401
|
Presgraves DC. Darwin and the origin of interspecific genetic incompatibilities. Am Nat 2011; 176 Suppl 1:S45-60. [PMID: 21043780 DOI: 10.1086/657058] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Darwin's Origin of Species is often criticized for having little to say about speciation. The complaint focuses in particular on Darwin's supposed failure to explain the evolution of the sterility and inviability of interspecific hybrids. But in his chapter on hybridism, Darwin, working without genetics, got as close to the modern understanding of the evolution of hybrid sterility and inviability as might reasonably be expected. In particular, after surveying what was then known about interspecific crosses and the resulting hybrids, he established two facts that, while now taken for granted, were at the time radical. First, the sterility barriers between species are neither specially endowed by a creator nor directly favored by natural selection but rather evolve as incidental by-products of interspecific divergence. Second, the sterility of species hybrids results when their development is "disturbed by two organizations having been compounded into one." Bateson, Dobzhansky, and Muller later put Mendelian detail to Darwin's inference that the species-specific factors controlling development (i.e., genes) are sometimes incompatible. In this article, I highlight the major developments in our understanding of these interspecific genetic incompatibilities--from Darwin to Muller to modern theory--and review comparative, genetic, and molecular rules that characterize the evolution of hybrid sterility and inviability.
Collapse
Affiliation(s)
- Daven C Presgraves
- Radcliffe Institute for Advanced Study, Harvard University, Cambridge, Massachusetts 02138, USA.
| |
Collapse
|
402
|
Caputo B, Santolamazza F, Vicente JL, Nwakanma DC, Jawara M, Palsson K, Jaenson T, White BJ, Mancini E, Petrarca V, Conway DJ, Besansky NJ, Pinto J, Torre AD. The "far-west" of Anopheles gambiae molecular forms. PLoS One 2011; 6:e16415. [PMID: 21347223 PMCID: PMC3039643 DOI: 10.1371/journal.pone.0016415] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2010] [Accepted: 12/15/2010] [Indexed: 11/18/2022] Open
Abstract
The main Afrotropical malaria vector, Anopheles gambiae sensu stricto, is undergoing a process of sympatric ecological diversification leading to at least two incipient species (the M and S molecular forms) showing heterogeneous levels of divergence across the genome. The physically unlinked centromeric regions on all three chromosomes of these closely related taxa contain fixed nucleotide differences which have been found in nearly complete linkage disequilibrium in geographic areas of no or low M-S hybridization. Assays diagnostic for SNP and structural differences between M and S forms in the three centromeric regions were applied in samples from the western extreme of their range of sympatry, the only area where high frequencies of putative M/S hybrids have been reported. The results reveal a level of admixture not observed in the rest of the range. In particular, we found: i) heterozygous genotypes at each marker, although at frequencies lower than expected under panmixia; ii) virtually all possible genotypic combinations between markers on different chromosomes, although genetic association was nevertheless detected; iii) discordant M and S genotypes at two X-linked markers near the centromere, suggestive of introgression and inter-locus recombination. These results could be indicative either of a secondary contact zone between M and S, or of the maintenance of ancestral polymorphisms. This issue and the perspectives opened by these results in the study of the M and S incipient speciation process are discussed.
Collapse
Affiliation(s)
- Beniamino Caputo
- Istituto Pasteur-Fondazione Cenci-Bolognetti, Dipartimento di Sanità Pubblica e Malattie Infettive, Università di Roma “Sapienza”, Rome, Italy
| | - Federica Santolamazza
- Istituto Pasteur-Fondazione Cenci-Bolognetti, Dipartimento di Sanità Pubblica e Malattie Infettive, Università di Roma “Sapienza”, Rome, Italy
| | - José L. Vicente
- Centro de Malária e outras Doenças Tropicais, UEI Malária and UEI Entomologia Médica, Instituto de Higiene e Medicina Tropical, Universidade Nova de Lisboa, Lisbon, Portugal
| | | | - Musa Jawara
- Medical Research Council Laboratories, Banjul, The Gambia
| | - Katinka Palsson
- Medical Entomology Unit, Department of Systematic Biology, Uppsala University, Uppsala, Sweden
| | - Thomas Jaenson
- Medical Entomology Unit, Department of Systematic Biology, Uppsala University, Uppsala, Sweden
| | - Bradley J. White
- Eck Institute for Global Health, Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, United States of America
| | - Emiliano Mancini
- Istituto Pasteur-Fondazione Cenci-Bolognetti, Dipartimento di Sanità Pubblica e Malattie Infettive, Università di Roma “Sapienza”, Rome, Italy
| | - Vincenzo Petrarca
- Istituto Pasteur-Fondazione Cenci-Bolognetti, Dipartimento di Biologia e Biotecnologie “Charles Darwin”, Università di Roma “Sapienza”, Rome, Italy
| | | | - Nora J. Besansky
- Eck Institute for Global Health, Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, United States of America
| | - João Pinto
- Centro de Malária e outras Doenças Tropicais, UEI Malária and UEI Entomologia Médica, Instituto de Higiene e Medicina Tropical, Universidade Nova de Lisboa, Lisbon, Portugal
| | - Alessandra della Torre
- Istituto Pasteur-Fondazione Cenci-Bolognetti, Dipartimento di Sanità Pubblica e Malattie Infettive, Università di Roma “Sapienza”, Rome, Italy
- * E-mail:
| |
Collapse
|
403
|
Utility of microsatellites and mitochondrial DNA for species delimitation in the spruce budworm (Choristoneura fumiferana) species complex (Lepidoptera: Tortricidae). Mol Phylogenet Evol 2011; 58:232-43. [DOI: 10.1016/j.ympev.2010.11.023] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2010] [Revised: 11/16/2010] [Accepted: 11/28/2010] [Indexed: 10/18/2022]
|
404
|
Population genomics and local adaptation in wild isolates of a model microbial eukaryote. Proc Natl Acad Sci U S A 2011; 108:2831-6. [PMID: 21282627 DOI: 10.1073/pnas.1014971108] [Citation(s) in RCA: 185] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Elucidating the connection between genotype, phenotype, and adaptation in wild populations is fundamental to the study of evolutionary biology, yet it remains an elusive goal, particularly for microscopic taxa, which comprise the majority of life. Even for microbes that can be reliably found in the wild, defining the boundaries of their populations and discovering ecologically relevant phenotypes has proved extremely difficult. Here, we have circumvented these issues in the microbial eukaryote Neurospora crassa by using a "reverse-ecology" population genomic approach that is free of a priori assumptions about candidate adaptive alleles. We performed Illumina whole-transcriptome sequencing of 48 individuals to identify single nucleotide polymorphisms. From these data, we discovered two cryptic and recently diverged populations, one in the tropical Caribbean basin and the other endemic to subtropical Louisiana. We conducted high-resolution scans for chromosomal regions of extreme divergence between these populations and found two such genomic "islands." Through growth-rate assays, we found that the subtropical Louisiana population has a higher fitness at low temperature (10 °C) and that several of the genes within these distinct regions have functions related to the response to cold temperature. These results suggest the divergence islands may be the result of local adaptation to the 9 °C difference in average yearly minimum temperature between these two populations. Remarkably, another of the genes identified using this unbiased, whole-genome approach is the well-known circadian oscillator frequency, suggesting that the 2.4°-10.6° difference in latitude between the populations may be another important environmental parameter.
Collapse
|
405
|
Tomberlin JK, Mohr R, Benbow ME, Tarone AM, VanLaerhoven S. A roadmap for bridging basic and applied research in forensic entomology. ANNUAL REVIEW OF ENTOMOLOGY 2011; 56:401-421. [PMID: 20822449 DOI: 10.1146/annurev-ento-051710-103143] [Citation(s) in RCA: 181] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
The National Research Council issued a report in 2009 that heavily criticized the forensic sciences. The report made several recommendations that if addressed would allow the forensic sciences to develop a stronger scientific foundation. We suggest a roadmap for decomposition ecology and forensic entomology hinging on a framework built on basic research concepts in ecology, evolution, and genetics. Unifying both basic and applied research fields under a common umbrella of terminology and structure would facilitate communication in the field and the production of scientific results. It would also help to identify novel research areas leading to a better understanding of principal underpinnings governing ecosystem structure, function, and evolution while increasing the accuracy of and ability to interpret entomological evidence collected from crime scenes. By following the proposed roadmap, a bridge can be built between basic and applied decomposition ecology research, culminating in science that could withstand the rigors of emerging legal and cultural expectations.
