectiveness and effect of unloader knee braces on the knee joint and discuss their limitations and future directions. Unloader braces are prescribed as a non-pharmacological conservative treatment option for patients with medial knee osteoarthritis to provide relief in terms of pain reduction, returning to regular physical activities, and enhancing the quality of life. Methods used to evaluate and monitor the effectiveness of these devices on patients' health are categorized into three broad categories (perception-, biochemical-, and morphology-based), depending upon the process and tools used. The main focus of these methods is on the short-term clinical outcome (pain or unloading efficiency). There is a significant technical, research, and clinical literature gap in understanding the short- and long-term consequences of these braces on the tissues in the knee joint, including the cartilage and ligaments. Future research directions may complement existing methods with advanced quantitative imaging (morphological, biochemical, and molecular) and numerical simulation are discussed as they offer potential in assessing long-term and post-bracing effects on the knee joint.
Collapse
Affiliation(s)
- Rizuwana Parween
- 1Engineering Product Development, Singapore University of Technology and Design, 8 Somapah Road, Singapore, 487372 Singapore
| | - Duraisamy Shriram
- 1Engineering Product Development, Singapore University of Technology and Design, 8 Somapah Road, Singapore, 487372 Singapore
| | - Rajesh Elara Mohan
- 1Engineering Product Development, Singapore University of Technology and Design, 8 Somapah Road, Singapore, 487372 Singapore
| | - Yee Han Dave Lee
- 2Changi General Hospital, 2 Simei Street 3, Singapore, 529889 Singapore
| | - Karupppasamy Subburaj
- 1Engineering Product Development, Singapore University of Technology and Design, 8 Somapah Road, Singapore, 487372 Singapore
| |
Collapse
|
436
|
Park CY. Vitamin D in the Prevention and Treatment of Osteoarthritis: From Clinical Interventions to Cellular Evidence. Nutrients 2019; 11:E243. [PMID: 30678273 PMCID: PMC6413222 DOI: 10.3390/nu11020243] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 01/03/2019] [Accepted: 01/06/2019] [Indexed: 12/11/2022] Open
Abstract
Older adults are recommended vitamin D to prevent fractures. Though this population is also at risk of osteoarthritis (OA), the effect of vitamin D on OA is unclear and may differ by disease state. The relationship between vitamin D and OA during OA initiation and progression were considered in this narrative review of in vivo and in vitro studies. Regarding OA initiation in humans, the small number of published observational studies suggest a lack of association between induction of OA and vitamin D status. Most randomized controlled trials were performed in White OA patients with relatively high vitamin D status (>50 nmol/L). These studies found no benefit of vitamin D supplementation on OA progression. However, subset analyses and one randomized controlled pilot trial indicated that vitamin D supplementation may alleviate joint pain in OA patients with low vitamin D status (<50 nmol/L). As the etiology of OA is recently being more fully uncovered, better animal and cell models are needed. According to currently available clinical results, evidence is lacking to set a vitamin D level to prevent OA, and increasing vitamin D status above 50 nmol/L does not seem to benefit OA patients.
Collapse
|
437
|
Zhang W, Wu J, Zhang F, Dou X, Ma A, Zhang X, Shao H, Zhao S, Ling P, Liu F, Han G. Lower range of molecular weight of xanthan gum inhibits apoptosis of chondrocytes through MAPK signaling pathways. Int J Biol Macromol 2019; 130:79-87. [PMID: 30659877 DOI: 10.1016/j.ijbiomac.2019.01.071] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 01/14/2019] [Accepted: 01/16/2019] [Indexed: 01/04/2023]
Abstract
LRWXG has previously been reported to have a protective effect on chondrocytes, preventing apoptosis induced by oxidative stress. In this study, we were aimed at determining whether LRWXG exerts its anti-apoptotic activity through the MAPK signaling pathways in chondrocytes. Our results show that, at the cellular level, apoptosis of chondrocytes in the groups treated by LRWXG decreases compared with groups treated by inhibitors alone and model group under conditions of oxidative stress in a dose-dependent manner. Mechanistically at the molecular level, LRWXG regulates the MAPK pathway induced by oxidative stress: The levels of phosphorylation of JNK and p38 proteins in the groups treated by LRWXG are lower than model group, while compared with corresponding groups of inhibitors, there are no significant difference; For other related proteins, LRWXG reduces the levels of the apoptosis-related proteins BAX and cleaved caspase-3, and increases the level of anti-apoptotic protein BCL2. In addition, LRWXG can significantly reduce the levels of inflammatory-related factors such as COX2, PEG2, TNFα and IL1β, and inhibits the expression of MMPs, increasing the content of type II collagen. The results of this research strongly suggest that LRWXG exerts its anti-apoptotic activity via regulating the MAPK signaling pathways in vitro.
