1
|
Shah D, Gehani A, Mahajan A, Chakrabarty N. Advanced Techniques in Head and Neck Cancer Imaging: Guide to Precision Cancer Management. Crit Rev Oncog 2023; 28:45-62. [PMID: 37830215 DOI: 10.1615/critrevoncog.2023047799] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2023]
Abstract
Precision treatment requires precision imaging. With the advent of various advanced techniques in head and neck cancer treatment, imaging has become an integral part of the multidisciplinary approach to head and neck cancer care from diagnosis to staging and also plays a vital role in response evaluation in various tumors. Conventional anatomic imaging (CT scan, MRI, ultrasound) remains basic and focuses on defining the anatomical extent of the disease and its spread. Accurate assessment of the biological behavior of tumors, including tumor cellularity, growth, and response evaluation, is evolving with recent advances in molecular, functional, and hybrid/multiplex imaging. Integration of these various advanced diagnostic imaging and nonimaging methods aids understanding of cancer pathophysiology and provides a more comprehensive evaluation in this era of precision treatment. Here we discuss the current status of various advanced imaging techniques and their applications in head and neck cancer imaging.
Collapse
Affiliation(s)
- Diva Shah
- Senior Consultant Radiologist, Department of Radiodiagnosis, HCG Cancer Centre, Ahmedabad, 380060, Gujarat, India
| | - Anisha Gehani
- Department of Radiology and Imaging Sciences, Tata Medical Centre, New Town, WB 700160, India
| | - Abhishek Mahajan
- Department of Radiology, The Clatterbridge Cancer Centre NHS Foundation Trust, Liverpool, L7 8YA, United Kingdom
| | - Nivedita Chakrabarty
- Department of Radiodiagnosis, Tata Memorial Hospital, Tata Memorial Centre, Homi Bhabha National Institute (HBNI), 400012, Mumbai, India
| |
Collapse
|
2
|
Li X, Xia S, Ji R, Zhan W, Zhou W. Evaluation of Microwave Ablation in 4T1 Breast Tumor by a Novel VEFGR2 Targeted Ultrasound Contrast Agents. Front Oncol 2021; 11:690152. [PMID: 34354946 PMCID: PMC8329532 DOI: 10.3389/fonc.2021.690152] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 06/28/2021] [Indexed: 02/01/2023] Open
Abstract
Objectives A novel ultrasound contrast agent (UCA) VEGFR2-targeting iron-doped silica (SiO2) hollow nanoparticles (VEGFR2-PEG-HSNs-Fe NPs) was prepared and applied in microwave ablation for breast cancer to investigate its value in the evaluation of effectiveness after tumor ablation. Methods VEGFR2-PEG-HSNs-Fe NPs were prepared by using nano-SiO2, which was regarded as a substrate and etched by ferrous acetate, and then modified with anti-VEGFR2 antibody. Laser confocal microscope and flow cytometry were used to observe its main physicochemical properties, and biological safety was also investigated. After the xenograft tumor was treated with microwave ablation, the extent of perfusion defect was evaluated by ultrasound by injecting VEGFR2-PEG-HSNs-Fe NPs. Results The average particle size of VEGFR2-PEG-HSNs-Fe was 276.64 ± 30.31 nm, and the surface potential was −13.46 ± 2.83 mV. In vitro, the intensity of ultrasound signal increased with UCA concentration. Good biosafety was performed in in vivo and in vitro experiments. The enhanced ultrasound signal was detected in tumors after injection of VEGFR2-PEG-HSNs-Fe NPs, covering the whole tumor. The lesions, which were incompletely ablated, presented as contrast agent perfusion at the periphery of the tumor, and contrast enhanced ultrasound (CEUS) was performed again after complementary ablation. It was confirmed that all the lesions were completely ablated. Conclusion Nano-targeted UCAs VEGFR2-PEG-HSNs-Fe NPs had good biosafety and ability of specific imaging, which might be used as a contrast agent in CEUS to evaluate the efficacy of tumor ablation.
Collapse
Affiliation(s)
- Xiaoyu Li
- Department of Ultrasound, RuiJin Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Shujun Xia
- Department of Ultrasound, RuiJin Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Ri Ji
- Department of Ultrasound, RuiJin Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Weiwei Zhan
- Department of Ultrasound, RuiJin Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Wei Zhou
- Department of Ultrasound, RuiJin Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China.,Department of Ultrasound, RuiJin Hospital/Lu Wan Branch, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| |
Collapse
|
3
|
Targeted molecular imaging of head and neck squamous cell carcinoma: a window into precision medicine. Chin Med J (Engl) 2021; 133:1325-1336. [PMID: 32404691 PMCID: PMC7289307 DOI: 10.1097/cm9.0000000000000751] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Tumor biomarkers play important roles in tumor growth, invasion, and metastasis. Imaging of specific biomarkers will help to understand different biological activities, thereby achieving precise medicine for each head and neck squamous cell carcinoma (HNSCC) patient. Here, we describe various molecular targets and molecular imaging modalities for HNSCC imaging. An extensive search was undertaken in the PubMed database with the keywords including “HNSCC,” “molecular imaging,” “biomarker,” and “multimodal imaging.” Imaging targets in HNSCC consist of the epidermal growth factor receptor, cluster of differentiation 44 variant 6 (CD44v6), and mesenchymal-epithelial transition factor and integrins. Targeted molecular imaging modalities in HNSCC include optical imaging, ultrasound, magnetic resonance imaging, positron emission tomography, and single-photon emission computed tomography. Making the most of each single imaging method, targeted multimodal imaging has a great potential in the accurate diagnosis and therapy of HNSCC. By visualizing tumor biomarkers at cellular and molecular levels in vivo, targeted molecular imaging can be used to identify specific genetic and metabolic aberrations, thereby accelerating personalized treatment development for HNSCC patients.
