1
|
Pattalachinti VK, Haque E, Yousef M, Yousef A, Chowdhury S, Overman M, Parseghian CM, Morris VK, Kee B, Huey RW, Raghav K, Court CM, Shen JP. BRAF mutant appendiceal adenocarcinoma differs from colorectal cancer but responds to BRAF-targeted therapy. NPJ Precis Oncol 2025; 9:38. [PMID: 39910160 PMCID: PMC11799341 DOI: 10.1038/s41698-025-00821-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 01/21/2025] [Indexed: 02/07/2025] Open
Abstract
Appendiceal Adenocarcinoma (AA) is a rare gastrointestinal cancer with no FDA-approved targeted therapies. Here, we retrospectively compare BRAF-mutant AA and colorectal cancer (CRC). BRAF mutation is rare in AA (3%). Unlike CRC, BRAFV600E AA is not associated with poor prognosis, female sex, microsatellite instability, mucinous histology, or poor differentiation. In both cancers, BRAFV600E but not atypical BRAF mutations are mutually exclusive with other Ras-activating mutations. BRAFV600E + EGFR inhibition shows efficacy in BRAFV600E AA (disease control rate = 80%, median progression-free survival = 7.1 months).
Collapse
Affiliation(s)
- Vinay K Pattalachinti
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- The Joe R. and Teresa Lozano Long School of Medicine, University of Texas Health Science Center San Antonio, San Antonio, TX, USA
| | - Emaan Haque
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Mahmoud Yousef
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Abdelrahman Yousef
- Internal Medicine Department, University of New Mexico Hospital, Albuquerque, NM, USA
| | - Saikat Chowdhury
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Michael Overman
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Christine M Parseghian
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Van K Morris
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Bryan Kee
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ryan W Huey
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Kanwal Raghav
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Colin M Court
- Department of Surgical Oncology and Endocrine Surgery, Mays Cancer Center, University of Texas Health San Antonio, San Antonio, TX, USA
| | - John Paul Shen
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
2
|
Timofeev O, Giron P, Lawo S, Pichler M, Noeparast M. ERK pathway agonism for cancer therapy: evidence, insights, and a target discovery framework. NPJ Precis Oncol 2024; 8:70. [PMID: 38485987 PMCID: PMC10940698 DOI: 10.1038/s41698-024-00554-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 02/16/2024] [Indexed: 03/18/2024] Open
Abstract
At least 40% of human cancers are associated with aberrant ERK pathway activity (ERKp). Inhibitors targeting various effectors within the ERKp have been developed and explored for over two decades. Conversely, a substantial body of evidence suggests that both normal human cells and, notably to a greater extent, cancer cells exhibit susceptibility to hyperactivation of ERKp. However, this vulnerability of cancer cells remains relatively unexplored. In this review, we reexamine the evidence on the selective lethality of highly elevated ERKp activity in human cancer cells of varying backgrounds. We synthesize the insights proposed for harnessing this vulnerability of ERK-associated cancers for therapeutical approaches and contextualize these insights within established pharmacological cancer-targeting models. Moreover, we compile the intriguing preclinical findings of ERK pathway agonism in diverse cancer models. Lastly, we present a conceptual framework for target discovery regarding ERKp agonism, emphasizing the utilization of mutual exclusivity among oncogenes to develop novel targeted therapies for precision oncology.
Collapse
Affiliation(s)
- Oleg Timofeev
- Institute of Molecular Oncology, Member of the German Center for Lung Research (DZL), Philipps University, 35043, Marburg, Germany
| | - Philippe Giron
- Vrije Universiteit Brussel (VUB), Universitair Ziekenhuis Brussel (UZ Brussel), Clinical Sciences, Research group Genetics, Reproduction and Development, Centre for Medical Genetics, Laarbeeklaan 101, 1090, Brussels, Belgium
| | - Steffen Lawo
- CRISPR Screening Core Facility, Max Planck Institute for Biology of Ageing, 50931, Cologne, Germany
| | - Martin Pichler
- Translational Oncology, II. Med Clinics Hematology and Oncology, 86156, Augsburg, Germany
| | - Maxim Noeparast
- Translational Oncology, II. Med Clinics Hematology and Oncology, 86156, Augsburg, Germany.
