1
|
Bravo-Valenzuela NJ, Giffoni MC, Nieblas CDO, Werner H, Tonni G, Granese R, Gonçalves LF, Araujo Júnior E. Three-Dimensional Ultrasound for Physical and Virtual Fetal Heart Models: Current Status and Future Perspectives. J Clin Med 2024; 13:7605. [PMID: 39768529 PMCID: PMC11679263 DOI: 10.3390/jcm13247605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 12/02/2024] [Accepted: 12/04/2024] [Indexed: 01/11/2025] Open
Abstract
Congenital heart defects (CHDs) are the most common congenital defect, occurring in approximately 1 in 100 live births and being a leading cause of perinatal morbidity and mortality. Of note, approximately 25% of these defects are classified as critical, requiring immediate postnatal care by pediatric cardiology and neonatal cardiac surgery teams. Consequently, early and accurate diagnosis of CHD is key to proper prenatal and postnatal monitoring in a tertiary care setting. In this scenario, fetal echocardiography is considered the gold standard imaging ultrasound method for the diagnosis of CHD. However, the availability of this examination in clinical practice remains limited due to the need for a qualified specialist in pediatric cardiology. Moreover, in light of the relatively low prevalence of CHD among at-risk populations (approximately 10%), ultrasound cardiac screening for potential cardiac anomalies during routine second-trimester obstetric ultrasound scans represents a pivotal aspect of diagnosing CHD. In order to maximize the accuracy of CHD diagnoses, the views of the ventricular outflow tract and the superior mediastinum were added to the four-chamber view of the fetal heart for routine ultrasound screening according to international guidelines. In this context, four-dimensional spatio-temporal image correlation software (STIC) was developed in the early 2000s. Some of the advantages of STIC in fetal cardiac evaluation include the enrichment of anatomical details of fetal cardiac images in the absence of the pregnant woman and the ability to send volumes for analysis by an expert in fetal cardiology by an internet link. Sequentially, new technologies have been developed, such as fetal intelligent navigation echocardiography (FINE), also known as "5D heart", in which the nine fetal cardiac views recommended during a fetal echocardiogram are automatically generated from the acquisition of a cardiac volume. Furthermore, artificial intelligence (AI) has recently emerged as a promising technological innovation, offering the potential to warn of possible cardiac anomalies and thus increase the ability of non-cardiology specialists to diagnose CHD. In the early 2010s, the advent of 3D reconstruction software combined with high-definition printers enabled the virtual and 3D physical reconstruction of the fetal heart. The 3D physical models may improve parental counseling of fetal CHD, maternal-fetal interaction in cases of blind pregnant women, and interactive discussions among multidisciplinary health teams. In addition, the 3D physical and virtual models can be an useful tool for teaching cardiovascular anatomy and to optimize surgical planning, enabling simulation rooms for surgical procedures. Therefore, in this review, the authors discuss advanced image technologies that may optimize prenatal diagnoses of CHDs.
Collapse
Affiliation(s)
- Nathalie Jeanne Bravo-Valenzuela
- Department of Pediatrics, Pediatric Cardiology, School of Medicine, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro 21941-901, RJ, Brazil;
| | - Marcela Castro Giffoni
- Department of Fetal Medicine, Biodesign Laboratory DASA/PUC, Rio de Janeiro 22453-900, RJ, Brazil; (M.C.G.); (H.W.)
| | - Caroline de Oliveira Nieblas
- Discipline of Woman Health, Municipal University of São Caetano do Sul (USCS), São Caetano do Sul 09521-160, SP, Brazil; (C.d.O.N.); (E.A.J.)
| | - Heron Werner
- Department of Fetal Medicine, Biodesign Laboratory DASA/PUC, Rio de Janeiro 22453-900, RJ, Brazil; (M.C.G.); (H.W.)
| | - Gabriele Tonni
- Department of Obstetrics and Neonatology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), AUSL Reggio Emilia, 42122 Reggio Emilia, Italy;
| | - Roberta Granese
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, “G. Martino” University Hospital, 98100 Messina, Italy
| | - Luis Flávio Gonçalves
- Departments of Radiology and Child Health, University of Arizona College of Medicine, Phoenix, AZ 85016, USA;
| | - Edward Araujo Júnior
- Discipline of Woman Health, Municipal University of São Caetano do Sul (USCS), São Caetano do Sul 09521-160, SP, Brazil; (C.d.O.N.); (E.A.J.)
