1
|
Pareek A, Kumar D, Pareek A, Gupta MM, Jeandet P, Ratan Y, Jain V, Kamal MA, Saboor M, Ashraf GM, Chuturgoon A. Retinoblastoma: An update on genetic origin, classification, conventional to next-generation treatment strategies. Heliyon 2024; 10:e32844. [PMID: 38975183 PMCID: PMC11226919 DOI: 10.1016/j.heliyon.2024.e32844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 05/23/2024] [Accepted: 06/10/2024] [Indexed: 07/09/2024] Open
Abstract
The most prevalent paediatric vision-threatening medical condition, retinoblastoma (RB), has been a global concern for a long time. Several conventional therapies, such as systemic chemotherapy and focal therapy, have been used for curative purposes; however, the search for tumour eradication with the least impact on surrounding tissues is still ongoing. This review focuses on the genetic origin, classification, conventional treatment modalities, and their combination with nano-scale delivery systems for active tumour targeting. In addition, the review also delves into ongoing clinical trials and patents, as well as emerging therapies such as gene therapy and immunotherapy for the treatment of RB. Understanding the role of genetics in the development of RB has refined its treatment strategy according to the genetic type. New approaches such as nanostructured drug delivery systems, galenic preparations, nutlin-3a, histone deacetylase inhibitors, N-MYC inhibitors, pentoxifylline, immunotherapy, gene therapy, etc. discussed in this review, have the potential to circumvent the limitations of conventional therapies and improve treatment outcomes for RB. In summary, this review highlights the importance and need for novel approaches as alternative therapies that would ultimately displace the shortcomings associated with conventional therapies and reduce the enucleation rate, thereby preserving global vision in the affected paediatric population.
Collapse
Affiliation(s)
- Ashutosh Pareek
- Department of Pharmacy, Banasthali Vidyapith, Banasthali, 304022, Rajasthan, India
| | - Deepanjali Kumar
- Department of Pharmacy, Banasthali Vidyapith, Banasthali, 304022, Rajasthan, India
| | - Aaushi Pareek
- Department of Pharmacy, Banasthali Vidyapith, Banasthali, 304022, Rajasthan, India
| | - Madan Mohan Gupta
- School of Pharmacy, Faculty of Medical Sciences, The University of the West Indies, St. Augustine 3303, Trinidad and Tobago
| | - Philippe Jeandet
- Research Unit Induced Resistance and Plant Bioprotection - USC INRAe 1488, University of Reims, PO Box 1039, 51687, Reims, France
| | - Yashumati Ratan
- Department of Pharmacy, Banasthali Vidyapith, Banasthali, 304022, Rajasthan, India
| | - Vivek Jain
- Department of Pharmaceutical Sciences, Mohan Lal Sukhadia University, Udaipur, 313001, India
| | - Mohammad Amjad Kamal
- Joint Laboratory of Artificial Intelligence for Critical Care Medicine, Department of Critical Care Medicine and Institutes for Systems Genetics, West China School of Nursing, Frontiers Science Centre for Disease-related Molecular Network, West China Hospital, Sichuan University, China
- King Fahd Medical Research Centre, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, 1207, Bangladesh
- Enzymoics, Novel Global Community Educational Foundation, 7 Peterlee Place, Hebersham, NSW, 2770, Australia
| | - Muhammad Saboor
- Department of Medical Laboratory Science, College of Health Sciences, and Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, 27272, United Arab Emirates
| | - Ghulam Md Ashraf
- Department of Medical Laboratory Science, College of Health Sciences, and Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, 27272, United Arab Emirates
| | - Anil Chuturgoon
- Discipline of Medical Biochemistry, School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban, 4041, South Africa
| |
Collapse
|
2
|
Ansari M, Kulkarni YA, Singh K. Advanced Technologies of Drug Delivery to the Posterior Eye Segment Targeting Angiogenesis and Ocular Cancer. Crit Rev Ther Drug Carrier Syst 2024; 41:85-124. [PMID: 37824419 DOI: 10.1615/critrevtherdrugcarriersyst.2023045298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Retinoblastoma (RB), a childhood retinal cancer is caused due to RB1 gene mutation which affects the child below 5 years of age. Angiogenesis has been proven its role in RB metastasis due to the presence of vascular endothelial growth factor (VEGF) in RB cells. Therefore, exploring angiogenic pathway by inhibiting VEGF in treating RB would pave the way for future treatment. In preclinical studies, anti-VEGF molecule have shown their efficacy in treating RB. However, treatment requires recurrent intra-vitreal injections causing various side effects along with patient nonadherence. As a result, delivery of anti-VEGF agent to retina requires an ocular delivery system that can transport it in a non-invasive manner to achieve patient compliance. Moreover, development of these type of systems are challenging due to the complicated physiological barriers of eye. Adopting a non-invasive or minimally invasive approach for delivery of anti-VEGF agents would not only address the bioavailability issues but also improve patient adherence to therapy overcoming the side effects associated with invasive approach. The present review focuses on the eye cancer, angiogenesis and various novel ocular drug delivery systems that can facilitate inhibition of VEGF in the posterior eye segment by overcoming the eye barriers.
Collapse
Affiliation(s)
- Mudassir Ansari
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's NMIMS, Mumbai 400056, India
| | - Yogesh A Kulkarni
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's NMIMS, Mumbai 400056, India
| | - Kavita Singh
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's NMIMS, Mumbai 400056, India
| |
Collapse
|
3
|
Gabai A, Zeppieri M, Finocchio L, Salati C. Innovative Strategies for Drug Delivery to the Ocular Posterior Segment. Pharmaceutics 2023; 15:1862. [PMID: 37514050 PMCID: PMC10385847 DOI: 10.3390/pharmaceutics15071862] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/17/2023] Open
Abstract
Innovative and new drug delivery systems (DDSs) have recently been developed to vehicle treatments and drugs to the ocular posterior segment and the retina. New formulations and technological developments, such as nanotechnology, novel matrices, and non-traditional treatment strategies, open new perspectives in this field. The aim of this mini-review is to highlight promising strategies reported in the current literature based on innovative routes to overcome the anatomical and physiological barriers of the vitreoretinal structures. The paper also describes the challenges in finding appropriate and pertinent treatments that provide safety and efficacy and the problems related to patient compliance, acceptability, effectiveness, and sustained drug delivery. The clinical application of these experimental approaches can help pave the way for standardizing the use of DDSs in developing enhanced treatment strategies and personalized therapeutic options for ocular pathologies.
Collapse
Affiliation(s)
- Andrea Gabai
- Department of Ophthalmology, University Hospital of Udine, 33100 Udine, Italy
| | - Marco Zeppieri
- Department of Ophthalmology, University Hospital of Udine, 33100 Udine, Italy
| | - Lucia Finocchio
- Department of Ophthalmology, University Hospital of Udine, 33100 Udine, Italy
- Department of Ophthalmology, Nuovo Ospedale Santo Stefano, 59100 Prato, Italy
| | - Carlo Salati
- Department of Ophthalmology, University Hospital of Udine, 33100 Udine, Italy
| |
Collapse
|
4
|
Tawfik M, Chen F, Goldberg JL, Sabel BA. Nanomedicine and drug delivery to the retina: current status and implications for gene therapy. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2022; 395:1477-1507. [PMID: 36107200 PMCID: PMC9630211 DOI: 10.1007/s00210-022-02287-3] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 08/31/2022] [Indexed: 10/14/2022]
Abstract
Blindness affects more than 60 million people worldwide. Retinal disorders, including age-related macular degeneration (AMD), diabetic retinopathy (DR), and glaucoma, are the leading causes of blindness. Finding means to optimize local and sustained delivery of drugs or genes to the eye and retina is one goal to advance the development of new therapeutics. Despite the ease of accessibility of delivering drugs via the ocular surface, the delivery of drugs to the retina is still challenging due to anatomic and physiologic barriers. Designing a suitable delivery platform to overcome these barriers should enhance drug bioavailability and provide a safe, controlled, and sustained release. Current inventions for posterior segment treatments include intravitreal implants and subretinal viral gene delivery that satisfy these criteria. Several other novel drug delivery technologies, including nanoparticles, micelles, dendrimers, microneedles, liposomes, and nanowires, are now being widely studied for posterior segment drug delivery, and extensive research on gene delivery using siRNA, mRNA, or aptamers is also on the rise. This review discusses the current state of retinal drug/gene delivery and highlights future therapeutic opportunities.