Collapse
|
4
|
Walker JAT, Wang X, Peter K, Kempe K, Corrie SR. Dynamic Solid-State Ultrasound Contrast Agent for Monitoring pH Fluctuations In Vivo. ACS Sens 2020; 5:1190-1197. [PMID: 32202414 DOI: 10.1021/acssensors.0c00245] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The key challenge for in vivo biosensing is to design biomarker-responsive contrast agents that can be readily detected and monitored by broadly available biomedical imaging modalities. While a range of biosensors have been designed for optical, photoacoustic, and magnetic resonance imaging (MRI) modalities, technical challenges have hindered the development of ultrasound biosensors, even though ultrasound is widely available, portable, safe, and capable of both surface and deep tissue imaging. Typically, contrast-enhanced ultrasound imaging is generated by gas-filled microbubbles. However, they suffer from short imaging times because of the diffusion of the gas into the surrounding media. This demands an alternate approach to generate nanosensors that reveal pH-specific changes in ultrasound contrast in biological environments. Silica cores were coated with pH-responsive poly(methacrylic acid) (PMASH) in a layer-by-layer (LbL) approach and subsequently covered in a porous organosilica shell. Transmission electron microscopy (TEM) and confocal laser scanning microscopy (CLSM) were employed to monitor the successful fabrication of multilayered particles and prove the pH-dependent shrinkage/swelling of the PMASH layer. This demonstrates that reduction in pH below healthy physiological levels resulted in significant increases in ultrasound contrast, in gel phantoms, mouse cadaver tissue, and live mice. The future of such materials could be developed into a platform of biomarker-responsive ultrasound contrast agents for clinical applications.
Collapse
Affiliation(s)
- Julia Ann-Therese Walker
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Chemical Engineering, Monash University, 20 Research Way, Clayton, VIC 3800, Australia
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, and Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia
| | - Xiaowei Wang
- Baker Heart and Diabetes Institute, 75 Commercial Road, Melbourne, VIC 3004, Australia
- Department of Medicine, Monash University, Melbourne 3800, Australia
| | - Karlheinz Peter
- Baker Heart and Diabetes Institute, 75 Commercial Road, Melbourne, VIC 3004, Australia
- Department of Medicine, Monash University, Melbourne 3800, Australia
| | - Kristian Kempe
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, and Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia
- Materials Science and Engineering, Monash University, Clayton, VIC 3800, Australia
| | - Simon R. Corrie
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Chemical Engineering, Monash University, 20 Research Way, Clayton, VIC 3800, Australia
| |
Collapse
|
5
|
Seetaha S, Ratanabanyong S, Choowongkomon K. Expression, purification, and characterization of the native intracellular domain of human epidermal growth factor receptors 1 and 2 in Escherichia coli. Appl Microbiol Biotechnol 2019; 103:8427-8438. [PMID: 31506720 DOI: 10.1007/s00253-019-10116-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 08/16/2019] [Accepted: 08/30/2019] [Indexed: 12/13/2022]
Abstract
Human epidermal growth factor receptors (EGFR) are an important target in drug discovery in terms of both protein-small-molecule interactions and protein-protein interactions. In this work, the isolation of a stable soluble protein of the tyrosine kinase domain of EGFR in Escherichia coli expression has been accomplished. This successful study presents the expression and purification conditions to obtain a stable soluble protein of the active tyrosine kinase domain of EGFR (EGFR-TK) and ErbB2 (ErbB2-TK) in a bacterial system, albeit in relatively low yields. The recombinant gene was inserted into a pColdI vector and recombinant protein was expressed at low temperature. Purification of EGFR-TK and ErbB2-TK took place under the same conditions by purified supernatant using a diethylaminoethyl sepharose column followed by anion exchange and size-exclusion chromatography columns. The final yields of purified EGFR-TK and ErbB2-TK were 8.4 and 9.5 mg per liter of culture, respectively. Determination of EGFR-TK and ErbB2-TK was performed via enzyme activity with commercial drugs. The IC50 values of erlotinib and afatinib against EGFR-TK were 13.09 nM and 2.36 nM respectively, while the IC50 values of lapatinib and afatinib against ErbB2-TK were 24.69 nM and 1.36 nM, respectively. These results confirmed that soluble proteins of the active intracellular domain of the HERs family were successfully expressed and purified in a bacterial system. The new protein expression and purification protocol will greatly facilitate the enzymatic inhibition and structural studies of this protein for drug discovery.