- Department of Obstetrics, Paulista School of Medicine, Federal University of São Paulo (EPM-UNIFESP), São Paulo 04023-062, SP, Brazil
| |
Collapse
|
2
|
Tian Y, Detterich J, Pruetz JD, Yagiz E, Wood JC, Nayak KS. Feasibility of fetal cardiac function and anatomy assessment by real-time spiral balanced steady-state free precession magnetic resonance imaging at 0.55T. J Cardiovasc Magn Reson 2024; 27:101130. [PMID: 39638149 DOI: 10.1016/j.jocmr.2024.101130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 11/19/2024] [Accepted: 11/29/2024] [Indexed: 12/07/2024] Open
Abstract
BACKGROUND Contemporary 0.55T magnetic resonance imaging (MRI) is promising for fetal MRI, due to the larger bore, reduced safety concerns, lower acoustic noise, and improved fast imaging capability. In this work, we explore improved fetal cardiovascular magnetic resonance (CMR) without relying on any synchronizing devices, prospective, or retrospective gating, to determine the feasibility of real-time MRI evaluation of fetal cardiac function as well as cardiac and great vessel anatomies by using spiral balanced steady-state free precession (bSSFP) at 0.55T. METHODS A real-time spiral bSSFP pulse sequence for fetal CMR was implemented and optimized on a 0.55T whole-body MRI. Fetal CMR was prospectively performed between May 2022 and August 2023. The protocol included (1) real-time images at standard cardiac views, for 10-20 s/view and 40-43.6 ms/frame and (2) 4-9 stacks of slices at standard cardiac views that each cover the whole heart, with 15-30 slices/stack, and 2-5 s/slice, at 320-349 ms/frame. Images were evaluated by a fetal cardiologist. Quantitative measurements of cardiothoracic area ratio and cardiac axis were compared with previous reports. Diagnostic accuracy was compared against postnatal echocardiographic findings. RESULTS Twenty-nine participants were enrolled for 32 CMR exams, with mean maternal age 33.6 ± 5.8 years (range 22-44 years) and mean gestational age 32.8 ± 3.9 weeks (range 23-38 weeks). The proposed sequence enabled evaluation of the fetal heart in <30 min in all cases (average 22 min). Real-time MRI allowed easy adjustment of scan plan, automatic whole-heart volumetric sweeping, and flexible choice of reconstruction temporal resolution. For key cardiac anatomic features, 60% (315/527) were delineated well. Mean cardiothoracic area ratio and cardiac axis were 0.27 ± 0.04 and 45.8 ± 7.8 degrees. Diagnostic agreement with postnatal echocardiographic findings was 84% (26/31). CONCLUSION A spiral real-time bSSFP pulse sequence at 0.55T can provide both low-framerate and high-framerate fetal heart images without relying on maternal breath-hold, specialized gating devices, or cardiac gating. The low-framerate images offer high diagnostic quality structural evaluations of the fetal heart, while the high-framerate images capture fetal heart motion and may enable functional assessments.
Collapse
Affiliation(s)
- Ye Tian
- Ming Hsieh Department of Electrical and Computer Engineering, University of Southern California, Los Angeles, California, USA.
| | - Jon Detterich
- Children's Hospital Los Angeles, Los Angeles, California, USA
| | - Jay D Pruetz
- Children's Hospital Los Angeles, Los Angeles, California, USA
| | - Ecrin Yagiz
- Ming Hsieh Department of Electrical and Computer Engineering, University of Southern California, Los Angeles, California, USA
| | - John C Wood
- Children's Hospital Los Angeles, Los Angeles, California, USA
| | - Krishna S Nayak
- Ming Hsieh Department of Electrical and Computer Engineering, University of Southern California, Los Angeles, California, USA
| |
Collapse
|
3
|
Voges I, Raimondi F, McMahon CJ, Ait-Ali L, Babu-Narayan SV, Botnar RM, Burkhardt B, Gabbert DD, Grosse-Wortmann L, Hasan H, Hansmann G, Helbing WA, Krupickova S, Latus H, Martini N, Martins D, Muthurangu V, Ojala T, van Ooij P, Pushparajah K, Rodriguez-Palomares J, Sarikouch S, Grotenhuis HB, Greil FG, Bohbot Y, Cikes M, Dweck M, Donal E, Grapsa J, Keenan N, Petrescu AM, Szabo L, Ricci F, Uusitalo V. Clinical impact of novel cardiovascular magnetic resonance technology on patients with congenital heart disease: a scientific statement of the Association for European Pediatric and Congenital Cardiology and the European Association of Cardiovascular Imaging of the European Society of Cardiology. Eur Heart J Cardiovasc Imaging 2024; 25:e274-e294. [PMID: 38985851 DOI: 10.1093/ehjci/jeae172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 07/01/2024] [Indexed: 07/12/2024] Open
Abstract
Cardiovascular magnetic resonance (CMR) imaging is recommended in patients with congenital heart disease (CHD) in clinical practice guidelines as the imaging standard for a large variety of diseases. As CMR is evolving, novel techniques are becoming available. Some of them are already used clinically, whereas others still need further evaluation. In this statement, the authors give an overview of relevant new CMR techniques for the assessment of CHD. Studies with reference values for these new techniques are listed in the Supplementary data online, supplement.
Collapse
Affiliation(s)
- Inga Voges
- Department of Congenital Heart Disease and Pediatric Cardiology, University Hospital Schleswig-Holstein, Campus Kiel, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Hamburg/Lübeck/Kiel, Kiel, Germany
| | | | - Colin J McMahon
- Department of Paediatric Cardiology, Children's Health Ireland at Crumlin, Dublin 12, Ireland
| | - Lamia Ait-Ali
- Institute of Clinical Physiology CNR, Massa, Italy
- Heart Hospital, G. Monastery foundation, Massa, Italy
| | - Sonya V Babu-Narayan
- Royal Brompton Hospital, Part of Guy's and St Thomas' NHS Foundation Trust, Sydney Street, London SW3 6NP, UK
- National Heart and Lung Institute, Imperial College, London, UK
| | - René M Botnar
- School of Biomedical Engineering and Imaging Sciences, King's College London, St. Thomas' Hospital, London, UK