Collapse
Affiliation(s)
- Wei Zhang
- Jinzhou Medical University, Jinzhou 121001, China; The First Affiliated Hospital of Jinzhou Medical University, Jinzhou 121001, China; Shandong Academy of Pharmaceutical Science, Key Laboratory of Biopharmaceuticals, Engineering Laboratory of Polysaccharide Drugs, National-Local Joint Engineering Laboratory of Polysaccharide Drugs, Jinan 250101, China
| | - Jixu Wu
- Shandong Academy of Pharmaceutical Science, Key Laboratory of Biopharmaceuticals, Engineering Laboratory of Polysaccharide Drugs, National-Local Joint Engineering Laboratory of Polysaccharide Drugs, Jinan 250101, China; School of Pharmaceutical Sciences, Shandong University, Jinan 250101, China
| | - Fangfang Zhang
- Shandong Academy of Pharmaceutical Science, Key Laboratory of Biopharmaceuticals, Engineering Laboratory of Polysaccharide Drugs, National-Local Joint Engineering Laboratory of Polysaccharide Drugs, Jinan 250101, China; School of Pharmaceutical Sciences, Shandong University, Jinan 250101, China
| | - Xixi Dou
- Shandong Academy of Pharmaceutical Science, Key Laboratory of Biopharmaceuticals, Engineering Laboratory of Polysaccharide Drugs, National-Local Joint Engineering Laboratory of Polysaccharide Drugs, Jinan 250101, China
| | - Aibin Ma
- Shandong Academy of Pharmaceutical Science, Key Laboratory of Biopharmaceuticals, Engineering Laboratory of Polysaccharide Drugs, National-Local Joint Engineering Laboratory of Polysaccharide Drugs, Jinan 250101, China; School of Pharmaceutical Sciences, Shandong University, Jinan 250101, China
| | - Xiaogang Zhang
- Shandong Academy of Pharmaceutical Science, Key Laboratory of Biopharmaceuticals, Engineering Laboratory of Polysaccharide Drugs, National-Local Joint Engineering Laboratory of Polysaccharide Drugs, Jinan 250101, China
| | - Huarong Shao
- Shandong Academy of Pharmaceutical Science, Key Laboratory of Biopharmaceuticals, Engineering Laboratory of Polysaccharide Drugs, National-Local Joint Engineering Laboratory of Polysaccharide Drugs, Jinan 250101, China
| | - Shuo Zhao
- The First Affiliated Hospital of Jinzhou Medical University, Jinzhou 121001, China
| | - Peixue Ling
- Shandong Academy of Pharmaceutical Science, Key Laboratory of Biopharmaceuticals, Engineering Laboratory of Polysaccharide Drugs, National-Local Joint Engineering Laboratory of Polysaccharide Drugs, Jinan 250101, China; School of Pharmaceutical Sciences, Shandong University, Jinan 250101, China
| | - Fei Liu
- Shandong Academy of Pharmaceutical Science, Key Laboratory of Biopharmaceuticals, Engineering Laboratory of Polysaccharide Drugs, National-Local Joint Engineering Laboratory of Polysaccharide Drugs, Jinan 250101, China.
| | - Guanying Han
- Jinzhou Medical University, Jinzhou 121001, China; The First Affiliated Hospital of Jinzhou Medical University, Jinzhou 121001, China.
| |
Collapse
|
438
|
Ali M, Mohamed A, Ahmed HE, Malviya A, Atchia I. The use of ultrasound-guided platelet-rich plasma injections in the treatment of hip osteoarthritis: a systematic review of the literature. J Ultrason 2019; 18:332-337. [PMID: 30763018 PMCID: PMC6444309 DOI: 10.15557/jou.2018.0048] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/12/2018] [Indexed: 11/29/2022] Open
Abstract
Purpose: This review aims to determine whether ultrasound-guided platelet-rich plasma injection has any role in improving clinical outcomes in patients with hip osteoarthritis. Methods: A search of the National Institute for Health and Care Excellence database using the Healthcare Databases Advanced Search tool was conducted. The PubMed database was also utilised to search the Medical Literature Analysis and Retrieval System Online, Excerpta Medica database, Cumulative Index of Nursing and Allied Health and Allied and Complimentary Medicine databases. The Preferred Reporting Items for Systematic Review and Meta-Analysis methodology guidance was employed and a quality assessment was performed using the Jadad score. Results: Three randomised clinical trials met the inclusion criteria and were included for analysis. All three trials were of good quality based on the Jadad score. A total of 115 patients out of 254 received platelet-rich plasma injections under ultrasound guidance. The platelet-rich plasma recipient group included 61 males and 54 females with an age range from 53 to 71 years. Outcome scores show an improvement of symptoms and function maintained up to 12 months following platelet-rich plasma injection. Conclusions: Literature to date concludes that intra-articular platelet-rich plasma injections of the hip, performed under ultrasound guidance to treat hip osteoarthritis, are well tolerated and potentially efficacious in delivering long-term and clinically significant pain reduction and functional improvement in patients with hip osteoarthritis. Larger future trials including a placebo group are required to further evaluate these promising results. Level of evidence: Level I, a systematic review of level I studies.
Collapse
Affiliation(s)
- Mohammed Ali
- Northumbria Healthcare NHS Foundation Trust , North Shields , United Kingdom
| | - Ahmed Mohamed
- Health Education North East , Newcastle , United Kingdom
| | | | - Ajay Malviya
- Northumbria Healthcare NHS Foundation Trust , North Shields , United Kingdom
| | - Ismael Atchia
- Northumbria Healthcare NHS Foundation Trust , North Shields , United Kingdom
| |
Collapse
|
439
|
Chou WY, Cheng JH, Wang CJ, Hsu SL, Chen JH, Huang CY. Shockwave Targeting on Subchondral Bone Is More Suitable than Articular Cartilage for Knee Osteoarthritis. Int J Med Sci 2019; 16:156-166. [PMID: 30662339 PMCID: PMC6332487 DOI: 10.7150/ijms.26659] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Accepted: 11/29/2018] [Indexed: 11/05/2022] Open
Abstract
Our study compared the effects of extracorporeal shockwave therapy (ESWT) on the subchondral bone and the articular cartilage in the treatment of early osteoarthritis (OA) of rat knee. The rats were divided into 5 groups which included Sham group, Meniscus group (ESWT applied on medial meniscus), OA group (arthrotomy and medial menisectomy (MMx) and anterior cruciate ligament transection (ACLT), T(M) group (arthrotomy and MMx and ACLT followed by ESWT on medial tibial subchondral bone) and Articular cartilage group (arthrotomy and MMx and ACLT followed by ESWT on medial articular cartilage). Evaluations included the pathological changes of the synovium, articular cartilage and subchondral bone, and compared with ESWT on the meniscus, medial tibial subchondral bone and articular cartilage. The ESWT (0.25 mJ/mm² and 800 impulses) did not cause any damages on the cartilage of the meniscus and the tissue of the joint when compared with Sham group. Among the treatment of osteoarthritic groups (OA, T(M) and Articular cartilage groups), T(M) group showed significant in pathological examination, micro-CT analysis, cartilage grading score and grading of synovium changes by compared with OA and Articular cartilage groups (P < 0.05) in the treatment of early OA knee. In immunohistochemical analysis, T(M) group significantly increased the expression of TGF-β1 but reduced DMP-1, MMP-13 and ADAMTS-5 in the cartilage by compared with OA group and Articular cartilage group (P < 0.05). Our results showed that subchondral bone was an excellent target than articular cartilage for ESWT on early knee osteoarthritis.
