1
|
Sun KY, Schmitt JE, Moore TM, Barzilay R, Almasy L, Schultz LM, Mackey AP, Kafadar E, Sha Z, Seidlitz J, Mallard TT, Cui Z, Li H, Fan Y, Fair DA, Satterthwaite TD, Keller AS, Alexander-Bloch A. Polygenic Risk, Psychopathology, and Personalized Functional Brain Network Topography in Adolescence. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2025:2024.09.20.24314007. [PMID: 39399003 PMCID: PMC11469391 DOI: 10.1101/2024.09.20.24314007] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
Importance Functional brain networks are associated with both behavior and genetic factors. To uncover biological mechanisms of psychopathology, it is critical to define how the spatial organization of these networks relates to genetic risk during development. Objective To determine the relationships among transdiagnostic polygenic risk scores (PRSs), personalized functional brain networks (PFNs), and overall psychopathology (p-factor) during early adolescence. Design The Adolescent Brain Cognitive Development (ABCD) Study ⍰ is an ongoing longitudinal cohort study of 21 collection sites across the United States. Here, we conduct a cross-sectional analysis of ABCD baseline data, collected 2017-2018. Setting The ABCD Study ® is a multi-site community-based study. Participants The sample is largely recruited through school systems. Exclusion criteria included severe sensory, intellectual, medical, or neurological issues that interfere with protocol and scanner contraindications. Split-half subsets were used for cross-validation, matched on age, ethnicity, family structure, handedness, parental education, site, sex, and anesthesia exposure. Exposures Polygenic risk scores of transdiagnostic genetic factors F1 (PRS-F1) and F2 (PRS-F2) derived from adults in Psychiatric Genomic Consortium and UK Biobanks datasets. PRS-F1 indexes liability for common psychiatric symptoms and disorders related to mood disturbance; PRS-F2 indexes liability for rarer forms of mental illness characterized by mania and psychosis. Main Outcomes and Measures (1) P-factor derived from bifactor models of youth- and parent-reported mental health assessments. (2) Person-specific functional brain network topography derived from functional magnetic resonance imaging (fMRI) scans. Results Total participants included 11,873 youths ages 9-10 years old; 5,678 (47.8%) were female, and the mean (SD) age was 9.92 (0.62) years. PFN topography was found to be heritable ( N =7,459, 57.1% of vertices h 2 p FDR <0.05, mean h 2 =0.35). PRS-F1 was associated with p-factor ( N =5,815, r =0.12, 95% CI [0.09-0.15], p<0.001). Interindividual differences in functional network topography were associated with p-factor ( N =7,459, mean r =0.12), PRS-F1 ( N =3,982, mean r =0.05), and PRS-F2 ( N =3,982, mean r =0.08). Cortical maps of p-factor and PRS-F1 regression coefficients were highly correlated ( r =0.7, p =0.003). Conclusions and Relevance Polygenic risk for transdiagnostic adulthood psychopathology is associated with both p-factor and heritable PFN topography during early adolescence. These results advance our understanding of the developmental drivers of psychopathology. Key Points Question: What are the relationships among transdiagnostic polygenic risk scores (PRSs), personalized functional brain networks (PFNs), and overall psychopathology (p-factor) during early adolescence?Findings: In this cross-sectional analysis of the Adolescent Brain Cognitive Development (ABCD) Study ⍰ ( N =11,873, ages 9-10), we found that a PRS of common mood-related psychopathology in adulthood (PRS-F1) was associated with p-factor during early adolescence. Interindividual differences in p-factor, PRS-F1, and PRS-F2 (capturing more severe psychotic disorders in adulthood) were all robustly associated with PFN topography. Meaning: Polygenic risk for transdiagnostic adulthood psychopathology is associated with both p-factor and PFN topography during early adolescence.
Collapse
|
2
|
Feczko E, Stoyell SM, Moore LA, Alexopoulos D, Bagonis M, Barrett K, Bower B, Cavender A, Chamberlain TA, Conan G, Day TK, Goradia D, Graham A, Heisler-Roman L, Hendrickson TJ, Houghton A, Kardan O, Kiffmeyer EA, Lee EG, Lundquist JT, Lucena C, Martin T, Mummaneni A, Myricks M, Narnur P, Perrone AJ, Reiners P, Rueter AR, Saw H, Styner M, Sung S, Tiklasky B, Wisnowski JL, Yacoub E, Zimmermann B, Smyser CD, Rosenberg MD, Fair DA, Elison JT. Baby Open Brains: An Open-Source Repository of Infant Brain Segmentations. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.02.616147. [PMID: 39464007 PMCID: PMC11507744 DOI: 10.1101/2024.10.02.616147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
Reproducibility of neuroimaging research on infant brain development remains limited due to highly variable protocols and processing approaches. Progress towards reproducible pipelines is limited by a lack of benchmarks such as gold standard brain segmentations. Addressing this core limitation, we constructed the Baby Open Brains (BOBs) Repository, an open source resource comprising manually curated and expert-reviewed infant brain segmentations. Markers and expert reviewers manually segmented anatomical MRI data from 71 infant imaging visits across 51 participants, using both T1w and T2w images per visit. Anatomical images showed dramatic differences in myelination and intensities across the 1 to 9 month age range, emphasizing the need for densely sampled gold standard manual segmentations in these ages. The BOBs repository is publicly available through the Masonic Institute for the Developing Brain (MIDB) Open Data Initiative, which links S3 storage, Datalad for version control, and BrainBox for visualization. This repository represents an open-source paradigm, where new additions and changes can be added, enabling a community-driven resource that will improve over time and extend into new ages and protocols. These manual segmentations and the ongoing repository provide a benchmark for evaluating and improving pipelines dependent upon segmentations in the youngest populations. As such, this repository provides a vitally needed foundation for early-life large-scale studies such as HBCD.
Collapse
Affiliation(s)
- Eric Feczko
- Masonic Institute for the Developing Brain, University of Minnesota
- Department of Pediatrics, University of Minnesota
| | - Sally M Stoyell
- Masonic Institute for the Developing Brain, University of Minnesota
- Institute of Child Development, University of Minnesota
| | - Lucille A Moore
- Masonic Institute for the Developing Brain, University of Minnesota
| | | | | | | | | | | | | | - Greg Conan
- Masonic Institute for the Developing Brain, University of Minnesota
| | - Trevor Km Day
- Masonic Institute for the Developing Brain, University of Minnesota
- Institute of Child Development, University of Minnesota
| | | | | | | | - Timothy J Hendrickson
- Masonic Institute for the Developing Brain, University of Minnesota
- Minnesota Supercomputing Institute, University of Minnesota
| | - Audrey Houghton
- Masonic Institute for the Developing Brain, University of Minnesota
| | | | | | - Erik G Lee
- Masonic Institute for the Developing Brain, University of Minnesota
- Minnesota Supercomputing Institute, University of Minnesota
| | | | | | | | | | | | | | - Anders J Perrone
- Masonic Institute for the Developing Brain, University of Minnesota
| | - Paul Reiners
- Masonic Institute for the Developing Brain, University of Minnesota
| | - Amanda R Rueter
- Masonic Institute for the Developing Brain, University of Minnesota
| | - Hteemoo Saw
- Institute of Child Development, University of Minnesota
| | | | - Sooyeon Sung
- Masonic Institute for the Developing Brain, University of Minnesota
| | - Barry Tiklasky
- Masonic Institute for the Developing Brain, University of Minnesota
| | | | - Essa Yacoub
- Center for Magnetic Resonance Research, University of Minnesota
| | | | | | | | - Damien A Fair
- Masonic Institute for the Developing Brain, University of Minnesota
- Department of Pediatrics, University of Minnesota
- Institute of Child Development, University of Minnesota
| | - Jed T Elison
- Masonic Institute for the Developing Brain, University of Minnesota
- Department of Pediatrics, University of Minnesota
- Institute of Child Development, University of Minnesota
| |
Collapse
|
3
|
Popov VA, Ukraintseva SV, Duan H, Yashin AI, Arbeev KG. Traffic-related air pollution and APOE4 can synergistically affect hippocampal volume in older women: new findings from UK Biobank. FRONTIERS IN DEMENTIA 2024; 3:1402091. [PMID: 39135618 PMCID: PMC11317402 DOI: 10.3389/frdem.2024.1402091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Accepted: 07/10/2024] [Indexed: 08/15/2024]
Abstract
A growing research body supports the connection between neurodegenerative disorders, including Alzheimer's disease (AD), and traffic-related air pollution (TRAP). However, the underlying mechanisms are not well understood. A deeper investigation of TRAP effects on hippocampal volume (HV), a major biomarker of neurodegeneration, may help clarify these mechanisms. Here, we explored TRAP associations with the HV in older participants of the UK Biobank (UKB), taking into account the presence of APOE e4 allele (APOE4), the strongest genetic risk factor for AD. Exposure to TRAP was approximated by the distance of the participant's main residence to the nearest major road (DNMR). The left/right HV was measured by magnetic resonance imaging (MRI) in cubic millimeters (mm3). Analysis of variance (ANOVA), Welch test, and regression were used to examine statistical significance. We found significant interactions between DNMR and APOE4 that influenced HV. Specifically, DNMR <50m (equivalent of a chronically high exposure to TRAP), and carrying APOE4 were synergistically associated with a significant (P = 0.01) reduction in the right HV by about 2.5% in women aged 60-75 years (results for men didn't reach a statistical significance). Results of our study suggest that TRAP and APOE4 jointly promote neurodegeneration in women. Living farther from major roads may help reduce the risks of neurodegenerative disorders, including AD, in female APOE4 carriers.
Collapse
|
4
|
Vike NL, Bari S, Kim BW, Katsaggelos AK, Blood AJ, Breiter HC, on behalf of the Massachusetts General Hospital Phenotype Genotype Project. Characterizing major depressive disorder and substance use disorder using heatmaps and variable interactions: The utility of operant behavior and brain structure relationships. PLoS One 2024; 19:e0299528. [PMID: 38466739 PMCID: PMC10927130 DOI: 10.1371/journal.pone.0299528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 02/13/2024] [Indexed: 03/13/2024] Open
Abstract
BACKGROUND Rates of depression and addiction have risen drastically over the past decade, but the lack of integrative techniques remains a barrier to accurate diagnoses of these mental illnesses. Changes in reward/aversion behavior and corresponding brain structures have been identified in those with major depressive disorder (MDD) and cocaine-dependence polysubstance abuse disorder (CD). Assessment of statistical interactions between computational behavior and brain structure may quantitatively segregate MDD and CD. METHODS Here, 111 participants [40 controls (CTRL), 25 MDD, 46 CD] underwent structural brain MRI and completed an operant keypress task to produce computational judgment metrics. Three analyses were performed: (1) linear regression to evaluate groupwise (CTRL v. MDD v. CD) differences in structure-behavior associations, (2) qualitative and quantitative heatmap assessment of structure-behavior association patterns, and (3) the k-nearest neighbor machine learning approach using brain structure and keypress variable inputs to discriminate groups. RESULTS This study yielded three primary findings. First, CTRL, MDD, and CD participants had distinct structure-behavior linear relationships, with only 7.8% of associations overlapping between any two groups. Second, the three groups had statistically distinct slopes and qualitatively distinct association patterns. Third, a machine learning approach could discriminate between CTRL and CD, but not MDD participants. CONCLUSIONS These findings demonstrate that variable interactions between computational behavior and brain structure, and the patterns of these interactions, segregate MDD and CD. This work raises the hypothesis that analysis of interactions between operant tasks and structural neuroimaging might aide in the objective classification of MDD, CD and other mental health conditions.
Collapse
Affiliation(s)
- Nicole L. Vike
- Department of Computer Science, University of Cincinnati, Cincinnati, Ohio, United States of America
| | - Sumra Bari
- Department of Computer Science, University of Cincinnati, Cincinnati, Ohio, United States of America
| | - Byoung Woo Kim
- Department of Computer Science, University of Cincinnati, Cincinnati, Ohio, United States of America
| | - Aggelos K. Katsaggelos
- Department of Electrical and Computer Engineering, Northwestern University, Evanston, Illinois, United States of America
- Department of Computer Science, Northwestern University, Evanston, Illinois, United States of America
- Department of Radiology, Northwestern University, Chicago, Illinois, United States of America
| | - Anne J. Blood
- Department of Psychiatry, Mood and Motor Control Laboratory (MAML), Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
- Department of Psychiatry, Laboratory of Neuroimaging and Genetics, Massachusetts General Hospital and Harvard School of Medicine, Boston, Massachusetts, United States of America
| | - Hans C. Breiter
- Department of Computer Science, University of Cincinnati, Cincinnati, Ohio, United States of America
- Department of Psychiatry, Mood and Motor Control Laboratory (MAML), Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
- Department of Psychiatry, Laboratory of Neuroimaging and Genetics, Massachusetts General Hospital and Harvard School of Medicine, Boston, Massachusetts, United States of America
- Department of Biomedical Engineering, University of Cincinnati, Cincinnati, Ohio, United States of America
| | | |
Collapse
|
5
|
Popov VA, Ukraintseva S, Duan H, Arbeev KG, Yashin AI. Prior infections are associated with smaller hippocampal volume in older women. FRONTIERS IN DEMENTIA 2024; 3:1297193. [PMID: 38707479 PMCID: PMC11067727 DOI: 10.3389/frdem.2024.1297193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/07/2024]
Abstract
Accumulating evidence suggests that infections may play a major role in Alzheimer's disease (AD), however, mechanism is unclear, as multiple pathways may be involved. One possibility is that infections could contribute to neurodegeneration directly by promoting neuronal death. We explored relationships between history of infections and brain hippocampal volume (HV), a major biomarker of neurodegeneration, in a subsample of the UK Biobank (UKB) participants. Infectious disease diagnoses were based on ICD10 codes. The left/right HV was measured by the magnetic resonance imaging (MRI) in cubic millimeters and normalized. Analysis of variance (ANOVA), Welch test, and regression were used to examine statistical significance. We found that HV was significantly lower in women aged 60-75, as well as 65-80, years, with history of infections, compared to same age women without such history. The effect size increased with age faster for the left vs. right HV. Results for males didn't reach statistical significance. Results of our study support a major role of adult infections in neurodegeneration in women. The detrimental effect of infections on HV became stronger with age, in line with declining resilience and increasing brain vulnerability to stressors due to aging. The faster increase in the effect size observed for the left vs. right HV may indicate that female verbal memory degrades faster over time than visual-spatial memory. The observed sex difference may reflect a higher vulnerability of female brain to infection-related factors, which in turn may contribute to a higher risk of AD in women compared to men.
Collapse
Affiliation(s)
| | | | - Hongzhe Duan
- Biodemography of Aging Research Unit, Social Science Research
Institute, Duke University, Durham, NC, United States
| | - Konstantin G. Arbeev
- Biodemography of Aging Research Unit, Social Science Research
Institute, Duke University, Durham, NC, United States
| | - Anatoliy I. Yashin
- Biodemography of Aging Research Unit, Social Science Research
Institute, Duke University, Durham, NC, United States
| |
Collapse
|
6
|
Spironelli C, Marino M, Mantini D, Montalti R, Craven AR, Ersland L, Angrilli A, Hugdahl K. fMRI fluctuations within the language network are correlated with severity of hallucinatory symptoms in schizophrenia. SCHIZOPHRENIA (HEIDELBERG, GERMANY) 2023; 9:75. [PMID: 37903802 PMCID: PMC10616281 DOI: 10.1038/s41537-023-00401-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 10/05/2023] [Indexed: 11/01/2023]
Abstract
Although schizophrenia (SZ) represents a complex multiform psychiatric disorder, one of its most striking symptoms are auditory verbal hallucinations (AVH). While the neurophysiological origin of this pervasive symptom has been extensively studied, there is so far no consensus conclusion on the neural correlates of the vulnerability to hallucinate. With a network-based fMRI approach, following the hypothesis of altered hemispheric dominance (Crow, 1997), we expected that LN alterations might result in self-other distinction impairments in SZ patients, and lead to the distressing subjective experiences of hearing voices. We used the independent component analysis of resting-state fMRI data, to first analyze LN connectivity in three groups of participants: SZ patients with and without hallucinations (AVH/D+ and AVH/D-, respectively), and a matched healthy control (HC) group. Then, we assessed the fMRI fluctuations using additional analyses based on fractional Amplitude of Low Frequency-Fluctuations (fALFF), both at the network- and region of interest (ROI)-level. Specific LN nodes were recruited in the right hemisphere (insula and Broca homologous area) for AVH/D+ , but not for HC and AVH/D-, consistent with a left hemisphere deficit in AVH patients. The fALFF analysis at the ROI level showed a negative correlation between fALFF Slow-4 and P1 Delusions PANSS subscale and a positive correlation between the fALFF Slow-5 and P3 Hallucination PANSS subscale for AVH/D+ only. These effects were not a consequence of structural differences between groups, as morphometric analysis did not evidence any group differences. Given the role of language as an emerging property resulting from the integration of many high-level cognitive processes and the underlying cortical areas, our results suggest that LN features from fMRI connectivity and fluctuations can be a marker of neurophysiological features characterizing SZ patients depending on their vulnerability to hallucinate.