Collapse
Affiliation(s)
- Mohamed Tawfik
- Institute of Medical Psychology, Medical Faculty, Otto-Von-Guericke University, Magdeburg, Germany
| | - Fang Chen
- Spencer Center for Vision Research, Byers Eye Institute, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Jeffrey L Goldberg
- Spencer Center for Vision Research, Byers Eye Institute, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Bernhard A Sabel
- Institute of Medical Psychology, Medical Faculty, Otto-Von-Guericke University, Magdeburg, Germany.
| |
Collapse
|
5
|
Farhat W, Yeung V, Ross A, Kahale F, Boychev N, Kuang L, Chen L, Ciolino JB. Advances in biomaterials for the treatment of retinoblastoma. Biomater Sci 2022; 10:5391-5429. [PMID: 35959730 DOI: 10.1039/d2bm01005d] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Retinoblastoma is the most common primary intraocular malignancy in children. Although traditional chemotherapy has shown some success in retinoblastoma management, there are several shortcomings to this approach, including inadequate pharmacokinetic parameters, multidrug resistance, low therapeutic efficiency, nonspecific targeting, and the need for adjuvant therapy, among others. The revolutionary developments in biomaterials for drug delivery have enabled breakthroughs in cancer management. Today, biomaterials are playing a crucial role in developing more efficacious retinoblastoma treatments. The key goal in the evolution of drug delivery biomaterials for retinoblastoma therapy is to resolve delivery-associated obstacles and lower nonlocal exposure while ameliorating certain adverse effects. In this review, we will first delve into the historical perspective of retinoblastoma with a focus on the classical treatments currently used in clinics to enhance patients' quality of life and survival rate. As we move along, we will discuss biomaterials for drug delivery applications. Various aspects of biomaterials for drug delivery will be dissected, including their features and recent advances. In accordance with the current advances in biomaterials, we will deliver a synopsis on the novel chemotherapeutic drug delivery strategies and evaluate these approaches to gain new insights into retinoblastoma treatment.
Collapse
Affiliation(s)
- Wissam Farhat
- Department of Ophthalmology, Schepens Eye Research Institute of Mass Eye and Ear, Harvard Medical School, Boston, MA 02114, USA.
| | - Vincent Yeung
- Department of Ophthalmology, Schepens Eye Research Institute of Mass Eye and Ear, Harvard Medical School, Boston, MA 02114, USA.
| | - Amy Ross
- Department of Ophthalmology, Schepens Eye Research Institute of Mass Eye and Ear, Harvard Medical School, Boston, MA 02114, USA.
| | - Francesca Kahale
- Department of Ophthalmology, Schepens Eye Research Institute of Mass Eye and Ear, Harvard Medical School, Boston, MA 02114, USA.
| | - Nikolay Boychev
- Department of Ophthalmology, Schepens Eye Research Institute of Mass Eye and Ear, Harvard Medical School, Boston, MA 02114, USA.
| | - Liangju Kuang
- Department of Ophthalmology, Schepens Eye Research Institute of Mass Eye and Ear, Harvard Medical School, Boston, MA 02114, USA.
| | - Lin Chen
- Department of Ophthalmology, Schepens Eye Research Institute of Mass Eye and Ear, Harvard Medical School, Boston, MA 02114, USA. .,Department of Ophthalmology, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China.,Department of Optometry and Visual Science, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Joseph B Ciolino
- Department of Ophthalmology, Schepens Eye Research Institute of Mass Eye and Ear, Harvard Medical School, Boston, MA 02114, USA.
| |
Collapse
|
6
|
Azimi F, Mirshahi R, Naseripour M. Review: New horizons in retinoblastoma treatment: an updated review article. Mol Vis 2022; 28:130-146. [PMID: 36034735 PMCID: PMC9352364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 07/09/2022] [Indexed: 10/25/2022] Open
Abstract
Retinoblastoma (Rb) is a rare childhood intraocular malignancy with an incidence rate of approximately 9000 children per year worldwide. The management of Rb is inherently complex and depends on several factors. The orders of priorities in the treatment of Rb are saving life, globe salvage and vision salvage. Rarity and the young age at diagnosis impede conducting randomized clinical trials (RCTs) for new therapeutic options, and therefore pre-RCTs studies are needed. This review provides an overview of advances in Rb treatment options, focusing on the emergence of new small molecules to treat Rb. Articles related to the management and treatments of Rb were searched in different databases. Several studies and animal models discussing recent advances in the treatment of Rb were included to have a better grasp of the biological mechanisms of Rb. Over the years, the principles of management and treatment of Rb have changed significantly. Innovations in targeted therapies and molecular biology have led to improved patient and ocular survival. However, there is still a need for further evaluation of the long-term effects of these new treatments.
Collapse
Affiliation(s)
- Fatemeh Azimi
- Eye Research Center, the Five Senses Institute, Iran University of Medical Sciences, Tehran, Iran
| | - Reza Mirshahi
- Stem Cell and Regenerative Medicine Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Masood Naseripour
- Eye Research Center, the Five Senses Institute, Iran University of Medical Sciences, Tehran, Iran,Stem Cell and Regenerative Medicine Research Center, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
7
|
Manrique M, Akinbolue D, Madigan WP, Bregman J. Update on the Treatment of Retinoblastoma. Neoreviews 2021; 22:e423-e437. [PMID: 34210807 DOI: 10.1542/neo.22-7-e423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Retinoblastoma (Rb) is the most common pediatric ocular malignancy and accounts for 2% of all childhood cancers. Rb is initiated by a mutation of the RB1 tumor suppressor gene and occurs in 2 forms: 1) unilateral and unifocal, characterized by a single tumor in 1 eye, and 2) bilateral or unilateral, multifocal Rb with multiple tumor foci in 1 or both eyes. Rb is a disease of young children and if left untreated can result in visual morbidity as well as systemic mortality. Fortunately, because of the greater availability of genetic testing and earlier diagnosis, novel targeted therapies, and multimodal treatment approaches, disease-free survival rates and visual prognoses have improved dramatically. Current efforts to expand the accessibility of the newest Rb treatments aim to improve Rb outcomes worldwide. In this article, we will review the clinical presentation, diagnosis, and management of Rb, with a focus on the newest treatment approaches.
Collapse
Affiliation(s)
| | | | - William P Madigan
- Department of Ophthalmology, Children's National Hospital, Washington, DC
| | - Jana Bregman
- Department of Ophthalmology, Greater Baltimore Medical Center, Towson, MD
| |
Collapse
|
8
|
Nazlı H, Gedik G. In-vitro evaluation of dendrimeric formulation of oxaliplatin. Pharm Dev Technol 2021; 26:750-764. [PMID: 34154500 DOI: 10.1080/10837450.2021.1944205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
The aim of this study is, preparing various dendrimeric formulations of oxaliplatin and investigating their properties. First of all, the solubility enhancement capabilities of polyamidoamine (PAMAM) G3.5 and PAMAM G4.5 dendrimers were investigated. The results showed that oxaliplatin solubility mostly increasing linearly with dendrimer concentration. Additionally, the increase was more notable in PAMAM G4.5 dendrimers. Then, drug-dendrimer complexes were prepared in different mediums, since the medium used can affect the amount of drug-loaded to dendrimers. Prepared complexes were examined for loading capacity and loading efficiency. It was found that PAMAM G4.5 dendrimers can complex with 2- to 5-fold more oxaliplatin than PAMAM G3.5. Finally, oxaliplatin was modified to a platinum (IV) compound to prepare chemical drug-dendrimer conjugates. Ester bonds were established by Steglich esterification through the hydroxyl group of modified oxaliplatin and the carboxyl groups of the dendrimers. The formulations were characterized by UV, IR, NMR spectroscopy, and dynamic light scattering techniques. PAMAM G3.5 conjugate was further evaluated for the cytotoxicity test. The IC50 value of PAMAM G3.5 conjugate was found as 0.72 µM. For unmodified oxaliplatin, this value was 14.03 µM. As a result, a dendrimer-based drug delivery system that has been found promising for further improvement has been developed successfully.
Collapse
Affiliation(s)
- Hakan Nazlı
- Faculty of Pharmacy, Department of Pharmaceutical Technology, Trakya University, Edirne, Turkey
| | - Gülşah Gedik
- Faculty of Pharmacy, Department of Pharmaceutical Technology, Trakya University, Edirne, Turkey
| |
Collapse
|
9
|
Scheive M, Yazdani S, Hajrasouliha AR. The utility and risks of therapeutic nanotechnology in the retina. Ther Adv Ophthalmol 2021; 13:25158414211003381. [PMID: 33817552 PMCID: PMC7989128 DOI: 10.1177/25158414211003381] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Accepted: 02/23/2021] [Indexed: 01/06/2023] Open
Abstract
The clinical application of nanotechnology in medicine is promising for therapeutic, diagnostic, and surgical improvements in the near future. Nanotechnologies in nano-ophthalmology are in the early stages of application in clinical contexts, including ocular drug and gene delivery systems addressing eye disorders, particularly retinopathies. Retinal diseases are challenging to treat as current interventions, such as intravitreal injections, are limited by their invasive nature. This review examines nanotechnological approaches to retinal diseases in a clinical context. Nanotechnology has the potential to transform pharmacological and surgical interventions by overcoming limitations posed by the protective anatomical and physiological barriers that limit access to the retina. Preclinical research in the application of nanoparticles in diagnostics indicates that nanoparticles can enhance existing diagnostic and screening tools to detect diseases earlier and more easily and improve disease progression monitoring precision.