Collapse
Affiliation(s)
- J K Tomberlin
- Department of Entomology, Texas A&M University, College Station, Texas 77843, USA.
| | | | | | | | | |
Collapse
|
406
|
Alquezar DE, Hemmerter S, Cooper RD, Beebe NW. Incomplete concerted evolution and reproductive isolation at the rDNA locus uncovers nine cryptic species within Anopheles longirostris from Papua New Guinea. BMC Evol Biol 2010; 10:392. [PMID: 21184676 PMCID: PMC3022607 DOI: 10.1186/1471-2148-10-392] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2010] [Accepted: 12/24/2010] [Indexed: 11/20/2022] Open
Abstract
Background Nuclear ribosomal DNA (rDNA) genes and transcribed spacers are highly utilized as taxonomic markers in metazoans despite the lack of a cohesive understanding of their evolution. Here we follow the evolution of the rDNA second internal transcribed spacer (ITS2) and the mitochondrial DNA cytochrome oxidase I subunit in the malaria mosquito Anopheles longirostris from Papua New Guinea (PNG). This morphospecies inhabits a variety of ecological environments indicating that it may comprise a complex of morphologically indistinguishable species. Using collections from over 70 sites in PNG, the mtDNA was assessed via direct DNA sequencing while the ITS2 was assessed at three levels - crude sequence variation through restriction digest, intragenomic copy variant organisation (homogenisation) through heteroduplex analysis and DNA sequencing via cloning. Results Genetic evaluation of over 300 individuals revealed that A. longirostris comprises eight ITS2 PCR-RFLP genotypes and nine ITS2 heteroduplex genotypes showing distinct copy variant organization profiles after PCR amplification. Seven of these nine genotypes were found to be sympatric with other genotypes. Phylogenetic analysis of cloned ITS2 PCR products and mtDNA COI confirmed all nine clades with evidence of reproductive isolation at the rDNA locus. Compensatory base changes in the ITS2 secondary structure or in pseudoknots were absent when closely related species were assessed. Individuals from each ITS2 genotype showed the same copy variant heteroduplex profile suggesting that the rDNA array is fixed within each genotype. Conclusion The centromere-proximal position of the rDNA array in Anopheles mosquitoes has probably reduced interchromosomal recombination leaving intrachromosomal events responsible for the observed pattern of concerted evolution we see in these mosquitoes. The stability of these intragenomic ITS2 copy variants within individuals and interbreeding populations suggests that rDNA is moving as a single evolutionary unit through natural populations to fixation and has provided a complementary diagnostic tool to the restriction digest for studying genetic discontinuities and species boundaries. In this, the utility of the ITS2 as a universal taxonomic marker is probably contingent on several factors pertaining to spacer dimensions and the genomic location of the rDNA array with respect to recombination and proximity to regions potentially under selection.
Collapse
Affiliation(s)
- David E Alquezar
- Institute for the Biotechnology of Infectious Disease, University of Technology, Sydney. Australia
| | | | | | | |
Collapse
|
407
|
Pinho C, Hey J. Divergence with Gene Flow: Models and Data. ANNUAL REVIEW OF ECOLOGY EVOLUTION AND SYSTEMATICS 2010. [DOI: 10.1146/annurev-ecolsys-102209-144644] [Citation(s) in RCA: 285] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Catarina Pinho
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto. Campus Agrário de Vairão, 4485-661 Vairão, Portugal;
| | - Jody Hey
- Department of Genetics, Rutgers University, Piscataway, New Jersey 08854;
| |
Collapse
|
408
|
Carneiro M, Blanco-Aguiar JA, Villafuerte R, Ferrand N, Nachman MW. Speciation in the European rabbit (Oryctolagus cuniculus): islands of differentiation on the X chromosome and autosomes. Evolution 2010; 64:3443-60. [PMID: 20666840 PMCID: PMC3058625 DOI: 10.1111/j.1558-5646.2010.01092.x] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Studies of gene flow between closely related taxa can provide insight into the genetic basis of speciation. To evaluate the importance of the X chromosome in reproductive isolation between subspecies of the European rabbit and to study the genomic scale over which islands of differentiation extend, we resequenced a total of 34 loci distributed along the X chromosome and chromosome 14. Previous studies based on few markers suggested that loci in centromeric regions were highly differentiated between rabbit subspecies, whereas loci in telomeric regions were less differentiated. Here, we confirmed this finding but also discovered remarkable variation in levels of differentiation among loci, with F(ST) values from nearly 0 to 1. Analyses using isolation-with-migration models suggest that this range appears to be largely explained by differential levels of gene flow among loci. The X chromosome was significantly more differentiated than the autosomes. On chromosome 14, differentiation decayed very rapidly at increasing distances from the centromere, but on the X chromosome distinct islands of differentiation encompassing several megabases were observed both at the centromeric region and along the chromosome arms. These findings support the idea that the X chromosome plays an important role in reproductive isolation between rabbit subspecies. These results also demonstrate the mosaic nature of the genome at species boundaries.
Collapse
Affiliation(s)
- Miguel Carneiro
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, Campus Agrário de Vairão, 4485-661, Vairão, Portugal.
| | | | | | | | | |
Collapse
|
409
|
Widespread introgression does not leak into allotopy in a broad sympatric zone. Heredity (Edinb) 2010; 106:962-72. [PMID: 21081968 DOI: 10.1038/hdy.2010.144] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Species that overlap over a large part of their range and habitat requirements are challenging for the study of speciation and hybridization. In this respect, the study of broadscale introgressive hybridization has raised recent interest. Here we studied hybridization between two closely related amphibians Lissotriton helveticus and Lissotriton vulgaris that reproduce over a wide sympatric zone. We used mitochondrial and microsatellite markers on 1272 individuals in 37 sites over Europe to detect hybrids at the individual-level and to analyse Hardy-Weinberg and linkage disequilibria at the population-level. Morphological traits showed a strong bimodal distribution. Consistently, hybrid frequency was low (1.7%). We found asymmetric introgression with five times more hybrids in L. vulgaris than in L. helveticus, a pattern probably explained by an unequal effective population size in a study part wherein L. helveticus numerically predominates. Strikingly, significant levels of introgression were detected in 73% of sites shared by both species. Our study showed that introgression is widespread but remains confined to the sites where the two species reproduce at the same time. This pattern may explain why these species remain genetically distinct over a broad sympatric zone.
Collapse
|
410
|
Neafsey DE, Lawniczak MKN, Park DJ, Redmond SN, Coulibaly MB, Traoré SF, Sagnon N, Costantini C, Johnson C, Wiegand RC, Collins FH, Lander ES, Wirth DF, Kafatos FC, Besansky NJ, Christophides GK, Muskavitch MAT. SNP genotyping defines complex gene-flow boundaries among African malaria vector mosquitoes. Science 2010; 330:514-517. [PMID: 20966254 PMCID: PMC4811326 DOI: 10.1126/science.1193036] [Citation(s) in RCA: 137] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Mosquitoes in the Anopheles gambiae complex show rapid ecological and behavioral diversification, traits that promote malaria transmission and complicate vector control efforts. A high-density, genome-wide mosquito SNP-genotyping array allowed mapping of genomic differentiation between populations and species that exhibit varying levels of reproductive isolation. Regions near centromeres or within polymorphic inversions exhibited the greatest genetic divergence, but divergence was also observed elsewhere in the genomes. Signals of natural selection within populations were overrepresented among genomic regions that are differentiated between populations, implying that differentiation is often driven by population-specific selective events. Complex genomic differentiation among speciating vector mosquito populations implies that tools for genome-wide monitoring of population structure will prove useful for the advancement of malaria eradication.