| |
Collapse
|
3
|
Kazandjian S, Rousselle E, Dankner M, Cescon DW, Spreafico A, Ma K, Kavan P, Batist G, Rose AAN. The Clinical, Genomic, and Transcriptomic Landscape of BRAF Mutant Cancers. Cancers (Basel) 2024; 16:445. [PMID: 38275886 PMCID: PMC10814895 DOI: 10.3390/cancers16020445] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/08/2024] [Accepted: 01/13/2024] [Indexed: 01/27/2024] Open
Abstract
BACKGROUND BRAF mutations are classified into four molecularly distinct groups, and Class 1 (V600) mutant tumors are treated with targeted therapies. Effective treatment has not been established for Class 2/3 or BRAF Fusions. We investigated whether BRAF mutation class differed according to clinical, genomic, and transcriptomic variables in cancer patients. METHODS Using the AACR GENIE (v.12) cancer database, the distribution of BRAF mutation class in adult cancer patients was analyzed according to sex, age, primary race, and tumor type. Genomic alteration data and transcriptomic analysis was performed using The Cancer Genome Atlas. RESULTS BRAF mutations were identified in 9515 (6.2%) samples among 153,834, with melanoma (31%), CRC (20.7%), and NSCLC (13.9%) being the most frequent cancer types. Class 1 harbored co-mutations outside of the MAPK pathway (TERT, RFN43) vs. Class 2/3 mutations (RAS, NF1). Across all tumor types, Class 2/3 were enriched for alterations in genes involved in UV response and WNT/β-catenin. Pathway analysis revealed enrichment of WNT/β-catenin and Hedgehog signaling in non-V600 mutated CRC. Males had a higher proportion of Class 3 mutations vs. females (17.4% vs. 12.3% q = 0.003). Non-V600 mutations were generally more common in older patients (aged 60+) vs. younger (38% vs. 15% p < 0.0001), except in CRC (15% vs. 30% q = 0.0001). Black race was associated with non-V600 BRAF alterations (OR: 1.58; p < 0.0001). CONCLUSIONS Class 2/3 BRAFs are more present in Black male patients with co-mutations outside of the MAPK pathway, likely requiring additional oncogenic input for tumorigenesis. Improving access to NGS and trial enrollment will help the development of targeted therapies for non-V600 BRAF mutations.
Collapse
Affiliation(s)
- Suzanne Kazandjian
- Gerald Bronfman Department of Oncology, McGill University, Montreal, QC H4A 3T2, Canada; (S.K.); (K.M.); (P.K.); (G.B.)
- Segal Cancer Centre, Jewish General Hospital, Montreal, QC H3T 1E2, Canada
| | - Emmanuelle Rousselle
- Lady Davis Institute, Jewish General Hospital, Montreal, QC H3T 1E2, Canada; (E.R.); (M.D.)
- Division of Experimental Medicine, McGill University, Montreal, QC H4A 3J1, Canada
| | - Matthew Dankner
- Lady Davis Institute, Jewish General Hospital, Montreal, QC H3T 1E2, Canada; (E.R.); (M.D.)
- Division of Experimental Medicine, McGill University, Montreal, QC H4A 3J1, Canada
- Faculty of Medicine and Health Sciences, McGill University, Montreal, QC H3G 2M1, Canada
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montreal, QC H3A 1A3, Canada
| | - David W. Cescon
- Department of Medical Oncology and Hematology, Princess Margaret Cancer Center, Toronto, ON M5G 2M9, Canada; (D.W.C.); (A.S.)
| | - Anna Spreafico
- Department of Medical Oncology and Hematology, Princess Margaret Cancer Center, Toronto, ON M5G 2M9, Canada; (D.W.C.); (A.S.)
| | - Kim Ma
- Gerald Bronfman Department of Oncology, McGill University, Montreal, QC H4A 3T2, Canada; (S.K.); (K.M.); (P.K.); (G.B.)
- Segal Cancer Centre, Jewish General Hospital, Montreal, QC H3T 1E2, Canada
| | - Petr Kavan
- Gerald Bronfman Department of Oncology, McGill University, Montreal, QC H4A 3T2, Canada; (S.K.); (K.M.); (P.K.); (G.B.)
- Segal Cancer Centre, Jewish General Hospital, Montreal, QC H3T 1E2, Canada
| | - Gerald Batist
- Gerald Bronfman Department of Oncology, McGill University, Montreal, QC H4A 3T2, Canada; (S.K.); (K.M.); (P.K.); (G.B.)
- Segal Cancer Centre, Jewish General Hospital, Montreal, QC H3T 1E2, Canada
| | - April A. N. Rose
- Gerald Bronfman Department of Oncology, McGill University, Montreal, QC H4A 3T2, Canada; (S.K.); (K.M.); (P.K.); (G.B.)