Collapse
Affiliation(s)
- Supaphorn Seetaha
- Center for Advanced Studies in Nanotechnology for Chemical, Food and Agricultural Industries, KU Institute for Advanced Studies, Kasetsart University, Bangkok, 10900, Thailand
| | - Siriluk Ratanabanyong
- Interdisciplinary Graduate Program in Bioscience, Faculty of Science, Kasetsart University, Bangkok, 10900, Thailand
| | - Kiattawee Choowongkomon
- Center for Advanced Studies in Nanotechnology for Chemical, Food and Agricultural Industries, KU Institute for Advanced Studies, Kasetsart University, Bangkok, 10900, Thailand. .,Interdisciplinary Graduate Program in Bioscience, Faculty of Science, Kasetsart University, Bangkok, 10900, Thailand. .,Department of Biochemistry, Faculty of Science, Kasetsart University, 50 Ngam Wong Wan Road, Chatuchak, Bangkok, 10900, Thailand.
| |
Collapse
|
6
|
Wan H, Du H, Wang F, Dai H. Molecular imaging in the second near-infrared window. ADVANCED FUNCTIONAL MATERIALS 2019; 29:1900566. [PMID: 31885529 PMCID: PMC6934177 DOI: 10.1002/adfm.201900566] [Citation(s) in RCA: 100] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Indexed: 05/22/2023]
Abstract
In the past decade, noticeable progress has been achieved regarding fluorescence imaging in the second near-infrared (NIR-II) window. Fluorescence imaging in the NIR-II window demonstrates superiorities of deep tissue penetration and high spatial and temporal resolution, which are beneficial for profiling physiological processes. Meanwhile, molecular imaging has emerged as an efficient tool to decipher biological activities on the molecular and cellular level. Extending molecular imaging into the NIR-II window would enhance the imaging performance, providing more detailed and accurate information of the biological system. In this progress report, selected achievements made in NIR-II molecular imaging are summarized. The organization of this report is based on strategies underlying rational designs of NIR-II imaging probes and their applications in molecular imaging are highlighted. This progress report may provide guidance and reference for further development of functional NIR-II probes designed for high-performance molecular imaging.
Collapse
Affiliation(s)
- Hao Wan
- Department of Chemistry, Stanford University, Stanford, CA 94305, USA
| | - Haotian Du
- Department of Chemistry, Stanford University, Stanford, CA 94305, USA
| | - Feifei Wang
- Department of Chemistry, Stanford University, Stanford, CA 94305, USA
| | - Hongjie Dai
- Department of Chemistry, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
7
|
Narihira K, Watanabe A, Sheng H, Endo H, Feril LB, Irie Y, Ogawa K, Moosavi-Nejad S, Kondo S, Kikuta T, Tachibana K. Enhanced cell killing and apoptosis of oral squamous cell carcinoma cells with ultrasound in combination with cetuximab coated albumin microbubbles. J Drug Target 2017; 26:278-288. [DOI: 10.1080/1061186x.2017.1367005] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Kyoichi Narihira
- Department of Oral and Maxillofacial Surgery, Fukuoka University School of Medicine, Fukuoka, Japan
| | - Akiko Watanabe
- Department of Anatomy, Fukuoka University School of Medicine, Fukuoka, Japan
| | - Hong Sheng
- Department of Anatomy, Fukuoka University School of Medicine, Fukuoka, Japan
| | - Hitomi Endo
- Department of Anatomy, Fukuoka University School of Medicine, Fukuoka, Japan
| | - Loreto B. Feril
- Department of Anatomy, Fukuoka University School of Medicine, Fukuoka, Japan
| | - Yutaka Irie
- Department of Anatomy, Fukuoka University School of Medicine, Fukuoka, Japan
| | - Koichi Ogawa
- Department of Anatomy, Fukuoka University School of Medicine, Fukuoka, Japan
| | | | - Seiji Kondo
- Department of Oral and Maxillofacial Surgery, Fukuoka University School of Medicine, Fukuoka, Japan
| | - Toshihiro Kikuta
- Department of Oral and Maxillofacial Surgery, Fukuoka University School of Medicine, Fukuoka, Japan
| | - Katsuro Tachibana
- Department of Anatomy, Fukuoka University School of Medicine, Fukuoka, Japan
| |
Collapse
|
8
|
Volz KR, Evans KD, Kanner CD, Buford JA, Freimer M, Sommerich CM. Targeted Contrast-Enhanced Ultrasound for Inflammation Detection. JOURNAL OF DIAGNOSTIC MEDICAL SONOGRAPHY 2016. [DOI: 10.1177/8756479316678616] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Molecular imaging is a form of nanotechnology that enables the noninvasive examination of biological processes in vivo. Radiopharmaceutical agents are used to target biochemical markers, permitting their detection and evaluation. Early visualization of molecular variations indicative of pathophysiological processes can aid in patient diagnoses and management decisions. Molecular imaging is performed by introducing into the body molecular probes, which are often contrast agents that have been nanoengineered to target and tether to molecules, thus enabling their radiologic identification. Through a nanoengineering process, ultrasound contrast agents can be targeted to specific molecules, extending ultrasound’s capabilities from the tissue to molecular level. Molecular ultrasound, or targeted contrast-enhanced ultrasound (TCEUS), has recently emerged as a popular molecular imaging technique due to its ability to provide real-time anatomic and functional information without ionizing radiation. However, molecular ultrasound represents a novel form of molecular imaging and consequently remains largely preclinical. This review explores the commonalities of TCEUS across several molecular targets and points to the need for standardization of kinetic behavior analysis. The literature underscores evidence gaps and the need for additional research. The application of TCEUS is unlimited but needs further standardization to ensure that future research studies are comparable.
