Held L. Beyond the two-trials rule.
Stat Med 2024;
43:5023-5042. [PMID:
38573319 DOI:
10.1002/sim.10055]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 11/10/2023] [Accepted: 12/10/2023] [Indexed: 04/05/2024]
Abstract
The two-trials rule for drug approval requires "at least two adequate and well-controlled studies, each convincing on its own, to establish effectiveness." This is usually implemented by requiring two significant pivotal trials and is the standard regulatory requirement to provide evidence for a new drug's efficacy. However, there is need to develop suitable alternatives to this rule for a number of reasons, including the possible availability of data from more than two trials. I consider the case of up to three studies and stress the importance to control the partial Type-I error rate, where only some studies have a true null effect, while maintaining the overall Type-I error rate of the two-trials rule, where all studies have a null effect. Some less-knownP $$ P $$ -value combination methods are useful to achieve this: Pearson's method, Edgington's method and the recently proposed harmonic meanχ 2 $$ {\chi}^2 $$ -test. I study their properties and discuss how they can be extended to a sequential assessment of success while still ensuring overall Type-I error control. I compare the different methods in terms of partial Type-I error rate, project power and the expected number of studies required. Edgington's method is eventually recommended as it is easy to implement and communicate, has only moderate partial Type-I error rate inflation but substantially increased project power.
Collapse