- Segal Cancer Centre, Jewish General Hospital, Montreal, QC H3T 1E2, Canada
- Lady Davis Institute, Jewish General Hospital, Montreal, QC H3T 1E2, Canada; (E.R.); (M.D.)
- Division of Experimental Medicine, McGill University, Montreal, QC H4A 3J1, Canada
- Faculty of Medicine and Health Sciences, McGill University, Montreal, QC H3G 2M1, Canada
| |
Collapse
|
4
|
Li S, Qu J, Wang X, Zou Q, Li C. SHP2 is involved in the occurrence, development and prognosis of cancer. Oncol Lett 2023; 26:393. [PMID: 37600341 PMCID: PMC10433711 DOI: 10.3892/ol.2023.13979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Accepted: 07/14/2023] [Indexed: 08/22/2023] Open
Abstract
Src homology-2 domain-containing protein tyrosine phosphatase (SHP2), encoded by protein tyrosine phosphatase non-receptor type 11 (PTPN11), is widely expressed in several human tissue types, and plays an important role in a variety of diseases. The present study assessed the impact of SHP2 on the occurrence, development and prognosis of solid tumors. The transcriptome sequencing data of 33 cancer types were downloaded from The Cancer Genome Atlas database. Clinical information of the corresponding patients, tumor mutational burden and information pertinent to microsatellite instability were also downloaded. The log-rank test and univariate Cox's regression test were used to evaluate patient survival. The 'ESTIMATE' method was used to assess the tumor microenvironment, and the 'CIBERSORT' algorithm was used to evaluate tumor immune cell infiltration. Spearman's correlation analysis was used to evaluate the correlation between SHP2 expression and the targets identified. ELISA was used to assess the SHP2 expression levels in peripheral blood samples of patients with breast, ovarian, endometrial and cervical cancer. The data indicated that the expression levels of SHP2 were increased in a variety of tumor tissues, and were associated with tumor progression and prognosis. In peripheral blood, the positive rates of SHP2 expression in breast cancer (71.43%) and ovarian cancer (58.82%) were significantly higher than those in the corresponding control groups. However, the positive rates of SHP2 expression in patients with endometrial cancer (31.03%) and cervical cancer (41.30%) were significantly lower than those in the corresponding control groups. Increased SHP2 expression improved overall survival (OS) and disease free survival (DFS) time in patients with kidney renal clear cell carcinoma. However, increased SHP2 expression reduced OS and DFS in patients with urothelial carcinoma, and cervical and endocervical cancer types. Moreover, the elevated expression of SHP2 could also reduce the OS of patients with breast invasive carcinoma, mesothelioma and liver hepatocellular carcinoma. PTPN11 expression was associated with the tumor microenvironment of various tumor types. The tumor mutational burden of various tumor types was associated with microsatellite instability. PTPN11 inhibited T-cell activation and promoted M2 macrophage activation in several tumors. Therefore, SHP2 may be used in the evaluation of tumor progression and prognosis, and it may be an optimal potential biological target for cancer therapy.
Collapse
Affiliation(s)
- Shu Li
- Department of Clinical Laboratory, Women and Children's Hospital of Chongqing Medical University, Chongqing 401174, P.R. China
- Department of Clinical Laboratory, Chongqing Health Center for Women and Children, Chongqing 401174, P.R. China
| | - Jialing Qu
- Department of Clinical Laboratory, Women and Children's Hospital of Chongqing Medical University, Chongqing 401174, P.R. China
- Department of Clinical Laboratory, Chongqing Health Center for Women and Children, Chongqing 401174, P.R. China
| | - Xiaotong Wang
- Department of Obstetrics and Gynecology, Women and Children's Hospital of Chongqing Medical University, Chongqing 401174, P.R. China
- Department of Obstetrics and Gynecology, Chongqing Health Center for Women and Children, Chongqing 401174, P.R. China
| | - Qin Zou
- Department of Clinical Laboratory, Women and Children's Hospital of Chongqing Medical University, Chongqing 401174, P.R. China
- Department of Clinical Laboratory, Chongqing Health Center for Women and Children, Chongqing 401174, P.R. China
| | - Chunli Li
- Department of Clinical Laboratory, Women and Children's Hospital of Chongqing Medical University, Chongqing 401174, P.R. China
- Department of Clinical Laboratory, Chongqing Health Center for Women and Children, Chongqing 401174, P.R. China
| |
Collapse
|
5
|
Malapelle U, Angerilli V, Pepe F, Fontanini G, Lonardi S, Scartozzi M, Memeo L, Pruneri G, Marchetti A, Perrone G, Fassan M. The ideal reporting of RAS testing in colorectal adenocarcinoma: a pathologists' perspective. Pathologica 2023; 115:137-147. [PMID: 37314870 PMCID: PMC10462993 DOI: 10.32074/1591-951x-895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 05/24/2023] [Indexed: 06/16/2023] Open
Abstract