Collapse
Affiliation(s)
- Wen-Yi Chou
- Section of Sports Medicine, Department of Orthopedic Surgery, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
- Center for Shockwave Medicine and Tissue Engineering, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Jai-Hong Cheng
- Center for Shockwave Medicine and Tissue Engineering, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
- Medical Research, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Ching-Jen Wang
- Section of Sports Medicine, Department of Orthopedic Surgery, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
- Center for Shockwave Medicine and Tissue Engineering, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Shan-Ling Hsu
- Section of Sports Medicine, Department of Orthopedic Surgery, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
- Center for Shockwave Medicine and Tissue Engineering, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Jen-Hung Chen
- Section of Sports Medicine, Department of Orthopedic Surgery, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Chien-Yiu Huang
- Section of Sports Medicine, Department of Orthopedic Surgery, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
- Center for Shockwave Medicine and Tissue Engineering, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| |
Collapse
|
440
|
Wu G, Zhang J, Chen W, Chen S, Huang Y, Lin R, Huang M, Li Z, Zheng L, Li X. Tougu Xiaotong capsule exerts a therapeutic effect on knee osteoarthritis by regulating subchondral bone remodeling. Mol Med Rep 2018; 19:1858-1866. [PMID: 30592265 DOI: 10.3892/mmr.2018.9778] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Accepted: 12/12/2018] [Indexed: 01/16/2023] Open
Abstract
Previous studies have shown that Tougu Xiaotong capsule (TGXTC) has therapeutic effects on knee osteoarthritis (OA) through multiple targets. However, the mechanisms of action underlying its regulation of subchondral bone reconstruction remain unclear. In this study, we investigated the effects of TGXTC on subchondral bone remodeling. Eighteen six-month-old New Zealand white rabbits of average sex were randomly divided into the normal, model and TGXTC groups. The rabbit knee OA model was induced by a modified Hulth's method in the model and TGXTC groups, but not the normal group. Five weeks postoperatively, intragastric administration of TGXTC was performed for four weeks. After drug administration, the medial femoral condyle and tibia were prepared for observation of cartilage histology via optical microscopy and micro-computed tomography, the serum was collected for biochemical parameters assay and the subchondral bone isolated from the lateral femoral condyle was collected for detection of IL-1β and TNF-α mRNA and protein by reverse transcription-quantitative polymerase chain reaction and western blot analysis, respectively. The results showed that treatment with TGXTC significantly mitigated cartilage injury and subchondral bone damage, improved the parameter of subchondral trabecular bone, decreased alkaline phosphatase and tartrate-resistant acid phosphatase activity, and significantly reducing the osteoprotegerin/receptor activator of nuclear factor-κB ligand ratio, reduced the expression of IL-1β and TNF-α mRNA and protein. These results suggest that TGXTC could delay the pathological development of OA by regulating subchondral bone remodeling through regulation of bone formation and bone resorption and its relating inflammatory factors, and this may partly explain its clinical efficacy in the treatment of knee OA.
Collapse
Affiliation(s)
- Guangwen Wu
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China
| | - Jiahui Zhang
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China
| | - Wenlie Chen
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China
| | - Sainan Chen
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China
| | - Yunmei Huang
- National Laboratory of Traditional Chinese Medicine Pharmacology (Cell Structure and Function), Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China
| | - Ruhui Lin
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China
| | - Meiya Huang
- National Laboratory of Traditional Chinese Medicine Pharmacology (Cell Structure and Function), Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China
| | - Zuanfang Li
- National Laboratory of Traditional Chinese Medicine Pharmacology (Cell Structure and Function), Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China
| | - Liangpu Zheng
- Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China
| | - Xihai Li
- Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China
| |
Collapse
|
441
|
Mucientes A, Herranz E, Moro E, Lajas C, Candelas G, Fernández-Gutiérrez B, Lamas JR. Differential Expression of HOX Genes in Mesenchymal Stem Cells from Osteoarthritic Patients Is Independent of Their Promoter Methylation. Cells 2018; 7:cells7120244. [PMID: 30563049 PMCID: PMC6316585 DOI: 10.3390/cells7120244] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 11/28/2018] [Accepted: 12/04/2018] [Indexed: 12/14/2022] Open
Abstract
Skeletogenesis, remodeling, and maintenance in adult tissues are regulated by sequential activation of genes coding for specific transcription factors. The conserved Homeobox genes (HOX, in humans) are involved in several skeletal pathologies. Osteoarthritis (OA) is characterized by homeostatic alterations of cartilage and bone synthesis, resulting in cartilage destruction and increased bone formation. We postulate that alterations in HOX expression in Mesenchymal Stem cells (MSCs) are likely one of the causes explaining the homeostatic alterations in OA and that this altered expression could be the result of epigenetic regulation. The expression of HOX genes in osteoarthritic-derived MSCs was screened using PCR arrays. Epigenetic regulation of HOX was analyzed measuring the degree of DNA methylation in their promoters. We demonstrate the downregulated expression of HOXA9 and HOXC8 in OA-MSCs. However, their expression does not correlate with promoter methylation status, suggesting that other epigenetic mechanisms could be implicated in the regulation of HOX expression. Studies on the role of these genes under active differentiation conditions need to be addressed for a better knowledge of the mechanisms regulating the expression of HOX, to allow a better understanding of OA pathology and to define possible biomarkers for therapeutic treatment.