Collapse
Affiliation(s)
- Chiara Spironelli
- Department of General Psychology, University of Padova, Padova, Italy.
- Padova Neuroscience Center, University of Padova, Padova, Italy.
| | - Marco Marino
- Department of General Psychology, University of Padova, Padova, Italy.
- Movement Control and Neuroplasticity Research Group, KU Leuven, Leuven, Belgium.
| | - Dante Mantini
- Movement Control and Neuroplasticity Research Group, KU Leuven, Leuven, Belgium
| | - Riccardo Montalti
- Department of General Psychology, University of Padova, Padova, Italy
| | - Alexander R Craven
- Department of Biological and Medical Psychology, University of Bergen, Bergen, Norway
- Department of Clinical Engineering, Haukeland University Hospital, Bergen, Norway
- NORMENT Center of Excellence, Haukeland University Hospital, Bergen, Norway
| | - Lars Ersland
- Department of Clinical Engineering, Haukeland University Hospital, Bergen, Norway
| | - Alessandro Angrilli
- Department of General Psychology, University of Padova, Padova, Italy
- Padova Neuroscience Center, University of Padova, Padova, Italy
| | - Kenneth Hugdahl
- Department of Biological and Medical Psychology, University of Bergen, Bergen, Norway
- Division of Psychiatry, Haukeland University Hospital, Bergen, Norway
- Department of Radiology, Haukeland University Hospital, Bergen, Norway
| |
Collapse
|
7
|
Müller UJ, Schmalenbach LJ, Dobrowolny H, Guest PC, Schlaaff K, Mawrin C, Truebner K, Bogerts B, Gos T, Bernstein HG, Steiner J. Reduced anterior insular cortex volume in male heroin addicts: a postmortem study. Eur Arch Psychiatry Clin Neurosci 2023; 273:1233-1241. [PMID: 36719479 PMCID: PMC9888352 DOI: 10.1007/s00406-023-01553-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 01/09/2023] [Indexed: 02/01/2023]
Abstract
We and others have observed reduced volumes of brain regions, including the nucleus accumbens, globus pallidus, hypothalamus, and habenula in opioid addiction. Notably, the insular cortex has been under increasing study in addiction, and a smaller anterior insula has been found in alcohol-addicted cases. Here, we have investigated whether similar effects occur in heroin addicts compared to healthy controls. Volumes of the anterior and posterior insula in heroin addicts (n = 14) and controls (n = 13) were assessed by morphometry of Nissl-myelin-stained serial whole-brain coronal sections. The mean relative volume of the anterior insular cortex was smaller than in non-addicted controls (3010 ± 614 *10-6 versus 3970 ± 1306 *10-6; p = 0.021). However, no significant differences in neuronal cell counts were observed. Therefore, the observed volume reduction appears to be a consequence of damaged connecting structures such as neuropil and glial cells. The findings were not confounded by age or duration of autolysis. Our results provide further evidence of structural deficits in key hubs of the addiction circuitry in heroin-dependent individuals and warrant further research in this area.
Collapse
Affiliation(s)
- Ulf J Müller
- Department of Psychiatry and Psychotherapy, University of Magdeburg, Magdeburg, Germany
- Translational Psychiatry Laboratory, University of Magdeburg, Magdeburg, Germany
- Forensic Psychiatric State Hospital of Saxony-Anhalt, Stendal-Uchtspringe, Germany
| | - Lucas J Schmalenbach
- Department of Psychiatry and Psychotherapy, University of Magdeburg, Magdeburg, Germany
- Translational Psychiatry Laboratory, University of Magdeburg, Magdeburg, Germany
| | - Henrik Dobrowolny
- Department of Psychiatry and Psychotherapy, University of Magdeburg, Magdeburg, Germany
- Translational Psychiatry Laboratory, University of Magdeburg, Magdeburg, Germany
| | - Paul C Guest
- Department of Psychiatry and Psychotherapy, University of Magdeburg, Magdeburg, Germany
- Translational Psychiatry Laboratory, University of Magdeburg, Magdeburg, Germany
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, University of Campinas (UNICAMP), Campinas, Brazil
| | - Konstantin Schlaaff
- Department of Psychiatry and Psychotherapy, University of Magdeburg, Magdeburg, Germany
- Translational Psychiatry Laboratory, University of Magdeburg, Magdeburg, Germany
- German Center for Mental Health (DZP), Center for Intervention and Research On Adaptive and Maladaptive Brain Circuits Underlying, Mental Health (C-I-R-C), Jena-Magdeburg-Halle, Germany
| | - Christian Mawrin
- Department of Neuropathology, University of Magdeburg, Magdeburg, Germany
- Center for Behavioral Brain Sciences, Magdeburg, Germany
| | - Kurt Truebner
- Institute of Legal Medicine, University of Duisburg-Essen, Essen, Germany
| | - Bernhard Bogerts
- Department of Psychiatry and Psychotherapy, University of Magdeburg, Magdeburg, Germany
- Translational Psychiatry Laboratory, University of Magdeburg, Magdeburg, Germany
- Center for Behavioral Brain Sciences, Magdeburg, Germany
- Salus Institute, Magdeburg, Germany
| | - Tomasz Gos
- Department of Psychiatry and Psychotherapy, University of Magdeburg, Magdeburg, Germany
- Translational Psychiatry Laboratory, University of Magdeburg, Magdeburg, Germany
- Department of Forensic Medicine, Medical University of Gdańsk, Gdańsk, Poland
| | - Hans-Gert Bernstein
- Department of Psychiatry and Psychotherapy, University of Magdeburg, Magdeburg, Germany
- Translational Psychiatry Laboratory, University of Magdeburg, Magdeburg, Germany
| | - Johann Steiner
- Department of Psychiatry and Psychotherapy, University of Magdeburg, Magdeburg, Germany.
- Translational Psychiatry Laboratory, University of Magdeburg, Magdeburg, Germany.
- Center for Behavioral Brain Sciences, Magdeburg, Germany.
- German Center for Mental Health (DZP), Center for Intervention and Research On Adaptive and Maladaptive Brain Circuits Underlying, Mental Health (C-I-R-C), Jena-Magdeburg-Halle, Germany.
- Center for Health Und Medical Prevention (CHaMP), Magdeburg, Germany.
| |
Collapse
|
8
|
Elmalem MS, Moody H, Ruffle JK, de Schotten MT, Haggard P, Diehl B, Nachev P, Jha A. A framework for focal and connectomic mapping of transiently disrupted brain function. Commun Biol 2023; 6:430. [PMID: 37076578 PMCID: PMC10115870 DOI: 10.1038/s42003-023-04787-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 03/30/2023] [Indexed: 04/21/2023] Open
Abstract
The distributed nature of the neural substrate, and the difficulty of establishing necessity from correlative data, combine to render the mapping of brain function a far harder task than it seems. Methods capable of combining connective anatomical information with focal disruption of function are needed to disambiguate local from global neural dependence, and critical from merely coincidental activity. Here we present a comprehensive framework for focal and connective spatial inference based on sparse disruptive data, and demonstrate its application in the context of transient direct electrical stimulation of the human medial frontal wall during the pre-surgical evaluation of patients with focal epilepsy. Our framework formalizes voxel-wise mass-univariate inference on sparsely sampled data within the statistical parametric mapping framework, encompassing the analysis of distributed maps defined by any criterion of connectivity. Applied to the medial frontal wall, this transient dysconnectome approach reveals marked discrepancies between local and distributed associations of major categories of motor and sensory behaviour, revealing differentiation by remote connectivity to which purely local analysis is blind. Our framework enables disruptive mapping of the human brain based on sparsely sampled data with minimal spatial assumptions, good statistical efficiency, flexible model formulation, and explicit comparison of local and distributed effects.
Collapse
Affiliation(s)
- Michael S Elmalem
- UCL Queen Square Institute of Neurology, London, UK.
- National Hospital for Neurology and Neurosurgery, London, UK.
- Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany.
| | - Hanna Moody
- UCL Queen Square Institute of Neurology, London, UK
| | - James K Ruffle
- UCL Queen Square Institute of Neurology, London, UK
- National Hospital for Neurology and Neurosurgery, London, UK
| | - Michel Thiebaut de Schotten
- Groupe d'Imagerie Neurofonctionnelle, Institut des Maladies Neurodégénérative, University of Bordeaux, Bordeaux, France
- Brain Connectivity and Behaviour Laboratory, Sorbonne Universities, Paris, France
| | | | - Beate Diehl
- UCL Queen Square Institute of Neurology, London, UK
- National Hospital for Neurology and Neurosurgery, London, UK
| | - Parashkev Nachev
- UCL Queen Square Institute of Neurology, London, UK.
- National Hospital for Neurology and Neurosurgery, London, UK.
| | - Ashwani Jha
- UCL Queen Square Institute of Neurology, London, UK.
- National Hospital for Neurology and Neurosurgery, London, UK.
| |
Collapse
|
9
|
Romeo Z, Spironelli C. Hearing voices in the head: Two meta-analyses on structural correlates of auditory hallucinations in schizophrenia. Neuroimage Clin 2022; 36:103241. [PMID: 36279752 PMCID: PMC9668662 DOI: 10.1016/j.nicl.2022.103241] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 10/17/2022] [Accepted: 10/18/2022] [Indexed: 11/11/2022]
Abstract
Past voxel-based morphometry (VBM) studies demonstrate reduced grey matter volume (GMV) in schizophrenia (SZ) patients' brains in various cortical and subcortical regions. Probably due to SZ symptoms' heterogeneity, these results are often inconsistent and difficult to integrate. We hypothesized that focusing on auditory verbal hallucinations (AVH) - one of the most common SZ symptoms - would allow reducing heterogeneity and discovering further compelling evidence of SZ neural correlates. We carried out two voxel-based meta-analyses of past studies that investigated the structural correlates of AVH in SZ. The review of whole-brain VBM studies published until June 2022 in PubMed and PsychInfo databases yielded (a) 13 studies on correlations between GMV and AVH severity in SZ patients (n = 472; 86 foci), and (b) 11 studies involving comparisons between hallucinating SZ patients (n = 504) and healthy controls (n = 524; 74 foci). Data were analyzed using the Activation Likelihood Estimation method. AVH severity was associated with decreased GMV in patients' left superior temporal gyrus (STG) and left posterior insula. Compared with healthy controls, hallucinating SZ patients showed reduced GMV on the left anterior insula and left inferior frontal gyrus (IFG). Our findings revealed important structural dysfunctions in a left lateralized cluster of brain regions, including the insula and temporo-frontal regions, that significantly contribute to the severity and persistence of AVH. Structural atrophy found in circuits involved in generating and perceiving speech, as well as in auditory signal processing, might reasonably be considered a biological marker of AVH in SZ.
Collapse
Affiliation(s)
- Zaira Romeo
- Department of General Psychology, University of Padova, Italy
| | - Chiara Spironelli
- Department of General Psychology, University of Padova, Italy; Padova Neuroscience Center, University of Padova, Italy.
| |
Collapse
|
10
|
Algumaei AH, Algunaid RF, Rushdi MA, Yassine IA. Feature and decision-level fusion for schizophrenia detection based on resting-state fMRI data. PLoS One 2022; 17:e0265300. [PMID: 35609033 PMCID: PMC9129055 DOI: 10.1371/journal.pone.0265300] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Accepted: 02/28/2022] [Indexed: 12/01/2022] Open
Abstract
Mental disorders, especially schizophrenia, still pose a great challenge for diagnosis in early stages. Recently, computer-aided diagnosis techniques based on resting-state functional magnetic resonance imaging (Rs-fMRI) have been developed to tackle this challenge. In this work, we investigate different decision-level and feature-level fusion schemes for discriminating between schizophrenic and normal subjects. Four types of fMRI features are investigated, namely the regional homogeneity, voxel-mirrored homotopic connectivity, fractional amplitude of low-frequency fluctuations and amplitude of low-frequency fluctuations. Data denoising and preprocessing were first applied, followed by the feature extraction module. Four different feature selection algorithms were applied, and the best discriminative features were selected using the algorithm of feature selection via concave minimization (FSV). Support vector machine classifiers were trained and tested on the COBRE dataset formed of 70 schizophrenic subjects and 70 healthy subjects. The decision-level fusion method outperformed the single-feature-type approaches and achieved a 97.85% accuracy, a 98.33% sensitivity, a 96.83% specificity. Moreover, feature-fusion scheme resulted in a 98.57% accuracy, a 99.71% sensitivity, a 97.66% specificity, and an area under the ROC curve of 0.9984. In general, decision-level and feature-level fusion schemes boosted the performance of schizophrenia detectors based on fMRI features.
Collapse
Affiliation(s)
- Ali H. Algumaei
- Department of Biomedical Engineering and Systems, Faculty of Engineering, Cairo University, Giza, Egypt
| | - Rami F. Algunaid
- Department of Biomedical Engineering and Systems, Faculty of Engineering, Cairo University, Giza, Egypt
| | - Muhammad A. Rushdi
- Department of Biomedical Engineering and Systems, Faculty of Engineering, Cairo University, Giza, Egypt
| | - Inas A. Yassine
- Department of Biomedical Engineering and Systems, Faculty of Engineering, Cairo University, Giza, Egypt
| |
Collapse
|
11
|
Theunissen EL, Reckweg JT, Hutten NRPW, Kuypers KPC, Toennes SW, Neukamm MA, Halter S, Ramaekers JG. Psychotomimetic symptoms after a moderate dose of a synthetic cannabinoid (JWH-018): implications for psychosis. Psychopharmacology (Berl) 2022; 239:1251-1261. [PMID: 33501595 PMCID: PMC9110546 DOI: 10.1007/s00213-021-05768-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 01/14/2021] [Indexed: 12/14/2022]
Abstract
BACKGROUND Synthetic cannabinoids (SCs) are the largest class of novel psychoactive substances (NPS) and are associated with an increased risk of overdosing and adverse events such as psychosis. JWH-018 is one of the earliest SCs and still widely available in large parts of the world. Controlled studies to assess the safety and behavioural profiles of SCs are extremely scarce. AIM The current study was designed to assess the psychotomimetic effects of a moderate dose of JWH-018. METHODS Twenty-four healthy participants (10 males, 14 females) entered a placebo-controlled, double blind, within-subjects trial and inhaled vapour of placebo or 75μg/kg bodyweight JWH-018. To ascertain a minimum level of intoxication, a booster dose of JWH-018 was administered on an as-needed basis. The average dose of JWH-018 administered was 5.52 mg. Subjective high, dissociative states (CADSS), psychedelic symptoms (Bowdle), mood (POMS) and cannabis reinforcement (SCRQ) were assessed within a 4.5-h time window after drug administration. RESULTS JWH-018 caused psychedelic effects, such as altered internal and external perception, and dissociative effects, such as amnesia, derealisation and depersonalisation and induced feelings of confusion. CONCLUSION Overall, these findings suggest that a moderate dose of JWH-018 induces pronounced psychotomimetic symptoms in healthy participants with no history of mental illness, which confirms that SCs pose a serious risk for public health.