Collapse
Affiliation(s)
| | | | - D. J. Park
- Broad Institute, Cambridge, MA 02142, USA
| | | | | | - S. F. Traoré
- Malaria Research and Training Center, Bamako, Mali
| | - N. Sagnon
- Centre National de Recherche et Formation sur le Paludisme, Ouagadougou, Burkina Faso
| | - C. Costantini
- Institut de Recherche pour le Développement, Unité de Recherche R016, Montpellier, France
- Organisation de Coordination pour la Lutte contre les Endémies en Afrique Centrale, Yaounde, Cameroon
| | - C. Johnson
- Broad Institute, Cambridge, MA 02142, USA
| | | | | | | | - D. F. Wirth
- Broad Institute, Cambridge, MA 02142, USA
- Harvard School of Public Health, Boston, MA 02115, USA
| | | | | | | | - M. A. T. Muskavitch
- Broad Institute, Cambridge, MA 02142, USA
- Harvard School of Public Health, Boston, MA 02115, USA
- Boston College, Chestnut Hill, MA 02467, USA
| |
Collapse
|
411
|
Lawniczak MKN, Emrich SJ, Holloway AK, Regier AP, Olson M, White B, Redmond S, Fulton L, Appelbaum E, Godfrey J, Farmer C, Chinwalla A, Yang SP, Minx P, Nelson J, Kyung K, Walenz BP, Garcia-Hernandez E, Aguiar M, Viswanathan LD, Rogers YH, Strausberg RL, Saski CA, Lawson D, Collins FH, Kafatos FC, Christophides GK, Clifton SW, Kirkness EF, Besansky NJ. Widespread divergence between incipient Anopheles gambiae species revealed by whole genome sequences. Science 2010; 330:512-4. [PMID: 20966253 PMCID: PMC3674514 DOI: 10.1126/science.1195755] [Citation(s) in RCA: 204] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The Afrotropical mosquito Anopheles gambiae sensu stricto, a major vector of malaria, is currently undergoing speciation into the M and S molecular forms. These forms have diverged in larval ecology and reproductive behavior through unknown genetic mechanisms, despite considerable levels of hybridization. Previous genome-wide scans using gene-based microarrays uncovered divergence between M and S that was largely confined to gene-poor pericentromeric regions, prompting a speciation-with-ongoing-gene-flow model that implicated only about 3% of the genome near centromeres in the speciation process. Here, based on the complete M and S genome sequences, we report widespread and heterogeneous genomic divergence inconsistent with appreciable levels of interform gene flow, suggesting a more advanced speciation process and greater challenges to identify genes critical to initiating that process.
Collapse
Affiliation(s)
- M K N Lawniczak
- Division of Cell and Molecular Biology, Imperial College London, South Kensington Campus, London SW7 2AZ, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
412
|
Abstract
Ecological speciation is the process by which barriers to gene flow between populations evolve due to adaptive divergence via natural selection. A relatively unexplored area in ecological speciation is the role of gene expression. Gene expression may be associated with ecologically important phenotypes not evident from morphology and play a role during colonization of new environments. Here we review two potential roles of gene expression in ecological speciation: (1) its indirect role in facilitating population persistence and (2) its direct role in contributing to genetically based reproductive isolation. We find indirect evidence that gene expression facilitates population persistence, but direct tests are lacking. We also find clear examples of gene expression having effects on phenotypic traits and adaptive genetic divergence, but links to the evolution of reproductive isolation itself remain indirect. Gene expression during adaptive divergence seems to often involve complex genetic architectures controlled by gene networks, regulatory regions, and “eQTL hotspots.” Nonetheless, we review how approaches for isolating the functional mutations contributing to adaptive divergence are proving to be successful. The study of gene expression has promise for increasing our understanding ecological speciation, particularly when integrative approaches are applied.
Collapse
Affiliation(s)
- Scott A Pavey
- Department of Biological Sciences, Simon Fraser University, Burnaby, BC, Canada
| | | | | | | |
Collapse
|
413
|
Feder JL, Nosil P. The efficacy of divergence hitchhiking in generating genomic islands during ecological speciation. EVOLUTION; INTERNATIONAL JOURNAL OF ORGANIC EVOLUTION 2010; 64:1729-47. [PMID: 20624183 DOI: 10.1111/j.1558-5646.2010.00943.x] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Genes under divergent selection flow less readily between populations than other loci. This observation has led to verbal "divergence hitchhiking" models of speciation in which decreased interpopulation gene flow surrounding loci under divergent selection can generate large regions of differentiation within the genome (genomic islands). The efficacy of this model in promoting speciation depends on the size of the region affected by divergence hitchhiking. Empirical evidence is mixed, with examples of both large and small genomic islands. To address these empirical discrepancies and to formalize the theory, we present mathematical models of divergence hitchhiking, which examine neutral differentiation around selected sites. For a single locus under selection, regions of differentiation do not extend far along a chromosome away from a selected site unless both effective population sizes and migration rates are low. When multiple loci are considered, regions of differentiation can be larger. However, with many loci under selection, genome-wide divergence occurs and genomic islands are erased. The results show that divergence hitchhiking can generate large regions of differentiation, but that the conditions under which this occurs are limited. Thus, speciation may often require multifarious selection acting on many, isolated and physically unlinked genes. How hitchhiking promotes further adaptive divergence warrants consideration.
Collapse
Affiliation(s)
- Jeffrey L Feder
- Dept. of Biological Sciences, University of Notre Dame, Notre Dame, Indiana 46556, USA.
| | | |
Collapse
|
414
|
Weetman D, Wilding CS, Steen K, Morgan JC, Simard F, Donnelly MJ. Association mapping of insecticide resistance in wild Anopheles gambiae populations: major variants identified in a low-linkage disequilbrium genome. PLoS One 2010; 5:e13140. [PMID: 20976111 PMCID: PMC2956759 DOI: 10.1371/journal.pone.0013140] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2010] [Accepted: 09/03/2010] [Indexed: 11/18/2022] Open
Abstract
Background Association studies are a promising way to uncover the genetic basis of complex traits in wild populations. Data on population stratification, linkage disequilibrium and distribution of variant effect-sizes for different trait-types are required to predict study success but are lacking for most taxa. We quantified and investigated the impacts of these key variables in a large-scale association study of a strongly selected trait of medical importance: pyrethroid resistance in the African malaria vector Anopheles gambiae. Methodology/Principal Findings We genotyped ≈1500 resistance-phenotyped wild mosquitoes from Ghana and Cameroon using a 1536-SNP array enriched for candidate insecticide resistance gene SNPs. Three factors greatly impacted study power. (1) Population stratification, which was attributable to co-occurrence of molecular forms (M and S), and cryptic within-form stratification necessitating both a partitioned analysis and genomic control. (2) All SNPs of substantial effect (odds ratio, OR>2) were rare (minor allele frequency, MAF<0.05). (3) Linkage disequilibrium (LD) was very low throughout most of the genome. Nevertheless, locally high LD, consistent with a recent selective sweep, and uniformly high ORs in each subsample facilitated significant direct and indirect detection of the known insecticide target site mutation kdr L1014F (OR≈6; P<10−6), but with resistance level modified by local haplotypic background. Conclusion Primarily as a result of very low LD in wild A. Gambiae, LD-based association mapping is challenging, but is feasible at least for major effect variants, especially where LD is enhanced by selective sweeps. Such variants will be of greatest importance for predictive diagnostic screening.
Collapse
Affiliation(s)
- David Weetman
- Vector Group, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, United Kingdom.
| | | | | | | | | | | |
Collapse
|
415
|
Sharakhova MV, Sharakhov IV. Organization and evolution of heterochromatin in malaria mosquitoes. RUSS J GENET+ 2010. [DOI: 10.1134/s1022795410100273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
416
|
Aguilar R, Simard F, Kamdem C, Shields T, Glass GE, Garver LS, Dimopoulos G. Genome-wide analysis of transcriptomic divergence between laboratory colony and field Anopheles gambiae mosquitoes of the M and S molecular forms. INSECT MOLECULAR BIOLOGY 2010; 19:695-705. [PMID: 20738426 PMCID: PMC2975901 DOI: 10.1111/j.1365-2583.2010.01031.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Our knowledge of Anopheles gambiae molecular biology has mainly been based on studies using inbred laboratory strains. Differences in the environmental exposure of these and natural field mosquitoes have inevitably led to physiological divergences. We have used global transcript abundance analyses to probe into this divergence, and identified transcript abundance patterns of genes that provide insight on specific adaptations of caged and field mosquitoes. We also compared the gene transcript abundance profiles of field mosquitoes belonging to the two morphologically indistinguishable but reproductively isolated sympatric molecular forms, M and S, from two different locations in the Yaoundé area of Cameroon. This analysis suggested that environmental exposure has a greater influence on the transcriptome than does the mosquito's molecular form-specific genetic background.