Collapse
Affiliation(s)
- Melanie Scheive
- Indiana University School of Medicine, Indianapolis, IN, USA
| | - Saeed Yazdani
- Indiana University-Purdue University Indianapolis, Indianapolis, IN, USA
| | - Amir R Hajrasouliha
- Assistant Professor of Ophthalmology, Eugene and Marilyn Glick Eye Institute, Department of Ophthalmology, Indiana University School of Medicine, 1160 W Michigan St., Indianapolis, IN 46202, USA
| |
Collapse
|
10
|
Manzari MT, Shamay Y, Kiguchi H, Rosen N, Scaltriti M, Heller DA. Targeted drug delivery strategies for precision medicines. NATURE REVIEWS. MATERIALS 2021; 6:351-370. [PMID: 34950512 PMCID: PMC8691416 DOI: 10.1038/s41578-020-00269-6] [Citation(s) in RCA: 370] [Impact Index Per Article: 123.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 11/24/2020] [Indexed: 05/05/2023]
Abstract
Progress in the field of precision medicine has changed the landscape of cancer therapy. Precision medicine is propelled by technologies that enable molecular profiling, genomic analysis, and optimized drug design to tailor treatments for individual patients. Although precision medicines have resulted in some clinical successes, the use of many potential therapeutics has been hindered by pharmacological issues, including toxicities and drug resistance. Drug delivery materials and approaches have now advanced to a point where they can enable the modulation of a drug's pharmacological parameters without compromising the desired effect on molecular targets. Specifically, they can modulate a drug's pharmacokinetics, stability, absorption, and exposure to tumours and healthy tissues, and facilitate the administration of synergistic drug combinations. This Review highlights recent progress in precision therapeutics and drug delivery, and identifies opportunities for strategies to improve the therapeutic index of cancer drugs, and consequently, clinical outcomes.
Collapse
Affiliation(s)
- Mandana T. Manzari
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- These authors have contributed equally to this work
| | - Yosi Shamay
- Faculty of Biomedical Engineering, Technion-Israel Institute of Technology, Haifa, Israel
- These authors have contributed equally to this work
| | - Hiroto Kiguchi
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Division of Oncology, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- These authors have contributed equally to this work
| | - Neal Rosen
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Weill Cornell Medical College, New York, NY, USA
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer, New York, NY, USA
| | - Maurizio Scaltriti
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer, New York, NY, USA
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Daniel A. Heller
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Weill Cornell Medical College, New York, NY, USA
| |
Collapse
|
11
|
Arshad R, Barani M, Rahdar A, Sargazi S, Cucchiarini M, Pandey S, Kang M. Multi-Functionalized Nanomaterials and Nanoparticles for Diagnosis and Treatment of Retinoblastoma. BIOSENSORS 2021; 11:97. [PMID: 33810621 PMCID: PMC8066896 DOI: 10.3390/bios11040097] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 03/19/2021] [Accepted: 03/23/2021] [Indexed: 12/17/2022]
Abstract
Retinoblastoma is a rare type of cancer, and its treatment, as well as diagnosis, is challenging, owing to mutations in the tumor-suppressor genes and lack of targeted, efficient, cost-effective therapy, exhibiting a significant need for novel approaches to address these concerns. For this purpose, nanotechnology has revolutionized the field of medicine with versatile potential capabilities for both the diagnosis, as well as the treatment, of retinoblastoma via the targeted and controlled delivery of anticancer drugs via binding to the overexpressed retinoblastoma gene. Nanotechnology has also generated massive advancements in the treatment of retinoblastoma based on the use of surface-tailored multi-functionalized nanocarriers; overexpressed receptor-based nanocarriers ligands (folate, galactose, and hyaluronic acid); lipid-based nanocarriers; and metallic nanocarriers. These nanocarriers seem to benchmark in mitigating a plethora of malignant retinoblastoma via targeted delivery at a specified site, resulting in programmed apoptosis in cancer cells. The effectiveness of these nanoplatforms in diagnosing and treating intraocular cancers such as retinoblastoma has not been properly discussed, despite the increasing significance of nanomedicine in cancer management. This article reviewed the recent milestones and future development areas in the field of intraocular drug delivery and diagnostic platforms focused on nanotechnology.
Collapse
Affiliation(s)
- Rabia Arshad
- Department of Pharmacy, Quaid-I-Azam University, Islamabad 45320, Pakistan;
| | - Mahmood Barani
- Department of Chemistry, ShahidBahonar University of Kerman, Kerman 76169-14111, Iran;
| | - Abbas Rahdar
- Department of Physics, Faculty of Science, University of Zabol, Zabol 98613-35856, Iran
| | - Saman Sargazi
- Cellular and Molecular Research Center, Resistant Tuberculosis Institute, Zahedan University of Medical Sciences, Zahedan 98167-43463, Iran;
| | - Magali Cucchiarini
- Center of Experimental Orthopaedics, Saarland University Medical Center, 66421 Homburg/Saar, Germany;
| | - Sadanand Pandey
- Department of Chemistry, College of Natural Science, Yeungnam University, 280 Daehak-Ro, Gyeongsan 38541, Korea
- Particulate Matter Research Center, Research Institute of Industrial Science & Technology (RIST), 187-12, Geumho-ro, Gwangyang-si 57801, Korea
| | - Misook Kang
- Department of Chemistry, College of Natural Science, Yeungnam University, 280 Daehak-Ro, Gyeongsan 38541, Korea
| |
Collapse
|
12
|
Brivio D, Sajo E, Zygmanski P. Gold nanoparticle detection and quantification in therapeutic MV beams via pair production. Phys Med Biol 2021; 66:064004. [PMID: 33412535 DOI: 10.1088/1361-6560/abd954] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
PURPOSE We propose a new detection method of gold nanoparticles (AuNP) in therapeutic megavoltage (MV) x-ray beams by means of coincidence counting of annihilation photons following pair production in gold. METHODS The proposed MV x-ray induced positron emission (MVIPE) imaging technique is studied by radiation transport computations using MCNP6 (3D) and CEPXS/ONEDANT (1D) codes for two water phantoms: a 35 cm slab and a similarly sized cylinder, both having a 5 cm AuNP filled region in the center. MVIPE is compared to the standard x-ray fluorescence computed tomography (XFCT). MVIPE adopts MV x-ray sources (Co-60, 2 MV, 6 MV, 6 MV with closed MLC and 15 MV) and relies on the detection of 511 keV photon-pairs. XFCT uses kilovoltage sources (100 kVp, 120 kVp and 150 kVp) and imaging is characterized by analysis of k α1,2 Au characteristic lines. Three levels of AuNP concentration were studied: 0.1%, 1% and 10% by weight. RESULTS Annihilation photons in the MVIPE technique originate both in the AuNP and in water along the x-ray beam path with significantly larger production in the AuNP-loaded region. MVIPE signal from AuNP is linearly increasing with AuNP concentration up to 10%wt, while XFCT signal reaches saturation due to self-absorption within AuNP. The production of annihilation photons is proportional to the MV source energy. MVIPE technique using a 15 MV pencil beam and 10 wt% AuNP detects about 4.5 × 103 511 keV-photons cm-2 at 90° w/r to the incident beam per 109 source photons cm-2; 500 of these come from AuNP. In contrast, the XFCT technique using 150 kVp detects only about 100 k α1-photons cm-2 per 109 source photons cm-2. CONCLUSIONS In MVIPE, the number of annihilation photons produced for different MV-beam energies and AuNP concentrations is significantly greater than the k α1 photons generated in XFCT. Coincidence counting in MVIPE allows to avoid collimation, which is a major limiting factor in XFCT. MVIPE challenges include the filtering of Compton scatter and annihilation photons originating in water.
Collapse
Affiliation(s)
- D Brivio
- Brigham & Woman's Hospital, Boston, MA, Dana Farber Cancer Institute, Boston, MA, Harvard Medical School, United States of America
| | | | | |
Collapse
|
13
|
Ocular Drug Delivery to the Retina: Current Innovations and Future Perspectives. Pharmaceutics 2021; 13:pharmaceutics13010108. [PMID: 33467779 PMCID: PMC7830424 DOI: 10.3390/pharmaceutics13010108] [Citation(s) in RCA: 81] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Revised: 01/13/2021] [Accepted: 01/13/2021] [Indexed: 12/12/2022] Open
Abstract
Treatment options for retinal diseases, such as neovascular age-related macular degeneration, diabetic retinopathy, and retinal vascular disorders, have markedly expanded following the development of anti-vascular endothelial growth factor intravitreal injection methods. However, because intravitreal treatment requires monthly or bimonthly repeat injections to achieve optimal efficacy, recent investigations have focused on extended drug delivery systems to lengthen the treatment intervals in the long term. Dose escalation and increasing molecular weight of drugs, intravitreal implants and nanoparticles, hydrogels, combined systems, and port delivery systems are presently under preclinical and clinical investigations. In addition, less invasive techniques rather than intravitreal administration routes, such as topical, subconjunctival, suprachoroidal, subretinal, and trans-scleral, have been evaluated to reduce the treatment burden. Despite the latest advancements in the field of ophthalmic pharmacology, enhancing drug efficacy with high ocular bioavailability while avoiding systemic and local adverse effects is quite challenging. Consequently, despite the performance of numerous in vitro studies, only a few techniques have translated to clinical trials. This review discusses the recent developments in ocular drug delivery to the retina, the pharmacokinetics of intravitreal drugs, efforts to extend drug efficacy in the intraocular space, minimally invasive techniques for drug delivery to the retina, and future perspectives in this field.