Collapse
Affiliation(s)
- Eef L Theunissen
- Department of Neuropsychology and Psychopharmacology, Faculty of Psychology and Neuroscience, Maastricht University, P.O. Box 616, 6200, MD, Maastricht, The Netherlands.
| | - Johannes T Reckweg
- Department of Neuropsychology and Psychopharmacology, Faculty of Psychology and Neuroscience, Maastricht University, P.O. Box 616, 6200, MD, Maastricht, The Netherlands
| | - Nadia R P W Hutten
- Department of Neuropsychology and Psychopharmacology, Faculty of Psychology and Neuroscience, Maastricht University, P.O. Box 616, 6200, MD, Maastricht, The Netherlands
| | - Kim P C Kuypers
- Department of Neuropsychology and Psychopharmacology, Faculty of Psychology and Neuroscience, Maastricht University, P.O. Box 616, 6200, MD, Maastricht, The Netherlands
| | - Stefan W Toennes
- Department of Forensic Toxicology, Institute of Legal Medicine, Goethe University of Frankfurt, Frankfurt, Germany
| | - Merja A Neukamm
- Institute of Forensic Medicine, Forensic Toxicology, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Sebastian Halter
- Institute of Forensic Medicine, Forensic Toxicology, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Hermann Staudinger Graduate School, University of Freiburg, Freiburg, Germany
| | - Johannes G Ramaekers
- Department of Neuropsychology and Psychopharmacology, Faculty of Psychology and Neuroscience, Maastricht University, P.O. Box 616, 6200, MD, Maastricht, The Netherlands
| |
Collapse
|
12
|
Yan Z, Rein B. Mechanisms of synaptic transmission dysregulation in the prefrontal cortex: pathophysiological implications. Mol Psychiatry 2022; 27:445-465. [PMID: 33875802 PMCID: PMC8523584 DOI: 10.1038/s41380-021-01092-3] [Citation(s) in RCA: 153] [Impact Index Per Article: 51.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 03/13/2021] [Accepted: 03/29/2021] [Indexed: 02/02/2023]
Abstract
The prefrontal cortex (PFC) serves as the chief executive officer of the brain, controlling the highest level cognitive and emotional processes. Its local circuits among glutamatergic principal neurons and GABAergic interneurons, as well as its long-range connections with other brain regions, have been functionally linked to specific behaviors, ranging from working memory to reward seeking. The efficacy of synaptic signaling in the PFC network is profundedly influenced by monoaminergic inputs via the activation of dopamine, adrenergic, or serotonin receptors. Stress hormones and neuropeptides also exert complex effects on the synaptic structure and function of PFC neurons. Dysregulation of PFC synaptic transmission is strongly linked to social deficits, affective disturbance, and memory loss in brain disorders, including autism, schizophrenia, depression, and Alzheimer's disease. Critical neural circuits, biological pathways, and molecular players that go awry in these mental illnesses have been revealed by integrated electrophysiological, optogenetic, biochemical, and transcriptomic studies of PFC. Novel epigenetic mechanism-based strategies are proposed as potential avenues of therapeutic intervention for PFC-involved diseases. This review provides an overview of PFC network organization and synaptic modulation, as well as the mechanisms linking PFC dysfunction to the pathophysiology of neurodevelopmental, neuropsychiatric, and neurodegenerative diseases. Insights from the preclinical studies offer the potential for discovering new medical treatments for human patients with these brain disorders.
Collapse
Affiliation(s)
- Zhen Yan
- Department of Physiology and Biophysics, State University of New York at Buffalo, Jacobs School of Medicine and Biomedical Sciences, Buffalo, NY, USA.
| | | |
Collapse
|
13
|
Thompson BL, Maleki N, Kelly JF, Sy KTL, Oscar-Berman M. Brain, behavioral, affective, and sex correlates of recovery from alcohol use disorders. Alcohol Clin Exp Res 2021; 45:1578-1595. [PMID: 34432298 DOI: 10.1111/acer.14658] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 05/31/2021] [Accepted: 06/08/2021] [Indexed: 12/23/2022]
Abstract
BACKGROUND Recovery from alcohol use disorders (AUDs) consists of salutary changes in behavior and affect. While evidence suggests that recovery-related behavioral changes, such as abstinence, emerge in tandem with both neural and affective changes, the precise relationships among these changes are unknown. To understand these relationships, we examined associations between the duration of abstinence (DOA), affective states, and neuroimaging-based structural measures of the brain reward system (BRS) in AUD men (AUDM ) and AUD women (AUDW ). METHODS Participants were community respondents from the Boston area comprising right-handed abstinent individuals with AUD (n = 60; 30 men) and controls without AUD (NC; n = 60; 29 men). Multivariate linear regressions compared short-/mid-term abstainers (≤5 years), long-term abstainers (>5 years), and the NC group on measures of BRS volume (3T magnetic resonance imaging scans) and measures of affect (Profile of Mood States [POMS]; Multiple Affect Adjective Check List [MAACL]; Hamilton Rating Scale for Depression [HRSD]). Analyses contrasted sex differences and accounted for age, education, drinking severity, and verbal IQ. RESULTS Compared to the NC group, short-/mid-term abstainers exhibited larger posterior insular volume (total (β = 0.019, 95% CI: 0.004, 0.034)), higher negative affect (POMS Mood Disturbance (β = 27.8, 95% CI: 11.56, 44.04), and lower positive affect (POMS Vigor (β = -4.89, 95% CI: -9.06, -0.72)). Compared to the NC group, Long-term abstainers exhibited significantly smaller volumes of aggregate anterior cingulate cortex (β = -0.06, 95% CI: -0.113, -0.008) and higher HRSD scores (β = 1.56, 95% CI: 0.14, 2.98). Relative to AUDM , AUDW exhibited significantly larger right anterior insular volumes (β = 0.03, 95% CI: 0.01, 0.06) and significantly greater MAACL Positive Affect scores (β = 7.56, 95% CI: 0.59, 11.55) in association with DOA. CONCLUSIONS We found that differences in abstinence from alcohol were correlated with differences in both neural recovery and affective dimensions of recovery from AUDs. The observed sex differences extend evidence of dimorphic effects of AUDs and recovery on brain structure and function. Future longitudinal research will test inferences concerning the directionality of these relationships.
Collapse
Affiliation(s)
- Benjamin L Thompson
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, USA.,Psychology Research Service, VA Healthcare System, Boston, MA, USA
| | - Nasim Maleki
- Psychology Research Service, VA Healthcare System, Boston, MA, USA.,Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA.,Harvard Medical School, Boston, MA, USA
| | - John F Kelly
- Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA.,Harvard Medical School, Boston, MA, USA
| | - Karla Therese L Sy
- Department of Epidemiology, Boston University School of Public Health, Boston, MA, USA
| | - Marlene Oscar-Berman
- Psychology Research Service, VA Healthcare System, Boston, MA, USA.,Departments of Anatomy and Neurobiology, Psychiatry and Neurology, Boston University School of Medicine, Boston, MA, USA
| |
Collapse
|
14
|
Iliuta FP, Manea MC, Budisteanu M, Ciobanu AM, Manea M. Magnetic resonance imaging in schizophrenia: Luxury or necessity? (Review). Exp Ther Med 2021; 22:765. [PMID: 34055064 PMCID: PMC8145262 DOI: 10.3892/etm.2021.10197] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 04/16/2021] [Indexed: 11/12/2022] Open
Abstract
Schizophrenia, one of the most common psychiatric disorders, with a worldwide annual incidence rate of approximately 0.3-0.7%, known to affect the population below 25 years of age, is persistent throughout lifetime and includes people from all layers of society. With recent technological progress that allows better imaging techniques, such as the ones provided by computed tomography and particularly magnetic resonance imaging (MRI), research on schizophrenia imaging has grown considerably. The purpose of this review is to establish the importance of using imaging techniques in the early detection of brain abnormalities in patients diagnosed with schizophrenia. We reviewed all articles which reported on MRI imaging in schizophrenia. In order to do this, we used the PubMed database, using as search words ‘MRI’ and ‘schizophrenia’. MRI studies of first episode patients and chronic patients, suggest reduction of the whole brain volume. Enlargement of lateral ventricles was described as positive in 15 studies out of 19 and was similar to findings in chronic patients. Moreover, for the first episode patients, all data collected point to important changes in medial temporal lobe structures, diminished hippocampal volume, the whole frontal lobe, asymmetry in prefrontal cortex, diminished volume in cingulate, corpus callosum, and cavum septum pellucidum reported abnormalities. MRI is recommended as an important tool in the follow-up process of patients with schizophrenia. Yet, it is still under debate whether the abnormalities described in this condition are able to be used as diagnostic biomarkers.
Collapse
Affiliation(s)
- Floris Petru Iliuta
- Psychiatry Research Laboratory, 'Prof. Dr. Alexandru Obregia' Clinical Hospital of Psychiatry, 041914 Bucharest, Romania.,Department of Psychiatry and Psychology, Faculty of Dental Medicine, 'Carol Davila' University of Medicine and Pharmacy, 010221 Bucharest, Romania
| | - Mihnea Costin Manea
- Psychiatry Research Laboratory, 'Prof. Dr. Alexandru Obregia' Clinical Hospital of Psychiatry, 041914 Bucharest, Romania.,Department of Psychiatry and Psychology, Faculty of Dental Medicine, 'Carol Davila' University of Medicine and Pharmacy, 010221 Bucharest, Romania
| | - Magdalena Budisteanu
- Psychiatry Research Laboratory, 'Prof. Dr. Alexandru Obregia' Clinical Hospital of Psychiatry, 041914 Bucharest, Romania.,Laboratory of Medical Genetics, 'Victor Babes' National Institute of Pathology, 050096 Bucharest, Romania.,Medical Genetics Department, Faculty of Medicine, 'Titu Maiorescu' University, 031593 Bucharest, Romania
| | - Adela Magdalena Ciobanu
- Department of Neuroscience, Discipline of Psychiatry, Faculty of General Medicine, 'Carol Davila' University of Medicine and Pharmacy, 050474 Bucharest, Romania.,Department of Psychiatry, 'Prof. Dr. Alexandru Obregia' Clinical Hospital of Psychiatry, 041914 Bucharest, Romania
| | - Mirela Manea
- Psychiatry Research Laboratory, 'Prof. Dr. Alexandru Obregia' Clinical Hospital of Psychiatry, 041914 Bucharest, Romania.,Department of Psychiatry and Psychology, Faculty of Dental Medicine, 'Carol Davila' University of Medicine and Pharmacy, 010221 Bucharest, Romania
| |
Collapse
|
15
|
Mavroudis I, Petrides F, Kazis D, Chatzikonstantinou S, Karantali E, Ciobica A, Iordache AC, Dobrin R, Trus C, Njau S, Costa V, Baloyannis S. Morphological alterations of the pyramidal and stellate cells of the visual cortex in schizophrenia. Exp Ther Med 2021; 22:669. [PMID: 33986834 PMCID: PMC8111868 DOI: 10.3892/etm.2021.10101] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Accepted: 03/19/2021] [Indexed: 11/05/2022] Open
Abstract
Schizophrenia is a severe brain disorder characterized by certain types of delusion, hallucination and thought disorder. Studies have revealed impaired synaptic plasticity and reduced gamma-aminobutyric acid levels of the visual cortex in patients with schizophrenia. While previous work established a critical role for interneurons and cortical connectivity in the generation of hallucinations, the present study set out to examine the morphology of pyramidal cells and interneurons from layers 3 and 4 in the primary visual cortex from schizophrenic brains and to identify any dendritic and spinal alterations in comparison to normal control brains. The morphological and morphometric changes of the pyramidal cells and the interneurons of the visual cortices of 10 brains obtained from patients with schizophrenia, in comparison to 10 age-matched controls, were studied using the Golgi method and 3D neuronal reconstruction techniques. Analysis using the Golgi impregnation technique revealed a significant loss of distal dendritic segments, tortuous branches and varicosities and an overall restriction of the dendritic field in the brains of schizophrenic patients in both pyramidal cells and in aspiny interneurons. The present results may explain certain clinical phenomena associated with the visual cortex usually encountered in schizophrenia.
Collapse
Affiliation(s)
- Ioannis Mavroudis
- Laboratory of Neuropathology and Electron Microscopy First Department of Neurology, Aristotle University of Thessaloniki, Thessaloniki 54634, Greece.,Department of Neurology, Leeds Teaching Hospitals, Leeds LS1 3EX, UK.,Institute For Research Of Alzheimer's Disease, Other Neurodegenerative Diseases And Normal Aging, Heraklion Langada 57200, Greece
| | - Foivos Petrides
- Laboratory of Neuropathology and Electron Microscopy First Department of Neurology, Aristotle University of Thessaloniki, Thessaloniki 54634, Greece.,Third Department of Neurology, Aristotle University of Thessaloniki, Thessaloniki 57010, Greece
| | - Dimitrios Kazis
- Third Department of Neurology, Aristotle University of Thessaloniki, Thessaloniki 57010, Greece
| | | | - Eleni Karantali
- Third Department of Neurology, Aristotle University of Thessaloniki, Thessaloniki 57010, Greece
| | - Alin Ciobica
- Department of Biology, Faculty of Biology, Alexandru Ioan Cuza University, Iasi 700506, Romania.,Academy of Romanian Scientists, Bucuresti 050094, Romania.,Center of Biomedical Research, Romanian Academy, Iasi 700506, Romania
| | - Alin-Constantin Iordache
- Faculty of Medicine, 'Grigore T. Popa', University of Medicine and Pharmacy, Iasi 700115, Romania
| | - Romeo Dobrin
- Faculty of Medicine, 'Grigore T. Popa', University of Medicine and Pharmacy, Iasi 700115, Romania
| | - Constantin Trus
- Department of Morphological and Functional Sciences, Faculty of Medicine, Dunarea de Jos University, Galati 050094, Romania
| | - Samuel Njau
- Department of Forensic Medicine and Toxicology, Aristotle University of Thessaloniki, Thessaloniki 54634, Greece
| | - Vasiliki Costa
- Laboratory of Neuropathology and Electron Microscopy First Department of Neurology, Aristotle University of Thessaloniki, Thessaloniki 54634, Greece.,Institute For Research Of Alzheimer's Disease, Other Neurodegenerative Diseases And Normal Aging, Heraklion Langada 57200, Greece
| | - Stavros Baloyannis
- Laboratory of Neuropathology and Electron Microscopy First Department of Neurology, Aristotle University of Thessaloniki, Thessaloniki 54634, Greece.,Institute For Research Of Alzheimer's Disease, Other Neurodegenerative Diseases And Normal Aging, Heraklion Langada 57200, Greece
| |
Collapse
|
16
|
Zhuo C, Li G, Lin X, Jiang D, Xu Y, Tian H, Wang W, Song X. Strategies to solve the reverse inference fallacy in future MRI studies of schizophrenia: a review. Brain Imaging Behav 2021; 15:1115-1133. [PMID: 32304018 PMCID: PMC8032587 DOI: 10.1007/s11682-020-00284-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Few advances in schizophrenia research have been translated into clinical practice, despite 60 years of serum biomarkers studies and 50 years of genetic studies. During the last 30 years, neuroimaging studies on schizophrenia have gradually increased, partly due to the beautiful prospect that the pathophysiology of schizophrenia could be explained entirely by the Human Connectome Project (HCP). However, the fallacy of reverse inference has been a critical problem of the HCP. For this reason, there is a dire need for new strategies or research "bridges" to further schizophrenia at the biological level. To understand the importance of research "bridges," it is vital to examine the strengths and weaknesses of the recent literature. Hence, in this review, our team has summarized the recent literature (1995-2018) about magnetic resonance imaging (MRI) of schizophrenia in terms of regional and global structural and functional alterations. We have also provided a new proposal that may supplement the HCP for studying schizophrenia. As postulated, despite the vast number of MRI studies in schizophrenia, the lack of homogeneity between the studies, along with the relatedness of schizophrenia with other neurological disorders, has hindered the study of schizophrenia. In addition, the reverse inference cannot be used to diagnose schizophrenia, further limiting the clinical impact of findings from medical imaging studies. We believe that multidisciplinary technologies may be used to develop research "bridges" to further investigate schizophrenia at the single neuron or neuron cluster levels. We have postulated about future strategies for overcoming the current limitations and establishing the research "bridges," with an emphasis on multimodality imaging, molecular imaging, neuron cluster signals, single transmitter biomarkers, and nanotechnology. These research "bridges" may help solve the reverse inference fallacy and improve our understanding of schizophrenia for future studies.