Collapse
Affiliation(s)
- Ruth Aguilar
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, 615N. Wolfe Street, Baltimore, MD 21205-2179, USA
| | - Frederic Simard
- Laboratoire de Recherche sur le Paludisme, OCEAC (Organisation de Coordination pour la lutte Contre les Endemies en Afrique Centrale), B.P. 288 Yaoundé, Cameroun
- Institut de Recherche pour le Développement (IRD), Research Unit #016, 911 Avenue Agropolis, 34 394 Montpellier, France
| | - Colince Kamdem
- Laboratoire de Recherche sur le Paludisme, OCEAC (Organisation de Coordination pour la lutte Contre les Endemies en Afrique Centrale), B.P. 288 Yaoundé, Cameroun
| | - Tim Shields
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, 615N. Wolfe Street, Baltimore, MD 21205-2179, USA
| | - Gregory E. Glass
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, 615N. Wolfe Street, Baltimore, MD 21205-2179, USA
| | - Lindsey S. Garver
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, 615N. Wolfe Street, Baltimore, MD 21205-2179, USA
| | - George Dimopoulos
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, 615N. Wolfe Street, Baltimore, MD 21205-2179, USA
| |
Collapse
|
417
|
Feder JL, Nosil P. THE EFFICACY OF DIVERGENCE HITCHHIKING IN GENERATING GENOMIC ISLANDS DURING ECOLOGICAL SPECIATION. Evolution 2010. [DOI: 10.1111/j.1558-5646.2009.00943.x] [Citation(s) in RCA: 210] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
418
|
PAYSEUR BRETA. Using differential introgression in hybrid zones to identify genomic regions involved in speciation. Mol Ecol Resour 2010; 10:806-20. [DOI: 10.1111/j.1755-0998.2010.02883.x] [Citation(s) in RCA: 164] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
419
|
Yeung CKL, Tsai PW, Chesser RT, Lin RC, Yao CT, Tian XH, Li SH. Testing founder effect speciation: divergence population genetics of the spoonbills Platalea regia and Pl. minor (Threskiornithidae, Aves). Mol Biol Evol 2010; 28:473-82. [PMID: 20705906 DOI: 10.1093/molbev/msq210] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Although founder effect speciation has been a popular theoretical model for the speciation of geographically isolated taxa, its empirical importance has remained difficult to evaluate due to the intractability of past demography, which in a founder effect speciation scenario would involve a speciational bottleneck in the emergent species and the complete cessation of gene flow following divergence. Using regression-weighted approximate Bayesian computation, we tested the validity of these two fundamental conditions of founder effect speciation in a pair of sister species with disjunct distributions: the royal spoonbill Platalea regia in Australasia and the black-faced spoonbill Pl. minor in eastern Asia. When compared with genetic polymorphism observed at 20 nuclear loci in the two species, simulations showed that the founder effect speciation model had an extremely low posterior probability (1.55 × 10(-8)) of producing the extant genetic pattern. In contrast, speciation models that allowed for postdivergence gene flow were much more probable (posterior probabilities were 0.37 and 0.50 for the bottleneck with gene flow and the gene flow models, respectively) and postdivergence gene flow persisted for a considerable period of time (more than 80% of the divergence history in both models) following initial divergence (median = 197,000 generations, 95% credible interval [CI]: 50,000-478,000, for the bottleneck with gene flow model; and 186,000 generations, 95% CI: 45,000-477,000, for the gene flow model). Furthermore, the estimated population size reduction in Pl. regia to 7,000 individuals (median, 95% CI: 487-12,000, according to the bottleneck with gene flow model) was unlikely to have been severe enough to be considered a bottleneck. Therefore, these results do not support founder effect speciation in Pl. regia but indicate instead that the divergence between Pl. regia and Pl. minor was probably driven by selection despite continuous gene flow. In this light, we discuss the potential importance of evolutionarily labile traits with significant fitness consequences, such as migratory behavior and habitat preference, in facilitating divergence of the spoonbills.
Collapse
Affiliation(s)
- Carol K L Yeung
- Department of Life Science, National Taiwan Normal University, Taipei, Taiwan, ROC
| | | | | | | | | | | | | |
Collapse
|
420
|
Sharakhova MV, George P, Brusentsova IV, Leman SC, Bailey JA, Smith CD, Sharakhov IV. Genome mapping and characterization of the Anopheles gambiae heterochromatin. BMC Genomics 2010; 11:459. [PMID: 20684766 PMCID: PMC3091655 DOI: 10.1186/1471-2164-11-459] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2010] [Accepted: 08/04/2010] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Heterochromatin plays an important role in chromosome function and gene regulation. Despite the availability of polytene chromosomes and genome sequence, the heterochromatin of the major malaria vector Anopheles gambiae has not been mapped and characterized. RESULTS To determine the extent of heterochromatin within the An. gambiae genome, genes were physically mapped to the euchromatin-heterochromatin transition zone of polytene chromosomes. The study found that a minimum of 232 genes reside in 16.6 Mb of mapped heterochromatin. Gene ontology analysis revealed that heterochromatin is enriched in genes with DNA-binding and regulatory activities. Immunostaining of the An. gambiae chromosomes with antibodies against Drosophila melanogaster heterochromatin protein 1 (HP1) and the nuclear envelope protein lamin Dm0 identified the major invariable sites of the proteins' localization in all regions of pericentric heterochromatin, diffuse intercalary heterochromatin, and euchromatic region 9C of the 2R arm, but not in the compact intercalary heterochromatin. To better understand the molecular differences among chromatin types, novel Bayesian statistical models were developed to analyze genome features. The study found that heterochromatin and euchromatin differ in gene density and the coverage of retroelements and segmental duplications. The pericentric heterochromatin had the highest coverage of retroelements and tandem repeats, while intercalary heterochromatin was enriched with segmental duplications. We also provide evidence that the diffuse intercalary heterochromatin has a higher coverage of DNA transposable elements, minisatellites, and satellites than does the compact intercalary heterochromatin. The investigation of 42-Mb assembly of unmapped genomic scaffolds showed that it has molecular characteristics similar to cytologically mapped heterochromatin. CONCLUSIONS Our results demonstrate that Anopheles polytene chromosomes and whole-genome shotgun assembly render the mapping and characterization of a significant part of heterochromatic scaffolds a possibility. These results reveal the strong association between characteristics of the genome features and morphological types of chromatin. Initial analysis of the An. gambiae heterochromatin provides a framework for its functional characterization and comparative genomic analyses with other organisms.
Collapse
|
421
|
Bernatchez L, Renaut S, Whiteley AR, Derome N, Jeukens J, Landry L, Lu G, Nolte AW, Ostbye K, Rogers SM, St-Cyr J. On the origin of species: insights from the ecological genomics of lake whitefish. Philos Trans R Soc Lond B Biol Sci 2010; 365:1783-800. [PMID: 20439281 DOI: 10.1098/rstb.2009.0274] [Citation(s) in RCA: 173] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
In contrast to the large amount of ecological information supporting the role of natural selection as a main cause of population divergence and speciation, an understanding of the genomic basis underlying those processes is in its infancy. In this paper, we review the main findings of a long-term research programme that we have been conducting on the ecological genomics of sympatric forms of whitefish (Coregonus spp.) engaged in the process of speciation. We present this system as an example of how applying a combination of approaches under the conceptual framework of the theory of adaptive radiation has yielded substantial insight into evolutionary processes in a non-model species. We also discuss how the joint use of recent biotechnological developments will provide a powerful means to address issues raised by observations made to date. Namely, we present data illustrating the potential offered by combining next generation sequencing technologies with other genomic approaches to reveal the genomic bases of adaptive divergence and reproductive isolation. Given increasing access to these new genomic tools, we argue that non-model species studied in their ecological context such as whitefish will play an increasingly important role in generalizing knowledge of speciation.
Collapse
Affiliation(s)
- Louis Bernatchez
- Institut de Biologie Intégrative et des Systèmes, Université, Laval, Québec, Canada.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
422
|
Discordant molecular and morphological evolution in buffalofishes (Actinopterygii: Catostomidae). Mol Phylogenet Evol 2010; 56:808-20. [DOI: 10.1016/j.ympev.2010.04.029] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2009] [Revised: 04/18/2010] [Accepted: 04/20/2010] [Indexed: 11/21/2022]
|
423
|
Friesen ML, Cordeiro MA, Penmetsa RV, Badri M, Huguet T, Aouani ME, Cook DR, Nuzhdin SV. Population genomic analysis of Tunisian Medicago truncatula reveals candidates for local adaptation. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2010; 63:623-35. [PMID: 20545888 DOI: 10.1111/j.1365-313x.2010.04267.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Genome-wide association studies rely upon segregating natural genetic variation, particularly the patterns of polymorphism and correlation between adjacent markers. To facilitate association studies in the model legume Medicago truncatula, we present a genome-scale polymorphism scan using existing Affymetrix microarrays. We develop and validate a method that uses a simple information-criteria algorithm to call polymorphism from microarray data without reliance on a reference genotype. We genotype 12 inbred M. truncatula lines sampled from four wild Tunisian populations and find polymorphisms at approximately 7% of features, comprising 31 419 probes. Only approximately 3% of these markers assort by population, and of these only 10% differentiate between populations from saline and non-saline sites. Fifty-two differentiated probes with unique genome locations correspond to 18 distinct genome regions. Sanger resequencing was used to characterize a subset of maker loci and develop a single nucleotide polymorphism (SNP)-typing assay that confirmed marker assortment by habitat in an independent sample of 33 individuals from the four populations. Genome-wide linkage disequilibrium (LD) extends on average for approximately 10 kb, falling to background levels by approximately 500 kb. A similar range of LD decay was observed in the 18 genome regions that assort by habitat; these LD blocks delimit candidate genes for local adaptation, many of which encode proteins with predicted functions in abiotic stress tolerance and are targets for functional genomic studies. Tunisian M. truncatula populations contain substantial amounts of genetic variation that is structured in relatively small LD blocks, suggesting a history of migration and recombination. These populations provide a strong resource for genome-wide association studies.