Collapse
Affiliation(s)
- Kevin R. Volz
- College of Medicine, School of Health and Rehabilitation Science, The Ohio State University, Columbus, OH, USA
| | - Kevin D. Evans
- College of Medicine, School of Health and Rehabilitation Science, The Ohio State University, Columbus, OH, USA
| | - Christopher D. Kanner
- College of Medicine, School of Health and Rehabilitation Science, The Ohio State University, Columbus, OH, USA
| | - John A. Buford
- College of Medicine, School of Health and Rehabilitation Science, The Ohio State University, Columbus, OH, USA
| | - Miriam Freimer
- College of Medicine, School of Health and Rehabilitation Science, The Ohio State University, Columbus, OH, USA
| | | |
Collapse
|
9
|
Marshalek JP, Sheeran PS, Ingram P, Dayton PA, Witte RS, Matsunaga TO. Intracellular delivery and ultrasonic activation of folate receptor-targeted phase-change contrast agents in breast cancer cells in vitro. J Control Release 2016; 243:69-77. [PMID: 27686582 DOI: 10.1016/j.jconrel.2016.09.010] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Revised: 08/01/2016] [Accepted: 09/12/2016] [Indexed: 12/22/2022]
Abstract
Breast cancer is a diverse and complex disease that remains one of the leading causes of death among women. Novel, outside-of-the-box imaging and treatment methods are needed to supplement currently available technologies. In this study, we present evidence for the intracellular delivery and ultrasound-stimulated activation of folate receptor (FR)-targeted phase-change contrast agents (PCCAs) in MDA-MB-231 and MCF-7 breast cancer cells in vitro. PCCAs are lipid-coated, perfluorocarbon-filled particles formulated as nanoscale liquid droplets capable of vaporization into gaseous microbubbles for imaging or therapy. Cells were incubated with 1:1 decafluorobutane (DFB)/octafluoropropane (OFP) PCCAs for 1h, imaged via confocal microscopy, exposed to ultrasound (9MHz, MI=1.0 or 1.5), and imaged again after insonation. FR-targeted PCCAs were observed intracellularly in both cell lines, but uptake was significantly greater (p<0.001) in MDA-MB-231 cells (93.0% internalization at MI=1.0, 79.5% at MI=1.5) than MCF-7 cells (42.4% internalization at MI=1.0, 35.7% at MI=1.5). Folate incorporation increased the frequency of intracellular PCCA detection 45-fold for MDA-MB-231 cells and 7-fold for MCF-7 cells, relative to untargeted PCCAs. Intracellularly activated PCCAs ranged from 500nm to 6μm (IQR=800nm-1.5μm) with a mean diameter of 1.15±0.59 (SD) microns. The work presented herein demonstrates the feasibility of PCCA intracellular delivery and activation using breast cancer cells, illuminating a new platform toward intracellular imaging or therapeutic delivery with ultrasound.
Collapse
Affiliation(s)
| | - Paul S Sheeran
- Physical Sciences Department, Sunnybrook Research Institute, Toronto, ON, Canada; Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Pier Ingram
- Department of Medical Imaging, University of Arizona, Tucson, AZ, USA
| | - Paul A Dayton
- Joint Department of Biomedical Engineering, The University of North Carolina and North Carolina State University, Chapel Hill, NC, USA
| | - Russell S Witte
- Department of Medical Imaging, University of Arizona, Tucson, AZ, USA
| | - Terry O Matsunaga
- Department of Medical Imaging, University of Arizona, Tucson, AZ, USA.
| |
Collapse
|
10
|
Molecular Ultrasound Imaging of Tissue Inflammation Using an Animal Model of Acute Kidney Injury. Mol Imaging Biol 2016; 17:786-92. [PMID: 25905474 DOI: 10.1007/s11307-015-0860-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
PURPOSE The objective of this study was to evaluate the use of molecular ultrasound (US) imaging for monitoring the early inflammatory effects following acute kidney injury. PROCEDURES A population of rats underwent 30 min of renal ischemia (acute kidney injury, N = 6) or sham injury (N = 4) using established surgical methods. Animals were divided and molecular US imaging was performed during the bolus injection of a targeted microbubble (MB) contrast agent to either P-selectin or vascular cell adhesion molecule 1 (VCAM-1). Imaging was performed before surgery and 4 and 24 h thereafter. After manual segmentation of renal tissue space, the molecular US signal was calculated as the difference between time-intensity curve data before MB injection and after reaching steady-state US image enhancement. All animals were terminated after the 24 h imaging time point and kidneys excised for immunohistochemical (IHC) analysis. RESULTS Renal inflammation was analyzed using molecular US imaging. While results using the P-selectin and VCAM-1 targeted MBs were comparable, it appears that the former was more sensitive to biomarker expression. All molecular US imaging measures had a positive correlation with IHC findings. CONCLUSIONS Acute kidney injury is a serious disease in need of improved noninvasive methods to help diagnose the extent of injury and monitor the tissue throughout disease progression. Molecular US imaging appears well suited to address this challenge and more research is warranted.