Collapse
Affiliation(s)
- Chuanjun Zhuo
- Department of Psychiatry, The First Affiliated Hospital of Zhengzhou University, 450000, Zhengzhou, China.
- Department of Psychiatry Pattern Recognition, Department of Genetics Laboratory of Schizophrenia, School of Mental Health, Jining Medical University, 272119, Jining, China.
- Department of Psychiatry, Wenzhou Seventh People's Hospital, 325000, Wenzhou, China.
- Department of Psychiatry, First Hospital/First Clinical Medical College of Shanxi Medical University, Taiyuan, China.
- MDT Center for Cognitive Impairment and Sleep Disorders, First Hospital of Shanxi Medical University, 030001, Taiyuan, China.
- Department of Psychiatric-Neuroimaging-Genetics and Co-Morbidity Laboratory (PNGC_Lab), Tianjin Anding Hospital, Tianjin Mental Health Center, Tianjin Medical University Mental Health Teaching Hospital, 300222, Tianjin, China.
- Biological Psychiatry of Co-collaboration Laboratory of China and Canada, Xiamen Xianyue Hospital, University of Alberta, Xiamen Xianyue Hospital, 361000, Xiamen, China.
- Department of Psychiatry, Tianjin Medical University, 300075, Tianjin, China.
- Psychiatric-Neuroimaging-Genetics-Comorbidity Laboratory (PNGC_Lab), Tianjin Anding Hospital, Department of Psychiatry, Tianjin Mental Health Centre, Mental Health Teaching Hospital of Tianjin Medical University, Shanxi Medical University, 300222, Tianjin, China.
| | - Gongying Li
- Department of Psychiatry Pattern Recognition, Department of Genetics Laboratory of Schizophrenia, School of Mental Health, Jining Medical University, 272119, Jining, China
| | - Xiaodong Lin
- Department of Psychiatry, Wenzhou Seventh People's Hospital, 325000, Wenzhou, China
| | - Deguo Jiang
- Department of Psychiatry, Wenzhou Seventh People's Hospital, 325000, Wenzhou, China
| | - Yong Xu
- Department of Psychiatry, First Hospital/First Clinical Medical College of Shanxi Medical University, Taiyuan, China
- MDT Center for Cognitive Impairment and Sleep Disorders, First Hospital of Shanxi Medical University, 030001, Taiyuan, China
| | - Hongjun Tian
- Department of Psychiatric-Neuroimaging-Genetics and Co-Morbidity Laboratory (PNGC_Lab), Tianjin Anding Hospital, Tianjin Mental Health Center, Tianjin Medical University Mental Health Teaching Hospital, 300222, Tianjin, China
| | - Wenqiang Wang
- Biological Psychiatry of Co-collaboration Laboratory of China and Canada, Xiamen Xianyue Hospital, University of Alberta, Xiamen Xianyue Hospital, 361000, Xiamen, China
| | - Xueqin Song
- Department of Psychiatry, The First Affiliated Hospital of Zhengzhou University, 450000, Zhengzhou, China
- Psychiatric-Neuroimaging-Genetics-Comorbidity Laboratory (PNGC_Lab), Tianjin Anding Hospital, Department of Psychiatry, Tianjin Mental Health Centre, Mental Health Teaching Hospital of Tianjin Medical University, Shanxi Medical University, 300222, Tianjin, China
| |
Collapse
|
17
|
Adiponectin receptor2 and HCLS1 associated proteinX-1 levels are altered in postmortem schizophrenic brain. Meta Gene 2021. [DOI: 10.1016/j.mgene.2020.100834] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
|
18
|
Guadalupe T, Kong XZ, Akkermans SEA, Fisher SE, Francks C. Relations between hemispheric asymmetries of grey matter and auditory processing of spoken syllables in 281 healthy adults. Brain Struct Funct 2021; 227:561-572. [PMID: 33502621 PMCID: PMC8844177 DOI: 10.1007/s00429-021-02220-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 01/14/2021] [Indexed: 11/29/2022]
Abstract
Most people have a right-ear advantage for the perception of spoken syllables, consistent with left hemisphere dominance for speech processing. However, there is considerable variation, with some people showing left-ear advantage. The extent to which this variation is reflected in brain structure remains unclear. We tested for relations between hemispheric asymmetries of auditory processing and of grey matter in 281 adults, using dichotic listening and voxel-based morphometry. This was the largest study of this issue to date. Per-voxel asymmetry indexes were derived for each participant following registration of brain magnetic resonance images to a template that was symmetrized. The asymmetry index derived from dichotic listening was related to grey matter asymmetry in clusters of voxels corresponding to the amygdala and cerebellum lobule VI. There was also a smaller, non-significant cluster in the posterior superior temporal gyrus, a region of auditory cortex. These findings contribute to the mapping of asymmetrical structure–function links in the human brain and suggest that subcortical structures should be investigated in relation to hemispheric dominance for speech processing, in addition to auditory cortex.
Collapse
Affiliation(s)
- Tulio Guadalupe
- Language and Genetics Department, Max Planck Institute for Psycholinguistics, Wundtlaan 1, Nijmegen, The Netherlands
| | - Xiang-Zhen Kong
- Language and Genetics Department, Max Planck Institute for Psycholinguistics, Wundtlaan 1, Nijmegen, The Netherlands.,Department of Psychology and Behavioral Sciences, Zhejiang University, Hangzhou, China
| | - Sophie E A Akkermans
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands.,Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Simon E Fisher
- Language and Genetics Department, Max Planck Institute for Psycholinguistics, Wundtlaan 1, Nijmegen, The Netherlands.,Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
| | - Clyde Francks
- Language and Genetics Department, Max Planck Institute for Psycholinguistics, Wundtlaan 1, Nijmegen, The Netherlands. .,Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands.
| |
Collapse
|
19
|
Roes MM, Yin J, Taylor L, Metzak PD, Lavigne KM, Chinchani A, Tipper CM, Woodward TS. Hallucination-Specific structure-function associations in schizophrenia. Psychiatry Res Neuroimaging 2020; 305:111171. [PMID: 32916453 DOI: 10.1016/j.pscychresns.2020.111171] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 08/15/2020] [Accepted: 08/19/2020] [Indexed: 01/13/2023]
Abstract
Combining structural (sMRI) and functional magnetic resonance imaging (fMRI) data in schizophrenia patients with and without auditory hallucinations (9 SZ_AVH, 12 SZ_nAVH), 18 patients with bipolar disorder, and 22 healthy controls, we examined whether cortical thinning was associated with abnormal activity in functional brain networks associated with auditory hallucinations. Language-task fMRI data were combined with mean cortical thickness values from 148 brain regions in a constrained principal component analysis (CPCA) to identify brain structure-function associations predictable from group differences. Two components emerged from the multimodal analysis. The "AVH component" highlighted an association of frontotemporal and cingulate thinning with altered brain activity characteristic of hallucinations among patients with AVH. In contrast, the "Bipolar component" distinguished bipolar patients from healthy controls and linked increased activity in the language network with cortical thinning in the left occipital-temporal lobe. Our findings add to a body of evidence of the biological underpinnings of hallucinations and illustrate a method for multimodal data analysis of structure-function associations in psychiatric illness.
Collapse
Affiliation(s)
- Meighen M Roes
- Department of Psychology, University of British Columbia, Vancouver, BC, Canada; BC Mental Health and Substance Use Services Research Institute, Provincial Health Services Authority, Vancouver, BC, Canada
| | - John Yin
- BC Mental Health and Substance Use Services Research Institute, Provincial Health Services Authority, Vancouver, BC, Canada; Department of Psychiatry, University of British Columbia, Vancouver, BC, Canada
| | - Laura Taylor
- BC Mental Health and Substance Use Services Research Institute, Provincial Health Services Authority, Vancouver, BC, Canada; Department of Psychiatry, University of British Columbia, Vancouver, BC, Canada
| | - Paul D Metzak
- Department of Psychiatry, University of Calgary, Calgary, AB, Canada
| | - Katie M Lavigne
- Department of Psychiatry, McGill University, Montreal, QC, Canada
| | - Abhijit Chinchani
- BC Mental Health and Substance Use Services Research Institute, Provincial Health Services Authority, Vancouver, BC, Canada; Department of Psychiatry, University of British Columbia, Vancouver, BC, Canada
| | - Christine M Tipper
- BC Mental Health and Substance Use Services Research Institute, Provincial Health Services Authority, Vancouver, BC, Canada; Department of Psychiatry, University of British Columbia, Vancouver, BC, Canada
| | - Todd S Woodward
- BC Mental Health and Substance Use Services Research Institute, Provincial Health Services Authority, Vancouver, BC, Canada; Department of Psychiatry, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
20
|
Srinivasan D, Erus G, Doshi J, Wolk DA, Shou H, Habes M, Davatzikos C. A comparison of Freesurfer and multi-atlas MUSE for brain anatomy segmentation: Findings about size and age bias, and inter-scanner stability in multi-site aging studies. Neuroimage 2020; 223:117248. [PMID: 32860881 DOI: 10.1016/j.neuroimage.2020.117248] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 08/04/2020] [Indexed: 12/28/2022] Open
Abstract
Automatic segmentation of brain anatomy has been a key processing step in quantitative neuroimaging analyses. An extensive body of literature has relied on Freesurfer segmentations. Yet, in recent years, the multi-atlas segmentation framework has consistently obtained results with superior accuracy in various evaluations. We compared brain anatomy segmentations from Freesurfer, which uses a single probabilistic atlas strategy, against segmentations from Multi-atlas region Segmentation utilizing Ensembles of registration algorithms and parameters and locally optimal atlas selection (MUSE), one of the leading ensemble-based methods that calculates a consensus segmentation through fusion of anatomical labels from multiple atlases and registrations. The focus of our evaluation was twofold. First, using manual ground-truth hippocampus segmentations, we found that Freesurfer segmentations showed a bias towards over-segmentation of larger hippocampi, and under-segmentation in older age. This bias was more pronounced in Freesurfer-v5.3, which has been used in multiple previous studies of aging, while the effect was mitigated in more recent Freesurfer-v6.0, albeit still present. Second, we evaluated inter-scanner segmentation stability using same day scan pairs from ADNI acquired on 1.5T and 3T scanners. We also found that MUSE obtains more consistent segmentations across scanners compared to Freesurfer, particularly in the deep structures.
Collapse
Affiliation(s)
- Dhivya Srinivasan
- Center for Biomedical Image Computing and Analytics, University of Pennsylvania, Richards Building, 3700 Hamilton Walk, 7th Floor, Philadelphia, PA 19104, United States.
| | - Guray Erus
- Center for Biomedical Image Computing and Analytics, University of Pennsylvania, Richards Building, 3700 Hamilton Walk, 7th Floor, Philadelphia, PA 19104, United States
| | - Jimit Doshi
- Center for Biomedical Image Computing and Analytics, University of Pennsylvania, Richards Building, 3700 Hamilton Walk, 7th Floor, Philadelphia, PA 19104, United States
| | - David A Wolk
- Department of Neurology, University of Pennsylvania, United States
| | - Haochang Shou
- Center for Biomedical Image Computing and Analytics, University of Pennsylvania, Richards Building, 3700 Hamilton Walk, 7th Floor, Philadelphia, PA 19104, United States; Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania, United States
| | - Mohamad Habes
- Center for Biomedical Image Computing and Analytics, University of Pennsylvania, Richards Building, 3700 Hamilton Walk, 7th Floor, Philadelphia, PA 19104, United States; Department of Neurology, University of Pennsylvania, United States
| | - Christos Davatzikos
- Center for Biomedical Image Computing and Analytics, University of Pennsylvania, Richards Building, 3700 Hamilton Walk, 7th Floor, Philadelphia, PA 19104, United States
| | | |
Collapse
|
21
|
Xiang Y, Wang J, Tan G, Wu FX, Liu J. Schizophrenia Identification Using Multi-View Graph Measures of Functional Brain Networks. Front Bioeng Biotechnol 2020; 7:479. [PMID: 32010682 PMCID: PMC6974443 DOI: 10.3389/fbioe.2019.00479] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 12/23/2019] [Indexed: 01/06/2023] Open
Abstract
Schizophrenia (SZ) is a functional mental disorder that seriously affects the social life of patients. Therefore, accurate diagnosis of SZ has raised extensive attention of researchers. At present, study of brain network based on resting-state functional magnetic resonance imaging (rs-fMRI) has provided promising results for SZ identification by studying functional network alteration. However, previous studies based on brain network analysis are not very effective for SZ identification. Therefore, we propose an improved SZ identification method using multi-view graph measures of functional brain networks. Firstly, we construct an individual functional connectivity network based on Brainnetome atlas for each subject. Then, multi-view graph measures are calculated by the brain network analysis method as feature representations. Next, in order to consider the relationships between measures within the same brain region in feature selection, multi-view measures are grouped according to the corresponding regions and Sparse Group Lasso is applied to identify discriminative features based on this feature grouping structure. Finally, a support vector machine (SVM) classifier is employed to perform SZ identification task. To evaluate our proposed method, computational experiments are conducted on 145 subjects (71 schizophrenic patients and 74 healthy controls) using a leave-one-out cross-validation (LOOCV) scheme. The results show that our proposed method can obtain an accuracy of 93.10% for SZ identification. By comparison, our method is more effective for SZ identification than some existing methods.
Collapse
Affiliation(s)
- Yizhen Xiang
- School of Computer Science and Engineering, Central South University, Changsha, China
| | - Jianxin Wang
- School of Computer Science and Engineering, Central South University, Changsha, China.,Hunan Provincial Key Lab on Bioinformatics, Central South University, Changsha, China
| | - Guanxin Tan
- School of Computer Science and Engineering, Central South University, Changsha, China
| | - Fang-Xiang Wu
- Division of Biomedical Engineering and Department of Mechanical Engineering, University of Saskatchewan, Saskatoon, SK, Canada
| | - Jin Liu
- School of Computer Science and Engineering, Central South University, Changsha, China
| |
Collapse
|
22
|
Carrion-Castillo A, Pepe A, Kong XZ, Fisher SE, Mazoyer B, Tzourio-Mazoyer N, Crivello F, Francks C. Genetic effects on planum temporale asymmetry and their limited relevance to neurodevelopmental disorders, intelligence or educational attainment. Cortex 2019; 124:137-153. [PMID: 31887566 DOI: 10.1016/j.cortex.2019.11.006] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 11/01/2019] [Accepted: 11/13/2019] [Indexed: 11/27/2022]
Abstract
Previous studies have suggested that altered asymmetry of the planum temporale (PT) is associated with neurodevelopmental disorders, including dyslexia, schizophrenia, and autism. Shared genetic factors have been suggested to link PT asymmetry to these disorders. In a dataset of unrelated subjects from the general population (UK Biobank, N = 18,057), we found that PT volume asymmetry had a significant heritability of roughly 14%. In genome-wide association analysis, two loci were significantly associated with PT asymmetry, including a coding polymorphism within the gene ITIH5 that is predicted to affect the protein's function and to be deleterious (rs41298373, p = 2.01 × 10-15), and a locus that affects the expression of the genes BOK and DTYMK (rs7420166, p = 7.54 × 10-10). DTYMK showed left-right asymmetry of mRNA expression in post mortem PT tissue. Cortex-wide mapping of these SNP effects revealed influences on asymmetry that went somewhat beyond the PT. Using publicly available genome-wide association statistics from large-scale studies, we saw no significant genetic correlations of PT asymmetry with autism spectrum disorder, attention deficit hyperactivity disorder, schizophrenia, educational attainment or intelligence. Of the top two individual loci associated with PT asymmetry, rs41298373 showed a tentative association with intelligence (unadjusted p = .025), while the locus at BOK/DTYMK showed tentative association with educational attainment (unadjusted Ps < .05). These findings provide novel insights into the genetic contributions to human brain asymmetry, but do not support a substantial polygenic association of PT asymmetry with cognitive variation and mental disorders, as far as can be discerned with current sample sizes.