- Institute for Biological and Medical Engineering and School of Engineering, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Barbara Burkhardt
- Pediatric Heart Center, University Children's Hospital Zurich, Zurich, Switzerland
| | - Dominik D Gabbert
- Department of Congenital Heart Disease and Pediatric Cardiology, University Hospital Schleswig-Holstein, Campus Kiel, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Hamburg/Lübeck/Kiel, Kiel, Germany
| | - Lars Grosse-Wortmann
- Division of Cardiology, Oregon Health and Science University Hospital, Portland, OR, USA
| | - Hosan Hasan
- Department of Pediatric Cardiology and Critical Care, Hannover Medical School, Hannover, Germany
- European Pediatric Pulmonary Vascular Disease Network, Berlin, Germany
| | - Georg Hansmann
- Department of Pediatric Cardiology and Critical Care, Hannover Medical School, Hannover, Germany
- European Pediatric Pulmonary Vascular Disease Network, Berlin, Germany
| | - Willem A Helbing
- Department of Pediatrics, Division of Cardiology, and Department of Radiology, Erasmus MC-Sophia Children's Hospital, Rotterdam, The Netherlands
| | - Sylvia Krupickova
- Royal Brompton Hospital, Part of Guy's and St Thomas' NHS Foundation Trust, Sydney Street, London SW3 6NP, UK
- National Heart and Lung Institute, Imperial College, London, UK
- Department of Paediatric Cardiology, Royal Brompton Hospital, Sydney Street, London SW3 6NP, UK
| | - Heiner Latus
- Clinic for Pediatric Cardiology and Congenital Heart Disease Klinikum, Stuttgart Germany
| | - Nicola Martini
- Department of Radiology, Fondazione G. Monasterio CNR-Regione Toscana, Pisa, Italy
- U.O.C. Bioingegneria, Fondazione G. Monasterio CNR-Regione Toscana, Pisa, Italy
| | - Duarte Martins
- Pediatric Cardiology Department, Hospital de Santa Cruz, Centro Hospitalar Lisboa Ocidental, Lisbon, Portugal
| | - Vivek Muthurangu
- Centre for Translational Cardiovascular Imaging, Institute of Cardiovascular Science, University College London, London, UK
| | - Tiina Ojala
- New Children's Hospital Pediatric Research Center, Helsinki University Hospital, Helsinki, Finland
| | - Pim van Ooij
- Department of Radiology and Nuclear Medicine, Amsterdam University Medical Center, Location AMC, Amsterdam, The Netherlands
- Department of Pediatric Cardiology, Wilhelmina Children's Hospital/University Medical Center Utrecht, Utrecht, The Netherlands
| | - Kuberan Pushparajah
- School of Biomedical Engineering and Imaging Sciences, King's College London, St. Thomas' Hospital, London, UK
- Department of Congenital Heart Disease, Evelina London Children's Hospital, Westminster Bridge Road, London SE1 7EH, UK
| | - Jose Rodriguez-Palomares
- CIBER Cardiovascular, Instituto de Salud Carlos III, Madrid, Spain
- European Reference Network for Rare and Low Prevalence Complex Diseases of the Heart, Amsterdam, The Netherlands
- Servicio de Cardiología, Hospital Universitario Vall Hebrón, Institut de Recerca Vall Hebrón (VHIR), Departamento de Medicina, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Samir Sarikouch
- Department for Cardiothoracic, Transplant, and Vascular Surgery, Hannover Medical School, Hannover, Germany
| | - Heynric B Grotenhuis
- Department of Pediatric Cardiology, Wilhelmina Children's Hospital/University Medical Center Utrecht, Utrecht, The Netherlands
| | - F Gerald Greil
- Department of Pediatrics, UT Southwestern/Children's Health, Dallas, TX, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Vollbrecht TM, Hart C, Katemann C, Isaak A, Pieper CC, Kuetting D, Attenberger U, Geipel A, Strizek B, Luetkens JA. Fetal cardiovascular magnetic resonance feature tracking myocardial strain analysis in congenital heart disease. J Cardiovasc Magn Reson 2024; 26:101094. [PMID: 39278415 PMCID: PMC11616042 DOI: 10.1016/j.jocmr.2024.101094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 07/06/2024] [Accepted: 09/05/2024] [Indexed: 09/18/2024] Open
Abstract
BACKGROUND Cardiovascular magnetic resonance (CMR) is an emerging imaging modality for assessing the anatomy and function of the fetal heart in congenital heart disease (CHD). This study aimed to evaluate myocardial strain using fetal CMR feature tracking (FT) in different subtypes of CHD. METHODS Fetal CMR FT analysis was retrospectively performed on four-chamber cine images acquired with Doppler ultrasound gating at 3T. Left ventricular (LV) global longitudinal strain (GLS), LV global radial strain (GRS), LV global longitudinal systolic strain rate, and right ventricular (RV) GLS were quantified using dedicated software optimized for fetal strain analysis. Analysis was performed in normal fetuses and different CHD subtypes (d-transposition of the great arteries [dTGA], hypoplastic left heart syndrome [HLHS], coarctation of the aorta [CoA], tetralogy of Fallot [TOF], RV-dominant atrioventricular septal defect [AVSD], and critical pulmonary stenosis or atresia [PS/PA]). Analysis of variance with Tukey post-hoc test was used for group comparisons. RESULTS A total of 60 fetuses were analyzed (8/60 (13%) without CHD, 52/60 (87%) with CHD). Myocardial strain was successfully assessed in 113/120 ventricles (94%). Compared to controls, LV GLS was significantly reduced in fetuses with HLHS (-18.6±2.7% vs -6.2±5.6%; p<0.001) and RV-dominant AVSD (-18.6±2.7% vs -7.7±5.0%; p = 0.003) and higher in fetuses with CoA (-18.6±2.7% vs -25.0±4.3%; p = 0.038). LV GRS was significantly reduced in fetuses with HLHS (25.7±7.5% vs 11.4±9.7%; p = 0.024). Compared to controls, RV GRS was significantly reduced in fetuses with PS/PA (-16.1±2.8% vs -8.3±4.2%; p = 0.007). Across all strain parameters, no significant differences were present between controls and fetuses diagnosed with dTGA and TOF. CONCLUSION Fetal myocardial strain assessment with CMR FT in CHD is feasible. Distinct differences are present between various types of CHD, suggesting potential implications for clinical decision-making and prognostication in fetal CHD.