RAS gene mutational status represents an imperative predictive biomarker to be tested in the clinical management of metastatic colorectal adenocarcinoma. Even if it is one of the most studied biomarkers in the era of precision medicine, several pre-analytical and analytical factors may still impasse an adequate reporting of RAS status in clinical practice, with significant therapeutic consequences. Thus, pathologists should be aware on the main topics related to this molecular evaluation: (i) adopt diagnostic limit of detections adequate to avoid the interference of sub-clonal cancer cell populations; (ii) choose the most adequate diagnostic strategy according to the available sample and its qualification for molecular testing; (iii) provide all the information regarding the mutation detected, since many RAS mutation-specific targeted therapeutic approaches are in development and will enter into routine clinical practice. In this review, we give a comprehensive description of the current scenario about RAS gene mutational testing in the clinic focusing on the pathologist's role in patient selection for targeted therapies.
Collapse
Affiliation(s)
- Umberto Malapelle
- Department of Public Health, University of Naples Federico II, Naples (NA), Italy
| | | | - Francesco Pepe
- Department of Public Health, University of Naples Federico II, Naples (NA), Italy
| | - Gabriella Fontanini
- Department of Surgical, Medical and Molecular Pathology and Critical Care Medicine, University of Pisa, Pisa (PI), Italy
| | - Sara Lonardi
- Medical Oncology 3, Veneto Institute of Oncology IOV-IRCCS, Padua (PD), Italy
| | - Mario Scartozzi
- Medical Oncology, University Hospital and University of Cagliari, Cagliari (CA), Italy
| | - Lorenzo Memeo
- Department of Experimental Oncology, Mediterranean Institute of Oncology, Viagrande, Catania (CT), Italy
| | - Gianfranco Pruneri
- Department of Advanced Diagnostics, Fondazione IRCCS Istituto Nazionale Tumori and University of Milan, Milan (MI), Italy
| | - Antonio Marchetti
- Center for Advanced Studies and Technology (CAST), University Chieti-Pescara, Chieti (CH), Italy
- Diagnostic Molecular Pathology, Unit of Anatomic Pathology, SS Annunziata Hospital, Chieti (CH), Italy and Department of Medical, Oral, and Biotechnological Sciences University “G. D’Annunzio” of Chieti-Pescara, Chieti (CH), Italy
| | - Giuseppe Perrone
- Department of Medicine and Surgery, Research Unit of Anatomical Pathology, Università Campus Bio-Medico di Roma, Roma, Italy
- Anatomical Pathology Operative Research Unit, Fondazione Policlinico Universitario Campus Bio-Medico, Roma, Italy
| | - Matteo Fassan
- Department of Medicine (DIMED), University of Padua, Padua (PD), Italy
- Veneto Institute of Oncology (IOV-IRCCS), Padua (PD), Italy
| |
Collapse
|
6
|
Di Federico A, De Giglio A, Gelsomino F, De Biase D, Giunchi F, Palladini A, Sperandi F, Melotti B, Ardizzoni A. Genomic Landscape, Clinical Features and Outcomes of Non-Small Cell Lung Cancer Patients Harboring BRAF Alterations of Distinct Functional Classes. Cancers (Basel) 2022; 14:3472. [PMID: 35884534 PMCID: PMC9319412 DOI: 10.3390/cancers14143472] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 07/15/2022] [Accepted: 07/15/2022] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND In non-small cell lung cancer (NSCLC), BRAF class 1 alterations are effectively targeted by BRAF inhibitors. Conversely, targeted therapies have very low or absent activity in patients carrying class 2 and 3 alterations. The spectrum of BRAF alterations in NSCLC patients, and their accompanying clinical features, genomic landscape and treatment outcomes have been poorly reported. PATIENTS AND METHODS We identified BRAF alterations of defined functional class across different tumors through a systematic review. Then, we selected NSCLC patients carrying BRAF alterations, according to the systematic review, in the cBioPortal (cBioPortal cohort) to collect and analyze clinical, biomolecular and survival data. Finally, we identified NSCLC patients carrying BRAF non-V600 mutations enrolled in POPLAR and OAK trials (POPLAR/OAK cohort), extracting clinical and survival data for survival analyses. RESULTS 100 different BRAF non-V600 alterations were identified through the systematic review. In the cBioPortal cohort (n = 139), patients harboring class 2 and 3 alterations were more frequently smokers and had higher tumor mutational burden compared to those carrying class 1 alterations. The spectrum of most frequently co-altered genes was significantly different between BRAF alterations classes, including SETD2, STK11, POM121L12, MUC16, KEAP1, TERT, TP53 and other genes. In the POPLAR/OAK cohort, patients carrying non-V600 BRAF alterations were characterized by poor prognosis compared to BRAF wild-type patients. CONCLUSIONS Different classes of BRAF alterations confer distinctive clinical features, biomolecular signature and disease behavior to NSCLC patients. Non-V600 alterations are characterized by poor prognosis, but key gene co-alterations involved in cancer cell survival and immune pathways may suggest their potential sensitivity to tailored treatments.