Collapse
|
14
|
Mustfa SA, Maurizi E, McGrath J, Chiappini C. Nanomedicine Approaches to Negotiate Local Biobarriers for Topical Drug Delivery. ADVANCED THERAPEUTICS 2021. [DOI: 10.1002/adtp.202000160] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Salman Ahmad Mustfa
- Centre for Craniofacial and Regenerative Biology King's College London London SE1 9RT UK
| | - Eleonora Maurizi
- Dipartimento di Medicina e Chirurgia Università di Parma Parma 43121 Italy
| | - John McGrath
- St John's Institute of Dermatology King's College London London SE1 9RT UK
| | - Ciro Chiappini
- Centre for Craniofacial and Regenerative Biology King's College London London SE1 9RT UK
- London Centre for Nanotechnology King's College London London WC2R 2LS UK
| |
Collapse
|
15
|
Sustained subconjunctival drug delivery systems: current trends and future perspectives. Int Ophthalmol 2020; 40:2385-2401. [DOI: 10.1007/s10792-020-01391-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 04/15/2020] [Indexed: 12/17/2022]
|
16
|
Depot formulations to sustain periocular drug delivery to the posterior eye segment. Drug Discov Today 2019; 24:1458-1469. [DOI: 10.1016/j.drudis.2019.03.023] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2018] [Revised: 01/25/2019] [Accepted: 03/22/2019] [Indexed: 12/27/2022]
|
17
|
Pairoj S, Damrongsak P, Damrongsak B, Jinawath N, Kaewkhaw R, Leelawattananon T, Ruttanasirawit C, Locharoenrat K. Antiradical properties of chemo drug, carboplatin, in cooperation with ZnO nanoparticles under UV irradiation in putative model of cancer cells. Biocybern Biomed Eng 2019. [DOI: 10.1016/j.bbe.2019.08.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
18
|
Partial Surface Modification of Low Generation Polyamidoamine Dendrimers: Gaining Insight into their Potential for Improved Carboplatin Delivery. Biomolecules 2019; 9:biom9060214. [PMID: 31159469 PMCID: PMC6627870 DOI: 10.3390/biom9060214] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2019] [Revised: 05/22/2019] [Accepted: 05/27/2019] [Indexed: 01/28/2023] Open
Abstract
Carboplatin (CAR) is a second generation platinum-based compound emerging as one of the most widely used anticancer drugs to treat a variety of tumors. In an attempt to address its dose-limiting toxicity and fast renal clearance, several delivery systems (DDSs) have been developed for CAR. However, unsuitable size range and low loading capacity may limit their potential applications. In this study, PAMAM G3.0 dendrimer was prepared and partially surface modified with methoxypolyethylene glycol (mPEG) for the delivery of CAR. The CAR/PAMAM G3.0@mPEG was successfully obtained with a desirable size range and high entrapment efficiency, improving the limitations of previous CAR-loaded DDSs. Cytocompatibility of PAMAM G3.0@mPEG was also examined, indicating that the system could be safely used. Notably, an in vitro release test and cell viability assays against HeLa, A549, and MCF7 cell lines indicated that CAR/PAMAM G3.0@mPEG could provide a sustained release of CAR while fully retaining its bioactivity to suppress the proliferation of cancer cells. These obtained results provide insights into the potential of PAMAM G3.0@mPEG dendrimer as an efficient delivery system for the delivery of a drug that has strong side effects and fast renal clearance like CAR, which could be a promising approach for cancer treatment.
Collapse
|
19
|
Modified Carboxyl-Terminated PAMAM Dendrimers as Great Cytocompatible Nano-Based Drug Delivery System. Int J Mol Sci 2019; 20:ijms20082016. [PMID: 31022905 PMCID: PMC6514678 DOI: 10.3390/ijms20082016] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 04/10/2019] [Accepted: 04/11/2019] [Indexed: 12/11/2022] Open
Abstract
Polyamidoamine (PAMAM) dendrimers are extensively researched as potential drug delivery system thanks to their desirable features such as controlled and stable structures, and ease of functionalization onto their surface active groups. However, there have been concerns about the toxicity of full generation dendrimers and risks of premature clearance from circulation, along with other physical drawbacks presented in previous formulations, including large particle sizes and low drug loading efficiency. In our study, carboxyl-terminated PAMAM dendrimer G3.5 was grafted with poly (ethylene glycol) methyl ether (mPEG) to be employed as a nano-based drug delivery system with great cytocompatibility for the delivery of carboplatin (CPT), a widely prescribed anticancer drug with strong side effects so that the drug will be effectively entrapped and not exhibit uncontrolled outflow from the open structure of unmodified PAMAM G3.5. The particles formed were spherical in shape and had the optimal size range (around 36 nm) that accommodates high drug entrapment efficiency. Surface charge was also determined to be almost neutral and the system was cytocompatible. In vitro release patterns over 24 h showed a prolonged CPT release compared to free drug, which correlated to the cytotoxicity assay on malignant cell lines showing the lack of anticancer effect of CPT/mPEG-G3.5 compared with CPT.
Collapse
|
20
|
Abstract
Although the eye is an accessible organ for direct drug application, ocular drug delivery remains a major challenge due to multiple barriers within the eye. Key barriers include static barriers imposed by the cornea, conjunctiva, and retinal pigment epithelium and dynamic barriers including tear turnover and blood and lymphatic clearance mechanisms. Systemic administration by oral and parenteral routes is limited by static blood-tissue barriers that include epithelial and endothelial layers, in addition to rapid vascular clearance mechanisms. Together, the static and dynamic barriers limit the rate and extent of drug delivery to the eye. Thus, there is an ongoing need to identify novel delivery systems and approaches to enhance and sustain ocular drug delivery. This chapter summarizes current and recent experimental approaches for drug delivery to the anterior and posterior segments of the eye.
Collapse
Affiliation(s)
- Burcin Yavuz
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado, 12850 East Montview Blvd., C238-V20, Aurora, CO, 80045, USA.,Department of Biomedical Engineering, Tufts University, Medford, MA, 02155, USA
| | - Uday B Kompella
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado, 12850 East Montview Blvd., C238-V20, Aurora, CO, 80045, USA.
| |
Collapse
|
21
|
Preparation and characterization of oxaliplatin drug delivery vehicle based on PEGylated half-generation PAMAM dendrimer. JOURNAL OF POLYMER RESEARCH 2019. [DOI: 10.1007/s10965-019-1779-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
22
|
Roche KC, Medik YB, Rodgers Z, Warner S, Wang AZ. Cancer Nanotherapeutics Administered by Non-conventional Routes. Bioanalysis 2019. [DOI: 10.1007/978-3-030-01775-0_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
23
|
Srinivasarao DA, Lohiya G, Katti DS. Fundamentals, challenges, and nanomedicine‐based solutions for ocular diseases. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2018; 11:e1548. [DOI: 10.1002/wnan.1548] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 09/21/2018] [Accepted: 10/28/2018] [Indexed: 01/07/2023]
Affiliation(s)
- Dadi A. Srinivasarao
- Department of Biological Sciences and Bioengineering Indian Institute of Technology Kanpur Kanpur India
| | - Garima Lohiya
- Department of Biological Sciences and Bioengineering Indian Institute of Technology Kanpur Kanpur India
| | - Dhirendra S. Katti
- Department of Biological Sciences and Bioengineering Indian Institute of Technology Kanpur Kanpur India
| |
Collapse
|
24
|
Jiang S, Franco YL, Zhou Y, Chen J. Nanotechnology in retinal drug delivery. Int J Ophthalmol 2018; 11:1038-1044. [PMID: 29977820 DOI: 10.18240/ijo.2018.06.23] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Accepted: 04/04/2018] [Indexed: 11/23/2022] Open
Abstract
Retinal diseases, including age-related macular degeneration (AMD) and diabetic retinopathy (DR) are the leading causes of blindness in adults over the age of 50 years in the US. While most of those conditions do not have a cure, currently available treatment options attempt to prevent further vision loss. For many ophthalmic drugs, an efficient delivery system to provide maximum therapeutic efficacy and promote patient compliance remains an unmet medical need. An exploration of literature via PubMed spanning from 2007 to 2017 was conducted to identify studies that have evaluated nanotechnology as platforms for delivering therapeutic agents to the posterior segment of the eye where the retina is located. Until now, four routes that have been utilized for retinal drug delivery are the intravitreal, periocular, subretinal, and systemic routes. Intravitreal injections are now widely used in clinical practice due to their ability to directly target the back of the eye but are highly invasive procedures that may cause several complications, particularly with repeated uses over a short timespan. Nanotechnology shows great promise to revolutionize retinal drug delivery, offering many advantages such as a targeted delivery system towards the specific site of the retina as well as sustained delivery of therapeutic agents. In this review, specific eye anatomy and constraints on ocular drug administration are illustrated. Further, we list and highlight several examples of nanosystems, such as hydrogels, liposomes, dendrimers, and micelles, used via different drug delivery routes to treat various retinal diseases.