Collapse
Affiliation(s)
- Arkaitz Mucientes
- Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC). UGC de Reumatología, Hospital Clínico San Carlos, 28040 Madrid, Spain.
| | - Eva Herranz
- Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC). UGC de Reumatología, Hospital Clínico San Carlos, 28040 Madrid, Spain.
| | - Enrique Moro
- Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC). UGC de Traumatología, Hospital Clínico San Carlos, 28040 Madrid, Spain.
| | - Cristina Lajas
- Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC). UGC de Reumatología, Hospital Clínico San Carlos, 28040 Madrid, Spain.
| | - Gloria Candelas
- Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC). UGC de Reumatología, Hospital Clínico San Carlos, 28040 Madrid, Spain.
| | - Benjamín Fernández-Gutiérrez
- Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC). UGC de Reumatología, Hospital Clínico San Carlos, 28040 Madrid, Spain.
| | - José Ramón Lamas
- Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC). UGC de Reumatología, Hospital Clínico San Carlos, 28040 Madrid, Spain.
| |
Collapse
|
442
|
Sambamurthy N, Zhou C, Nguyen V, Smalley R, Hankenson KD, Dodge GR, Scanzello CR. Deficiency of the pattern-recognition receptor CD14 protects against joint pathology and functional decline in a murine model of osteoarthritis. PLoS One 2018; 13:e0206217. [PMID: 30485272 PMCID: PMC6261538 DOI: 10.1371/journal.pone.0206217] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 10/09/2018] [Indexed: 12/18/2022] Open
Abstract
Objective CD14 is a monocyte/macrophage pattern-recognition receptor that modulates innate inflammatory signaling. Soluble CD14 levels in knee OA synovial fluids are associated with symptoms and progression of disease. Here we investigate the role of this receptor in development of OA using a murine joint injury model of disease. Methods 10-week-old Male C57BL/6 (WT) and CD14-deficient (CD14-/-) mice underwent destabilization of the medial meniscus (DMM) surgery to induce OA. Joint histopathology was used to examine cartilage damage, and microCT to evaluate subchondral bone (SCB) remodeling at 6 and 19 weeks after surgery. Synovial and fat pad expression of macrophage markers (F4/80, CD11c, CD68, iNOS, CCR7, CD163 and CD206) was assessed by flow cytometry and droplet digital (dd)PCR. Changes in locomotive activity indicative of joint pain were evaluated longitudinally up to 16 weeks by automated behavioral analysis. Results Early cartilage damage scores 6 weeks post-DMM were similar in both strains (Mean score ±SEM WT: 4.667±1.38, CD14-/-: 4.6±0.6), but at 19 weeks were less severe in CD14-/- (6.0±0.46) than in WT mice (13.44±2.5, p = 0.0002). CD14-/- mice were protected from both age-related and post-surgical changes in SCB mineral density and trabecular thickness. In addition, CD14-/- mice were protected from decreases in climbing activity (p = 0.015 vs. WT, 8 weeks) observed after DMM. Changes in synovial/fat pad expression of CCR7, a marker of M1 macrophages, were slightly reduced post-DMM in the absence of CD14, while expression of CD68 (pan-macrophage marker) and CD163 (M2 marker) were unchanged. Conclusion CD14 plays an important role in progression of structural and functional features of OA in the DMM model, and may provide a new target for therapeutic development.