Collapse
Affiliation(s)
- Alessandro Di Federico
- Division of Medical Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy; (A.D.G.); (F.G.); (F.S.); (B.M.); (A.A.)
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, 40126 Bologna, Italy;
| | - Andrea De Giglio
- Division of Medical Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy; (A.D.G.); (F.G.); (F.S.); (B.M.); (A.A.)
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, 40126 Bologna, Italy;
| | - Francesco Gelsomino
- Division of Medical Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy; (A.D.G.); (F.G.); (F.S.); (B.M.); (A.A.)
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, 40126 Bologna, Italy;
| | - Dario De Biase
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, 40126 Bologna, Italy;
- Department of Pharmacy and Biotechnology (FaBiT), University of Bologna, 40138 Bologna, Italy
| | - Francesca Giunchi
- Pathology Department, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy;
| | - Arianna Palladini
- Department of Molecular Oncology, University of Pavia, 27100 Pavia, Italy;
| | - Francesca Sperandi
- Division of Medical Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy; (A.D.G.); (F.G.); (F.S.); (B.M.); (A.A.)
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, 40126 Bologna, Italy;
| | - Barbara Melotti
- Division of Medical Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy; (A.D.G.); (F.G.); (F.S.); (B.M.); (A.A.)
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, 40126 Bologna, Italy;
| | - Andrea Ardizzoni
- Division of Medical Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy; (A.D.G.); (F.G.); (F.S.); (B.M.); (A.A.)
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, 40126 Bologna, Italy;
| |
Collapse
|
7
|
Bjorklund DM, Morgan RML, Oberoi J, Day KLIM, Galliou PA, Prodromou C. Recognition of BRAF by CDC37 and Re-Evaluation of the Activation Mechanism for the Class 2 BRAF-L597R Mutant. Biomolecules 2022; 12:biom12070905. [PMID: 35883461 PMCID: PMC9313131 DOI: 10.3390/biom12070905] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 06/21/2022] [Accepted: 06/23/2022] [Indexed: 11/16/2022] Open
Abstract
The kinome specific co-chaperone, CDC37 (cell division cycle 37), is responsible for delivering BRAF (B-Rapidly Accelerated Fibrosarcoma) to the Hsp90 (heat shock protein 90) complex, where it is then translocated to the RAS (protooncogene product p21) complex at the plasma membrane for RAS mediated dimerization and subsequent activation. We identify a bipartite interaction between CDC37 and BRAF and delimitate the essential structural elements of CDC37 involved in BRAF recognition. We find an extended and conserved CDC37 motif, 20HPNID---SL--W31, responsible for recognizing the C-lobe of BRAF kinase domain, while the c-terminal domain of CDC37 is responsible for the second of the bipartite interaction with BRAF. We show that dimerization of BRAF, independent of nucleotide binding, can act as a potent signal that prevents CDC37 recognition and discuss the implications of mutations in BRAF and the consequences on signaling in a clinical setting, particularly for class 2 BRAF mutations.