Collapse
|
11
|
Kumar KN, Sarkar K. Interfacial Rheological Properties of Contrast Microbubble Targestar P as a Function of Ambient Pressure. ULTRASOUND IN MEDICINE & BIOLOGY 2016; 42:1010-1017. [PMID: 26777069 DOI: 10.1016/j.ultrasmedbio.2015.11.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Revised: 11/04/2015] [Accepted: 11/18/2015] [Indexed: 06/05/2023]
Abstract
In this Technical Note, we determine the interfacial rheological parameters of the encapsulation of the contrast agent Targestar P using ultrasound attenuation. The characteristic parameters are obtained according to two interfacial rheological models. The properties-surface dilatational elasticity (0.09 ± 0.01 N/m) and surface dilatational viscosity (8 ± 0.1E-9 N·s/m)-are found to be of similar magnitude for both models. Contrast microbubbles experience different ambient pressure in different organs. We also measure these parameters as functions of ambient pressure using attenuation measured at different overpressures (0, 100 and 200 mm Hg). For each value of ambient hydrostatic pressure, we determine the rheological properties, accounting for changes in the size distribution caused by the pressure change. We discuss different models of size distribution change under overpressure: pure adiabatic compression or gas exchange with surrounding medium. The dilatational surface elasticity and viscosity are found to increase with increasing ambient pressure.
Collapse
Affiliation(s)
- Krishna N Kumar
- Department of Mechanical and Aerospace Engineering, The George Washington University, Washington, DC 20052, USA
| | - Kausik Sarkar
- Department of Mechanical and Aerospace Engineering, The George Washington University, Washington, DC 20052, USA.
| |
Collapse
|
12
|
Yeh JSM, Sennoga CA, McConnell E, Eckersley R, Tang MX, Nourshargh S, Seddon JM, Haskard DO, Nihoyannopoulos P. A Targeting Microbubble for Ultrasound Molecular Imaging. PLoS One 2015; 10:e0129681. [PMID: 26161541 PMCID: PMC4498921 DOI: 10.1371/journal.pone.0129681] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Accepted: 05/12/2015] [Indexed: 11/30/2022] Open
Abstract
Rationale Microbubbles conjugated with targeting ligands are used as contrast agents for ultrasound molecular imaging. However, they often contain immunogenic (strept)avidin, which impedes application in humans. Although targeting bubbles not employing the biotin-(strept)avidin conjugation chemistry have been explored, only a few reached the stage of ultrasound imaging in vivo, none were reported/evaluated to show all three of the following properties desired for clinical applications: (i) low degree of non-specific bubble retention in more than one non-reticuloendothelial tissue; (ii) effective for real-time imaging; and (iii) effective for acoustic quantification of molecular targets to a high degree of quantification. Furthermore, disclosures of the compositions and methodologies enabling reproduction of the bubbles are often withheld. Objective To develop and evaluate a targeting microbubble based on maleimide-thiol conjugation chemistry for ultrasound molecular imaging. Methods and Results Microbubbles with a previously unreported generic (non-targeting components) composition were grafted with anti-E-selectin F(ab’)2 using maleimide-thiol conjugation, to produce E-selectin targeting microbubbles. The resulting targeting bubbles showed high specificity to E-selectin in vitro and in vivo. Non-specific bubble retention was minimal in at least three non-reticuloendothelial tissues with inflammation (mouse heart, kidneys, cremaster). The bubbles were effective for real-time ultrasound imaging of E-selectin expression in the inflamed mouse heart and kidneys, using a clinical ultrasound scanner. The acoustic signal intensity of the targeted bubbles retained in the heart correlated strongly with the level of E-selectin expression (|r|≥0.8), demonstrating a high degree of non-invasive molecular quantification. Conclusions Targeting microbubbles for ultrasound molecular imaging, based on maleimide-thiol conjugation chemistry and the generic composition described, may possess properties (i)–(iii) desired for clinical applications.