Collapse
Affiliation(s)
- Sibo Jiang
- Department of Pharmaceutics, University of Florida, Orlando, FL 32827, USA
| | - Yesenia L Franco
- Department of Pharmaceutics, University of Florida, Orlando, FL 32827, USA
| | - Yan Zhou
- Department of Pharmaceutics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Jianjun Chen
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Screening, Southern Medical University, Guangzhou 510515, Guangdong Province, China
| |
Collapse
|
25
|
Abd AJ, Kanwar RK, Pathak YV, Al Mohammedawi M, Kanwar JR. Nanomedicine-Based Delivery to the Posterior Segment of the Eye: Brighter Tomorrow. DRUG DELIVERY FOR THE RETINA AND POSTERIOR SEGMENT DISEASE 2018:195-212. [DOI: 10.1007/978-3-319-95807-1_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
26
|
Poy D, Ebrahimi Shahemabadi H, Akbarzadeh A, Moradi-Sardareh H, Ebrahimifar M. Carboplatin liposomal nanoparticles: Preparation, characterization, and cytotoxicity effects on lung cancer in vitro environment. INT J POLYM MATER PO 2017. [DOI: 10.1080/00914037.2017.1332624] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Donya Poy
- Department of Pilot Nanobiotechnology, Pasteur Institute of Iran, Tehran, Iran
| | - Hasan Ebrahimi Shahemabadi
- Department of Microbiology, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Azim Akbarzadeh
- Department of Pilot Nanobiotechnology, Pasteur Institute of Iran, Tehran, Iran
| | | | - Meysam Ebrahimifar
- Department of Toxicology, Faculty of Pharmacy, Islamic Azad University, Shahreza, Iran
| |
Collapse
|
27
|
Stenfelt S, Blixt MKE, All-Ericsson C, Hallböök F, Boije H. Heterogeneity in retinoblastoma: a tale of molecules and models. Clin Transl Med 2017; 6:42. [PMID: 29124525 PMCID: PMC5680409 DOI: 10.1186/s40169-017-0173-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Accepted: 10/26/2017] [Indexed: 12/13/2022] Open
Abstract
Retinoblastoma, an intraocular pediatric cancer, develops in the embryonic retina following biallelic loss of RB1. However, there is a wide range of genetic and epigenetic changes that can affect RB1 resulting in different clinical outcomes. In addition, other transformations, such as MYCN amplification, generate particularly aggressive tumors, which may or may not be RB1 independent. Recognizing the cellular characteristics required for tumor development, by identifying the elusive cell-of-origin for retinoblastoma, would help us understand the development of these tumors. In this review we summarize the heterogeneity reported in retinoblastoma on a molecular, cellular and tissue level. We also discuss the challenging heterogeneity in current retinoblastoma models and suggest future platforms that could contribute to improved understanding of tumor initiation, progression and metastasis in retinoblastoma, which may ultimately lead to more patient-specific treatments.
Collapse
Affiliation(s)
- Sonya Stenfelt
- Department of Neuroscience, Uppsala University, 75124, Uppsala, Sweden
| | - Maria K E Blixt
- Department of Neuroscience, Uppsala University, 75124, Uppsala, Sweden
| | | | - Finn Hallböök
- Department of Neuroscience, Uppsala University, 75124, Uppsala, Sweden
| | - Henrik Boije
- Department of Neuroscience, Uppsala University, 75124, Uppsala, Sweden.
| |
Collapse
|
28
|
Pharmaceutical microscale and nanoscale approaches for efficient treatment of ocular diseases. Drug Deliv Transl Res 2017; 6:686-707. [PMID: 27766598 DOI: 10.1007/s13346-016-0336-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Efficient treatment of ocular diseases can be achieved thanks to the proper use of ophthalmic formulations based on emerging pharmaceutical approaches. Among them, microtechnology and nanotechnology strategies are of great interest in the development of novel drug delivery systems to be used for ocular therapy. The location of the target site in the eye as well as the ophthalmic disease will determine the route of administration (topical, intraocular, periocular, and suprachoroidal administration) and the most adequate device. In this review, we discuss the use of colloidal pharmaceutical systems (nanoparticles, liposomes, niosomes, dendrimers, and microemulsions), microparticles (microcapsules and microspheres), and hybrid systems (combination of different strategies) in the treatment of ophthalmic diseases. Emphasis has been placed in the therapeutic significance of each drug delivery system for clinical translation.
Collapse
|
29
|
Elkin I, Banquy X, Barrett CJ, Hildgen P. Non-covalent formulation of active principles with dendrimers: Current state-of-the-art and prospects for further development. J Control Release 2017; 264:288-305. [DOI: 10.1016/j.jconrel.2017.09.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 08/28/2017] [Accepted: 09/01/2017] [Indexed: 12/18/2022]
|
30
|
Abstract
Existing methods of administering ocular drugs are limited in either their safety or efficiency. Nanomedicine therapies have the potential to address this deficiency by creating vehicles that can control drug biodistribution. Dendrimers are synthetic polymeric nanoparticles with a unique highly organized branching structure. In recent years, promising results using dendrimer vehicles to deliver ocular drugs through different routes of administration have been reported. In this review, we briefly summarize these results with emphasis on the dendrimer modifications used to target different ocular structures.
Collapse
Affiliation(s)
- Michael G. Lancina
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA 23284, United States
| | - Hu Yang
- Department of Chemical & Life Science Engineering, Virginia Commonwealth University, Richmond, VA 23219, United States
- Department of Pharmaceutics, Virginia Commonwealth University, Richmond, VA 23298, United States
- Massey Cancer Center, Virginia Commonwealth University, Richmond, VA 23298, United States
| |
Collapse
|
31
|
Nano-ophthalmology: Applications and considerations. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2017; 13:1459-1472. [DOI: 10.1016/j.nano.2017.02.007] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Revised: 01/11/2017] [Accepted: 02/01/2017] [Indexed: 02/03/2023]
|
32
|
Bisht R, Mandal A, Jaiswal JK, Rupenthal ID. Nanocarrier mediated retinal drug delivery: overcoming ocular barriers to treat posterior eye diseases. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2017; 10. [DOI: 10.1002/wnan.1473] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2017] [Revised: 03/05/2017] [Accepted: 03/11/2017] [Indexed: 12/13/2022]
Affiliation(s)
- Rohit Bisht
- Buchanan Ocular Therapeutics Unit (BOTU), Department of Ophthalmology, New Zealand National Eye Center, Faculty of Medical and Health Sciences; University of Auckland; Auckland New Zealand
| | - Abhirup Mandal
- Division of Pharmaceutical Sciences, School of Pharmacy; University of Missouri-Kansas City; Kansas City MO USA
| | - Jagdish K. Jaiswal
- Auckland Cancer Society Research Center, Faculty of Medical and Health Sciences; University of Auckland; Auckland New Zealand
| | - Ilva D. Rupenthal
- Buchanan Ocular Therapeutics Unit (BOTU), Department of Ophthalmology, New Zealand National Eye Center, Faculty of Medical and Health Sciences; University of Auckland; Auckland New Zealand
| |
Collapse
|
33
|
Joseph RR, Venkatraman SS. Drug delivery to the eye: what benefits do nanocarriers offer? Nanomedicine (Lond) 2017; 12:683-702. [PMID: 28186436 DOI: 10.2217/nnm-2016-0379] [Citation(s) in RCA: 112] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Ocular drug delivery has seen several advances in the past few decades, with respect to new drugs, improved formulations, targeted delivery, as well as exploration of new routes of drug administration. New materials have been explored for encasing existing drugs, which can enhance treatment by increasing bioavailability, decreasing toxicity, providing better tissue adherence, targeted delivery as well as increased duration of action. The challenges and requirements are different for the anterior and posterior ocular segments. This review summarizes the recent advances in sustained ocular therapy, both to the anterior and posterior segments, which have been made possible, thanks to nanotechnology. We also discuss the distribution and fate of these nanocarriers themselves, postadministration, as well as clearance from ocular tissues.
Collapse
Affiliation(s)
- Rini Rachel Joseph
- School of Materials Science & Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Subbu S Venkatraman
- School of Materials Science & Engineering, Nanyang Technological University, Singapore 639798, Singapore.,NTU-Northwestern Institute for Nanomedicine, School of Materials Science & Engineering (MSE), Nanyang Technological University, Singapore 639798, Singapore
| |
Collapse
|
34
|
Brivio D, Nguyen PL, Sajo E, Ngwa W, Zygmanski P. A Monte Carlo study of I-125 prostate brachytherapy with gold nanoparticles: dose enhancement with simultaneous rectal dose sparing via radiation shielding. Phys Med Biol 2017; 62:1935-1948. [PMID: 28140338 DOI: 10.1088/1361-6560/aa5bc7] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
We investigate via Monte Carlo simulations a new 125I brachytherapy treatment technique for high-risk prostate cancer patients via injection of Au nanoparticle (AuNP) directly into the prostate. The purpose of using the nanoparticles is to increase the therapeutic index via two synergistic effects: enhanced energy deposition within the prostate and simultaneous shielding of organs at risk from radiation escaping from the prostate. Both uniform and non-uniform concentrations of AuNP are studied. The latter are modeled considering the possibility of AuNP diffusion after the injection using brachy needles. We study two extreme cases of coaxial AuNP concentrations: centered on brachy needles and centered half-way between them. Assuming uniform distribution of 30 mg g-1 of AuNP within the prostate, we obtain a dose enhancement larger than a factor of 2 to the prostate. Non-uniform concentration of AuNP ranging from 10 mg g-1 and 66 mg g-1 were studied. The higher the concentration in a given region of the prostate the greater is the enhancement therein. We obtain the highest dose enhancement when the brachytherapy needles are coincident with AuNP injection needles but, at the same time, the regions in the tail are colder (average dose ratio of 0.7). The best enhancement uniformity is obtained with the seeds in the tail of the AuNP distribution. In both uniform and non-uniform cases the urethra and rectum receive less than 1/3 dose compared to an analog treatment without AuNP. Remarkably, employing AuNP not only significantly increases dose to the target but also decreases dose to the neighboring rectum and even urethra, which is embedded within the prostate. These are mutually interdependent effects as more enhancement leads to more shielding and vice-versa. Caution must be paid since cold spot or hot spots may be created if the AuNP concentration versus seed position is not properly distributed respect to the seed locations.