Collapse
Affiliation(s)
- Maren L Friesen
- Department of Molecular and Computational Biology, University of Southern California, Los Angeles, CA, USA.
| | | | | | | | | | | | | | | |
Collapse
|
424
|
Backström N, Lindell J, Zhang Y, Palkopoulou E, Qvarnström A, Saetre GP, Ellegren H. A HIGH-DENSITY SCAN OF THE Z CHROMOSOME IN FICEDULA FLYCATCHERS REVEALS CANDIDATE LOCI FOR DIVERSIFYING SELECTION. Evolution 2010; 64:3461-75. [DOI: 10.1111/j.1558-5646.2010.01082.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
425
|
Gompert Z, Lucas LK, Fordyce JA, Forister ML, Nice CC. Secondary contact between Lycaeides idas and L. melissa in the Rocky Mountains: extensive admixture and a patchy hybrid zone. Mol Ecol 2010; 19:3171-92. [DOI: 10.1111/j.1365-294x.2010.04727.x] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
426
|
Parris GE. Speciation in Anopheles gambiae is consistent with the predictions of the Master Development Program. Med Hypotheses 2010; 75:135-6. [DOI: 10.1016/j.mehy.2010.02.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2010] [Accepted: 02/21/2010] [Indexed: 10/19/2022]
|
427
|
|
428
|
|
429
|
Wolf JBW, Lindell J, Backström N. Speciation genetics: current status and evolving approaches. Philos Trans R Soc Lond B Biol Sci 2010; 365:1717-33. [PMID: 20439277 PMCID: PMC2871893 DOI: 10.1098/rstb.2010.0023] [Citation(s) in RCA: 113] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The view of species as entities subjected to natural selection and amenable to change put forth by Charles Darwin and Alfred Wallace laid the conceptual foundation for understanding speciation. Initially marred by a rudimental understanding of hereditary principles, evolutionists gained appreciation of the mechanistic underpinnings of speciation following the merger of Mendelian genetic principles with Darwinian evolution. Only recently have we entered an era where deciphering the molecular basis of speciation is within reach. Much focus has been devoted to the genetic basis of intrinsic postzygotic isolation in model organisms and several hybrid incompatibility genes have been successfully identified. However, concomitant with the recent technological advancements in genome analysis and a newfound interest in the role of ecology in the differentiation process, speciation genetic research is becoming increasingly open to non-model organisms. This development will expand speciation research beyond the traditional boundaries and unveil the genetic basis of speciation from manifold perspectives and at various stages of the splitting process. This review aims at providing an extensive overview of speciation genetics. Starting from key historical developments and core concepts of speciation genetics, we focus much of our attention on evolving approaches and introduce promising methodological approaches for future research venues.
Collapse
Affiliation(s)
- Jochen B W Wolf
- Department of Evolutionary Biology, Evolutionary Biology Centre, Uppsala University, Norbyvägen 18D, 75236 Uppsala, Sweden.
| | | | | |
Collapse
|
430
|
Bomblies K, Weigel D. Arabidopsis and relatives as models for the study of genetic and genomic incompatibilities. Philos Trans R Soc Lond B Biol Sci 2010; 365:1815-23. [PMID: 20439283 PMCID: PMC2871890 DOI: 10.1098/rstb.2009.0304] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
The past few years have seen considerable advances in speciation research, but whether drift or adaptation is more likely to lead to genetic incompatibilities remains unknown. Some of the answers will probably come from not only studying incompatibilities between well-established species, but also from investigating incipient speciation events, to learn more about speciation as an evolutionary process. The genus Arabidopsis, which includes the widely used Arabidopsis thaliana, provides a useful set of model species for studying many aspects of population divergence. The genus contains both self-incompatible and incompatible species, providing a platform for studying the impact of mating system changes on genetic differentiation. Another important path to plant speciation is via formation of polyploids, and this can be investigated in the young allotetraploid species A. arenosa. Finally, there are many cases of intraspecific incompatibilities in A. thaliana, and recent progress has been made in discovering the genes underlying both F(1) and F(2) breakdown. In the near future, all these studies will be greatly empowered by complete genome sequences not only for all members of this relatively small genus, but also for many different individuals within each species.
Collapse
Affiliation(s)
| | - Detlef Weigel
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, 72076 Tübingen, Germany
| |
Collapse
|
431
|
Horiuchi Y, Harushima Y, Fujisawa H, Mochizuki T, Kawakita M, Sakaguchi T, Kurata N. A simple optimization can improve the performance of single feature polymorphism detection by Affymetrix expression arrays. BMC Genomics 2010; 11:315. [PMID: 20482895 PMCID: PMC2885369 DOI: 10.1186/1471-2164-11-315] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2010] [Accepted: 05/20/2010] [Indexed: 12/20/2022] Open
Abstract
Background High-density oligonucleotide arrays are effective tools for genotyping numerous loci simultaneously. In small genome species (genome size: < ~300 Mb), whole-genome DNA hybridization to expression arrays has been used for various applications. In large genome species, transcript hybridization to expression arrays has been used for genotyping. Although rice is a fully sequenced model plant of medium genome size (~400 Mb), there are a few examples of the use of rice oligonucleotide array as a genotyping tool. Results We compared the single feature polymorphism (SFP) detection performance of whole-genome and transcript hybridizations using the Affymetrix GeneChip® Rice Genome Array, using the rice cultivars with full genome sequence, japonica cultivar Nipponbare and indica cultivar 93-11. Both genomes were surveyed for all probe target sequences. Only completely matched 25-mer single copy probes of the Nipponbare genome were extracted, and SFPs between them and 93-11 sequences were predicted. We investigated optimum conditions for SFP detection in both whole genome and transcript hybridization using differences between perfect match and mismatch probe intensities of non-polymorphic targets, assuming that these differences are representative of those between mismatch and perfect targets. Several statistical methods of SFP detection by whole-genome hybridization were compared under the optimized conditions. Causes of false positives and negatives in SFP detection in both types of hybridization were investigated. Conclusions The optimizations allowed a more than 20% increase in true SFP detection in whole-genome hybridization and a large improvement of SFP detection performance in transcript hybridization. Significance analysis of the microarray for log-transformed raw intensities of PM probes gave the best performance in whole genome hybridization, and 22,936 true SFPs were detected with 23.58% false positives by whole genome hybridization. For transcript hybridization, stable SFP detection was achieved for highly expressed genes, and about 3,500 SFPs were detected at a high sensitivity (> 50%) in both shoot and young panicle transcripts. High SFP detection performances of both genome and transcript hybridizations indicated that microarrays of a complex genome (e.g., of Oryza sativa) can be effectively utilized for whole genome genotyping to conduct mutant mapping and analysis of quantitative traits such as gene expression levels.
Collapse
Affiliation(s)
- Youko Horiuchi
- Genetic Strains Research Center, National Institute of Genetics, Mishima, Shizuoka, Japan
| | | | | | | | | | | | | |
Collapse
|
432
|
Moreno M, Marinotti O, Krzywinski J, Tadei WP, James AA, Achee NL, Conn JE. Complete mtDNA genomes of Anopheles darlingi and an approach to anopheline divergence time. Malar J 2010; 9:127. [PMID: 20470395 PMCID: PMC2877063 DOI: 10.1186/1475-2875-9-127] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2010] [Accepted: 05/14/2010] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The complete sequences of the mitochondrial genomes (mtDNA) of members of the northern and southern genotypes of Anopheles (Nyssorhynchus) darlingi were used for comparative studies to estimate the time to the most recent common ancestor for modern anophelines, to evaluate differentiation within this taxon, and to seek evidence of incipient speciation. METHODS The mtDNAs were sequenced from mosquitoes from Belize and Brazil and comparative analyses of structure and base composition, among others, were performed. A maximum likelihood approach linked with phylogenetic information was employed to detect evidence of selection and a Bayesian approach was used to date the split between the subgenus Nyssorhynchus and other Anopheles subgenera. RESULTS The comparison of mtDNA sequences within the Anopheles darlingi taxon does not provide sufficient resolution to establish different units of speciation within the species. In addition, no evidence of positive selection in any protein-coding gene of the mtDNA was detected, and purifying selection likely is the basis for this lack of diversity. Bayesian analysis supports the conclusion that the most recent ancestor of Nyssorhynchus and Anopheles+Cellia was extant ~94 million years ago. CONCLUSION Analyses of mtDNA genomes of Anopheles darlingi do not provide support for speciation in the taxon. The dates estimated for divergence among the anopheline groups tested is in agreement with the geological split of western Gondwana (95 mya), and provides additional support for explaining the absence of Cellia in the New World, and Nyssorhynchus in the Afro-Eurasian continents.