Collapse
Affiliation(s)
- Amaia Carrion-Castillo
- Language and Genetics Department, Max Planck Institute for Psycholinguistics, Nijmegen, the Netherlands
| | - Antonietta Pepe
- Groupe d'Imagerie Neurofonctionnelle, Institut des Maladies Neurodégénératives, Centre National de la Recherche Scientifique, Commissariat à l'Energie Atomique, et Université; de Bordeaux, Bordeaux, France
| | - Xiang-Zhen Kong
- Language and Genetics Department, Max Planck Institute for Psycholinguistics, Nijmegen, the Netherlands
| | - Simon E Fisher
- Language and Genetics Department, Max Planck Institute for Psycholinguistics, Nijmegen, the Netherlands; Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, the Netherlands
| | - Bernard Mazoyer
- Groupe d'Imagerie Neurofonctionnelle, Institut des Maladies Neurodégénératives, Centre National de la Recherche Scientifique, Commissariat à l'Energie Atomique, et Université; de Bordeaux, Bordeaux, France
| | - Nathalie Tzourio-Mazoyer
- Groupe d'Imagerie Neurofonctionnelle, Institut des Maladies Neurodégénératives, Centre National de la Recherche Scientifique, Commissariat à l'Energie Atomique, et Université; de Bordeaux, Bordeaux, France
| | - Fabrice Crivello
- Groupe d'Imagerie Neurofonctionnelle, Institut des Maladies Neurodégénératives, Centre National de la Recherche Scientifique, Commissariat à l'Energie Atomique, et Université; de Bordeaux, Bordeaux, France
| | - Clyde Francks
- Language and Genetics Department, Max Planck Institute for Psycholinguistics, Nijmegen, the Netherlands; Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, the Netherlands.
| |
Collapse
|
23
|
Banasikowski TJ, Hawken ER. The Bed Nucleus of the Stria Terminalis, Homeostatic Satiety, and Compulsions: What Can We Learn From Polydipsia? Front Behav Neurosci 2019; 13:170. [PMID: 31417376 PMCID: PMC6686835 DOI: 10.3389/fnbeh.2019.00170] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Accepted: 07/12/2019] [Indexed: 12/28/2022] Open
Abstract
A compulsive phenotype characterizes several neuropsychiatric illnesses - including but not limited to - schizophrenia and obsessive compulsive disorder. Because of its perceived etiological heterogeneity, it is challenging to disentangle the specific neurophysiology that precipitates compulsive behaving. Using polydipsia (or non-regulatory water drinking), we describe candidate neural substrates of compulsivity. We further postulate that aberrant neuroplasticity within cortically projecting structures [i.e., the bed nucleus of the stria terminalis (BNST)] and circuits that encode homeostatic emotions (thirst, hunger, satiety, etc.) underlie compulsive drinking. By transducing an inaccurate signal that fails to represent true homeostatic state, cortical structures cannot select appropriate and adaptive actions. Additionally, augmented dopamine (DA) reactivity in striatal projections to and from the frontal cortex contribute to aberrant homeostatic signal propagation that ultimately biases cortex-dependent behavioral selection. Responding becomes rigid and corresponds with both erroneous, inflexible encoding in both bottom-up structures and in top-down pathways. How aberrant neuroplasticity in circuits that encode homeostatic emotion result in the genesis and maintenance of compulsive behaviors needs further investigation.
Collapse
Affiliation(s)
- Tomek J Banasikowski
- Department of Psychiatry, Queen's University, Kingston, ON, Canada.,Providence Care Hospital, Kingston, ON, Canada
| | - Emily R Hawken
- Department of Psychiatry, Queen's University, Kingston, ON, Canada.,Providence Care Hospital, Kingston, ON, Canada
| |
Collapse
|
24
|
Bonoldi I, Allen P, Madeira L, Tognin S, Bossong MG, Azis M, Samson C, Quinn B, Calem M, Valmaggia L, Modinos G, Stone J, Perez J, Howes O, Politi P, Kempton MJ, Fusar-Poli P, McGuire P. Basic Self-Disturbances Related to Reduced Anterior Cingulate Volume in Subjects at Ultra-High Risk for Psychosis. Front Psychiatry 2019; 10:254. [PMID: 31133887 PMCID: PMC6526781 DOI: 10.3389/fpsyt.2019.00254] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 04/03/2019] [Indexed: 12/17/2022] Open
Abstract
Introduction: Alterations of the "pre-reflective" sense of first-person perspective (e.g., of the "basic self") are characteristic features of schizophrenic spectrum disorders and are significantly present in the prodromal phase of psychosis and in subjects at ultra-high risk for psychosis (UHR). Studies in healthy controls suggest that neurobiological substrate of the basic self involves cortical midline structures, such as the anterior and posterior cingulate cortices. Neuroimaging studies have identified neuroanatomical cortical midline structure abnormalities in schizophrenic spectrum disorders. Objectives: i) To compare basic self-disturbances levels in UHR subjects and controls and ii) to assess the relationship between basic self-disturbances and alterations in cortical midline structures volume in UHR subjects. Methods: Thirty-one UHR subjects (27 antipsychotic-naïve) and 16 healthy controls were assessed using the 57-item semistructured Examination of Anomalous Self-Experiences (EASE) interview. All subjects were scanned using magnetic resonance imaging (MRI) at 3 T, and gray matter volume was measured in a priori defined regions of interest (ROIs) in the cortical midline structures. Results: EASE scores were much higher in UHR subjects than controls (p < 0.001). The UHR group had smaller anterior cingulate volume than controls (p = 0.037). There were no structural brain imaging alterations between UHR individuals with or without self-disturbances. Within the UHR sample, the subgroup with higher EASE scores had smaller anterior cingulate volumes than UHR subjects with lower EASE scores and controls (p = 0.018). In the total sample, anterior cingulate volume was inversely correlated with the EASE score (R = 0.52, p < 0.016). Conclusions: Basic self-disturbances in UHR subjects appear to be related to reductions in anterior cingulate volume.
Collapse
Affiliation(s)
- Ilaria Bonoldi
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom.,OASIS service, SLaM NHS Foundation Trust, London, United Kingdom.,Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| | - Paul Allen
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom.,Department of Psychology, University of Roehampton, London, United Kingdom.,Department of Psychiatry, Icahn Medical School, Mt Sinai Hospital, New York, NY, United States
| | - Luis Madeira
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom.,OASIS service, SLaM NHS Foundation Trust, London, United Kingdom
| | - Stefania Tognin
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom.,OASIS service, SLaM NHS Foundation Trust, London, United Kingdom
| | - Matthijs G Bossong
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom.,Department of Psychiatry, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, Netherlands
| | - Mathilda Azis
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom.,The West London Early Intervention service, Imperial College London, London, United Kingdom
| | - Carly Samson
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom.,OASIS service, SLaM NHS Foundation Trust, London, United Kingdom
| | - Beverly Quinn
- CAMEO Early Intervention Services, Cambridgeshire and Peterborough NHS Foundation Trust, Cambridge, United Kingdom
| | - Maria Calem
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Lucia Valmaggia
- Department of Psychology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Gemma Modinos
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College of London, London, United Kingdom
| | - James Stone
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom.,The West London Early Intervention service, Imperial College London, London, United Kingdom
| | - Jesus Perez
- CAMEO Early Intervention Services, Cambridgeshire and Peterborough NHS Foundation Trust, Cambridge, United Kingdom.,Department of Psychiatry, University of Cambridge, Cambridge, United Kingdom
| | - Oliver Howes
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom.,MRC Clinical Sciences Centre (CSC), London, United Kingdom.,Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Pierluigi Politi
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| | - Matthew J Kempton
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Paolo Fusar-Poli
- OASIS service, SLaM NHS Foundation Trust, London, United Kingdom.,Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy.,Early Psychosis: Interventions and Clinical-detection (EPIC) lab, Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Philip McGuire
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom.,OASIS service, SLaM NHS Foundation Trust, London, United Kingdom
| |
Collapse
|
25
|
Yan J, Cui Y, Li Q, Tian L, Liu B, Jiang T, Zhang D, Yan H. Cortical thinning and flattening in schizophrenia and their unaffected parents. Neuropsychiatr Dis Treat 2019; 15:935-946. [PMID: 31114205 PMCID: PMC6489638 DOI: 10.2147/ndt.s195134] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Accepted: 03/01/2019] [Indexed: 12/23/2022] Open
Abstract
Background: Schizophrenia is a neurodevelopmental disorder with high heritability. Widespread cortical thinning has been identified in schizophrenia, suggesting that it is a result of cortical development deficit. However, the findings of other cortical morphological indexes of patients are inconsistent, and the research on their relationship with genetic risk factors for schizophrenia is rare. Methods: In order to investigate cortical morphology deficits and their disease-related genetic liability in schizophrenia, we analyzed a sample of 33 patients with schizophrenia, 60 biological parents of the patients, as well as 30 young controls for patients and 28 elderly controls for parents with age, sex and education level being well-matched. We calculated vertex-wise measurements of cortical thickness, surface area, local gyrification index, sulcal depth, and their correlation with the clinical and cognitive characteristics. Results: Widespread cortical thinning of the fronto-temporo-parietal region, sulcal flattening of the insula and gyrification reduction of the frontal cortex were observed in schizophrenia patients. Conjunction analysis revealed that patients with schizophrenia and their parents shared significant cortical thinning of bilateral prefrontal and insula, left lateral occipital and fusiform regions (Monte Carlo correction, P<0.05), as well as a trend-level sulcal depth reduction mainly in bilateral insula and occipital cortex. We observed comprehensive cognitive deficits in patients and similar impairment in the speed of processing of their unaffected parents. Significant associations between lower processing speed and thinning of the frontal cortex and flattening of the parahippocampal gyrus were found in patients and their parents, respectively. However, no significant correlation between abnormal measurements of cortical morphology and clinical characteristics was found. Conclusion: The results suggest that cortical morphology may be susceptible to a genetic risk of schizophrenia and could underlie the cognitive dysfunction in patients and their unaffected relatives. The abnormalities shared with unaffected parents allow us to better understand the disease-specific genetic effect on cortical development.
Collapse
Affiliation(s)
- Jing Yan
- Peking University Sixth Hospital/Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing 100191, People's Republic of China
| | - Yue Cui
- Brainnetome Center/National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, People's Republic of China.,University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Qianqian Li
- Peking University Sixth Hospital/Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing 100191, People's Republic of China
| | - Lin Tian
- Department of Psychiatry, Wuxi Mental Health Center, Nanjing Medical University, Wuxi 214151, People's Republic of China.,Wuxi Mental Health Center, Wuxi Tongren International Rehabilitation Hospital, Nanjing Medical University, Wuxi, 214151, People's Republic of China
| | - Bing Liu
- Brainnetome Center/National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, People's Republic of China.,University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Tianzi Jiang
- Brainnetome Center/National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, People's Republic of China.,University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Dai Zhang
- Peking University Sixth Hospital/Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing 100191, People's Republic of China.,Peking-Tsinghua Joint Center for Life Sciences & PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing 100871, People's Republic of China
| | - Hao Yan
- Peking University Sixth Hospital/Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing 100191, People's Republic of China
| |
Collapse
|
26
|
Zhang X, Zhang Y, Liao J, Jiang S, Yan J, Yue W, Zhang D, Yan H. Progressive Grey Matter Volume Changes in Patients with Schizophrenia over 6 Weeks of Antipsychotic Treatment and Their Relationship to Clinical Improvement. Neurosci Bull 2018; 34:816-826. [PMID: 29779085 PMCID: PMC6129241 DOI: 10.1007/s12264-018-0234-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 04/05/2018] [Indexed: 12/20/2022] Open
Abstract
Cross-sectional and longitudinal studies have identified widespread and progressive grey matter volume (GMV) reductions in schizophrenia, especially in the frontal lobe. In this study, we found a progressive GMV decrease in the rostral medial frontal cortex (rMFC, including the anterior cingulate cortex) in the patient group during a 6-week follow-up of 40 patients with schizophrenia and 31 healthy controls well-matched for age, gender, and education. The higher baseline GMV in the rMFC predicted better improvement in the positive score on the Positive and Negative Syndrome Scale (PANSS), and this might be related to the improved reality-monitoring. Besides, a higher baseline GMV in the posterior rMFC predicted better remission of general symptoms, and a lesser GMV reduction in this region was correlated with better remission of negative symptoms, probably associated with ameliorated self-referential processing and social cognition. Besides, a shorter disease course and higher educational level contributed to better improvement in the general psychopathological PANSS score, and a family history was negatively associated with improvement of the negative and total PANSS scores. These phenomena might be important for understanding the neuropathological mechanisms underlying the symptoms of schizophrenia and for making clinical decisions.
Collapse
Affiliation(s)
- Xiao Zhang
- Peking University Sixth Hospital/Institute of Mental Health, Beijing, 100191, China
- Key Laboratory of Mental Health, Ministry of Health (Peking University) and National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, 100191, China
| | - Yuyanan Zhang
- Peking University Sixth Hospital/Institute of Mental Health, Beijing, 100191, China
- Key Laboratory of Mental Health, Ministry of Health (Peking University) and National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, 100191, China
| | - Jinmin Liao
- Peking University Sixth Hospital/Institute of Mental Health, Beijing, 100191, China
- Key Laboratory of Mental Health, Ministry of Health (Peking University) and National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, 100191, China
| | - Sisi Jiang
- Peking University Sixth Hospital/Institute of Mental Health, Beijing, 100191, China
- Key Laboratory of Mental Health, Ministry of Health (Peking University) and National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, 100191, China
| | - Jun Yan
- Peking University Sixth Hospital/Institute of Mental Health, Beijing, 100191, China
- Key Laboratory of Mental Health, Ministry of Health (Peking University) and National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, 100191, China
| | - Weihua Yue
- Peking University Sixth Hospital/Institute of Mental Health, Beijing, 100191, China
- Key Laboratory of Mental Health, Ministry of Health (Peking University) and National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, 100191, China
| | - Dai Zhang
- Peking University Sixth Hospital/Institute of Mental Health, Beijing, 100191, China.
- Key Laboratory of Mental Health, Ministry of Health (Peking University) and National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, 100191, China.
- Peking-Tsinghua Joint Center for Life Sciences and PKU IDG/McGovern Institute for Brain Research, Peking University, Beijing, 100871, China.
| | - Hao Yan
- Peking University Sixth Hospital/Institute of Mental Health, Beijing, 100191, China.
- Key Laboratory of Mental Health, Ministry of Health (Peking University) and National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, 100191, China.
| |
Collapse
|
27
|
Algunaid RF, Algumaei AH, Rushdi MA, Yassine IA. Schizophrenic patient identification using graph-theoretic features of resting-state fMRI data. Biomed Signal Process Control 2018. [DOI: 10.1016/j.bspc.2018.02.018] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
28
|
Zhao C, Zhu J, Liu X, Pu C, Lai Y, Chen L, Yu X, Hong N. Structural and functional brain abnormalities in schizophrenia: A cross-sectional study at different stages of the disease. Prog Neuropsychopharmacol Biol Psychiatry 2018; 83:27-32. [PMID: 29292241 DOI: 10.1016/j.pnpbp.2017.12.017] [Citation(s) in RCA: 103] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Revised: 12/20/2017] [Accepted: 12/24/2017] [Indexed: 01/10/2023]
Abstract
Structural and functional deficits associated with schizophrenia are observed prior to the onset of psychosis and differ according to the stage of illness. However, most previous studies concentrated on a limited period during the illness, and it remains uncertain how these abnormalities develop throughout the entire disease course. In the current study, we investigated the gray matter (GM) and regional neural activity alterations in subjects at 4 different stages of schizophrenia. The subjects comprised 53 genetic high risk (HR) individuals, 26 ultra-high risk (UHR) individuals, 58 patients with first-episode schizophrenia (FES), 41 patients with chronic schizophrenia (ChSz) and 39 healthy controls (HC), all of whom underwent structural and resting-state functional MRI scanning. Gray matter volume (GMV), amplitude of low-frequency fluctuations (ALFF) and regional homogeneity (ReHo) values were compared voxelwise among the five groups using voxel-based morphometry (VBM) and the software REST. Correlations among structural, functional abnormalities and PANSS scores in the FES group were evaluated by partial correlation analysis and multiple stepwise regression. Pronounced GMV decline was observed in the bilateral occipital lobe, left orbital frontal cortex, bilateral superior parietal lobule (SPL), right middle temporal gyrus (MTG), gyrus rectus and medial superior frontal gyrus (SFG) in the FES group and in the bilateral occipital lobe in the HR group. The FES patients also showed increased ALFF in the caudate and decreased ReHo in the bilateral inferior parietal lobule (IPL) and precuneus. The ChSz patients displayed increased ALFF in the right hippocampus. The GMV of the right MTG and SPL and the ReHo of the precuneus were negatively correlated with the general psychopathology scale, while the GMV of the right MTG was negatively correlated with the total score on the Positive and Negative Syndrome Scale (PANSS). The GMV of the right occipital cortex and SPL were associated with the ALFF of the caudate, the GMV of the right SPL was associated with the ReHo of the bilateral IPL and precuneus. GM deficits and regional dysfunction are evident prior to the onset of psychotic symptoms and are more prominent during the onset of illness than during any other phase. The right MTG and SPL, the striatum and the DMN may play important roles in the pathological changes underlying schizophrenia.