Collapse
Affiliation(s)
- James Shue-Min Yeh
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
- Department of Cardiology, Hammersmith Hospital, London, United Kingdom
- Imaging Sciences Department, Medical Research Council, Imperial College London, London, United Kingdom
| | - Charles A. Sennoga
- Imaging Sciences Department, Medical Research Council, Imperial College London, London, United Kingdom
- Department of Chemistry, Imperial College London, London, United Kingdom
| | - Ellen McConnell
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Robert Eckersley
- Imaging Sciences Department, Medical Research Council, Imperial College London, London, United Kingdom
| | - Meng-Xing Tang
- Department of Bioengineering, Imperial College London, London, United Kingdom
| | - Sussan Nourshargh
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
- William Harvey Research Institute, Queen Mary, University of London, London, United Kingdom
| | - John M. Seddon
- Department of Chemistry, Imperial College London, London, United Kingdom
| | - Dorian O. Haskard
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Petros Nihoyannopoulos
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
- Department of Cardiology, Hammersmith Hospital, London, United Kingdom
- * E-mail:
| |
Collapse
|
13
|
Warram JM, de Boer E, Sorace AG, Chung TK, Kim H, Pleijhuis RG, van Dam GM, Rosenthal EL. Antibody-based imaging strategies for cancer. Cancer Metastasis Rev 2015; 33:809-22. [PMID: 24913898 DOI: 10.1007/s10555-014-9505-5] [Citation(s) in RCA: 97] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Although mainly developed for preclinical research and therapeutic use, antibodies have high antigen specificity, which can be used as a courier to selectively deliver a diagnostic probe or therapeutic agent to cancer. It is generally accepted that the optimal antigen for imaging will depend on both the expression in the tumor relative to normal tissue and the homogeneity of expression throughout the tumor mass and between patients. For the purpose of diagnostic imaging, novel antibodies can be developed to target antigens for disease detection, or current FDA-approved antibodies can be repurposed with the covalent addition of an imaging probe. Reuse of therapeutic antibodies for diagnostic purposes reduces translational costs since the safety profile of the antibody is well defined and the agent is already available under conditions suitable for human use. In this review, we will explore a wide range of antibodies and imaging modalities that are being translated to the clinic for cancer identification and surgical treatment.
Collapse
Affiliation(s)
- Jason M Warram
- Department of Surgery, University of Alabama at Birmingham, Birmingham, AL, USA
| | | | | | | | | | | | | | | |
Collapse
|
14
|
van Rooij T, Daeichin V, Skachkov I, de Jong N, Kooiman K. Targeted ultrasound contrast agents for ultrasound molecular imaging and therapy. Int J Hyperthermia 2015; 31:90-106. [PMID: 25707815 DOI: 10.3109/02656736.2014.997809] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Ultrasound contrast agents (UCAs) are used routinely in the clinic to enhance contrast in ultrasonography. More recently, UCAs have been functionalised by conjugating ligands to their surface to target specific biomarkers of a disease or a disease process. These targeted UCAs (tUCAs) are used for a wide range of pre-clinical applications including diagnosis, monitoring of drug treatment, and therapy. In this review, recent achievements with tUCAs in the field of molecular imaging, evaluation of therapy, drug delivery, and therapeutic applications are discussed. We present the different coating materials and aspects that have to be considered when manufacturing tUCAs. Next to tUCA design and the choice of ligands for specific biomarkers, additional techniques are discussed that are applied to improve binding of the tUCAs to their target and to quantify the strength of this bond. As imaging techniques rely on the specific behaviour of tUCAs in an ultrasound field, it is crucial to understand the characteristics of both free and adhered tUCAs. To image and quantify the adhered tUCAs, the state-of-the-art techniques used for ultrasound molecular imaging and quantification are presented. This review concludes with the potential of tUCAs for drug delivery and therapeutic applications.
Collapse
Affiliation(s)
- Tom van Rooij
- Department of Biomedical Engineering, Thoraxcenter , Erasmus MC, Rotterdam , the Netherlands
| | | | | | | | | |
Collapse
|
15
|
Abstract
In view of the trend towards personalized treatment strategies for (cancer) patients, there is an increasing need to noninvasively determine individual patient characteristics. Such information enables physicians to administer to patients accurate therapy with appropriate timing. For the noninvasive visualization of disease-related features, imaging biomarkers are expected to play a crucial role. Next to the chemical development of imaging probes, this requires preclinical studies in animal tumour models. These studies provide proof-of-concept of imaging biomarkers and help determine the pharmacokinetics and target specificity of relevant imaging probes, features that provide the fundamentals for translation to the clinic. In this review we describe biological processes derived from the “hallmarks of cancer” that may serve as imaging biomarkers for diagnostic, prognostic and treatment response monitoring that are currently being studied in the preclinical setting. A number of these biomarkers are also being used for the initial preclinical assessment of new intervention strategies. Uniquely, noninvasive imaging approaches allow longitudinal assessment of changes in biological processes, providing information on the safety, pharmacokinetic profiles and target specificity of new drugs, and on the antitumour effectiveness of therapeutic interventions. Preclinical biomarker imaging can help guide translation to optimize clinical biomarker imaging and personalize (combination) therapies.