Collapse
Affiliation(s)
- Marta Moreno
- Griffin Laboratory, New York State Department of Health, Wadsworth Center, 5668 State Farm Road, Slingerlands, NY 12159, USA.
| | | | | | | | | | | | | |
Collapse
|
433
|
Machado HE, Renn SCP. A critical assessment of cross-species detection of gene duplicates using comparative genomic hybridization. BMC Genomics 2010; 11:304. [PMID: 20465839 PMCID: PMC2876127 DOI: 10.1186/1471-2164-11-304] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2010] [Accepted: 05/13/2010] [Indexed: 11/15/2022] Open
Abstract
Background Comparison of genomic DNA among closely related strains or species is a powerful approach for identifying variation in evolutionary processes. One potent source of genomic variation is gene duplication, which is prevalent among individuals and species. Array comparative genomic hybridization (aCGH) has been successfully utilized to detect this variation among lineages. Here, beyond the demonstration that gene duplicates among species can be quantified with aCGH, we consider the effect of sequence divergence on the ability to detect gene duplicates. Results Using the X chromosome genomic content difference between male D. melanogaster and female D. yakuba and D. simulans, we describe a decrease in the ability to accurately measure genomic content (copy number) for orthologs that are only 90% identical. We demonstrate that genome characteristics (e.g. chromatin environment and non-orthologous sequence similarity) can also affect the ability to accurately measure genomic content. We describe a normalization strategy and statistical criteria to be used for the identification of gene duplicates among any species group for which an array platform is available from a closely related species. Conclusions Array CGH can be used to effectively identify gene duplication and genome content; however, certain biases are present due to sequence divergence and other genome characteristics resulting from the divergence between lineages. Highly conserved gene duplicates will be more readily recovered by aCGH. Duplicates that have been retained for a selective advantage due to directional selection acting on many loci in one or both gene copies are likely to be under-represented. The results of this study should inform the interpretation of both previously published and future work that employs this powerful technique.
Collapse
|
434
|
Abstract
Speciation with gene flow is expected to generate a heterogeneous pattern of genomic differentiation. The few genes under or physically linked to loci experiencing strong disruptive selection can diverge, whereas gene flow will homogenize the remainder of the genome, resulting in isolated "genomic islands of speciation." We conducted an experimental test of this hypothesis in Rhagoletis pomonella, a model for sympatric ecological speciation. Contrary to expectations, we found widespread divergence throughout the Rhagoletis genome, with the majority of loci displaying host differences, latitudinal clines, associations with adult eclosion time, and within-generation responses to selection in a manipulative overwintering experiment. The latter two results, coupled with linkage disequilibrium analyses, provide experimental evidence that divergence was driven by selection on numerous independent genomic regions rather than by genome-wide genetic drift. "Continents" of multiple differentiated loci, rather than isolated islands of divergence, may characterize even the early stages of speciation. Our results also illustrate how these continents can exhibit variable topography, depending on selection strength, availability of preexisting genetic variation, linkage relationships, and genomic features that reduce recombination. For example, the divergence observed throughout the Rhagoletis genome was clearly accentuated in some regions, such as those harboring chromosomal inversions. These results highlight how the individual genes driving speciation can be embedded within an actively diverging genome.
Collapse
|
435
|
Djogbénou L, Pasteur N, Bio-Bangana S, Baldet T, Irish SR, Akogbeto M, Weill M, Chandre F. Malaria vectors in the Republic of Benin: distribution of species and molecular forms of the Anopheles gambiae complex. Acta Trop 2010; 114:116-22. [PMID: 20138819 DOI: 10.1016/j.actatropica.2010.02.001] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2009] [Revised: 01/22/2010] [Accepted: 02/01/2010] [Indexed: 11/25/2022]
Abstract
Members of the Anopheles gambiae complex are among the best malaria vectors in the world, but their vectorial capacities vary between species and populations. A large-scale sampling of An. gambiae sensu lato was carried out in 2006 and 2007 in various bioclimatic areas of Benin (West Africa). The objective of this study was to collate data on the relative frequencies of species and forms within the An. gambiae complex and to produce a map of their spatial distribution. Sampling took place at 30 sites and 2122 females were analyzed. Two species were identified through molecular methods. The overall collection showed a preponderance of An. gambiae s.s., but unexpectedly, An. arabiensis was reported in the coastal-Guinean bioclimatic area characterized by a mean annual rainfall of >1500 mm where only An. gambiae s.s. was reported previously. Our study of Benin indicates that An. arabiensis would be adapted not only to the urban areas but also to the rural humid regions. Among 1717 An. gambiae s.s., 26.5% were of the M form and 73.3% were S form. Few hybrid specimens between the M and S forms were observed (0.2%). Only the spatial distribution of the M form appears to be mainly a function of bioclimatic area. Factors that influence the distribution of these malaria vectors are discussed. This study underlines the need of further investigations of biological, ecological, and behavioral traits of these species and forms to better appreciate their vectorial capacities. Acquisition of entomological field data appears essential to better estimate the stratification of malaria risk and help improve malaria vector control interventions.
Collapse
|
436
|
Salazar C, Baxter SW, Pardo-Diaz C, Wu G, Surridge A, Linares M, Bermingham E, Jiggins CD. Genetic evidence for hybrid trait speciation in heliconius butterflies. PLoS Genet 2010; 6:e1000930. [PMID: 20442862 PMCID: PMC2861694 DOI: 10.1371/journal.pgen.1000930] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2010] [Accepted: 03/30/2010] [Indexed: 11/19/2022] Open
Abstract
Homoploid hybrid speciation is the formation of a new hybrid species without change in chromosome number. So far, there has been a lack of direct molecular evidence for hybridization generating novel traits directly involved in animal speciation. Heliconius butterflies exhibit bright aposematic color patterns that also act as cues in assortative mating. Heliconius heurippa has been proposed as a hybrid species, and its color pattern can be recreated by introgression of the H. m. melpomene red band into the genetic background of the yellow banded H. cydno cordula. This hybrid color pattern is also involved in mate choice and leads to reproductive isolation between H. heurippa and its close relatives. Here, we provide molecular evidence for adaptive introgression by sequencing genes across the Heliconius red band locus and comparing them to unlinked wing patterning genes in H. melpomene, H. cydno, and H. heurippa. 670 SNPs distributed among 29 unlinked coding genes (25,847bp) showed H. heurippa was related to H. c. cordula or the three species were intermixed. In contrast, among 344 SNPs distributed among 13 genes in the red band region (18,629bp), most showed H. heurippa related with H. c. cordula, but a block of around 6,5kb located in the 3' of a putative kinesin gene grouped H. heurippa with H. m. melpomene, supporting the hybrid introgression hypothesis. Genealogical reconstruction showed that this introgression occurred after divergence of the parental species, perhaps around 0.43Mya. Expression of the kinesin gene is spatially restricted to the distal region of the forewing, suggesting a mechanism for pattern regulation. This gene therefore constitutes the first molecular evidence for adaptive introgression during hybrid speciation and is the first clear candidate for a Heliconius wing patterning locus.