Collapse
Affiliation(s)
- Thomas M Vollbrecht
- Department of Diagnostic and Interventional Radiology, University Hospital Bonn, Bonn, Germany; Quantitative Imaging Lab Bonn (QILaB), University Hospital Bonn, Bonn, Germany
| | - Christopher Hart
- Department of Diagnostic and Interventional Radiology, University Hospital Bonn, Bonn, Germany; Quantitative Imaging Lab Bonn (QILaB), University Hospital Bonn, Bonn, Germany; Department of Pediatric Cardiology, University Hospital Bonn, Bonn, Germany
| | | | - Alexander Isaak
- Department of Diagnostic and Interventional Radiology, University Hospital Bonn, Bonn, Germany; Quantitative Imaging Lab Bonn (QILaB), University Hospital Bonn, Bonn, Germany
| | - Claus C Pieper
- Department of Diagnostic and Interventional Radiology, University Hospital Bonn, Bonn, Germany
| | - Daniel Kuetting
- Department of Diagnostic and Interventional Radiology, University Hospital Bonn, Bonn, Germany; Quantitative Imaging Lab Bonn (QILaB), University Hospital Bonn, Bonn, Germany
| | - Ulrike Attenberger
- Department of Diagnostic and Interventional Radiology, University Hospital Bonn, Bonn, Germany
| | - Annegret Geipel
- Department of Obstetrics and Prenatal Medicine, University Hospital Bonn, Bonn, Germany
| | - Brigitte Strizek
- Department of Obstetrics and Prenatal Medicine, University Hospital Bonn, Bonn, Germany
| | - Julian A Luetkens
- Department of Diagnostic and Interventional Radiology, University Hospital Bonn, Bonn, Germany; Quantitative Imaging Lab Bonn (QILaB), University Hospital Bonn, Bonn, Germany.
| |
Collapse
|
5
|
Cundari G, Galea N, Di Mascio D, Gennarini M, Ventriglia F, Curti F, Dodaro M, Rizzo G, Catalano C, Giancotti A, Manganaro L. The New Frontiers of Fetal Imaging: MRI Insights into Cardiovascular and Thoracic Structures. J Clin Med 2024; 13:4598. [PMID: 39200740 PMCID: PMC11354430 DOI: 10.3390/jcm13164598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 08/01/2024] [Accepted: 08/01/2024] [Indexed: 09/02/2024] Open
Abstract
Fetal magnetic resonance imaging (fMRI) represents a second-line imaging modality that provides multiparametric and multiplanar views that are crucial for confirming diagnoses, detecting associated pathologies, and resolving inconclusive ultrasound findings. The introduction of high-field magnets and new imaging sequences has expanded MRI's role in pregnancy management. Recent innovations in ECG-gating techniques have revolutionized the prenatal evaluation of congenital heart disease by synchronizing imaging with the fetal heartbeat, thus addressing traditional challenges in cardiac imaging. Fetal cardiac MRI (fCMR) is particularly valuable for assessing congenital heart diseases, especially when ultrasound is limited by poor imaging conditions. fCMR allows for detailed anatomical and functional evaluation of the heart and great vessels and is also useful for diagnosing additional anomalies and analyzing blood flow patterns, which can aid in understanding abnormal fetal brain growth and placental perfusion. This review emphasizes fMRI's potential in evaluating cardiac and thoracic structures, including various gating techniques like metric optimized gating, self-gating, and Doppler ultrasound gating. The review also covers the use of static and cine images for structural and functional assessments and discusses advanced techniques like 4D-flow MRI and T1 or T2 mapping for comprehensive flow quantification and tissue characterization.
Collapse
Affiliation(s)
- Giulia Cundari
- Department of Radiological, Oncological and Pathological Sciences, Sapienza University of Rome, Policlinico Umberto I, Viale Regina Elena 324, 00161 Rome, Italy; (G.C.); (N.G.); (M.G.); (F.C.); (M.D.); (C.C.); (L.M.)
| | - Nicola Galea
- Department of Radiological, Oncological and Pathological Sciences, Sapienza University of Rome, Policlinico Umberto I, Viale Regina Elena 324, 00161 Rome, Italy; (G.C.); (N.G.); (M.G.); (F.C.); (M.D.); (C.C.); (L.M.)
| | - Daniele Di Mascio
- Department of Maternal and Child Health and Urological Sciences, Sapienza University of Rome, Policlinico Umberto I, Viale Regina Elena 324, 00161 Rome, Italy; (D.D.M.); (F.V.); (G.R.)
| | - Marco Gennarini
- Department of Radiological, Oncological and Pathological Sciences, Sapienza University of Rome, Policlinico Umberto I, Viale Regina Elena 324, 00161 Rome, Italy; (G.C.); (N.G.); (M.G.); (F.C.); (M.D.); (C.C.); (L.M.)
| | - Flavia Ventriglia
- Department of Maternal and Child Health and Urological Sciences, Sapienza University of Rome, Policlinico Umberto I, Viale Regina Elena 324, 00161 Rome, Italy; (D.D.M.); (F.V.); (G.R.)
| | - Federica Curti
- Department of Radiological, Oncological and Pathological Sciences, Sapienza University of Rome, Policlinico Umberto I, Viale Regina Elena 324, 00161 Rome, Italy; (G.C.); (N.G.); (M.G.); (F.C.); (M.D.); (C.C.); (L.M.)
| | - Martina Dodaro
- Department of Radiological, Oncological and Pathological Sciences, Sapienza University of Rome, Policlinico Umberto I, Viale Regina Elena 324, 00161 Rome, Italy; (G.C.); (N.G.); (M.G.); (F.C.); (M.D.); (C.C.); (L.M.)
| | - Giuseppe Rizzo
- Department of Maternal and Child Health and Urological Sciences, Sapienza University of Rome, Policlinico Umberto I, Viale Regina Elena 324, 00161 Rome, Italy; (D.D.M.); (F.V.); (G.R.)