Collapse
Affiliation(s)
- Nisha Sambamurthy
- Translational Musculoskeletal Research Center, Corporal Michael J. Crescenz Department of Veterans Affairs Medical Center, Philadelphia, Pennsylvania, United States of America
- University of Pennsylvania Perelman School of Medicine, Division of Rheumatology, Philadelphia, Pennsylvania, United States of America
| | - Cheng Zhou
- Translational Musculoskeletal Research Center, Corporal Michael J. Crescenz Department of Veterans Affairs Medical Center, Philadelphia, Pennsylvania, United States of America
- University of Pennsylvania Perelman School of Medicine, Division of Rheumatology, Philadelphia, Pennsylvania, United States of America
| | - Vu Nguyen
- Translational Musculoskeletal Research Center, Corporal Michael J. Crescenz Department of Veterans Affairs Medical Center, Philadelphia, Pennsylvania, United States of America
- University of Pennsylvania Perelman School of Medicine, Division of Rheumatology, Philadelphia, Pennsylvania, United States of America
| | - Ryan Smalley
- Translational Musculoskeletal Research Center, Corporal Michael J. Crescenz Department of Veterans Affairs Medical Center, Philadelphia, Pennsylvania, United States of America
- University of Pennsylvania Perelman School of Medicine, Department of Orthopedic Surgery, Philadelphia, Pennsylvania, United States of America
| | - Kurt D. Hankenson
- Department of Orthopaedic Surgery, University of Michigan, Ann Arbor, Michigan, United States of America
| | - George R. Dodge
- Translational Musculoskeletal Research Center, Corporal Michael J. Crescenz Department of Veterans Affairs Medical Center, Philadelphia, Pennsylvania, United States of America
- University of Pennsylvania Perelman School of Medicine, Department of Orthopedic Surgery, Philadelphia, Pennsylvania, United States of America
| | - Carla R. Scanzello
- Translational Musculoskeletal Research Center, Corporal Michael J. Crescenz Department of Veterans Affairs Medical Center, Philadelphia, Pennsylvania, United States of America
- University of Pennsylvania Perelman School of Medicine, Division of Rheumatology, Philadelphia, Pennsylvania, United States of America
- * E-mail: ,
| |
Collapse
|
443
|
Radakovich LB, Marolf AJ, Shannon JP, Pannone SC, Sherk VD, Santangelo KS. Development of a microcomputed tomography scoring system to characterize disease progression in the Hartley guinea pig model of spontaneous osteoarthritis. Connect Tissue Res 2018; 59:523-533. [PMID: 29226725 PMCID: PMC6207938 DOI: 10.1080/03008207.2017.1409218] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 10/18/2017] [Accepted: 11/09/2017] [Indexed: 02/06/2023]
Abstract
AIM There is potential discrepancy between human and laboratory animal studies of osteoarthritis (OA), as radiographic assessment is the hallmark of the former and histopathology the standard for the latter. This suggests a need to evaluate OA in animal models in a manner similar to that utilized in people. Our study aimed to develop a whole joint grading scheme for microcomputed tomography (microCT) images in Hartley guinea pigs, a strain that recapitulates joint changes highlighted in human spontaneous OA. MATERIALS AND METHODS Knees from animals aged 2, 3, 5, 9, and 15 months were evaluated via whole joint microCT and standard histologic scoring. Quantitative microCT parameters, such as bone volume/total volume were also collected. RESULTS Both whole joint microCT and histologic scores increased with advancing age and showed strong correlation (r = 0.89. p < 0.0001). Histologic scores, which focus on cartilage changes, increased progressively with age. Whole joint microCT scores, which characterize bony changes, followed a stepwise pattern: scores increased between 3 and 5 months of age, stayed consistent between 5 and 9 months, and worsened again between 9 and 15 months. CONCLUSIONS This work provides data that advocates the use of a whole joint microCT scoring system in guinea pig studies of OA, as it provides important information regarding bony changes that occur at a different rate than articular cartilage changes. This grading scheme, in conjunction with histology and quantitative microCT measurements, may enhance the translational value of this animal model as it pertains to human work.
Collapse
Affiliation(s)
- Lauren B Radakovich
- a Department of Microbiology, Immunology, Pathology , Colorado State University , Fort Collins, CO, USA
| | - Angela J Marolf
- b Department of Environmental and Radiological Health Sciences , Colorado State University , Fort Collins, CO, USA
| | - John P Shannon
- a Department of Microbiology, Immunology, Pathology , Colorado State University , Fort Collins, CO, USA
| | - Stephen C Pannone
- a Department of Microbiology, Immunology, Pathology , Colorado State University , Fort Collins, CO, USA
| | - Vanessa D Sherk
- c Center for Women's Health Research , UC Anschutz Medical Campus , Aurora, CO, USA
| | - Kelly S Santangelo
- a Department of Microbiology, Immunology, Pathology , Colorado State University , Fort Collins, CO, USA
| |
Collapse
|
444
|
Wieczorek E, Chitruń A, Ożyhar A. Destabilised human transthyretin shapes the morphology of calcium carbonate crystals. Biochim Biophys Acta Gen Subj 2018; 1863:313-324. [PMID: 30394286 DOI: 10.1016/j.bbagen.2018.10.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 10/12/2018] [Accepted: 10/26/2018] [Indexed: 12/20/2022]
Abstract
Human transthyretin (TTR) is a homotetramer that transports thyroid hormones and retinol in the serum and cerebrospinal fluid. TTR is also an intracellular protein found in tissues such as those in the brain, eye and pancreas. TTR is a nutrition marker, reflecting the health of the organism, and TTR levels are linked to the normal and diseased states of the body. The switch from a protective to a pathological role is attributed to the destabilisation of the TTR structure, which leads to tetramer dissociation and amyloid formation. Native and destabilised TTR have been associated with osteoarthritis and bone density in humans. Moreover, TTR is present in eggshell mammillary cones; therefore, we verified the putative TTR engagement in the process of mineral formation. Using an in vitro assay, we found that TTR affected calcium carbonate crystal growth and morphology, producing asymmetric crystals with a complex nanocrystalline composition. The crystals possessed rounded edges and corners and irregular etch pits, suggesting the selective inhibition of crystal growth and/or dissolution imposed by TTR. The occurrence of many porosities, fibrillary inclusions and amorphous precipitates suggested that destabilisation of the TTR structure is an important factor involved in the mineralisation process. Crystals grown in the presence of TTR exhibited the characteristic features of crystals controlled by biomineralisation-active proteins, suggesting novel functions of TTR in the mineral formation process.