Collapse
Affiliation(s)
- Camilo Salazar
- Department of Zoology, University of Cambridge, Cambridge, United Kingdom.
| | | | | | | | | | | | | | | |
Collapse
|
437
|
Renn SCP, Machado HE, Jones A, Soneji K, Kulathinal RJ, Hofmann HA. Using comparative genomic hybridization to survey genomic sequence divergence across species: a proof-of-concept from Drosophila. BMC Genomics 2010; 11:271. [PMID: 20429934 PMCID: PMC2873954 DOI: 10.1186/1471-2164-11-271] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2009] [Accepted: 04/29/2010] [Indexed: 01/23/2023] Open
Abstract
Background Genome-wide analysis of sequence divergence among species offers profound insights into the evolutionary processes that shape lineages. When full-genome sequencing is not feasible for a broad comparative study, we propose the use of array-based comparative genomic hybridization (aCGH) in order to identify orthologous genes with high sequence divergence. Here we discuss experimental design, statistical power, success rate, sources of variation and potential confounding factors. We used a spotted PCR product microarray platform from Drosophila melanogaster to assess sequence divergence on a gene-by-gene basis in three fully sequenced heterologous species (D. sechellia, D. simulans, and D. yakuba). Because complete genome assemblies are available for these species this study presents a powerful test for the use of aCGH as a tool to measure sequence divergence. Results We found a consistent and linear relationship between hybridization ratio and sequence divergence of the sample to the platform species. At higher levels of sequence divergence (< 92% sequence identity to D. melanogaster) ~84% of features had significantly less hybridization to the array in the heterologous species than the platform species, and thus could be identified as "diverged". At lower levels of divergence (≥ 97% identity), only 13% of genes were identified as diverged. While ~40% of the variation in hybridization ratio can be accounted for by variation in sequence identity of the heterologous sample relative to D. melanogaster, other individual characteristics of the DNA sequences, such as GC content, also contribute to variation in hybridization ratio, as does technical variation. Conclusions Here we demonstrate that aCGH can accurately be used as a proxy to estimate genome-wide divergence, thus providing an efficient way to evaluate how evolutionary processes and genomic architecture can shape species diversity in non-model systems. Given the increased number of species for which microarray platforms are available, comparative studies can be conducted for many interesting lineages in order to identify highly diverged genes that may be the target of natural selection.
Collapse
Affiliation(s)
- Suzy C P Renn
- Department of Biology, Reed College, Portland, OR 97202, USA.
| | | | | | | | | | | |
Collapse
|
438
|
Pespeni MH, Oliver TA, Manier MK, Palumbi SR. Restriction Site Tiling Analysis: accurate discovery and quantitative genotyping of genome-wide polymorphisms using nucleotide arrays. Genome Biol 2010; 11:R44. [PMID: 20403197 PMCID: PMC2884547 DOI: 10.1186/gb-2010-11-4-r44] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2010] [Revised: 04/07/2010] [Accepted: 04/19/2010] [Indexed: 12/28/2022] Open
Abstract
A method for the simultaneous identification of polymorphic loci and the quantitative genotyping of thousands of loci in individuals is presented. High-throughput genotype data can be used to identify genes important for local adaptation in wild populations, phenotypes in lab stocks, or disease-related traits in human medicine. Here we advance microarray-based genotyping for population genomics with Restriction Site Tiling Analysis. The approach simultaneously discovers polymorphisms and provides quantitative genotype data at 10,000s of loci. It is highly accurate and free from ascertainment bias. We apply the approach to uncover genomic differentiation in the purple sea urchin.
Collapse
Affiliation(s)
- Melissa H Pespeni
- Department of Biology, Stanford University, Hopkins Marine Station, Oceanview Blvd Pacific Grove, CA 93950, USA.
| | | | | | | |
Collapse
|
439
|
RICE AM, PFENNIG DW. Does character displacement initiate speciation? Evidence of reduced gene flow between populations experiencing divergent selection. J Evol Biol 2010; 23:854-65. [DOI: 10.1111/j.1420-9101.2010.01955.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
440
|
Hittinger CT, Gonçalves P, Sampaio JP, Dover J, Johnston M, Rokas A. Remarkably ancient balanced polymorphisms in a multi-locus gene network. Nature 2010; 464:54-8. [PMID: 20164837 PMCID: PMC2834422 DOI: 10.1038/nature08791] [Citation(s) in RCA: 117] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2009] [Accepted: 12/15/2009] [Indexed: 11/25/2022]
Abstract
Local adaptations within species are often governed by several interacting genes scattered throughout the genome. Single-locus models of selection cannot explain the maintenance of such complex variation because recombination separates co-adapted alleles. Here we report a previously unrecognized type of intraspecific multi-locus genetic variation that has been maintained over a vast period. The galactose (GAL) utilization gene network of Saccharomyces kudriavzevii, a relative of brewer's yeast, exists in two distinct states: a functional gene network in Portuguese strains and, in Japanese strains, a non-functional gene network of allelic pseudogenes. Genome sequencing of all available S. kudriavzevii strains revealed that none of the functional GAL genes were acquired from other species. Rather, these polymorphisms have been maintained for nearly the entire history of the species, despite more recent gene flow genome-wide. Experimental evidence suggests that inactivation of the GAL3 and GAL80 regulatory genes facilitated the origin and long-term maintenance of the two gene network states. This striking example of a balanced unlinked gene network polymorphism introduces a remarkable type of intraspecific variation that may be widespread.
Collapse
Affiliation(s)
- Chris Todd Hittinger
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, Colorado 80045, USA
| | | | | | | | | | | |
Collapse
|
441
|
White BJ, Cheng C, Simard F, Costantini C, Besansky NJ. Genetic association of physically unlinked islands of genomic divergence in incipient species of Anopheles gambiae. Mol Ecol 2010; 19:925-39. [PMID: 20149091 DOI: 10.1111/j.1365-294x.2010.04531.x] [Citation(s) in RCA: 109] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Previous efforts to uncover the genetic underpinnings of ongoing ecological speciation of the M and S forms of the African malaria vector Anopheles gambiae revealed two centromere-proximal islands of genetic divergence on X and chromosome 2. Under the assumption of considerable ongoing gene flow between M and S, these persistently divergent genomic islands were widely considered to be 'speciation islands'. In the course of microarray-based divergence mapping, we discovered a third centromere-associated island of divergence on chromosome 3, which was validated by targeted re-sequencing. To test for genetic association between the divergence islands on all three chromosomes, SNP-based assays were applied in four natural populations of M and S spanning West, Central and East Africa. Genotyping of 517 female M and S mosquitoes revealed nearly complete linkage disequilibrium between the centromeres of the three independently assorting chromosomes. These results suggest that despite the potential for inter-form gene flow through hybridization, actual (realized) gene flow between M and S may be substantially less than commonly assumed and may not explain most shared variation. Moreover, the possibility of very low gene flow calls into question whether diverged pericentromeric regions-characterized by reduced levels of variation and recombination-are in fact instrumental rather than merely incidental to the speciation process.
Collapse
Affiliation(s)
- Bradley J White
- Department of Biological Sciences, Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN 46556, USA
| | | | | | | | | |
Collapse
|
442
|
Counterman BA, Araujo-Perez F, Hines HM, Baxter SW, Morrison CM, Lindstrom DP, Papa R, Ferguson L, Joron M, Ffrench-Constant RH, Smith CP, Nielsen DM, Chen R, Jiggins CD, Reed RD, Halder G, Mallet J, McMillan WO. Genomic hotspots for adaptation: the population genetics of Müllerian mimicry in Heliconius erato. PLoS Genet 2010; 6:e1000796. [PMID: 20140239 PMCID: PMC2816678 DOI: 10.1371/journal.pgen.1000796] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2009] [Accepted: 12/02/2009] [Indexed: 11/19/2022] Open
Abstract
Wing pattern evolution in Heliconius butterflies provides some of the most striking examples of adaptation by natural selection. The genes controlling pattern variation are classic examples of Mendelian loci of large effect, where allelic variation causes large and discrete phenotypic changes and is responsible for both convergent and highly divergent wing pattern evolution across the genus. We characterize nucleotide variation, genotype-by-phenotype associations, linkage disequilibrium (LD), and candidate gene expression patterns across two unlinked genomic intervals that control yellow and red wing pattern variation among mimetic forms of Heliconius erato. Despite very strong natural selection on color pattern, we see neither a strong reduction in genetic diversity nor evidence for extended LD across either patterning interval. This observation highlights the extent that recombination can erase the signature of selection in natural populations and is consistent with the hypothesis that either the adaptive radiation or the alleles controlling it are quite old. However, across both patterning intervals we identified SNPs clustered in several coding regions that were strongly associated with color pattern phenotype. Interestingly, coding regions with associated SNPs were widely separated, suggesting that color pattern alleles may be composed of multiple functional sites, conforming to previous descriptions of these loci as "supergenes." Examination of gene expression levels of genes flanking these regions in both H. erato and its co-mimic, H. melpomene, implicate a gene with high sequence similarity to a kinesin as playing a key role in modulating pattern and provides convincing evidence for parallel changes in gene regulation across co-mimetic lineages. The complex genetic architecture at these color pattern loci stands in marked contrast to the single casual mutations often identified in genetic studies of adaptation, but may be more indicative of the type of genetic changes responsible for much of the adaptive variation found in natural populations.