| | - Carlo Catalano
- Department of Radiological, Oncological and Pathological Sciences, Sapienza University of Rome, Policlinico Umberto I, Viale Regina Elena 324, 00161 Rome, Italy; (G.C.); (N.G.); (M.G.); (F.C.); (M.D.); (C.C.); (L.M.)
| | - Antonella Giancotti
- Department of Maternal and Child Health and Urological Sciences, Sapienza University of Rome, Policlinico Umberto I, Viale Regina Elena 324, 00161 Rome, Italy; (D.D.M.); (F.V.); (G.R.)
| | - Lucia Manganaro
- Department of Radiological, Oncological and Pathological Sciences, Sapienza University of Rome, Policlinico Umberto I, Viale Regina Elena 324, 00161 Rome, Italy; (G.C.); (N.G.); (M.G.); (F.C.); (M.D.); (C.C.); (L.M.)
| |
Collapse
|
6
|
Maher S, Seed M. Fetal Cardiovascular MR Imaging. Magn Reson Imaging Clin N Am 2024; 32:479-487. [PMID: 38944435 DOI: 10.1016/j.mric.2024.04.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/01/2024]
Abstract
Prenatal diagnosis of congenital heart disease allows for appropriate planning of delivery and an opportunity to inform families about the prognosis of the cardiac malformation. On occasion, prenatal therapies may be offered to improve perinatal outcomes. While ultrasound is the primary diagnostic method, advances have led to interest in fetal MRI for its potential to aid in clinical decision-making. This review explores technical innovations and the clinical utility of fetal cardiovascular magnetic resonance (CMR), highlighting its role in diagnosing and planning interventions for complex heart conditions. Future directions include the prediction of perinatal physiology and guidance of delivery planning.
Collapse
Affiliation(s)
- Samer Maher
- Department of Physiology, University of Toronto, 1 King's College Circle, Toronto, Ontario, Canada
| | - Mike Seed
- Cardiology, The Hospital for Sick Children, University of Toronto, 170 Elizabeth Street, Toronto, Ontario, Canada.
| |
Collapse
|
7
|
Moscatelli S, Pozza A, Leo I, Ielapi J, Scatteia A, Piana S, Cavaliere A, Reffo E, Di Salvo G. Importance of Cardiovascular Magnetic Resonance Applied to Congenital Heart Diseases in Pediatric Age: A Narrative Review. CHILDREN (BASEL, SWITZERLAND) 2024; 11:878. [PMID: 39062326 PMCID: PMC11276187 DOI: 10.3390/children11070878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/11/2024] [Accepted: 07/18/2024] [Indexed: 07/28/2024]
Abstract
Congenital heart diseases (CHDs) represent a heterogeneous group of congenital defects, with high prevalence worldwide. Non-invasive imaging is essential to guide medical and surgical planning, to follow the patient over time in the evolution of the disease, and to reveal potential complications of the chosen treatment. The application of cardiac magnetic resonance imaging (CMRI) in this population allows for obtaining detailed information on the defects without the necessity of ionizing radiations. This review emphasizes the central role of CMR in the overall assessment of CHDs, considering also the limitations and challenges of this imaging technique. CMR, with the application of two-dimensional (2D) and tri-dimensional (3D) steady-state free precession (SSFP), permits the obtaining of very detailed and accurate images about the cardiac anatomy, global function, and volumes' chambers, giving essential information in the intervention planning and optimal awareness of the postoperative anatomy. Nevertheless, CMR supplies tissue characterization, identifying the presence of fat, fibrosis, or oedema in the myocardial tissue. Using a contrast agent for angiography sequences or 2D/four-dimensional (4D) flows offers information about the vascular, valvular blood flow, and, in general, the cardiovascular system hemodynamics. Furthermore, 3D SSFP CMR acquisitions allow the identification of coronary artery abnormalities as an alternative to invasive angiography and cardiovascular computed tomography (CCT). However, CMR requires expertise in CHDs, and it can be contraindicated in patients with non-conditional devices. Furthermore, its relatively longer acquisition time and the necessity of breath-holding may limit its use, particularly in children under eight years old, sometimes requiring anesthesia. The purpose of this review is to elucidate the application of CMR during the pediatric age.
Collapse
Affiliation(s)
- Sara Moscatelli
- Centre for Inherited Cardiovascular Diseases, Great Ormond Street Hospital, London WC1N 3JH, UK
- Institute of Cardiovascular Sciences, University College London, London WC1E 6BT, UK
| | - Alice Pozza
- Division of Paediatric Cardiology, Department of Women and Children’s Health, University Hospital of Padua, 35128 Padua, Italy (S.P.); (E.R.)
| | - Isabella Leo
- Experimental and Clinical Medicine Department, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy; (I.L.); (J.I.)
| | - Jessica Ielapi
- Experimental and Clinical Medicine Department, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy; (I.L.); (J.I.)
| | - Alessandra Scatteia
- Advanced Cardiovascular Imaging Unit, Clinica Villa dei Fiori, 80011 Acerra, Italy;
- Department of Medical, Motor and Wellness Sciences, University of Naples ‘Parthenope’, 80134 Naples, Italy
| | - Sofia Piana
- Division of Paediatric Cardiology, Department of Women and Children’s Health, University Hospital of Padua, 35128 Padua, Italy (S.P.); (E.R.)
| | - Annachiara Cavaliere
- Pediatric Radiology, Neuroradiology Unit, University Hospital of Padua, 35128 Padua, Italy;
| | - Elena Reffo
- Division of Paediatric Cardiology, Department of Women and Children’s Health, University Hospital of Padua, 35128 Padua, Italy (S.P.); (E.R.)
| | - Giovanni Di Salvo
- Division of Paediatric Cardiology, Department of Women and Children’s Health, University Hospital of Padua, 35128 Padua, Italy (S.P.); (E.R.)