Collapse
Affiliation(s)
- Elżbieta Wieczorek
- Department of Biochemistry, Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland.
| | - Anna Chitruń
- Department of Biochemistry, Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
| | - Andrzej Ożyhar
- Department of Biochemistry, Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
| |
Collapse
|
445
|
Mahmood H, Shepherd DET, Espino DM. Surface damage of bovine articular cartilage-off-bone: the effect of variations in underlying substrate and frequency. BMC Musculoskelet Disord 2018; 19:384. [PMID: 30355307 PMCID: PMC6201575 DOI: 10.1186/s12891-018-2305-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Accepted: 10/15/2018] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Changes in bone mineral density have been implicated with the onset of osteoarthritis, but its role in inducing failure of articular cartilage mechanically is unclear. This study aimed to determine the effect of substrate density, as the underlying bone, on the surface damage of cartilage-off-bone, at frequencies associated with gait, and above. METHODS Bovine articular cartilage samples were tested off-bone to assess induced damage with an indenter under a compressive sinusoidal load range of 5-50 N at frequencies of 1, 10 and 50 Hz, corresponding to normal and above normal gait respectively, for up to 10,000 cycles. Cartilage samples were tested on four underlying substrates with densities of 0.1556, 0.3222, 0.5667 and 0.6000 g/cm3. India ink was applied to identify damage as cracks, measured across their length using ImageJ software. Linear regression was performed to identify if statistical significance existed between substrate density, and surface damage of articular cartilage-off-bone, at all three frequencies investigated (p < 0.05). RESULTS Surface damage significantly increased (p < 0.05) with substrate density at 10 Hz of applied frequency. Crack length at this frequency reached the maximum of 10.95 ± 9.12 mm (mean ± standard deviation), across all four substrates tested. Frequencies applied at 1 and 50 Hz failed to show a significant increase (p > 0.05) in surface damage with an increase in substrate density, at which the maximum mean crack length were 3.01 ± 3.41 mm and 5.65 ± 6.54 mm, respectively. Crack formation at all frequencies tended to form at the periphery of the cartilage specimen, with multiple straight-line cracking observed at 10 Hz, in comparison to single straight-line configurations produced at 1 and 50 Hz. CONCLUSIONS The effect of substrate density on the surface damage of articular cartilage-off-bone is multi-factorial, with an above-normal gait frequency. At 1 Hz cartilage damage is not associated with substrate density, however at 10 Hz, it is. This study has implications on the effects of the factors that contribute to the onset of osteoarthritis.
Collapse
Affiliation(s)
- Humaira Mahmood
- Department of Mechanical Engineering, University of Birmingham, B15 2TT, Birmingham, UK
| | - Duncan E. T. Shepherd
- Department of Mechanical Engineering, University of Birmingham, B15 2TT, Birmingham, UK
| | - Daniel M. Espino
- Department of Mechanical Engineering, University of Birmingham, B15 2TT, Birmingham, UK
| |
Collapse
|
446
|
Tellegen AR, Rudnik-Jansen I, Pouran B, de Visser HM, Weinans HH, Thomas RE, Kik MJL, Grinwis GCM, Thies JC, Woike N, Mihov G, Emans PJ, Meij BP, Creemers LB, Tryfonidou MA. Controlled release of celecoxib inhibits inflammation, bone cysts and osteophyte formation in a preclinical model of osteoarthritis. Drug Deliv 2018; 25:1438-1447. [PMID: 29890922 PMCID: PMC6058666 DOI: 10.1080/10717544.2018.1482971] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Major hallmarks of osteoarthritis (OA) are cartilage degeneration, inflammation and osteophyte formation. COX-2 inhibitors counteract inflammation-related pain, but their prolonged oral use entails the risk for side effects. Local and prolonged administration in biocompatible and degradable drug delivery biomaterials could offer an efficient and safe treatment for the long-term management of OA symptoms. Therefore, we evaluated the disease-modifying effects and the optimal dose of polyesteramide microspheres delivering the COX-2 inhibitor celecoxib in a rat OA model. Four weeks after OA induction by anterior cruciate ligament transection and partial medial meniscectomy, 8-week-old female rats (n = 6/group) were injected intra-articular with celecoxib-loaded microspheres at three dosages (0.03, 0.23 or 0.39 mg). Unloaded microspheres served as control. During the 16-week follow-up, static weight bearing and plasma celecoxib concentrations were monitored. Post-mortem, micro-computed tomography and knee joint histology determined progression of synovitis, osteophyte formation, subchondral bone changes, and cartilage integrity. Systemic celecoxib levels were below the detection limit 6 days upon delivery. Systemic and local adverse effects were absent. Local delivery of celecoxib reduced the formation of osteophytes, subchondral sclerosis, bone cysts and calcified loose bodies, and reduced synovial inflammation, while cartilage histology was unaffected. Even though the effects on pain could not be evualated directly in the current model, our results suggest the application of celecoxib-loaded microspheres holds promise as novel, safe and effective treatment for inflammation and pain in OA.