Collapse
|
16
|
Xiong L, Edwards CK, Zhou L. The biological function and clinical utilization of CD147 in human diseases: a review of the current scientific literature. Int J Mol Sci 2014; 15:17411-41. [PMID: 25268615 PMCID: PMC4227170 DOI: 10.3390/ijms151017411] [Citation(s) in RCA: 162] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Revised: 09/08/2014] [Accepted: 09/16/2014] [Indexed: 02/05/2023] Open
Abstract
CD147 or EMMPRIN is a member of the immunoglobulin superfamily in humans. It is widely expressed in human tumors and plays a central role in the progression of many cancers by stimulating the secretion of matrix metalloproteinases (MMPs) and cytokines. CD147 regulates cell proliferation, apoptosis, and tumor cell migration, metastasis and differentiation, especially under hypoxic conditions. CD147 is also important to many organ systems. This review will provide a detailed overview of the discovery, characterization, molecular structure, diverse biological functions and regulatory mechanisms of CD147 in human physiological and pathological processes. In particular, recent studies have demonstrated the potential application of CD147 not only as a phenotypic marker of activated regulatory T cells but also as a potential diagnostic marker for early-stage disease. Moreover, CD147 is recognized as an effective therapeutic target for hepatocellular carcinoma (HCC) and other cancers, and exciting clinical progress has been made in HCC treatment using CD147-directed monoclonal antibodies.
Collapse
Affiliation(s)
- Lijuan Xiong
- Central Laboratory, Navy General Hospital, Beijing 100048, China.
| | - Carl K Edwards
- National Key Laboratory of Biotherapy and Cancer Research (NKLB), West China Hospital and Medical School, Sichuan University, Chengdu 610041, China.
| | - Lijun Zhou
- Central Laboratory, Navy General Hospital, Beijing 100048, China.
| |
Collapse
|
17
|
Mahoney M, Sorace A, Warram J, Samuel S, Hoyt K. Volumetric contrast-enhanced ultrasound imaging of renal perfusion. JOURNAL OF ULTRASOUND IN MEDICINE : OFFICIAL JOURNAL OF THE AMERICAN INSTITUTE OF ULTRASOUND IN MEDICINE 2014; 33:1427-37. [PMID: 25063408 PMCID: PMC4135386 DOI: 10.7863/ultra.33.8.1427] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
OBJECTIVES To determine whether volumetric contrast-enhanced ultrasound (US) imaging has the potential to monitor changes in renal perfusion after vascular injury. METHODS Volumetric contrast-enhanced US uses a series of planar image acquisitions, capturing the nonlinear second harmonic signal from microbubble contrast agents flowing in the vasculature. Tissue perfusion parameters (peak intensity [IPK], time to peak intensity [TPK], wash-in rate [WIR], and area under the curve [AUC]) were derived from time-intensity curve data collected during in vitro flow phantom studies and in vivo animal studies of healthy and injured kidneys. For the flow phantom studies, either the contrast agent concentration was held constant (10 μL/L) with varying volumetric flow rates (10, 20, and 30 mL/min), or the flow rate was held constant (30 mL/min) with varying contrast agent concentrations (5, 10, and 20 μL/L). Animal studies used healthy rats or those that underwent renal ischemia-reperfusion injury. Renal studies were performed with healthy rats while the transducer angle was varied for each volumetric contrast-enhanced US image acquisition (reference or 0°, 45°, and 90°) to determine whether repeated renal perfusion measures were isotropic and independent of transducer position. Blood serum biomarkers and immunohistology were used to confirm acute kidney injury. RESULTS Flow phantom results revealed a linear relationship between microbubble concentrations injected into the flow system and the IPK, WIR, and AUC (R(2) > 0.56; P < .005). Furthermore, there was a linear relationship between volume flow rate changes and the TPK, WIR, and AUC (R(2) > 0.77; P < .005). No significant difference was found between the transducer angle during data acquisition and any of the perfusion measures (P > .60). After induction of renal ischemia-reperfusion injury in the rat animal model (n = 4), volumetric contrast-enhanced US imaging of the injured kidney revealed an initial reduction in renal perfusion compared to control animals, followed by progressive recovery of vascular function. CONCLUSIONS Volumetric contrast-enhanced US-based renal perfusion imaging may prove clinically feasible for detecting and monitoring acute kidney injury.
Collapse
Affiliation(s)
- Marshall Mahoney
- Departments of Biomedical Engineering (M.M., A.S.), Radiology (J.W., S.S., K.H.), and Electrical Engineering (K.H.), and Comprehensive Cancer Center (K.H.), University of Alabama at Birmingham, Birmingham, Alabama USA
| | - Anna Sorace
- Departments of Biomedical Engineering (M.M., A.S.), Radiology (J.W., S.S., K.H.), and Electrical Engineering (K.H.), and Comprehensive Cancer Center (K.H.), University of Alabama at Birmingham, Birmingham, Alabama USA
| | - Jason Warram
- Departments of Biomedical Engineering (M.M., A.S.), Radiology (J.W., S.S., K.H.), and Electrical Engineering (K.H.), and Comprehensive Cancer Center (K.H.), University of Alabama at Birmingham, Birmingham, Alabama USA
| | - Sharon Samuel
- Departments of Biomedical Engineering (M.M., A.S.), Radiology (J.W., S.S., K.H.), and Electrical Engineering (K.H.), and Comprehensive Cancer Center (K.H.), University of Alabama at Birmingham, Birmingham, Alabama USA
| | - Kenneth Hoyt
- Departments of Biomedical Engineering (M.M., A.S.), Radiology (J.W., S.S., K.H.), and Electrical Engineering (K.H.), and Comprehensive Cancer Center (K.H.), University of Alabama at Birmingham, Birmingham, Alabama USA.