Collapse
Affiliation(s)
- Chao Zhao
- Department of Radiology, People's Hospital, Peking University, Beijing, China
| | - Jiajia Zhu
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Xiaoyi Liu
- Department of Radiology, People's Hospital, Peking University, Beijing, China
| | - Chengcheng Pu
- Institute of Mental Health, Peking University, Beijing, China
| | - Yunyao Lai
- Department of Radiology, People's Hospital, Peking University, Beijing, China
| | - Lei Chen
- Department of Radiology, People's Hospital, Peking University, Beijing, China
| | - Xin Yu
- Institute of Mental Health, Peking University, Beijing, China.
| | - Nan Hong
- Department of Radiology, People's Hospital, Peking University, Beijing, China.
| |
Collapse
|
29
|
Kazhungil F, Kumar KJ, Viswanath B, Shankar RG, Kandavel T, Math SB, Venkatasubramanian G, Reddy YCJ. Neuropsychological profile of schizophrenia with and without obsessive compulsive disorder. Asian J Psychiatr 2017; 29:30-34. [PMID: 29061423 DOI: 10.1016/j.ajp.2017.04.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2015] [Revised: 01/23/2017] [Accepted: 04/06/2017] [Indexed: 12/01/2022]
Abstract
Neuropsychological profile of schizophrenia with obsessive compulsive disorder (OCD) in comparison with that of schizophrenia without OCD is understudied and the results are inconsistent. We hypothesize that patients having schizophrenia with OCD ('schizo-obsessive disorder') may have unique neuropsychological deficits in comparison with those with schizophrenia alone, particularly with respect to executive functions. Thirty patients with schizo-obsessive disorder and 30 individually matched patients with schizophrenia without any obsessive-compulsive symptoms formed the sample of the study. Neuropsychological assessment included tests for attention, executive functions and memory. Patients with schizo-obsessive disorder did not differ from those with schizophrenia alone with respect to measures of attention, executive functions and memory. Our findings do not support unique neuropsychological profile of schizo-obsessive disorder. Studying a larger sample of drug-naive patients in a longitudinal design may provide us more insights in to this.
Collapse
Affiliation(s)
- Firoz Kazhungil
- Department of psychiatry, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India
| | - Keshav J Kumar
- Department of Clinical Psychology, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India
| | - Biju Viswanath
- Department of psychiatry, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India
| | - Ravi Girikematha Shankar
- Department of Biostatistics, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India
| | - Thennarasu Kandavel
- Department of Biostatistics, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India
| | - Suresh Bada Math
- Department of psychiatry, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India
| | - Ganesan Venkatasubramanian
- Department of psychiatry, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India
| | - Y C J Reddy
- Department of psychiatry, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India.
| |
Collapse
|
30
|
Krause M, Theiss C, Brüne M. Ultrastructural Alterations of Von Economo Neurons in the Anterior Cingulate Cortex in Schizophrenia. Anat Rec (Hoboken) 2017; 300:2017-2024. [DOI: 10.1002/ar.23635] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Revised: 03/16/2017] [Accepted: 04/06/2017] [Indexed: 12/14/2022]
Affiliation(s)
- Martin Krause
- Department of Cytology, Institute of Anatomy; Ruhr-University Bochum; Bochum 44780 Germany
| | - Carsten Theiss
- Department of Cytology, Institute of Anatomy; Ruhr-University Bochum; Bochum 44780 Germany
| | - Martin Brüne
- Division of Cognitive Neuropsychiatry and Psychiatric Preventive Medicine, LWL University Hospital Bochum; Ruhr-University Bochum; Bochum 44791 Germany
| |
Collapse
|
31
|
Sawyer KS, Oscar-Berman M, Barthelemy OJ, Papadimitriou GM, Harris GJ, Makris N. Gender dimorphism of brain reward system volumes in alcoholism. Psychiatry Res 2017; 263:15-25. [PMID: 28285206 PMCID: PMC5415444 DOI: 10.1016/j.pscychresns.2017.03.001] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Revised: 03/01/2017] [Accepted: 03/03/2017] [Indexed: 11/27/2022]
Abstract
The brain's reward network has been reported to be smaller in alcoholic men compared to nonalcoholic men, but little is known about the volumes of reward regions in alcoholic women. Morphometric analyses were performed on magnetic resonance brain scans of 60 long-term chronic alcoholics (ALC; 30 men) and 60 nonalcoholic controls (NC; 29 men). We derived volumes of total brain, and cortical and subcortical reward-related structures including the dorsolateral prefrontal (DLPFC), orbitofrontal, and cingulate cortices, and the temporal pole, insula, amygdala, hippocampus, nucleus accumbens septi (NAc), and ventral diencephalon (VDC). We examined the relationships of the volumetric findings to drinking history. Analyses revealed a significant gender interaction for the association between alcoholism and total reward network volumes, with ALC men having smaller reward volumes than NC men and ALC women having larger reward volumes than NC women. Analyses of a priori subregions revealed a similar pattern of reward volume differences with significant gender interactions for DLPFC and VDC. Overall, the volume of the cerebral ventricles in ALC participants was negatively associated with duration of abstinence, suggesting decline in atrophy with greater length of sobriety.
Collapse
Affiliation(s)
- Kayle S Sawyer
- Department of Anatomy & Neurobiology, Boston University School of Medicine, Boston, MA 02118, USA; VA Boston Healthcare System, Boston, MA 02130, USA.
| | - Marlene Oscar-Berman
- Department of Anatomy & Neurobiology, Boston University School of Medicine, Boston, MA 02118, USA; VA Boston Healthcare System, Boston, MA 02130, USA; Departments of Neurology and Psychiatry, Boston University School of Medicine, Boston, MA 02118, USA
| | - Olivier J Barthelemy
- Department of Psychological and Brain Sciences, Boston University, Boston, MA 02215, USA
| | - George M Papadimitriou
- Center for Morphometric Analysis, and Athinoula A. Martinos Center, Departments of Neurology, Psychiatry, and Radiology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Gordon J Harris
- Radiology Computer Aided Diagnostics Laboratory, and Center for Morphometric Analysis, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Nikos Makris
- Center for Morphometric Analysis, and Athinoula A. Martinos Center, Departments of Neurology, Psychiatry, and Radiology, Massachusetts General Hospital, Boston, MA 02114, USA
| |
Collapse
|
32
|
Park H, Park YH, Cha J, Seo SW, Na DL, Lee JM. Agreement between functional connectivity and cortical thickness-driven correlation maps of the medial frontal cortex. PLoS One 2017; 12:e0171803. [PMID: 28328993 PMCID: PMC5362042 DOI: 10.1371/journal.pone.0171803] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2016] [Accepted: 01/26/2017] [Indexed: 11/23/2022] Open
Abstract
Parcellation of the human cortex has important implications in neuroscience. Parcellation is often a crucial requirement before meaningful regional analysis can occur. The human cortex can be parcellated into distinct regions based on structural features, such as gyri and sulci. Brain network patterns in a given region with respect to its neighbors, known as connectional fingerprints, can be used to parcellate the cortex. Distinct imaging modalities might provide complementary information for brain parcellation. Here, we established functional connectivity with time series data from functional MRI (fMRI) combined with a correlation map of cortical thickness obtained from T1-weighted MRI. We aimed to extend the previous study, which parcellated the medial frontal cortex (MFC) using functional connectivity, and to test the value of additional information regarding cortical thickness. Two types of network information were used to parcellate the MFC into two sub-regions with spectral and Ward's clustering approaches. The MFC region was defined using manual delineation based on in-house data (n = 12). Parcellation was applied to independent large-scale data obtained from the Human Connectome Project (HCP, n = 248). Agreement between parcellation using fMRI- and thickness-driven connectivity yielded dice coefficient overlaps of 0.74 (Ward's clustering) and 0.54 (spectral clustering). We also explored whole brain connectivity using the MFC sub-regions as seed regions based on these two types of information. The results of whole brain connectivity analyses were also consistent for both types of information. We observed that an inter-regional correlation map derived from cortical thickness strongly reflected the underlying functional connectivity of MFC region.
Collapse
Affiliation(s)
- Hyunjin Park
- School of Electronic and Electrical Engineering, Sungkyunkwan University, Suwon, Korea
- Center for Neuroscience Imaging Research, Institute for Basic Science, Suwon, Korea
| | - Yeong-Hun Park
- Department of Biomedical Engineering, Hanyang University, Seoul, Korea
| | - Jungho Cha
- Department of Biomedical Engineering, Hanyang University, Seoul, Korea
| | - Sang Won Seo
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Duk L. Na
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Jong-Min Lee
- Department of Biomedical Engineering, Hanyang University, Seoul, Korea
| |
Collapse
|
33
|
Walter A, Suenderhauf C, Smieskova R, Lenz C, Harrisberger F, Schmidt A, Vogel T, Lang UE, Riecher-Rössler A, Eckert A, Borgwardt S. Altered Insular Function during Aberrant Salience Processing in Relation to the Severity of Psychotic Symptoms. Front Psychiatry 2016; 7:189. [PMID: 27933003 PMCID: PMC5120113 DOI: 10.3389/fpsyt.2016.00189] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Accepted: 11/09/2016] [Indexed: 12/31/2022] Open
Abstract
There is strong evidence for abnormal salience processing in patients with psychotic experiences. In particular, there are indications that the degree of aberrant salience processing increases with the severity of positive symptoms. The aim of the present study was to elucidate this relationship by means of brain imaging. Functional magnetic resonance imaging was acquired to assess hemodynamic responses during the Salience Attribution Test, a paradigm for reaction time that measures aberrant salience to irrelevant stimulus features. We included 42 patients who were diagnosed as having a psychotic disorder and divided them into two groups according to the severity of their positive symptoms. Whole brain analysis was performed using Statistical Parametric Mapping. We found no significant behavioral differences with respect to task performance. Patients with more positive symptoms showed increased hemodynamic responses in the left insula corresponding to aberrant salience than in patients with less positive symptoms. In addition, left insula activation correlated negatively with cumulative antipsychotic medication. Aberrant salience processing in the insula may be increased in psychosis, depending on the severity of positive symptoms. This study indicates that clinically similar psychosis manifestations share the same functional characteristics. In addition, our results suggest that antipsychotic medication can modulate insular function.
Collapse
Affiliation(s)
- Anna Walter
- Department of Psychiatry (UPK), University of Basel, Basel, Switzerland
| | | | - Renata Smieskova
- Department of Psychiatry (UPK), University of Basel, Basel, Switzerland
| | - Claudia Lenz
- Department of Psychiatry (UPK), University of Basel, Basel, Switzerland
| | | | - André Schmidt
- Department of Psychiatry (UPK), University of Basel, Basel, Switzerland
| | - Tobias Vogel
- Department of Psychiatry (UPK), University of Basel, Basel, Switzerland
| | - Undine E. Lang
- Department of Psychiatry (UPK), University of Basel, Basel, Switzerland
| | | | - Anne Eckert
- Department of Psychiatry (UPK), University of Basel, Basel, Switzerland
| | - Stefan Borgwardt
- Department of Psychiatry (UPK), University of Basel, Basel, Switzerland
| |
Collapse
|
34
|
Pinacho R, Villalmanzo N, Meana JJ, Ferrer I, Berengueras A, Haro JM, Villén J, Ramos B. Altered CSNK1E, FABP4 and NEFH protein levels in the dorsolateral prefrontal cortex in schizophrenia. Schizophr Res 2016; 177:88-97. [PMID: 27236410 DOI: 10.1016/j.schres.2016.04.050] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2015] [Revised: 03/15/2016] [Accepted: 04/27/2016] [Indexed: 11/28/2022]
Abstract
Schizophrenia constitutes a complex disease. Negative and cognitive symptoms are enduring and debilitating components of the disorder, highly associated to disability and burden. Disrupted neurotransmission circuits in dorsolateral prefrontal cortex (DLPFC) have been related to these symptoms. To identify candidates altered in schizophrenia, we performed a pilot proteomic analysis on postmortem human DLPFC tissue from patients with schizophrenia (n=4) and control (n=4) subjects in a pool design using differential isotope peptide labelling followed by liquid chromatography tandem mass spectrometry (LC-MS/MS). We quantified 1315 proteins with two or more unique peptides, 116 of which showed altered changes. Of these altered proteins, we selected four with potential roles on cell signaling, neuronal development and synapse functioning for further validation: casein kinase I isoform epsilon (CSNK1E), fatty acid-binding protein 4 (FABP4), neurofilament triplet H protein (NEFH), and retinal dehydrogenase 1 (ALDH1A1). Immunoblot validation confirmed our proteomic findings of these proteins being decreased in abundance in the schizophrenia samples. Additionally, we conducted immunoblot validation of these candidates on an independent sample cohort comprising 23 patients with chronic schizophrenia and 23 matched controls. In this second cohort, CSNK1E, FABP4 and NEFH were reduced in the schizophrenia group while ALDH1A1 did not significantly change. This study provides evidence indicating these proteins are decreased in schizophrenia: CSNK1E, involved in circadian molecular clock signaling, FABP4 with possible implication in synapse functioning, and NEFH, important for cytoarchitecture organization. Hence, these findings suggest the possible implication of these proteins in the cognitive and/or negative symptoms in schizophrenia.