Collapse
Affiliation(s)
- D Brivio
- Brigham and Women's Hospital, Boston, MA, United States of America. Dana Farber Cancer Institute, Boston, MA, United States of America. Harvard Medical School, Boston, MA, United States of America
| | | | | | | | | |
Collapse
|
35
|
Redox and pH Responsive Poly (Amidoamine) Dendrimer-Heparin Conjugates via Disulfide Linkages for Letrozole Delivery. BIOMED RESEARCH INTERNATIONAL 2017; 2017:8589212. [PMID: 28246606 PMCID: PMC5299214 DOI: 10.1155/2017/8589212] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Revised: 12/09/2016] [Accepted: 12/15/2016] [Indexed: 12/31/2022]
Abstract
Heparin (Hep) conjugated to poly (amidoamine) dendrimer G3.5 (P) via redox-sensitive disulfide bond (P-SS-Hep) was studied. The redox and pH dual-responsive nanocarriers were prepared by a simple method that minimized many complex steps as previous studies. The functional characterization of G3.5 coated Hep was investigated by the proton nuclear magnetic resonance spectroscopy. The size and formation were characterized by the dynamic light scattering, zeta potential, and transmission electron microscopy. P-SS-Hep was spherical in shape with average diameter about 11 nm loaded with more than 20% letrozole. This drug carrier could not only eliminate toxicity to cells and improve the drugs solubility but also increase biocompatibility of the system under reductive environment of glutathione. In particular, P-SS-Hep could enhance the effectiveness of cancer therapy after removing Hep from the surface. These results demonstrated that the P-SS-Hep conjugates could be a promising candidate as redox and pH responsive nanocarriers for cancer chemotherapy.
Collapse
|
36
|
Koger B, Kirkby C. Optimization of photon beam energies in gold nanoparticle enhanced arc radiation therapy using Monte Carlo methods. Phys Med Biol 2016; 61:8839-8853. [PMID: 27910829 DOI: 10.1088/1361-6560/61/24/8839] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
As a recent area of development in radiation therapy, gold nanoparticle (GNP) enhanced radiation therapy has shown potential to increase tumour dose while maintaining acceptable levels of healthy tissue toxicity. In this study, the effect of varying photon beam energy in GNP enhanced arc radiation therapy (GEART) is quantified through the introduction of a dose scoring metric, and GEART is compared to a conventional radiotherapy treatment. The PENELOPE Monte Carlo code was used to model several simple phantoms consisting of a spherical tumour containing GNPs (concentration: 15 mg Au g-1 tumour, 0.8 mg Au g-1 normal tissue) in a cylinder of tissue. Several monoenergetic photon beams, with energies ranging from 20 keV to 6 MeV, as well as 100, 200, and 300 kVp spectral beams, were used to irradiate the tumour in a 360° arc treatment. A dose metric was then used to compare tumour and tissue doses from GEART treatments to a similar treatment from a 6 MV spectrum. This was also performed on a simulated brain tumour using patient computed tomography data. GEART treatments showed potential over the 6 MV treatment for many of the simulated geometries, delivering up to 88% higher mean dose to the tumour for a constant tissue dose, with the effect greatest near a source energy of 50 keV. This effect is also seen with the inclusion of bone in a brain treatment, with a 14% increase in mean tumour dose over 6 MV, while still maintaining acceptable levels of dose to the bone and brain.
Collapse
Affiliation(s)
- B Koger
- Department of Physics and Astronomy, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| | | |
Collapse
|
37
|
Lavik E, Kuehn MH, Shoffstall AJ, Atkins K, Dumitrescu AV, Kwon YH. Sustained Delivery of Timolol Maleate for Over 90 Days by Subconjunctival Injection. J Ocul Pharmacol Ther 2016; 32:642-649. [PMID: 27835065 PMCID: PMC5165680 DOI: 10.1089/jop.2016.0042] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Accepted: 09/03/2016] [Indexed: 12/29/2022] Open
Abstract
PURPOSE Medical treatment of glaucoma relies on intraocular pressure (IOP)-lowering medications, typically administered daily by the patient. While these medications are effective when applied correctly, patient adherence is a major obstacle in glaucoma treatment. We have developed a sustained-release formulation of timolol maleate that can be injected subconjunctivally to avoid patient noncompliance. METHODS A biodegradable microsphere formulation for timolol maleate was injected subconjunctivally in normal rabbits. We measured timolol levels in tears, aqueous humor, vitreous humor, and serum of study rabbits. Furthermore, IOP profiles were recorded longitudinally. Tissue compatibility and side effects were evaluated using histochemistry. RESULTS The microsphere formulation led to measureable amounts of timolol in the aqueous humor and the tear film for up to 90 days. Timolol was not detectable in the serum at any time. A significant reduction of IOP was observed in treated eyes. Clinically, the subconjunctival administration of the microspheres was well tolerated with no signs of inflammation or infection. The absence of local inflammation was confirmed by histology. CONCLUSIONS A single subconjunctival administration of timolol microspheres achieved delivery and IOP reduction in rabbits for up to 90 days without local or systemic inflammation or toxicity. This approach has the potential to improve the management of glaucoma in patient populations, who are challenged to adhere to a regimen of daily eye drops.
Collapse
Affiliation(s)
- Erin Lavik
- Department of Chemical, Biochemical, and Environmental Engineering, University of Maryland-Baltimore County, Baltimore, Maryland
| | - Markus H. Kuehn
- Department of Ophthalmology and Visual Sciences, The University of Iowa, Iowa City, Iowa
- Iowa City Veterans Affairs Center for the Prevention and Treatment of Visual Loss, Iowa City, Iowa
| | - Andrew J. Shoffstall
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio
| | - Kristyn Atkins
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio
| | - Alina V. Dumitrescu
- Department of Ophthalmology and Visual Sciences, The University of Iowa, Iowa City, Iowa
| | - Young H. Kwon
- Department of Ophthalmology and Visual Sciences, The University of Iowa, Iowa City, Iowa
| |
Collapse
|
38
|
Affiliation(s)
- Pia R. Mendoza
- Department of Ophthalmology, Emory University School of Medicine, Atlanta, Georgia
| | - Hans E. Grossniklaus
- Department of Ophthalmology, Emory University School of Medicine, Atlanta, Georgia
| |
Collapse
|
39
|
Kalomiraki M, Thermos K, Chaniotakis NA. Dendrimers as tunable vectors of drug delivery systems and biomedical and ocular applications. Int J Nanomedicine 2015; 11:1-12. [PMID: 26730187 PMCID: PMC4694674 DOI: 10.2147/ijn.s93069] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Dendrimers are large polymeric structures with nanosize dimensions (1-10 nm) and unique physicochemical properties. The major advantage of dendrimers compared with linear polymers is their spherical-shaped structure. During synthesis, the size and shape of the dendrimer can be customized and controlled, so the finished macromolecule will have a specific "architecture" and terminal groups. These characteristics will determine its suitability for drug delivery, diagnostic imaging, and as a genetic material carrier. This review will focus initially on the unique properties of dendrimers and their use in biomedical applications, as antibacterial, antitumor, and diagnostic agents. Subsequently, emphasis will be given to their use in drug delivery for ocular diseases.