| |
Collapse
|
8
|
Minocha PK, Englund EK, Friesen RM, Fujiwara T, Smith SA, Meyers ML, Browne LP, Barker AJ. Reference Values for Fetal Cardiac Dimensions, Volumes, Ventricular Function and Left Ventricular Longitudinal Strain Using Doppler Ultrasound Gated Cardiac Magnetic Resonance Imaging in Healthy Third Trimester Fetuses. J Magn Reson Imaging 2024; 60:365-374. [PMID: 37855630 PMCID: PMC11026299 DOI: 10.1002/jmri.29077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 10/02/2023] [Accepted: 10/02/2023] [Indexed: 10/20/2023] Open
Abstract
BACKGROUND Recent advances in hardware and software permit the use of cardiac MRI of late gestation fetuses, however there is a paucity of MRI-based reference values. PURPOSE To provide initial data on fetal cardiac MRI-derived cardiac dimensions, volumes, ventricular function, and left ventricular longitudinal strain in healthy developing fetuses >30 weeks gestational age. STUDY TYPE Prospective. POPULATION Twenty-five third trimester (34 ± 1 weeks, range of 32-37 weeks gestation) women with healthy developing fetuses. FIELD STRENGTH/SEQUENCE Studies were performed at 1.5 T and 3 T. Cardiac synchronization was achieved with a Doppler ultrasound device. The protocol included T2 single shot turbo spin echo stacks for fetal weight and ultrasound probe positioning, and multiplanar multi-slice cine balanced steady state free precession gradient echo sequences. ASSESSMENT Primary analyses were performed by a single observer. Weight indexed right ventricular (RV) and left ventricular (LV) volumes and function were calculated from short axis (SAX) stacks. Cardiac dimensions were calculated from the four-chamber and SAX stacks. Single plane LV longitudinal strain was calculated from the four-chamber stack. Interobserver variability was assessed in 10 participants. Cardiac MRI values were compared against available published normative fetal echocardiogram data using z-scores. STATISTICAL TESTS Mean and SDs were calculated for baseline maternal/fetal demographics, cardiac dimensions, volumes, ventricular function, and left ventricular longitudinal strain. Bland-Altman and intraclass correlation coefficient analysis was performed to test interobserver variability. RESULTS The mean gestational age was 34 ± 1.4 weeks. The mean RV and LV end diastolic volumes were 3.1 ± 0.6 mL/kg and 2.4 ± 0.5 mL/kg respectively. The mean RV cardiac output was 198 ± 49 mL/min/kg while the mean LV cardiac output was 173 ± 43 mL/min/kg. DATA CONCLUSION This paper reports initial reference values obtained by cardiac MRI in healthy developing third trimester fetuses. MRI generally resulted in slightly larger indexed values (by z-score) compared to reports in literature using fetal echocardiography. EVIDENCE LEVEL 1 TECHNICAL EFFICACY: Stage 2.
Collapse
Affiliation(s)
- Prashant K. Minocha
- Division of Cardiology, Heart Institute, Children’s Hospital Colorado, University of Colorado School of Medicine, USA
| | - Erin K. Englund
- Department of Radiology, Section of Pediatric Radiology, Children’s Hospital Colorado, University of Colorado Anschutz Medical Campus, USA
| | - Richard M. Friesen
- Division of Cardiology, Heart Institute, Children’s Hospital Colorado, University of Colorado School of Medicine, USA
| | - Takashi Fujiwara
- Department of Radiology, Section of Pediatric Radiology, Children’s Hospital Colorado, University of Colorado Anschutz Medical Campus, USA
| | - Sarah A. Smith
- Department of Radiology, Section of Pediatric Radiology, Children’s Hospital Colorado, University of Colorado Anschutz Medical Campus, USA
| | - Mariana L. Meyers
- Department of Radiology, Section of Pediatric Radiology, Children’s Hospital Colorado, University of Colorado Anschutz Medical Campus, USA
| | - Lorna P. Browne
- Department of Radiology, Section of Pediatric Radiology, Children’s Hospital Colorado, University of Colorado Anschutz Medical Campus, USA
| | - Alex J. Barker
- Department of Radiology, Section of Pediatric Radiology, Children’s Hospital Colorado, University of Colorado Anschutz Medical Campus, USA
- Department of Bioengineering, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| |
Collapse
|
9
|
Meng X, Song M, Zhang K, Lu W, Li Y, Zhang C, Zhang Y. Congenital heart disease: types, pathophysiology, diagnosis, and treatment options. MedComm (Beijing) 2024; 5:e631. [PMID: 38974713 PMCID: PMC11224996 DOI: 10.1002/mco2.631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 05/23/2024] [Accepted: 05/27/2024] [Indexed: 07/09/2024] Open
Abstract
Congenital heart disease (CHD) is a structural abnormality of the heart and/or great vessels and patients with CHD are at an increased risks of various morbidities throughout their lives and reduced long-term survival. Eventually, CHD may result in various complications including heart failure, arrhythmias, stroke, pneumonia, and sudden death. Unfortunately, the exact etiology and pathophysiology of some CHD remain unclear. Although the quality of life and prognosis of patients with CHD have significantly improved following technological advancement, the influence of CHD is lifelong, especially in patients with complicated CHD. Thus, the management of CHD remains a challenge due to its high prevalence. Finally, there are some disagreements on CHD among international guidelines. In this review, we provide an update of the pathophysiology, diagnosis, and treatment in most common type of CHD, including patent foramen ovale, atrial septal defect, ventricular septal defect, atrioventricular septal defect, patent ductus arteriosus, coarctation of the aorta, transposition of the great arteries, congenitally corrected transposition of the great arteries, coronary anomalies, left and right ventricular outflow tract obstruction, tetralogy of Fallot and Ebstein anomaly. In particular, we focus on what is known and what is unknown in these areas, aiming to improve the current understanding of various types of CHD.