Collapse
Affiliation(s)
- A R Tellegen
- a Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine , Utrecht University , Utrecht , The Netherlands
| | - I Rudnik-Jansen
- b Department of Orthopaedics , University Medical Centre Utrecht , Utrecht , The Netherlands
| | - B Pouran
- c Department of Rheumatology and Clinical Immunology , University Medical Centre Utrecht , Utrecht , The Netherlands
| | - H M de Visser
- c Department of Rheumatology and Clinical Immunology , University Medical Centre Utrecht , Utrecht , The Netherlands
| | - H H Weinans
- b Department of Orthopaedics , University Medical Centre Utrecht , Utrecht , The Netherlands.,c Department of Rheumatology and Clinical Immunology , University Medical Centre Utrecht , Utrecht , The Netherlands
| | - R E Thomas
- d Department of Pathobiology, Faculty of Veterinary Medicine , Utrecht University , Utrecht , The Netherlands
| | - M J L Kik
- d Department of Pathobiology, Faculty of Veterinary Medicine , Utrecht University , Utrecht , The Netherlands
| | - G C M Grinwis
- d Department of Pathobiology, Faculty of Veterinary Medicine , Utrecht University , Utrecht , The Netherlands
| | - J C Thies
- e DSM Biomedical , Geleen , the Netherlands
| | - N Woike
- e DSM Biomedical , Geleen , the Netherlands
| | - G Mihov
- e DSM Biomedical , Geleen , the Netherlands
| | - P J Emans
- f Department of Orthopaedics , University Medical Centre Maastricht , Maastricht , The Netherlands
| | - B P Meij
- a Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine , Utrecht University , Utrecht , The Netherlands
| | - L B Creemers
- b Department of Orthopaedics , University Medical Centre Utrecht , Utrecht , The Netherlands
| | - M A Tryfonidou
- a Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine , Utrecht University , Utrecht , The Netherlands
| |
Collapse
|
447
|
Jenei-Lanzl Z, Meurer A, Zaucke F. Interleukin-1β signaling in osteoarthritis - chondrocytes in focus. Cell Signal 2018; 53:212-223. [PMID: 30312659 DOI: 10.1016/j.cellsig.2018.10.005] [Citation(s) in RCA: 267] [Impact Index Per Article: 38.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 10/07/2018] [Accepted: 10/08/2018] [Indexed: 12/20/2022]
Abstract
Osteoarthritis (OA) can be regarded as a chronic, painful and degenerative disease that affects all tissues of a joint and one of the major endpoints being loss of articular cartilage. In most cases, OA is associated with a variable degree of synovial inflammation. A variety of different cell types including chondrocytes, synovial fibroblasts, adipocytes, osteoblasts and osteoclasts as well as stem and immune cells are involved in catabolic and inflammatory processes but also in attempts to counteract the cartilage loss. At the molecular level, these changes are regulated by a complex network of proteolytic enzymes, chemokines and cytokines (for review: [1]). Here, interleukin-1 signaling (IL-1) plays a central role and its effects on the different cell types involved in OA are discussed in this review with a special focus on the chondrocyte.
Collapse
Affiliation(s)
- Zsuzsa Jenei-Lanzl
- Dr. Rolf M. Schwiete Research Unit for Osteoarthritis, Orthopaedic University Hospital Friedrichsheim, Frankfurt/Main, Germany
| | - Andrea Meurer
- Dr. Rolf M. Schwiete Research Unit for Osteoarthritis, Orthopaedic University Hospital Friedrichsheim, Frankfurt/Main, Germany
| | - Frank Zaucke
- Dr. Rolf M. Schwiete Research Unit for Osteoarthritis, Orthopaedic University Hospital Friedrichsheim, Frankfurt/Main, Germany.
| |
Collapse
|
448
|
Mauricio E, Sliepen M, Rosenbaum D. Acute effects of different orthotic interventions on knee loading parameters in knee osteoarthritis patients with varus malalignment. Knee 2018; 25:825-833. [PMID: 30017510 DOI: 10.1016/j.knee.2018.06.017] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 06/05/2018] [Accepted: 06/29/2018] [Indexed: 02/02/2023]
Abstract
BACKGROUND Knee osteoarthritis (KOA) is the most common form of arthritis with an estimated lifetime prevalence of 45%. The use of orthotic devices is a generally accepted conservative therapy in KOA. A new conservative treatment is an ankle-foot orthosis (AFO); however, studies on the biomechanical effects are limited. The aim of this study was to examine the acute effects of different orthotic devices (AFO, knee brace and wedged shoes) on (un)loading parameters in subjects with KOA. METHODS Fifty-two medial KOA patients (mean age 59 (standard deviation (SD) 10) years and mean body mass index 27.5 (SD 4.9) kg/m2) were recruited. Three-dimensional gait analysis was undertaken with different interventions in a randomized order: control (own shoes), new AFO, conventional unloader brace and laterally wedged shoes (six degrees). RESULTS Significant decreases of 27% and nine percent in first peak knee adduction moment (KAM) were observed for the AFO and wedged shoes, respectively, in comparison with the control. Significant decreases of 21%, seven percent and 18% in the KAM impulse were observed for the AFO, brace and wedged shoes, respectively, compared to the control. The knee flexion moment (KFM) increased compared to the control for all conditions, but only significantly while using the AFO, showing an increase of 26% as compared to the control. CONCLUSIONS The AFO and wedged shoes were more effective in unloading the medial compartment of the knee compared to the unloader brace. However, the effect of an increased KFM on KOA remains unclear and requires further investigation.
Collapse
Affiliation(s)
- Elsa Mauricio
- Funktionsbereich Bewegungsanalytik, IEMM, Universitätsklinikum Münster, Albert-Schweitzer Campus 1, Gebäude D3, 48129 Münster, Germany.