Collapse
Affiliation(s)
- Marina Kalomiraki
- Laboratory of Analytical Chemistry, Department of Chemistry, University of Crete Voutes, Heraklion, Greece
| | - Kyriaki Thermos
- Department of Pharmacology, School of Medicine, University of Crete Voutes, Heraklion, Greece
| | - Nikos A Chaniotakis
- Laboratory of Analytical Chemistry, Department of Chemistry, University of Crete Voutes, Heraklion, Greece
| |
Collapse
|
40
|
Brivio D, Zygmanski P, Arnoldussen M, Hanlon J, Chell E, Sajo E, Makrigiorgos GM, Ngwa W. Kilovoltage radiosurgery with gold nanoparticles for neovascular age-related macular degeneration (AMD): a Monte Carlo evaluation. Phys Med Biol 2015; 60:9203-13. [PMID: 26576672 DOI: 10.1088/0031-9155/60/24/9203] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
This work uses Monte Carlo radiation transport simulation to assess the potential benefits of gold nanoparticles (AuNP) in the treatment of neovascular age-related macular degeneration with stereotactic radiosurgery. Clinically, a 100 kVp x-ray beam of 4 mm diameter is aimed at the macula to deliver an ablative dose in a single fraction. In the transport model, AuNP accumulated at the bottom of the macula are targeted with a source representative of the clinical beam in order to provide enhanced dose to the diseased macular endothelial cells. It is observed that, because of the AuNP, the dose to the endothelial cells can be significantly enhanced, allowing for greater sparing of optic nerve, retina and other neighboring healthy tissue. For 20 nm diameter AuNP concentration of 32 mg g(-1), which has been shown to be achievable in vivo, a dose enhancement ratio (DER) of 1.97 was found to be possible, which could potentially be increased through appropriate optimization of beam quality and/or AuNP targeting. A significant enhancement in dose is seen in the vicinity of the AuNP layer within 30 μm, peaked at the AuNP-tissue interface. Different angular tilting of the 4 mm beam results in a similar enhancement. The DER inside and in the penumbra of the 4 mm irradiation-field are almost the same while the actual delivered dose is more than one order of magnitude lower outside the field leading to normal tissue sparing. The prescribed dose to macular endothelial cells can be delivered using almost half of the radiation allowing reduction of dose to the neighboring organs such as retina/optic nerve by 49% when compared to a treatment without AuNP.
Collapse
Affiliation(s)
- D Brivio
- Brigham and Woman's Hospital, Harvard Medical School, Boston, MA, USA. Dana Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Asadi S, Vaez-zadeh M, Masoudi SF, Rahmani F, Knaup C, Meigooni AS. Gold nanoparticle-based brachytherapy enhancement in choroidal melanoma using a full Monte Carlo model of the human eye. J Appl Clin Med Phys 2015; 16:344–357. [PMID: 26699318 PMCID: PMC5690168 DOI: 10.1120/jacmp.v16i5.5568] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2015] [Revised: 04/15/2015] [Accepted: 04/08/2015] [Indexed: 12/20/2022] Open
Abstract
The effects of gold nanoparticles (GNPs) in 125I brachytherapy dose enhancement on choroidal melanoma are examined using the Monte Carlo simulation technique. Usually, Monte Carlo ophthalmic brachytherapy dosimetry is performed in a water phantom. However, here, the compositions of human eye have been considered instead of water. Both human eye and water phantoms have been simulated with MCNP5 code. These simulations were performed for a fully loaded 16 mm COMS eye plaque containing 13 125I seeds. The dose delivered to the tumor and normal tissues have been calculated in both phantoms with and without GNPs. Normally, the radiation therapy of cancer patients is designed to deliver a required dose to the tumor while sparing the surrounding normal tissues. However, as the normal and cancerous cells absorbed dose in an almost identical fashion, the normal tissue absorbed radiation dose during the treatment time. The use of GNPs in combination with radiotherapy in the treatment of tumor decreases the absorbed dose by normal tissues. The results indicate that the dose to the tumor in an eyeball implanted with COMS plaque increases with increasing GNPs concentration inside the target. Therefore, the required irradiation time for the tumors in the eye is decreased by adding the GNPs prior to treatment. As a result, the dose to normal tissues decreases when the irradiation time is reduced. Furthermore, a comparison between the simulated data in an eye phantom made of water and eye phantom made of human eye composition, in the presence of GNPs, shows the significance of utilizing the composition of eye in ophthalmic brachytherapy dosimetry Also, defining the eye composition instead of water leads to more accurate calculations of GNPs radiation effects in ophthalmic brachytherapy dosimetry.
Collapse
|
42
|
Dimaras H, Corson TW, Cobrinik D, White A, Zhao J, Munier FL, Abramson DH, Shields CL, Chantada GL, Njuguna F, Gallie BL. Retinoblastoma. Nat Rev Dis Primers 2015; 1:15021. [PMID: 27189421 PMCID: PMC5744255 DOI: 10.1038/nrdp.2015.21] [Citation(s) in RCA: 342] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Retinoblastoma is a rare cancer of the infant retina that is diagnosed in approximately 8,000 children each year worldwide. It forms when both retinoblastoma gene (RB1) alleles are mutated in a susceptible retinal cell, probably a cone photoreceptor precursor. Loss of the tumour-suppressive functions of the retinoblastoma protein (pRB) leads to uncontrolled cell division and recurrent genomic changes during tumour progression. Although pRB is expressed in almost all tissues, cone precursors have biochemical and molecular features that may sensitize them to RB1 loss and enable tumorigenesis. Patient survival is >95% in high-income countries but <30% globally. However, outcomes are improving owing to increased disease awareness for earlier diagnosis, application of new guidelines and sharing of expertise. Intra-arterial and intravitreal chemotherapy have emerged as promising methods to salvage eyes that with conventional treatment might have been lost. Ongoing international collaborations will replace the multiple different classifications of eye involvement with standardized definitions to consistently assess the eligibility, efficacy and safety of treatment options. Life-long follow-up is warranted, as survivors of heritable retinoblastoma are at risk for developing second cancers. Defining the molecular consequences of RB1 loss in diverse tissues may open new avenues for treatment and prevention of retinoblastoma, as well as second cancers, in patients with germline RB1 mutations.
Collapse
Affiliation(s)
- Helen Dimaras
- Department of Ophthalmology & Vision Sciences, The Hospital for Sick Children & University of Toronto, Toronto, Canada
| | - Timothy W. Corson
- Eugene and Marilyn Glick Eye Institute, Indiana University School of Medicine, Indianapolis, IN, USA
| | - David Cobrinik
- The Vision Center, Children’s Hospital Los Angeles & USC Eye Institute, University of Southern California, Los Angeles, CA USA
| | | | - Junyang Zhao
- Department of Ophthalmology, Beijing Children’s Hospital, Capital Medial University, Beijing, China
| | - Francis L. Munier
- Department of Ophthalmology, Jules-Gonin Eye Hospital, Lausanne, Switzerland
| | - David H. Abramson
- Department of Ophthalmology, Memorial Sloan Kettering Cancer Center, New York, USA
| | - Carol L. Shields
- Ocular Oncology Service, Wills Eye Hospital, Thomas Jefferson University, Philadelphia, USA
| | | | - Festus Njuguna
- Department of Department of Child Health and Paediatrics, Moi University, Eldoret, Kenya
| | - Brenda L. Gallie
- Department of Ophthalmology & Vision Sciences, The Hospital for Sick Children & University of Toronto, 555 University Ave, Toronto, Ontario M5G1X8, Canada
| |
Collapse
|
43
|
Mendoza PR, Grossniklaus HE. The Biology of Retinoblastoma. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2015; 134:503-16. [PMID: 26310174 DOI: 10.1016/bs.pmbts.2015.06.012] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Retinoblastoma, the most common primary intraocular cancer of childhood, is a malignancy arising in the developing retina. Tumor formation usually begins with mutation in both alleles of the retinoblastoma tumor suppressor gene RB1, followed by a series of other genetic alterations that correlate with the clinical stage and pathologic findings of the tumor. Analysis of sporadic and heritable retinoblastoma led to the development of Knudson's Two-Hit Hypothesis. The tumor suppressor RB1 gene codes for the retinoblastoma protein which is a key regulator of cellular replication via its binding to the E2F family of transcription factors and chromatin remodeling proteins. Studies of preclinical models of retinoblastoma in the form of transgenic mice and xenograft animal models have significantly contributed to the development of effective therapies for this disease. Research on retinoblastoma has paved the way toward understanding many of the mechanisms in cancer genetics.
Collapse
Affiliation(s)
- Pia R Mendoza
- Department of Ophthalmology, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Hans E Grossniklaus
- Department of Ophthalmology, Emory University School of Medicine, Atlanta, Georgia, USA.
| |
Collapse
|
44
|
Aleassa EM, Xing M, Keijzer R. Nanomedicine as an innovative therapeutic strategy for pediatric cancer. Pediatr Surg Int 2015; 31:611-6. [PMID: 25690563 DOI: 10.1007/s00383-015-3683-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/10/2015] [Indexed: 11/29/2022]
Abstract
Childhood cancer is the leading cause of mortality in children between 1 and 14 years of age. Malignancy accounts for 18 % of overall childhood mortality. Therapeutic advances in the field of pediatric oncology have helped to increase survival. Nanotechnology is the modification of materials at a nanoscale and can be used to deliver therapeutic agents. Examples of nanotechnology applications are organic self-assembled amphiphilic polymers, non-organic nanocarriers such as nanotubes and quantum dots. Each of these has their own utility in different settings. Application of nanotechnology in medicine has been extensively studied. Examples of pediatric tumors that received special attention are: neuroblastoma, retinoblastoma, central nervous system tumors and musculoskeletal tumors. This review will summarize the application of nanomedicine as an innovative management strategy in pediatric oncology.