Collapse
Affiliation(s)
- Xiao Meng
- Department of CardiologyState Key Laboratory for Innovation and Transformation of Luobing TheoryQilu Hospital of Shandong UniversityJinanChina
- Key Laboratory of Cardiovascular Remodeling and Function ResearchChinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Qilu Hospital of Shandong UniversityJinanChina
| | - Ming Song
- Department of CardiologyState Key Laboratory for Innovation and Transformation of Luobing TheoryQilu Hospital of Shandong UniversityJinanChina
- Key Laboratory of Cardiovascular Remodeling and Function ResearchChinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Qilu Hospital of Shandong UniversityJinanChina
| | - Kai Zhang
- Department of CardiologyState Key Laboratory for Innovation and Transformation of Luobing TheoryQilu Hospital of Shandong UniversityJinanChina
- Key Laboratory of Cardiovascular Remodeling and Function ResearchChinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Qilu Hospital of Shandong UniversityJinanChina
| | - Weida Lu
- Shandong Key Laboratory of Cardiovascular Proteomics and Department of Geriatric MedicineQilu Hospital of Shandong UniversityJinanChina
| | - Yunyi Li
- Department of CardiologyState Key Laboratory for Innovation and Transformation of Luobing TheoryQilu Hospital of Shandong UniversityJinanChina
- Key Laboratory of Cardiovascular Remodeling and Function ResearchChinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Qilu Hospital of Shandong UniversityJinanChina
| | - Cheng Zhang
- Department of CardiologyState Key Laboratory for Innovation and Transformation of Luobing TheoryQilu Hospital of Shandong UniversityJinanChina
- Key Laboratory of Cardiovascular Remodeling and Function ResearchChinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Qilu Hospital of Shandong UniversityJinanChina
| | - Yun Zhang
- Department of CardiologyState Key Laboratory for Innovation and Transformation of Luobing TheoryQilu Hospital of Shandong UniversityJinanChina
- Key Laboratory of Cardiovascular Remodeling and Function ResearchChinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Qilu Hospital of Shandong UniversityJinanChina
| |
Collapse
|
10
|
Gottschalk I, Walter A, Menzel T, Weber EC, Wendt S, Sreeram N, Gembruch U, Berg C, Abel JS. D-Transposition of the great arteries with restrictive foramen ovale in the fetus: the dilemma of predicting the need for postnatal urgent balloon atrial septostomy. Arch Gynecol Obstet 2024; 309:1353-1367. [PMID: 36971845 PMCID: PMC10894161 DOI: 10.1007/s00404-023-06997-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 03/01/2023] [Indexed: 03/29/2023]
Abstract
OBJECTIVE Restrictive foramen ovale (FO) in dextro-transposition of the great arteries (d-TGA) with intact ventricular septum may lead to severe life-threatening hypoxia within the first hours of life, making urgent balloon atrial septostomy (BAS) inevitable. Reliable prenatal prediction of restrictive FO is crucial in these cases. However, current prenatal echocardiographic markers show low predictive value, and prenatal prediction often fails with fatal consequences for a subset of newborns. In this study, we described our experience and aimed to identify reliable predictive markers for BAS. METHODS We included 45 fetuses with isolated d-TGA that were diagnosed and delivered between 2010 and 2022 in two large German tertiary referral centers. Inclusion criteria were the availability of former prenatal ultrasound reports, of stored echocardiographic videos and still images, which had to be obtained within the last 14 days prior to delivery and that were of sufficient quality for retrospective re-analysis. Cardiac parameters were retrospectively assessed and their predictive value was evaluated. RESULTS Among the 45 included fetuses with d-TGA, 22 neonates had restrictive FO postnatally and required urgent BAS within the first 24 h of life. In contrast, 23 neonates had normal FO anatomy, but 4 of them unexpectedly showed inadequate interatrial mixing despite their normal FO anatomy, rapidly developed hypoxia and also required urgent BAS ('bad mixer'). Overall, 26 (58%) neonates required urgent BAS, whereas 19 (42%) achieved good O2 saturation and did not undergo urgent BAS. In the former prenatal ultrasound reports, restrictive FO with subsequent urgent BAS was correctly predicted in 11 of 22 cases (50% sensitivity), whereas a normal FO anatomy was correctly predicted in 19 of 23 cases (83% specificity). After current re-analysis of the stored videos and images, we identified three highly significant markers for restrictive FO: a FO diameter < 7 mm (p < 0.01), a fixed (p = 0.035) and a hypermobile (p = 0.014) FO flap. The maximum systolic flow velocities in the pulmonary veins were also significantly increased in restrictive FO (p = 0.021), but no cut-off value to reliably predict restrictive FO could be identified. If the above markers are applied, all 22 cases with restrictive FO and all 23 cases with normal FO anatomy could correctly be predicted (100% positive predictive value). Correct prediction of urgent BAS also succeeded in all 22 cases with restrictive FO (100% PPV), but naturally failed in 4 of the 23 cases with correctly predicted normal FO ('bad mixer') (82.6% negative predictive value). CONCLUSION Precise assessment of FO size and FO flap motility allows a reliable prenatal prediction of both restrictive and normal FO anatomy postnatally. Prediction of likelihood of urgent BAS also succeeds reliably in all fetuses with restrictive FO, but identification of the small subset of fetuses that also requires urgent BAS despite their normal FO anatomy fails, because the ability of sufficient postnatal interatrial mixing cannot be predicted prenatally. Therefore, all fetuses with prenatally diagnosed d-TGA should always be delivered in a tertiary center with cardiac catheter stand-by, allowing BAS within the first 24 h after birth, regardless of their predicted FO anatomy.