Collapse
Affiliation(s)
- Dennis M. Bjorklund
- Biochemistry and Biomedicine, School of Life Sciences, University of Sussex, Falmer, Brighton BN1 9QG, UK;
| | - R. Marc L. Morgan
- Department of Life Sciences, Faculty of Natural Sciences, South Kensington Campus, Imperial College London, London SW7 2AZ, UK;
| | - Jasmeen Oberoi
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Falmer, Brighton BN1 9RQ, UK;
| | | | - Panagiota A. Galliou
- Laboratory of Biological Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| | - Chrisostomos Prodromou
- Biochemistry and Biomedicine, School of Life Sciences, University of Sussex, Falmer, Brighton BN1 9QG, UK;
- Correspondence:
| |
Collapse
|
8
|
Jawad M, Afkhami M, Ding Y, Zhang X, Li P, Young K, Xu ML, Cui W, Zhao Y, Halene S, Al-Kali A, Viswanatha D, Chen D, He R, Zheng G. DNMT3A R882 Mutations Confer Unique Clinicopathologic Features in MDS Including a High Risk of AML Transformation. Front Oncol 2022; 12:849376. [PMID: 35296003 PMCID: PMC8918526 DOI: 10.3389/fonc.2022.849376] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 01/31/2022] [Indexed: 01/14/2023] Open
Abstract
DNMT3A mutations play a prominent role in clonal hematopoiesis and myeloid neoplasms with arginine (R)882 as a hotspot, however the clinical implications of R882 vs. non-R882 mutations in myeloid neoplasms like myelodysplastic syndrome (MDS) is unclear. By data mining with publicly accessible cancer genomics databases and a clinical genomic database from a tertiary medical institution, DNMT3A R882 mutations were found to be enriched in AML (53% of all DNMT3A mutations) but decreased in frequency in clonal hematopoiesis of indeterminate potential (CHIP) (10.6%) or other myeloid neoplasms including MDS (27%) (p<.001). Next with the largest cohort of patients with DNMT3A R882 mutant MDS known to date from multiple institutions, DNMT3A R882 mutant MDS cases were shown to have more severe leukopenia, enriched SRSF2 and IDH2 mutations, increased cases with excess blasts (47% vs 22.5%, p=.004), markedly increased risk of AML transformation (25.8%, vs. 1.7%, p=.0001) and a worse progression-free survival (PFS) (median 20.3, vs. >50 months, p=.009) than non-R882 mutant MDS cases. DNMT3A R882 mutation is an independent risk factor for worse PFS, and importantly the differences in the risk of AML transformation between R882 vs. non-R882 mutant patients cannot be explained by different treatment approaches. Interestingly the higher risk of AML transformation and the worse PFS in DNMT3A R882 mutant MDS cases are mitigated by coexisting SF3B1 or SRSF2 mutations. The unique clinicopathologic features of DNMT3A R882 mutant MDS shed light on the prognostic and therapeutic implications of DNMT3A R882 mutations.
Collapse
Affiliation(s)
- Majd Jawad
- Division of Hematopathology, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, United States
| | - Michelle Afkhami
- Division of Molecular Pathology and Therapy Biomarkers, Department of Pathology, City of Hope Comprehensive Cancer Center, Duarte, CA, United States
- Division of Hematopathology, Department of Pathology, City of Hope Comprehensive Cancer Center, Duarte, CA, United States
| | - Yi Ding
- Department of Laboratory Medicine, Geisinger Health, Danville, PA, United States
| | - Xiaohui Zhang
- Department of Pathology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, United States
| | - Peng Li
- Department of Pathology, Associated Regional and University Pathologists (ARUP) Laboratories, Salt Lake City, UT, United States
| | - Kim Young
- Division of Hematopathology, Department of Pathology, City of Hope Comprehensive Cancer Center, Duarte, CA, United States
| | - Mina Luqing Xu
- Department of Pathology, Yale School of Medicine, New Haven, CT, United States
| | - Wei Cui
- Department of Pathology & Laboratory Medicine, The University of Kansas Medical Center, Kansas City, KS, United States
| | - Yiqing Zhao
- Department of Preventive Medicine, Northwestern University, Chicago, IL, United States
| | - Stephanie Halene
- Department of Internal Medicine, Division of Hematology, Yale School of Medicine, New Haven, CT, United States
| | - Aref Al-Kali
- Division of Hematology, Mayo Clinic, Rochester, MN, United States
| | - David Viswanatha
- Division of Hematopathology, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, United States
| | - Dong Chen
- Division of Hematopathology, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, United States
| | - Rong He
- Division of Hematopathology, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, United States
| | - Gang Zheng
- Division of Hematopathology, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, United States
- Division of Laboratory Genetics and Genomics, Mayo Clinic, Rochester, MN, United States
| |
Collapse
|