Collapse
|
45
|
Nair RM, Vemuganti GK. Transgenic Models in Retinoblastoma Research. Ocul Oncol Pathol 2015; 1:207-13. [PMID: 27171579 DOI: 10.1159/000370157] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Accepted: 11/26/2014] [Indexed: 01/10/2023] Open
Abstract
Understanding the mechanism of retinoblastoma (Rb) tumor initiation, development, progression and metastasis in vivo mandates the use of animal models that mimic this intraocular tumor in its genetic, anatomic, histologic and ultrastructural features. An early setback for developing mouse Rb models was that Rb mutations did not cause tumorigenesis in murine retinas. Subsequently, the discovery that the p107 protein takes over the role of pRb in mice led to the development of several animal models that phenotypically and histologically resemble the human form. This paper summarizes the transgenic models that have been developed over the last three decades.
Collapse
Affiliation(s)
- Rohini M Nair
- School of Medical Sciences, University of Hyderabad, Hyderabad, India
| | - Geeta K Vemuganti
- School of Medical Sciences, University of Hyderabad, Hyderabad, India
| |
Collapse
|
46
|
Bhavsar D, Subramanian K, Sethuraman S, Krishnan UM. Management of retinoblastoma: opportunities and challenges. Drug Deliv 2015; 23:2488-2496. [PMID: 25758593 DOI: 10.3109/10717544.2015.1016193] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Nano-delivery systems have significantly evolved over the last decade for the treatment of cancer by enabling site-specific delivery and improved bioavailability. The widely investigated nanoparticle systems are biodegradable polyesters, dendrimers, liposomes, mesoporous silica and gold nanoparticles. These particles when conjugated with different targeting motifs enhance the therapeutic efficiency of the drug molecules and biocompatibility. However, the application of such systems towards the treatment of retinoblastoma (RB), a rapidly spreading childhood eye cancer, still remains in its infancy. Nanoparticle-based systems that have been investigated for RB therapy have displayed improved drug delivery to the most restricted posterior segment of the eyes and have increased intra-vitreal half-life of the chemotherapy agents highlighting its potential in treatment of this form of cancer. This review focuses on the challenges involved in the treatment of RB and highlights the attempts made to develop nano-dimensional systems for the treatment of RB.
Collapse
Affiliation(s)
- Dhiraj Bhavsar
- a School of Chemical & Biotechnology, Centre for Nanotechnology & Advanced Biomaterials, Sastra University , Thanjavur , Tamil Nadu , India and
| | - Krishnakumar Subramanian
- b L&T Ophthalmic Pathology Department , Vision Research Foundation , Sankara Nethralaya , Chennai , Tamil Nadu , India
| | - Swaminathan Sethuraman
- a School of Chemical & Biotechnology, Centre for Nanotechnology & Advanced Biomaterials, Sastra University , Thanjavur , Tamil Nadu , India and
| | - Uma Maheswari Krishnan
- a School of Chemical & Biotechnology, Centre for Nanotechnology & Advanced Biomaterials, Sastra University , Thanjavur , Tamil Nadu , India and
| |
Collapse
|
47
|
Hartnett TE, O’Connor AJ, Ladewig K. Cubosomes and other potential ocular drug delivery vehicles for macromolecular therapeutics. Expert Opin Drug Deliv 2015; 12:1513-26. [DOI: 10.1517/17425247.2015.1021680] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
48
|
Altundal Y, Sajo E, Makrigiorgos GM, Berbeco RI, Ngwa W. Nanoparticle-aided Radiotherapy for Retinoblastoma and Choroidal Melanoma. IFMBE PROCEEDINGS 2015; 51:907-910. [PMID: 28003818 PMCID: PMC5166600 DOI: 10.1007/978-3-319-19387-8_221] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
This work investigates the dosimetric feasibility of employing gold nanoparticles (AuNPs) or carboplatin nano-particles (CNPs) to enhance radiotherapy (RT) treatment efficacy for ocular cancers: retinoblastoma (Rb) and choroidal melanoma (CM), during kV-energy internal and external beam radiotherapy. The results predict that substantial dose enhancement may be achieved by employing AuNPs or CNPs in conjunction with radiotherapy for ocular cancer using kV-energy photon beams. Brachytherapy sources yield higher dose enhancement than the external beam in kV energy range. However, the external beam has the advantage of being non-invasive.
Collapse
Affiliation(s)
| | - Erno Sajo
- University of Massachusetts Lowell, Lowell, MA, USA
| | - G Mike Makrigiorgos
- Department of Radiation Oncology, Brigham and Women's Hospital, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA USA
| | - Ross I Berbeco
- Department of Radiation Oncology, Brigham and Women's Hospital, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA USA
| | - Wilfred Ngwa
- University of Massachusetts Lowell, Lowell, MA, USA; Department of Radiation Oncology, Brigham and Women's Hospital, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA USA
| |
Collapse
|
49
|
Kannan RM, Nance E, Kannan S, Tomalia DA. Emerging concepts in dendrimer-based nanomedicine: from design principles to clinical applications. J Intern Med 2014; 276:579-617. [PMID: 24995512 DOI: 10.1111/joim.12280] [Citation(s) in RCA: 353] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Dendrimers are discrete nanostructures/nanoparticles with 'onion skin-like' branched layers. Beginning with a core, these nanostructures grow in concentric layers to produce stepwise increases in size that are similar to the dimensions of many in vivo globular proteins. These branched tree-like concentric layers are referred to as 'generations'. The outer generation of each dendrimer presents a precise number of functional groups that may act as a monodispersed platform for engineering favourable nanoparticle-drug and nanoparticle-tissue interactions. These features have attracted significant attention in medicine as nanocarriers for traditional small drugs, proteins, DNA/RNA and in some instances as intrinsically active nanoscale drugs. Dendrimer-based drugs, as well as diagnostic and imaging agents, are emerging as promising candidates for many nanomedicine applications. First, we will provide a brief survey of recent nanomedicines that are either approved or in the clinical approval process. This will be followed by an introduction to a new 'nanoperiodic' concept which proposes nanoparticle structure control and the engineering of 'critical nanoscale design parameters' (CNDPs) as a strategy for optimizing pharmocokinetics, pharmocodynamics and site-specific targeting of disease. This paradigm has led to the emergence of CNDP-directed nanoperiodic property patterns relating nanoparticle behaviour to critical in vivo clinical translation issues such as cellular uptake, transport, elimination, biodistribution, accumulation and nanotoxicology. With a focus on dendrimers, these CNDP-directed nanoperiodic patterns are used as a strategy for designing and optimizing nanoparticles for a variety of drug delivery and imaging applications, including a recent dendrimer-based theranostic nanodevice for imaging and treating cancer. Several emerging preclinical dendrimer-based nanotherapy concepts related to inflammation, neuro-inflammatory disorders, oncology and infectious and ocular diseases are reviewed. Finally we will consider challenges and opportunities anticipated for future clinical translation, nanotoxicology and the commercialization of nanomedicine.
Collapse
Affiliation(s)
- R M Kannan
- Department of Ophthalmology, Center for Nanomedicine, Baltimore, MD, USA
| | | | | | | |
Collapse
|
50
|
Grossniklaus HE. Retinoblastoma. Fifty years of progress. The LXXI Edward Jackson Memorial Lecture. Am J Ophthalmol 2014; 158:875-91. [PMID: 25065496 PMCID: PMC4250440 DOI: 10.1016/j.ajo.2014.07.025] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Revised: 07/14/2014] [Accepted: 07/14/2014] [Indexed: 12/12/2022]
Abstract
PURPOSE To review the progress made in understanding the genetic basis, molecular pathology, and treatment of retinoblastoma since the previous Jackson lecture on the topic was published 50 years ago. DESIGN Perspective based on personal experience and the literature. METHODS The literature regarding retinoblastoma was reviewed since 1963. Advances in understanding the biology and treatment of retinoblastoma provided context through the author's clinical, pathologic, and research experiences. RESULTS Retinoblastoma was first identified in the 1500s and defined as a unique clinicopathologic entity in 1809. Until the mid-1900s, knowledge advanced sporadically, with technological developments of ophthalmoscopy and light microscopy, and with the introduction of surgical enucleation, chemotherapy, and radiation therapy. During the last 50 years, research and treatment have progressed at an unprecedented rate owing to innovations in molecular biology and the development of targeted therapies. During this time period, the retinoblastoma gene was discovered; techniques for genetic testing for retinoblastoma were developed; and plaque brachytherapy, chemoreduction, intra-arterial chemotherapy, and intraocular injections of chemotherapeutic agents were successfully introduced. CONCLUSIONS Nearly all patients with retinoblastoma in developed countries can now be cured of their primary cancer--a remarkable achievement for a childhood cancer that once was uniformly fatal. Much of this success is owed to deciphering the role of the Rb gene, and the benefits of targeted therapies, such as chemoreduction with consolidation as well as intra-arterial and intravitreal chemotherapies. Going forward, the main challenge will be ensuring that access to care is available for all children, particularly those in developing countries.
Collapse
Affiliation(s)
- Hans E Grossniklaus
- Departments of Ophthalmology and Pathology, Emory University School of Medicine, Atlanta, Georgia.
| |
Collapse
|