| |
Collapse
|
18
|
Saini R, Hoyt K. Recent developments in dynamic contrast-enhanced ultrasound imaging of tumor angiogenesis. ACTA ACUST UNITED AC 2014; 6:41-52. [PMID: 25221623 DOI: 10.2217/iim.13.74] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Angiogenesis is a critical process for tumor growth and metastatic dissemination. There is tremendous interest in the development of noninvasive methods for imaging tumor angiogenesis, and ultrasound (US) is an emerging platform technology to address this challenge. The introduction of intravascular microbubble contrast agents not only allows real-time visualization of tumor perfusion during an US examination, but they can be functionalized with specific ligands to permit molecular US imaging of angiogenic biomarkers that are overexpressed on the tumor endothelium. In this article, we will review current concepts and developing trends for US imaging of tumor angiogenesis, including relevant preclinical and clinicsal findings.
Collapse
Affiliation(s)
- Reshu Saini
- Department of Radiology, University of Alabama at Birmingham, Birmingham, AL, USA ; Biomedical Engineering, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Kenneth Hoyt
- Department of Radiology, University of Alabama at Birmingham, Birmingham, AL, USA ; Biomedical Engineering, University of Alabama at Birmingham, Birmingham, AL, USA ; Electrical & Computer Engineering, University of Alabama at Birmingham, Birmingham, AL, USA ; Comprehensive Cancer Center, University of Alabama at Birmingham, Volker Hall G082, 1670 University Boulevard, Birmingham, AL 35294, USA
| |
Collapse
|
19
|
Giacomini CP, Jeffrey RB, Shin LK. Ultrasonographic Evaluation of Malignant and Normal Cervical Lymph Nodes. Semin Ultrasound CT MR 2013; 34:236-47. [DOI: 10.1053/j.sult.2013.04.003] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
20
|
Expression and purification of chimeric peptide comprising EGFR B-cell epitope and measles virus fusion protein T-cell epitope in Escherichia coli. Protein Expr Purif 2013; 88:7-12. [DOI: 10.1016/j.pep.2012.11.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2012] [Revised: 11/02/2012] [Accepted: 11/16/2012] [Indexed: 01/31/2023]
|
21
|
Saini R, Sorace AG, Warram JM, Mahoney MJ, Zinn KR, Hoyt K. An animal model allowing controlled receptor expression for molecular ultrasound imaging. ULTRASOUND IN MEDICINE & BIOLOGY 2013; 39:172-80. [PMID: 23122640 PMCID: PMC3563100 DOI: 10.1016/j.ultrasmedbio.2012.08.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2011] [Revised: 08/03/2012] [Accepted: 08/21/2012] [Indexed: 05/24/2023]
Abstract
Reported in this study is an animal model system for evaluating targeted ultrasound (US) contrast agents binding using adenoviral (Ad) vectors to modulate cellular receptor expression. An Ad vector encoding an extracellular hemagglutinin (HA) epitope tag and a green fluorescent protein (GFP) reporter was used to regulate receptor expression. A low and high receptor density (in breast cancer tumor bearing mice) was achieved by varying the Ad dose with a low plaque forming unit (PFU) on day 1 and high PFU on day 2 of experimentation. Targeted US contrast agents, or microbubbles (MB), were created by conjugating either biotinylated anti-HA or IgG isotype control antibodies to the MB surface with biotin-streptavidin linkage. Targeted and control MBs were administered on both days of experimentation and contrast-enhanced US (CEUS) was performed on each mouse using MB flash destruction technique. Signal intensities from MBs retained within tumor vasculature were analyzed through a custom Matlab program. Results showed intratumoral enhancement attributable to targeted MB accumulation was significantly increased from the low Ad vector dosing and the high Ad vector dosing (p = 0.001). Control MBs showed no significant differences between day 1 and day 2 imaging (p = 0.96). Additionally, targeted MBs showed a 10.5-fold increase in intratumoral image intensity on day 1 and an 18.8-fold increase in image intensity on day 2 compared with their control MB counterparts.
Collapse
Affiliation(s)
- Reshu Saini
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Anna G. Sorace
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Jason M. Warram
- Department of Radiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Marshall J. Mahoney
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Kurt R. Zinn
- Department of Radiology, University of Alabama at Birmingham, Birmingham, AL, USA
- Department of Electrical and Computer Engineering, University of Alabama at Birmingham, Birmingham, AL, USA
- Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Kenneth Hoyt
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, AL, USA
- Department of Radiology, University of Alabama at Birmingham, Birmingham, AL, USA
- Department of Electrical and Computer Engineering, University of Alabama at Birmingham, Birmingham, AL, USA
- Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|