| | - Maik Sliepen
- Funktionsbereich Bewegungsanalytik, IEMM, Universitätsklinikum Münster, Albert-Schweitzer Campus 1, Gebäude D3, 48129 Münster, Germany
| | - Dieter Rosenbaum
- Funktionsbereich Bewegungsanalytik, IEMM, Universitätsklinikum Münster, Albert-Schweitzer Campus 1, Gebäude D3, 48129 Münster, Germany
| |
Collapse
|
449
|
Bexkens R, van Bergen CJA, van den Bekerom MPJ, Kerkhoffs GMMJ, Eygendaal D. Decreased Defect Size and Partial Restoration of Subchondral Bone on Computed Tomography After Arthroscopic Debridement and Microfracture for Osteochondritis Dissecans of the Capitellum. Am J Sports Med 2018; 46:2954-2959. [PMID: 30141965 DOI: 10.1177/0363546518790455] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND Arthroscopic debridement and microfracture are considered the primary surgical treatment for capitellar osteochondritis dissecans (OCD). Healing of the subchondral bone plays an essential role in cartilage repair, while lack of healing is related to the development of osteoarthritis. To date, it is unknown to what extent healing of the subchondral bone occurs after this technique in the elbow. PURPOSE To analyze defect size changes and subchondral bone healing with computed tomography (CT) after arthroscopic debridement and microfracture for advanced capitellar OCD. STUDY DESIGN Case series; Level of evidence, 4. METHODS Between 2009 and 2016, 67 patients underwent arthroscopic debridement and microfracture for advanced capitellar OCD. Fifty-four patients (81% follow-up rate) with CT scans were included (mean ± SD: preoperative, 4.0 ± 1.7 months; postoperative, 29 ± 9.0 months). OCD defect size was assessed by measuring the largest diameter in 3 directions: medial-lateral direction (coronal plane) and anterior-posterior direction and depth (both in sagittal plane). Healing of the OCD was divided into 3 categories: good-complete osseous union or ossification; fair-incomplete osseous union or ossification but improved; poor-no changes between pre- and postoperative scans. Postoperative clinical outcome was assessed with the Oxford Elbow Score (OES) at the same time as the postoperative CT scan. RESULTS There were 30 female and 24 male patients (age, 15.7 ± 3.2 years). Defect size decreased ( P < .001) in all 3 directions (medial-lateral × anterior-posterior × depth) at 29 ± 9.0 months: preoperatively, 7.9 ± 2.8 × 8.0 ± 3.2 × 4.1 ± 1.5 mm; postoperatively, 3.5 ± 3.3 × 4.0 ± 3.5 × 1.6 ± 1.4 mm. Healing of the subchondral bone was graded as good in 19 defects (35%), fair in 27 (50%), and poor in 8 (15%). The mean postoperative OES score was 40 ± 8.4. Neither postoperative defect size nor healing grade correlated with the OES ( P > .05). CONCLUSION Arthroscopic debridement and microfracture for advanced capitellar OCD result in improved (ie, decreased) defect size at a mean follow-up of 29 months, both in width and in depth. Healing of the subchondral bone was either good or fair in 85%. Interestingly, CT findings did not correlate with clinical outcomes.
Collapse
Affiliation(s)
- Rens Bexkens
- Department of Orthopaedic Surgery, Amphia Hospital, Breda, the Netherlands
- Department of Orthopaedic Surgery, Academic Medical Center, University of Amsterdam, Amsterdam Movement Sciences, Amsterdam, the Netherlands
- Department of Orthopaedic Surgery, Sports Medicine Service, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | | | - Michel P J van den Bekerom
- Department of Orthopaedic Surgery, Shoulder and Elbow Unit, Onze Lieve Vrouwe Gasthuis, Amsterdam, the Netherlands
| | - Gino M M J Kerkhoffs
- Department of Orthopaedic Surgery, Academic Medical Center, University of Amsterdam, Amsterdam Movement Sciences, Amsterdam, the Netherlands
- Academic Center for Evidence-Based Sports Medicine, Amsterdam, the Netherlands
- Amsterdam Collaboration on Health and Safety in Sports, AMC/VUmc IOC Research Center, Amsterdam, the Netherlands
| | - Denise Eygendaal
- Department of Orthopaedic Surgery, Amphia Hospital, Breda, the Netherlands
- Department of Orthopaedic Surgery, Academic Medical Center, University of Amsterdam, Amsterdam Movement Sciences, Amsterdam, the Netherlands
| |
Collapse
|
450
|
van Vulpen LFD, Holstein K, Martinoli C. Joint disease in haemophilia: Pathophysiology, pain and imaging. Haemophilia 2018; 24 Suppl 6:44-49. [PMID: 29878659 DOI: 10.1111/hae.13449] [Citation(s) in RCA: 102] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/13/2018] [Indexed: 12/25/2022]
Abstract
Haemarthroses cause major morbidity in patients with haemophilia. Blood has devastating effects on all joint components, resulting in synovitis, osteochondral degeneration and ultimately end-stage haemophilic arthropathy. Key players in this process are iron and inflammation. Preventing joint bleeds is of utmost importance to maintain joint health as targeted therapies directed against blood-induced inflammation and iron-mediated processes are lacking. Joint bleeds result in acute pain as well as chronic pain due to synovitis or arthropathy. Acute pain originates from nociceptors activated by tissue damage. In chronic inflammation, central and peripheral sensitization of nociceptors might occur resulting in chronic pain. This also triggers a series of brain disorders such as emotional fear, anxiety, mood depression and impairment of cognitive functions. Treatment of haemophilia-related pain not only consists of analgesics, but also of exercise, education and in selected cases antidepressants and anticonvulsants. For objective assessment of joint structural outcome and detecting earlier changes of haemophilic arthropathy, both ultrasound (US) and magnetic resonance (MR) imaging have shown valuable. Both can be considered equally able to reveal signs of disease activity. MR imaging is able to visualize haemosiderin deposition and is more comprehensive in depicting osteochondral changes. Disadvantages of MR imaging are the duration of the examination, evaluation of a single joint at a time, costs and may require sedation, and it may need intraarticular contrast injection to depict initial osteochondral changes with accuracy. As such, US is a more useful screening tool and can be used for repeated follow-up examinations.
Collapse
Affiliation(s)
- L F D van Vulpen
- Van Creveldkliniek University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - K Holstein
- University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | - C Martinoli
- - DISSAL, Ospedale Policlinico San Martino, Università di Genova, Genova, Italy
| |
Collapse
|