Collapse
Affiliation(s)
- Raquel Pinacho
- Unitat de recerca, Parc Sanitari Sant Joan de Déu, Fundació Sant Joan de Déu, Universitat de Barcelona, Centro de Investigación Biomédica en Red de Salud Mental, CIBERSAM. Dr. Antoni Pujadas, 42, Sant Boi de Llobregat, 08830 Barcelona, Spain
| | - Núria Villalmanzo
- Unitat de recerca, Parc Sanitari Sant Joan de Déu, Fundació Sant Joan de Déu, Universitat de Barcelona, Centro de Investigación Biomédica en Red de Salud Mental, CIBERSAM. Dr. Antoni Pujadas, 42, Sant Boi de Llobregat, 08830 Barcelona, Spain
| | - J Javier Meana
- Departamento de Farmacología, Universidad del País Vasco/Euskal Herriko Unibertsitatea UPV/EHU, Instituto BioCruces, Centro de Investigación Biomédica en Red de Salud Mental, CIBERSAM, Bº Sarriena s/n, 48940 Leioa, Bizkaia, Spain
| | - Isidre Ferrer
- Instituto de Neuropatología, IDIBELL-Hospital Universitari de Bellvitge, Universitat de Barcelona, Centro de Investigación Biomédica en Red para enfermedades neurodegenerativas, CIBERNED, Feixa Llarga s/n, Hospitalet de LLobregat, 08907 Barcelona, Spain
| | - Adriana Berengueras
- Banc de Teixits Neurologics, Parc Sanitari Sant Joan de Déu, Centro de Investigación Biomédica en Red de Salud Mental, CIBERSAM, Dr. Antoni Pujadas, 42, Sant Boi de Llobregat, 08830 Barcelona, Spain
| | - Josep M Haro
- Unitat de recerca, Parc Sanitari Sant Joan de Déu, Fundació Sant Joan de Déu, Universitat de Barcelona, Centro de Investigación Biomédica en Red de Salud Mental, CIBERSAM. Dr. Antoni Pujadas, 42, Sant Boi de Llobregat, 08830 Barcelona, Spain
| | - Judit Villén
- Genome Sciences Department, School of Medicine, University of Washington, 3720 15th Ave NE, Seattle 98195, WA, USA
| | - Belén Ramos
- Unitat de recerca, Parc Sanitari Sant Joan de Déu, Fundació Sant Joan de Déu, Universitat de Barcelona, Centro de Investigación Biomédica en Red de Salud Mental, CIBERSAM. Dr. Antoni Pujadas, 42, Sant Boi de Llobregat, 08830 Barcelona, Spain.
| |
Collapse
|
35
|
Kavaklioglu T, Guadalupe T, Zwiers M, Marquand AF, Onnink M, Shumskaya E, Brunner H, Fernandez G, Fisher SE, Francks C. Structural asymmetries of the human cerebellum in relation to cerebral cortical asymmetries and handedness. Brain Struct Funct 2016; 222:1611-1623. [PMID: 27566607 PMCID: PMC5326706 DOI: 10.1007/s00429-016-1295-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Accepted: 08/22/2016] [Indexed: 11/26/2022]
Abstract
There is evidence that the human cerebellum is involved not only in motor control but also in other cognitive functions. Several studies have shown that language-related activation is lateralized toward the right cerebellar hemisphere in most people, in accordance with leftward cerebral cortical lateralization for language and a general contralaterality of cerebral–cerebellar activations. In terms of behavior, hand use elicits asymmetrical activation in the cerebellum, while hand preference is weakly associated with language lateralization. However, it is not known how, or whether, these functional relations are reflected in anatomy. We investigated volumetric gray matter asymmetries of cerebellar lobules in an MRI data set comprising 2226 subjects. We tested these cerebellar asymmetries for associations with handedness, and for correlations with cerebral cortical anatomical asymmetries of regions important for language or hand motor control, as defined by two different automated image analysis methods and brain atlases, and supplemented with extensive visual quality control. No significant associations of cerebellar asymmetries to handedness were found. Some significant associations of cerebellar lobular asymmetries to cerebral cortical asymmetries were found, but none of these correlations were greater than 0.14, and they were mostly method-/atlas-dependent. On the basis of this large and highly powered study, we conclude that there is no overt structural manifestation of cerebellar functional lateralization and connectivity, in respect of hand motor control or language laterality.
Collapse
Affiliation(s)
- Tulya Kavaklioglu
- Language and Genetics Department, Max Planck Institute for Psycholinguistics, Nijmegen, The Netherlands
- International Max Planck Research School for Language Sciences, Max Planck Institute for Psycholinguistics, Nijmegen, The Netherlands
| | - Tulio Guadalupe
- Language and Genetics Department, Max Planck Institute for Psycholinguistics, Nijmegen, The Netherlands
- International Max Planck Research School for Language Sciences, Max Planck Institute for Psycholinguistics, Nijmegen, The Netherlands
| | - Marcel Zwiers
- Donders Center for Cognitive Neuroimaging, Donders Institute for Brain, Cognition and Behavior, Radboud University, Nijmegen, The Netherlands
| | - Andre F Marquand
- Donders Center for Cognitive Neuroimaging, Donders Institute for Brain, Cognition and Behavior, Radboud University, Nijmegen, The Netherlands
- Department of Neuroimaging, Center for Neuroimaging Sciences, Institute of Psychiatry, King's College London, London, UK
| | - Marten Onnink
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Elena Shumskaya
- Donders Center for Cognitive Neuroimaging, Donders Institute for Brain, Cognition and Behavior, Radboud University, Nijmegen, The Netherlands
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Han Brunner
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Guillen Fernandez
- Donders Center for Cognitive Neuroimaging, Donders Institute for Brain, Cognition and Behavior, Radboud University, Nijmegen, The Netherlands
| | - Simon E Fisher
- Language and Genetics Department, Max Planck Institute for Psycholinguistics, Nijmegen, The Netherlands
- Donders Institute for Brain, Cognition and Behavior, Radboud University, 6500, Nijmegen, The Netherlands
| | - Clyde Francks
- Language and Genetics Department, Max Planck Institute for Psycholinguistics, Nijmegen, The Netherlands.
- Donders Institute for Brain, Cognition and Behavior, Radboud University, 6500, Nijmegen, The Netherlands.
| |
Collapse
|
36
|
Lewis DA. Is There a Neuropathology of Schizophrenia? Recent Findings Converge on Altered Thalamic-Prefrontal Cortical Connectivity. Neuroscientist 2016. [DOI: 10.1177/107385840000600311] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Schizophrenia is a serious and chronic brain disorder whose underlying neuropathology has proven difficult to identify. This article reviews the current status of neuropathological studies in terms of how they inform the diagnosis, pathogenesis, pathophysiology, and mechanisms of treatment of schizophrenia. Although additional studies are required, substantial data converge on the hypothesis that the pathophysiology of schizophrenia is associated with alterations in thalamic-prefrontal cortical connectivity.
Collapse
Affiliation(s)
- David A. Lewis
- Departments of Psychiatry and Neuroscience University of Pittsburgh Pittsburgh, Pennsylvania,
| |
Collapse
|
37
|
Association of serum VEGF levels with prefrontal cortex volume in schizophrenia. Mol Psychiatry 2016; 21:686-92. [PMID: 26169975 DOI: 10.1038/mp.2015.96] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Revised: 05/05/2015] [Accepted: 06/01/2015] [Indexed: 12/30/2022]
Abstract
A large body of evidence indicates alterations in brain regional cellular energy metabolism and blood flow in schizophrenia. Among the different molecules regulating blood flow, vascular endothelial growth factor (VEGF) is generally accepted as the major factor involved in the process of angiogenesis. In the present study, we examined whether peripheral VEGF levels correlate with changes in the prefrontal cortex (PFC) volume in patients with schizophrenia and in healthy controls. Whole-blood samples were obtained from 96 people with schizophrenia or schizoaffective disorder and 83 healthy controls. Serum VEGF protein levels were analyzed by enzyme-linked immunosorbent assay, whereas quantitative PCR was performed to measure interleukin-6 (IL-6, a pro-inflammatory marker implicated in schizophrenia) mRNA levels in the blood samples. Structural magnetic resonance imaging scans were obtained using a 3T Achieva scanner on a subset of 59 people with schizophrenia or schizoaffective disorder and 65 healthy controls, and prefrontal volumes were obtained using FreeSurfer software. As compared with healthy controls, individuals with schizophrenia had a significant increase in log-transformed mean serum VEGF levels (t(177)=2.9, P=0.005). A significant inverse correlation (r=-0.40, P=0.002) between serum VEGF and total frontal pole volume was found in patients with schizophrenia/schizoaffective disorder. Moreover, we observed a significant positive association (r=0.24, P=0.03) between serum VEGF and IL-6 mRNA levels in patients with schizophrenia. These findings suggest an association between serum VEGF and inflammation, and that serum VEGF levels are related to structural abnormalities in the PFC of people with schizophrenia.
Collapse
|
38
|
Yue Y, Kong L, Wang J, Li C, Tan L, Su H, Xu Y. Regional Abnormality of Grey Matter in Schizophrenia: Effect from the Illness or Treatment? PLoS One 2016; 11:e0147204. [PMID: 26789520 PMCID: PMC4720276 DOI: 10.1371/journal.pone.0147204] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Accepted: 12/30/2015] [Indexed: 12/25/2022] Open
Abstract
Both schizophrenia and antipsychotic treatment are known to modulate brain morphology. However, it is difficult to establish whether observed structural brain abnormalities are due to disease or the effects of treatment. The aim of this study was to investigate the effects of illness and antipsychotic treatment on brain structures in antipsychotic-naïve first-episode schizophrenia based on a longitudinal short-term design. Twenty antipsychotic-naïve subjects with first-episode schizophrenia and twenty-four age- and sex-matched healthy controls underwent 3T MRI scans. Voxel-based morphometry (VBM) was used to examine the brain structural abnormality in patients compared to healthy controls. Nine patients were included in the follow-up examination after 8 weeks of treatment. Tensor-based morphometry (TBM) was used to identify longitudinal brain structural changes. We observed significantly reduced grey matter volume in the right superior temporal gyrus in antipsychotic-naïve patients with schizophrenia compared with healthy controls. After 8 weeks of treatment, patients showed significantly increased grey matter volume primarily in the bilateral prefrontal cortex, insula, right thalamus, left superior occipital cortex and the bilateral cerebellum. In addition, a greater enlargement of the prefrontal cortex is associated with the improvement in negative symptoms, and a more enlarged thalamus is associated with greater improvement in positive symptoms. Our results suggest the following: (1) the abnormality in the right superior temporal gyrus is present in the early stages of schizophrenia, possibly representing the core region related to schizophrenia; and (2) atypical antipsychotics could modulate brain morphology involving the thalamus, cortical grey matter and cerebellum. In addition, examination of the prefrontal cortex and thalamus might facilitate an efficient response to atypical antipsychotics in terms of symptom improvement.
Collapse
Affiliation(s)
- Ying Yue
- Shanghai Huangpu Second Mental Health Center, Shanghai, 200023, China
| | - Li Kong
- College of Education, Shanghai Normal University, Shanghai, China
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Jijun Wang
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai, 200030, China
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Chunbo Li
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai, 200030, China
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Ling Tan
- Department of Radiology, Ruijin Hospital affiliated with the School of Medicine, Shanghai Jiao Tong University, Shanghai, 200025, China
| | - Hui Su
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai, 200030, China
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Yifeng Xu
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai, 200030, China
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, 200030, China
| |
Collapse
|
39
|
Leicht G, Vauth S, Polomac N, Andreou C, Rauh J, Mußmann M, Karow A, Mulert C. EEG-Informed fMRI Reveals a Disturbed Gamma-Band-Specific Network in Subjects at High Risk for Psychosis. Schizophr Bull 2016; 42:239-49. [PMID: 26163477 PMCID: PMC4681551 DOI: 10.1093/schbul/sbv092] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVES Abnormalities of oscillatory gamma activity are supposed to reflect a core pathophysiological mechanism underlying cognitive disturbances in schizophrenia. The auditory evoked gamma-band response (aeGBR) is known to be reduced across all stages of the disease. The present study aimed to elucidate alterations of an aeGBR-specific network mediated by gamma oscillations in the high-risk state of psychosis (HRP) by means of functional magnetic resonance imaging (fMRI) informed by electroencephalography (EEG). METHODS EEG and fMRI were simultaneously recorded from 27 HRP individuals and 26 healthy controls (HC) during performance of a cognitively demanding auditory reaction task. We used single trial coupling of the aeGBR with the corresponding blood oxygen level depending response (EEG-informed fMRI). RESULTS A gamma-band-specific network was significantly lower active in HRP subjects compared with HC (random effects analysis, P < .01, Bonferroni-corrected for multiple comparisons) accompanied by a worse task performance. This network involved the bilateral auditory cortices, the thalamus and frontal brain regions including the anterior cingulate cortex, as well as the bilateral dorsolateral prefrontal cortex. CONCLUSIONS For the first time we report a reduced activation of an aeGBR-specific network in HRP subjects brought forward by EEG-informed fMRI. Because the HRP reflects the clinical risk for conversion to psychotic disorders including schizophrenia and the aeGBR has repeatedly been shown to be altered in patients with schizophrenia the results of our study point towards a potential applicability of aeGBR disturbances as a marker for the prediction of transition of HRP subjects to schizophrenia.
Collapse
Affiliation(s)
- Gregor Leicht
- Department of Psychiatry and Psychotherapy, Psychiatry Neuroimaging Branch (PNB) and
| | - Sebastian Vauth
- Department of Psychiatry and Psychotherapy, Psychiatry Neuroimaging Branch (PNB) and,These authors contributed equally to the article
| | - Nenad Polomac
- Department of Psychiatry and Psychotherapy, Psychiatry Neuroimaging Branch (PNB) and
| | - Christina Andreou
- Department of Psychiatry and Psychotherapy, Psychiatry Neuroimaging Branch (PNB) and
| | - Jonas Rauh
- Department of Psychiatry and Psychotherapy, Psychiatry Neuroimaging Branch (PNB) and
| | - Marius Mußmann
- Department of Psychiatry and Psychotherapy, Psychiatry Neuroimaging Branch (PNB) and
| | - Anne Karow
- Department of Psychiatry and Psychotherapy, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christoph Mulert
- Department of Psychiatry and Psychotherapy, Psychiatry Neuroimaging Branch (PNB) and
| |
Collapse
|
40
|
Guo JY, Huhtaniska S, Miettunen J, Jääskeläinen E, Kiviniemi V, Nikkinen J, Moilanen J, Haapea M, Mäki P, Jones PB, Veijola J, Isohanni M, Murray GK. Longitudinal regional brain volume loss in schizophrenia: Relationship to antipsychotic medication and change in social function. Schizophr Res 2015; 168:297-304. [PMID: 26189075 PMCID: PMC4604250 DOI: 10.1016/j.schres.2015.06.016] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Revised: 06/01/2015] [Accepted: 06/18/2015] [Indexed: 12/16/2022]
Abstract
BACKGROUND Progressive brain volume loss in schizophrenia has been reported in previous studies but its cause and regional distribution remains unclear. We investigated progressive regional brain reductions in schizophrenia and correlations with potential mediators. METHOD Participants were drawn from the Northern Finland Birth Cohort 1966. A total of 33 schizophrenia individuals and 71 controls were MRI scanned at baseline (mean age=34.7, SD=0.77) and at follow-up (mean age=43.4, SD=0.44). Regional brain change differences and associations with clinical mediators were examined using FSL voxelwise SIENA. RESULTS Schizophrenia cases exhibited greater progressive brain reductions than controls, mainly in the frontal and temporal lobes. The degree of periventricular brain volume reductions were predicted by antipsychotic medication exposure at the fourth ventricular edge and by the number of days in hospital between the scans (a proxy measure of relapse duration) at the thalamic ventricular border. Decline in social and occupational functioning was associated with right supramarginal gyrus reduction. CONCLUSION Our findings are consistent with the possibility that antipsychotic medication exposure and time spent in relapse partially explain progressive brain reductions in schizophrenia. However, residual confounding could also account for the findings and caution must be applied before drawing causal inferences from associations demonstrated in observational studies of modest size. Less progressive brain volume loss in schizophrenia may indicate better preserved social and occupational functions.