Collapse
Affiliation(s)
- Brian A Counterman
- Department of Genetics, North Carolina State University, Raleigh, North Carolina, United States of America.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
443
|
SCASCITELLI M, WHITNEY KD, RANDELL RA, KING MATTHEW, BUERKLE CA, RIESEBERG LH. Genome scan of hybridizing sunflowers from Texas (Helianthus annuusandH. debilis) reveals asymmetric patterns of introgression and small islands of genomic differentiation. Mol Ecol 2010; 19:521-41. [DOI: 10.1111/j.1365-294x.2009.04504.x] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
444
|
Abstract
Tremendous advances in genetic and genomic techniques have resulted in the capacity to identify genes involved in adaptive evolution across numerous biological systems. One of the next major steps in evolutionary biology will be to determine how landscape-level geographical and environmental features are involved in the distribution of this functional adaptive genetic variation. Here, I outline how an emerging synthesis of multiple disciplines has and will continue to facilitate a deeper understanding of the ways in which heterogeneity of the natural landscapes mould the genomes of organisms.
Collapse
Affiliation(s)
- David B Lowry
- University Program in Genetics and Genomics, Duke University Medical Center, Durham, NC 27710, USA.
| |
Collapse
|
445
|
Islands of speciation or mirages in the desert? Examining the role of restricted recombination in maintaining species. Heredity (Edinb) 2010; 103:439-44. [PMID: 19920849 DOI: 10.1038/hdy.2009.151] [Citation(s) in RCA: 289] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Over the past decade, many studies documented high genetic divergence between closely related species in genomic regions experiencing restricted recombination in hybrids, such as within chromosomal rearrangements or areas adjacent to centromeres. Such regions have been called 'islands of speciation' because of their presumed role in maintaining the integrity of species despite gene flow elsewhere in the genome. Here, we review alternative explanations for such patterns. Segregation of ancestral variation or artifacts of nucleotide diversity within species can readily lead to higher F(ST) in regions of restricted recombination than other parts of the genome, even in the complete absence of interspecies gene flow, and thereby cause investigators to erroneously conclude that islands of speciation exist. We conclude by discussing strengths and weaknesses of various means for testing the role of restricted recombination in maintaining species.
Collapse
|
446
|
|
447
|
Ross KG, Gotzek D, Ascunce MS, Shoemaker DD. Species delimitation: a case study in a problematic ant taxon. Syst Biol 2009; 59:162-84. [PMID: 20525628 DOI: 10.1093/sysbio/syp089] [Citation(s) in RCA: 100] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Species delimitation has been invigorated as a discipline in systematics by an influx of new character sets, analytical methods, and conceptual advances. We use genetic data from 68 markers, combined with distributional, bioclimatic, and coloration information, to hypothesize boundaries of evolutionarily independent lineages (species) within the widespread and highly variable nominal fire ant species Solenopsis saevissima, a member of a species group containing invasive pests as well as species that are models for ecological and evolutionary research. Our integrated approach uses diverse methods of analysis to sequentially test whether populations meet specific operational criteria (contingent properties) for candidacy as morphologically cryptic species, including genetic clustering, monophyly, reproductive isolation, and occupation of distinctive niche space. We hypothesize that nominal S. saevissima comprises at least 4-6 previously unrecognized species, including several pairs whose parapatric distributions implicate the development of intrinsic premating or postmating barriers to gene flow. Our genetic data further suggest that regional genetic differentiation in S. saevissima has been influenced by hybridization with other nominal species occurring in sympatry or parapatry, including the quite distantly related Solenopsis geminata. The results of this study illustrate the importance of employing different classes of genetic data (coding and noncoding regions and nuclear and mitochondrial DNA [mtDNA] markers), different methods of genetic data analysis (tree-based and non-tree based methods), and different sources of data (genetic, morphological, and ecological data) to explicitly test various operational criteria for species boundaries in clades of recently diverged lineages, while warning against over reliance on any single data type (e.g., mtDNA sequence variation) when drawing inferences.
Collapse
Affiliation(s)
- Kenneth G Ross
- Department of Entomology, University of Georgia, Athens, GA 30602, USA.
| | | | | | | |
Collapse
|
448
|
Brelsford A, Irwin DE. INCIPIENT SPECIATION DESPITE LITTLE ASSORTATIVE MATING: THE YELLOW-RUMPED WARBLER HYBRID ZONE. Evolution 2009; 63:3050-60. [DOI: 10.1111/j.1558-5646.2009.00777.x] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
449
|
Gomes B, Sousa CA, Novo MT, Freitas FB, Alves R, Côrte-Real AR, Salgueiro P, Donnelly MJ, Almeida APG, Pinto J. Asymmetric introgression between sympatric molestus and pipiens forms of Culex pipiens (Diptera: Culicidae) in the Comporta region, Portugal. BMC Evol Biol 2009; 9:262. [PMID: 19895687 PMCID: PMC2778655 DOI: 10.1186/1471-2148-9-262] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2009] [Accepted: 11/06/2009] [Indexed: 12/23/2022] Open
Abstract
Background Culex pipiens L. is the most widespread mosquito vector in temperate regions. This species consists of two forms, denoted molestus and pipiens, that exhibit important behavioural and physiological differences. The evolutionary relationships and taxonomic status of these forms remain unclear. In northern European latitudes molestus and pipiens populations occupy different habitats (underground vs. aboveground), a separation that most likely promotes genetic isolation between forms. However, the same does not hold in southern Europe where both forms occur aboveground in sympatry. In these southern habitats, the extent of hybridisation and its impact on the extent of genetic divergence between forms under sympatric conditions has not been clarified. For this purpose, we have used phenotypic and genetic data to characterise Cx. pipiens collected aboveground in Portugal. Our aims were to determine levels of genetic differentiation and the degree of hybridisation between forms occurring in sympatry, and to relate these with both evolutionary and epidemiological tenets of this biological group. Results Autogeny and stenogamy was evaluated in the F1 progeny of 145 individual Cx. pipiens females. Bayesian clustering analysis based on the genotypes of 13 microsatellites revealed two distinct genetic clusters that were highly correlated with the alternative traits that define pipiens and molestus. Admixture analysis yielded hybrid rate estimates of 8-10%. Higher proportions of admixture were observed in pipiens individuals suggesting that more molestus genes are being introgressed into the pipiens form than the opposite. Conclusion Both physiological/behavioural and genetic data provide evidence for the sympatric occurrence of molestus and pipiens forms of Cx. pipiens in the study area. In spite of the significant genetic differentiation between forms, hybridisation occurs at considerable levels. The observed pattern of asymmetric introgression probably relates to the different mating strategies adopted by each form. Furthermore, the differential introgression of molestus genes into the pipiens form may induce a more opportunistic biting behaviour in the latter thus potentiating its capacity to act as a bridge-vector for the transmission of arboviral infections.
Collapse
Affiliation(s)
- Bruno Gomes
- Centro de Malária e outras Doenças Tropicais, Instituto de Higiene e Medicina Tropical, Universidade Nova de Lisboa, Portugal.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
450
|
Diabaté A, Dao A, Yaro AS, Adamou A, Gonzalez R, Manoukis NC, Traoré SF, Gwadz RW, Lehmann T. Spatial swarm segregation and reproductive isolation between the molecular forms of Anopheles gambiae. Proc Biol Sci 2009; 276:4215-22. [PMID: 19734189 PMCID: PMC2821344 DOI: 10.1098/rspb.2009.1167] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Anopheles gambiae, the major malaria vector in Africa, can be divided into two subgroups based on genetic and ecological criteria. These two subgroups, termed the M and S molecular forms, are believed to be incipient species. Although they display differences in the ecological niches they occupy in the field, they are often sympatric and readily hybridize in the laboratory to produce viable and fertile offspring. Evidence for assortative mating in the field was recently reported, but the underlying mechanisms awaited discovery. We studied swarming behaviour of the molecular forms and investigated the role of swarm segregation in mediating assortative mating. Molecular identification of 1145 males collected from 68 swarms in Donéguébougou, Mali, over 2 years revealed a strict pattern of spatial segregation, resulting in almost exclusively monotypic swarms with respect to molecular form. We found evidence of clustering of swarms composed of individuals of a single molecular form within the village. Tethered M and S females were introduced into natural swarms of the M form to verify the existence of possible mate recognition operating within-swarm. Both M and S females were inseminated regardless of their form under these conditions, suggesting no within-mate recognition. We argue that our results provide evidence that swarm spatial segregation strongly contributes to reproductive isolation between the molecular forms in Mali. However this does not exclude the possibility of additional mate recognition operating across the range distribution of the forms. We discuss the importance of spatial segregation in the context of possible geographic variation in mechanisms of reproductive isolation.
Collapse
Affiliation(s)
- Abdoulaye Diabaté
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA
| | | | | | | | | | | | | | | | | |
Collapse
|