Collapse
Affiliation(s)
- Joyce Y. Guo
- Department of Psychiatry, Cambridge Biomedical Campus, University of Cambridge, Box 189 CB2 0QQ, United Kingdom,Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge CB2 0SZ, United Kingdom
| | - Sanna Huhtaniska
- Department of Psychiatry, Research Group for Clinical Neuroscience, University of Oulu, Oulu, Finland,Medical Research Center Oulu, University of Oulu and Oulu University Hospital, Oulu, Finland
| | - Jouko Miettunen
- Department of Psychiatry, Research Group for Clinical Neuroscience, University of Oulu, Oulu, Finland,Institute of Health Sciences, University of Oulu, Oulu, Finland,Medical Research Center Oulu, University of Oulu and Oulu University Hospital, Oulu, Finland
| | - Erika Jääskeläinen
- Institute of Health Sciences, University of Oulu, Oulu, Finland,Medical Research Center Oulu, University of Oulu and Oulu University Hospital, Oulu, Finland
| | - Vesa Kiviniemi
- Department of Diagnostic Radiology, Oulu University Hospital, Oulu, Finland
| | - Juha Nikkinen
- Department of Diagnostic Radiology, Oulu University Hospital, Oulu, Finland
| | - Jani Moilanen
- Department of Psychiatry, Research Group for Clinical Neuroscience, University of Oulu, Oulu, Finland
| | - Marianne Haapea
- Department of Diagnostic Radiology, Oulu University Hospital, Oulu, Finland
| | - Pirjo Mäki
- Department of Psychiatry, Research Group for Clinical Neuroscience, University of Oulu, Oulu, Finland,Department of Psychiatry, Oulu University Hospital, Oulu, Finland,Department of Psychiatry, Länsi-Pohja Healthcare District, Finland,Department of Psychiatry, the Middle Ostrobothnia Central Hospital, Kiuru, Finland,Mental Health Services, Joint Municipal Authority of Wellbeing in Raahe District, Finland,Mental Health Services, Basic Health Care District of Kallio, Finland,Visala Hospital, the Northern Ostrobothnia Hospital District, Finland
| | - Peter B. Jones
- Department of Psychiatry, Cambridge Biomedical Campus, University of Cambridge, Box 189 CB2 0QQ, United Kingdom
| | - Juha Veijola
- Department of Psychiatry, Research Group for Clinical Neuroscience, University of Oulu, Oulu, Finland,Department of Psychiatry, Oulu University Hospital, Oulu, Finland
| | - Matti Isohanni
- Department of Psychiatry, Research Group for Clinical Neuroscience, University of Oulu, Oulu, Finland,Department of Psychiatry, Oulu University Hospital, Oulu, Finland
| | - Graham K. Murray
- Department of Psychiatry, Cambridge Biomedical Campus, University of Cambridge, Box 189 CB2 0QQ, United Kingdom,Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge CB2 0SZ, United Kingdom,Corresponding author at: Department of Psychiatry, University of Cambridge, Box 189 Cambridge Biomedical Campus, CB2 0QQ, United Kingdom. Tel.: + 44 1223769499.
| |
Collapse
|
41
|
Waltz JA, Brown JK, Gold JM, Ross TJ, Salmeron BJ, Stein EA. Probing the Dynamic Updating of Value in Schizophrenia Using a Sensory-Specific Satiety Paradigm. Schizophr Bull 2015; 41:1115-22. [PMID: 25834028 PMCID: PMC4535640 DOI: 10.1093/schbul/sbv034] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
It has been proposed that both positive and negative symptoms in schizophrenia (SZ) may derive, at least in part, from a disrupted ability to accurately and flexibly represent the value of stimuli and actions. To assess relationships between dimensions of psychopathology in SZ, and the tendency to devalue food stimuli, on which subjects were fed to satiety, we administered a sensory-specific satiety (SSS) paradigm to 42 SZ patients and 44 controls. In each of 2 sessions, subjects received 16 0.7-ml squirts of each of 2 rewarding foods and 32 squirts of a control solution, using syringes. In between the 2 sessions, each subject was instructed to drink one of the foods until he/she felt "full, but not uncomfortable." At 10 regular intervals, interspersed throughout the 2 sessions, subjects rated each liquid for pleasantness, using a Likert-type scale. Mann-Whitney U-tests revealed group differences in SSS effects. Within-group tests revealed that, while controls showed an effect of satiety that was sensory specific, patients showed an effect of satiety that was not, devaluing the sated and unsated foods similarly. In SZ patients, we observed correlations between the magnitude of SSS effects and measures of both positive and negative symptoms. We argue that the ability to flexibly and rapidly update representations of the value of stimuli and actions figures critically in the ability of patients with psychotic illness to process salient events and adaptively engage in goal-directed behavior.
Collapse
Affiliation(s)
- James A. Waltz
- Department of Psychiatry, University of Maryland School of Medicine, Maryland Psychiatric Research Center, Baltimore, MD;,*To whom correspondence should be addressed; Department of Psychiatry, University of Maryland School of Medicine, Maryland Psychiatric Research Center, PO Box 21247, Baltimore, MD 21228, US; tel: +1-410-402-6044, fax: +1-410-402-7198, e-mail:
| | - Jaime K. Brown
- Department of Psychiatry, University of Maryland School of Medicine, Maryland Psychiatric Research Center, Baltimore, MD
| | - James M. Gold
- Department of Psychiatry, University of Maryland School of Medicine, Maryland Psychiatric Research Center, Baltimore, MD
| | - Thomas J. Ross
- Neuroimaging Research Branch, National Institute on Drug Abuse - Intramural Research Program, Baltimore, MD
| | - Betty J. Salmeron
- Neuroimaging Research Branch, National Institute on Drug Abuse - Intramural Research Program, Baltimore, MD
| | - Elliot A. Stein
- Neuroimaging Research Branch, National Institute on Drug Abuse - Intramural Research Program, Baltimore, MD
| |
Collapse
|
42
|
Savio A, Graña M. Local activity features for computer aided diagnosis of schizophrenia on resting-state fMRI. Neurocomputing 2015. [DOI: 10.1016/j.neucom.2015.01.079] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
43
|
Tohid H, Faizan M, Faizan U. Alterations of the occipital lobe in schizophrenia. NEUROSCIENCES (RIYADH, SAUDI ARABIA) 2015; 20:213-24. [PMID: 26166588 PMCID: PMC4710336 DOI: 10.17712/nsj.2015.3.20140757] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The relationship of the occipital lobe of the brain with schizophrenia is not commonly studied; however, this topic is considered an essential subject matter among clinicians and scientists. We conducted this systematic review to elaborate the relationship in depth. We found that most schizophrenic patients show normal occipital anatomy and physiology, a minority showed dwindled values, and some demonstrated augmented function and structure. The findings are laborious to incorporate within single disease models that present the involvement of the occipital lobe in schizophrenia. Schizophrenia progresses clinically in the mid-twenties and thirties and its prognosis is inadequate. Changes in the volume, the gray matter, and the white matter in the occipital lobe are quite evident; however, the mechanism behind this involvement is not yet fully understood. Therefore, we recommend further research to explore the occipital lobe functions and volumes across the different stages of schizophrenia.
Collapse
Affiliation(s)
- Hassaan Tohid
- Center for Mind and Brain, UC Davis, CA, United States of America. E-mail:
| | | | | |
Collapse
|
44
|
Chyzhyk D, Savio A, Graña M. Computer aided diagnosis of schizophrenia on resting state fMRI data by ensembles of ELM. Neural Netw 2015; 68:23-33. [PMID: 25965771 DOI: 10.1016/j.neunet.2015.04.002] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Revised: 02/24/2015] [Accepted: 04/08/2015] [Indexed: 10/23/2022]
Abstract
Resting state functional Magnetic Resonance Imaging (rs-fMRI) is increasingly used for the identification of image biomarkers of brain diseases or psychiatric conditions such as schizophrenia. This paper deals with the application of ensembles of Extreme Learning Machines (ELM) to build Computer Aided Diagnosis systems on the basis of features extracted from the activity measures computed over rs-fMRI data. The power of ELM to provide quick but near optimal solutions to the training of Single Layer Feedforward Networks (SLFN) allows extensive exploration of discriminative power of feature spaces in affordable time with off-the-shelf computational resources. Exploration is performed in this paper by an evolutionary search approach that has found functional activity map features allowing to achieve quite successful classification experiments, providing biologically plausible voxel-site localizations.
Collapse
Affiliation(s)
- Darya Chyzhyk
- Computational Intelligence Group (GIC), University of the Basque Country, UPV/EHU, Spain; CISE Department, University of Florida, Gainesville, USA.
| | - Alexandre Savio
- Computational Intelligence Group (GIC), University of the Basque Country, UPV/EHU, Spain; ENGINE Centre, Wrocław University of Technology, Wybrzeże Wyspiańskiego 27, 50-370, Wrocław, Poland
| | - Manuel Graña
- Computational Intelligence Group (GIC), University of the Basque Country, UPV/EHU, Spain; ENGINE Centre, Wrocław University of Technology, Wybrzeże Wyspiańskiego 27, 50-370, Wrocław, Poland
| |
Collapse
|
45
|
Salgado-Pineda P, Landin-Romero R, Fakra E, Delaveau P, Amann BL, Blin O. Structural abnormalities in schizophrenia: further evidence on the key role of the anterior cingulate cortex. Neuropsychobiology 2015; 69:52-8. [PMID: 24457222 DOI: 10.1159/000356972] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2013] [Accepted: 11/02/2013] [Indexed: 11/19/2022]
Abstract
OBJECTIVE The present study examined whole-brain structural abnormalities in schizophrenia, with a special focus on the anterior and posterior cingulate cortex (ACC, PCC) as this is an understudied issue in schizophrenia. METHOD Whole-brain voxel-based morphometry analyses of gray matter (GM) and white matter (WM) were performed to detect volumetric differences between 14 patients with schizophrenia and 14 healthy controls matched for age, sex, educational level and parents' educational level. We examined within-group GM and WM correlations and completed the analysis with measurements of sulci in medial cortical areas. RESULTS Compared with the healthy controls, the schizophrenic patients showed significant decreases in GM volumes in the ACC and PCC, and in neighboring WM regions such as the corpus callosum and the fimbriae of the fornix. Moreover, the patient group also displayed a negative correlation between volumes of GM and WM in the ACC. Finally, the patients showed significantly reduced volumes in the right cingulate sulci and left inferior frontal sulci. CONCLUSION Our results replicate typical brain-structural abnormalities with new findings in the medial prefrontal cortex, suggested to be a key region in this disorder.
Collapse
Affiliation(s)
- P Salgado-Pineda
- FIDMAG Hermanas Hospitalarias Research Foundation, Sant Boi de Llobregat and CIBERSAM, Barcelona, Spain
| | | | | | | | | | | |
Collapse
|
46
|
Decrease in olfactory and taste receptor expression in the dorsolateral prefrontal cortex in chronic schizophrenia. J Psychiatr Res 2015; 60:109-16. [PMID: 25282281 DOI: 10.1016/j.jpsychires.2014.09.012] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Revised: 08/20/2014] [Accepted: 09/12/2014] [Indexed: 01/06/2023]
Abstract
We have recently identified up- or down-regulation of the olfactory (OR) and taste (TASR) chemoreceptors in the human cortex in several neurodegenerative diseases, raising the possibility of a general deregulation of these genes in neuropsychiatric disorders. In this study, we explore the possible deregulation of OR and TASR gene expression in the dorsolateral prefrontal cortex in schizophrenia. We used quantitative polymerase chain reaction on extracts from postmortem dorsolateral prefrontal cortex of subjects with chronic schizophrenia (n = 15) compared to control individuals (n = 14). Negative symptoms were evaluated premortem by the Positive and Negative Syndrome and the Clinical Global Impression Schizophrenia Scales. We report that ORs and TASRs are deregulated in the dorsolateral prefrontal cortex in schizophrenia. Seven out of eleven ORs and four out of six TASRs were down-regulated in schizophrenia, the most prominent changes of which were found in genes from the 11p15.4 locus. The expression did not associate with negative symptom clinical scores or the duration of the illness. However, most ORs and all TASRs inversely associated with the daily chlorpromazine dose. This study identifies for the first time a decrease in brain ORs and TASRs in schizophrenia, a neuropsychiatric disease not linked to abnormal protein aggregates, suggesting that the deregulation of these receptors is associated with altered cognition of these disorders. In addition, the influence of antipsychotics on the expression of ORs and TASRs in schizophrenia suggests that these receptors could be involved in the mechanism of action or side effects of antipsychotics.
Collapse
|
47
|
Abstract
Schizophrenia is a mental disorder associated with a variety of symptoms, including hallucinations, delusions, social withdrawal, and cognitive dysfunction. Impairments on decision-making tasks are routinely reported: evidence points to a particular deficit in learning from and revising behavior following feedback. In addition, patients tend to make hasty decisions when probabilistic judgments are required. This is known as "jumping to conclusions" (JTC) and has typically been demonstrated by presenting participants with colored beads drawn from one of two "urns" until they claim to be sure which urn the beads are being drawn from (the proportions of colors vary in each urn). Patients tend to make early decisions on this task, and there is evidence to suggest that a hasty decision-making style might be linked to delusion formation and thus be of clinical relevance. Various accounts have been proposed regarding what underlies this behavior. In this review, we briefly introduce the disorder and the decision-making deficits associated with it. We then explore the evidence for each account of JTC in the context of a wider decision-making deficit and then go on to summarize work exploring JTC in healthy controls using pharmacological manipulations and functional imaging. Finally, we assess whether JTC might have a role in therapy.
Collapse
Affiliation(s)
- Simon L Evans
- School of Psychology, University of Sussex, Brighton, East Sussex, UK
| | - Bruno B Averbeck
- Laboratory of Neuropsychology, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| | - Nicholas Furl
- Department of Psychology, Royal Holloway, University of London, Egham, Surrey, UK
| |
Collapse
|
48
|
Asymmetry within and around the human planum temporale is sexually dimorphic and influenced by genes involved in steroid hormone receptor activity. Cortex 2015; 62:41-55. [DOI: 10.1016/j.cortex.2014.07.015] [Citation(s) in RCA: 105] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2014] [Revised: 06/18/2014] [Accepted: 07/17/2014] [Indexed: 11/18/2022]
|
49
|
Watanabe Y, Urakami T, Hongo S, Ohtsubo T. Frontal lobe function and social adjustment in patients with schizophrenia: near-infrared spectroscopy. Hum Psychopharmacol 2015; 30:28-41. [PMID: 25408137 DOI: 10.1002/hup.2448] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2014] [Accepted: 09/26/2014] [Indexed: 11/06/2022]
Abstract
OBJECTIVE The study evaluated relationships between frontal lobe function in patients with schizophrenia and both their social adjustment and medication, using 22-channel near-infrared spectroscopy (NIRS). METHODS One hundred ninety-nine stable patients with Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition, Text Revision schizophrenia, whose medication had not been changed within the preceding 3 months and who were able to visit our clinics for NIRS, were the study subjects. As a comparator, 144 healthy volunteers who underwent a physical examination and the Mini-International Neuropsychiatric Interview also received NIRS. RESULTS The main outcomes evaluated were frontal lobe oxyhemoglobin concentration (OxHb) measured by NIRS, current medication, social adjustment, and scores on the Brief Psychiatric Rating Scale. The OxHb in schizophrenic patients (0.878 ± 1.1801 mM mm; n = 199) was significantly lower than that in the healthy volunteers (2.085 ± 1.7480 mM mm: n = 100) (p < 0.001). NIRS-measured OxHb values reflected disease severity and degree of social adjustment in schizophrenic patients. CONCLUSIONS Patients with higher OxHb values were socially better adjusted than those with lower OxHb values. Patients treated with atypical antipsychotic monotherapy showed lower treatment resistance and better social adjustment than those treated with combination therapy.
Collapse
Affiliation(s)
- Yoshinori Watanabe
- Nanko Clinic of Psychiatry, Fukushima, Japan; Himorogi Psychiatric Institute, Tokyo, Japan
| | | | | | | |
Collapse
|
50
|
Du M, Liu J, Chen Z, Huang X, Li J, Kuang W, Yang Y, Zhang W, Zhou D, Bi F, Kendrick KM, Gong Q. Brain grey matter volume alterations in late-life depression. J Psychiatry Neurosci 2014; 39:397-406. [PMID: 24949867 PMCID: PMC4214874 DOI: 10.1503/jpn.130275] [Citation(s) in RCA: 114] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Voxel-based morphometry (VBM) studies have demonstrated that grey matter abnormalities are involved in the pathophysiology of late-life depression (LLD), but the findings are inconsistent and have not been quantitatively reviewed. The aim of the present study was to conduct a meta-analysis that integrated the reported VBM studies, to determine consistent grey matter alterations in individuals with LLD. METHODS A systematic search was conducted to identify VBM studies that compared patients with LLD and healthy controls. We performed a meta-analysis using the effect size signed differential mapping method to quantitatively estimate regional grey matter abnormalities in patients with LLD. RESULTS We included 9 studies with 11 data sets comprising 292 patients with LLD and 278 healthy controls in our meta-analysis. The pooled and subgroup meta-analyses showed robust grey matter reductions in the right lentiform nucleus extending into the parahippocampus, the hippocampus and the amygdala, the bilateral medial frontal gyrus and the right subcallosal gyrus as well as a grey matter increase in the right lingual gyrus. Meta-regression analyses showed that mean age and the percentage of female patients with LLD were not significantly related to grey matter changes. LIMITATIONS The analysis techniques, patient characteristics and clinical variables of the studies included were heterogeneous, and most participants were medicated. CONCLUSION The present meta-analysis is, to our knowledge, the first to overcome previous inconsistencies in the VBM studies of LLD and provide robust evidence for grey matter alterations within fronto-striatal-limbic networks, thereby implicating them in the pathophysiology of LLD. The mean age and the percentage of female patients with LLD did not appear to have a measurable impact on grey matter changes, although we cannot rule out the contributory effects of medication.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Qiyong Gong
- Correspondence to: Q. Gong, Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, No. 37 Guo Xue Xiang, Chengdu, Sichuan 610041, PR China;
| |
Collapse
|