Collapse
Affiliation(s)
- I Gottschalk
- Division of Prenatal Medicine, Gynecological Ultrasound and Fetal Surgery, Department of Obstetrics and Gynecology, University Hospital Cologne and Faculty of Medicine, University of Cologne, Cologne, Germany.
| | - A Walter
- Department of Obstetrics and Prenatal Medicine, University of Bonn, Bonn, Germany
| | - T Menzel
- Division of Prenatal Medicine, Gynecological Ultrasound and Fetal Surgery, Department of Obstetrics and Gynecology, University Hospital Cologne and Faculty of Medicine, University of Cologne, Cologne, Germany
| | - E C Weber
- Division of Prenatal Medicine, Gynecological Ultrasound and Fetal Surgery, Department of Obstetrics and Gynecology, University Hospital Cologne and Faculty of Medicine, University of Cologne, Cologne, Germany
| | - S Wendt
- Heartcenter, Department of Cardiac Surgery, Cardiothoracic Intensive Care and Thoracic Surgery, University Hospital Cologne, University of Cologne, Cologne, Germany
| | - N Sreeram
- Department of Pediatric Cardiology, University Hospital Cologne and Faculty of Medicine, University of Cologne, Cologne, Germany
| | - U Gembruch
- Department of Obstetrics and Prenatal Medicine, University of Bonn, Bonn, Germany
| | - C Berg
- Division of Prenatal Medicine, Gynecological Ultrasound and Fetal Surgery, Department of Obstetrics and Gynecology, University Hospital Cologne and Faculty of Medicine, University of Cologne, Cologne, Germany
| | - J S Abel
- Division of Prenatal Medicine, Gynecological Ultrasound and Fetal Surgery, Department of Obstetrics and Gynecology, University Hospital Cologne and Faculty of Medicine, University of Cologne, Cologne, Germany
| |
Collapse
|
11
|
Vollbrecht TM, Bissell MM, Kording F, Geipel A, Isaak A, Strizek BS, Hart C, Barker AJ, Luetkens JA. Fetal Cardiac MRI Using Doppler US Gating: Emerging Technology and Clinical Implications. Radiol Cardiothorac Imaging 2024; 6:e230182. [PMID: 38602469 PMCID: PMC11056758 DOI: 10.1148/ryct.230182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 02/13/2024] [Accepted: 02/27/2024] [Indexed: 04/12/2024]
Abstract
Fetal cardiac MRI using Doppler US gating is an emerging technique to support prenatal diagnosis of congenital heart disease and other cardiovascular abnormalities. Analogous to postnatal electrocardiographically gated cardiac MRI, this technique enables directly gated MRI of the fetal heart throughout the cardiac cycle, allowing for immediate data reconstruction and review of image quality. This review outlines the technical principles and challenges of cardiac MRI with Doppler US gating, such as loss of gating signal due to fetal movement. A practical workflow of patient preparation for the use of Doppler US-gated fetal cardiac MRI in clinical routine is provided. Currently applied MRI sequences (ie, cine or four-dimensional flow imaging), with special consideration of technical adaptations to the fetal heart, are summarized. The authors provide a literature review on the clinical benefits of Doppler US-gated fetal cardiac MRI for gaining additional diagnostic information on cardiovascular malformations and fetal hemodynamics. Finally, future perspectives of Doppler US-gated fetal cardiac MRI and further technical developments to reduce acquisition times and eliminate sources of artifacts are discussed. Keywords: MR Fetal, Ultrasound Doppler, Cardiac, Heart, Congenital, Obstetrics, Fetus Supplemental material is available for this article. © RSNA, 2024.
Collapse
Affiliation(s)
- Thomas M. Vollbrecht
- From the Department of Diagnostic and Interventional Radiology,
University Hospital Bonn, Venusberg-Campus 1, 53127 Bonn, Germany (T.M.V., A.I.,
C.H., J.A.L.); Quantitative Imaging Laboratory Bonn (QILaB), University Hospital
Bonn, Bonn, Germany (T.M.V., A.I., C.H., J.A.L.); Department of Biomedical
Imaging Science, Leeds Institute of Cardiovascular and Metabolic Medicine,
University of Leeds, Leeds, United Kingdom (M.M.B.); Northh Medical, Hamburg,
Germany (F.K.); Departments of Obstetrics and Prenatal Medicine (A.G., B.S.S.)
and Pediatric Cardiology (C.H.), University Hospital Bonn, Bonn, Germany;
Department of Radiology, University of Colorado Anschutz Medical Campus, Aurora,
Colo (A.J.B.); Department of Pediatric Radiology, Children’s Hospital
Colorado, Aurora, Colo (A.J.B.)
| | - Malenka M. Bissell
- From the Department of Diagnostic and Interventional Radiology,
University Hospital Bonn, Venusberg-Campus 1, 53127 Bonn, Germany (T.M.V., A.I.,
C.H., J.A.L.); Quantitative Imaging Laboratory Bonn (QILaB), University Hospital
Bonn, Bonn, Germany (T.M.V., A.I., C.H., J.A.L.); Department of Biomedical
Imaging Science, Leeds Institute of Cardiovascular and Metabolic Medicine,
University of Leeds, Leeds, United Kingdom (M.M.B.); Northh Medical, Hamburg,
Germany (F.K.); Departments of Obstetrics and Prenatal Medicine (A.G., B.S.S.)
and Pediatric Cardiology (C.H.), University Hospital Bonn, Bonn, Germany;
Department of Radiology, University of Colorado Anschutz Medical Campus, Aurora,
Colo (A.J.B.); Department of Pediatric Radiology, Children’s Hospital
Colorado, Aurora, Colo (A.J.B.)
| | - Fabian Kording
- From the Department of Diagnostic and Interventional Radiology,
University Hospital Bonn, Venusberg-Campus 1, 53127 Bonn, Germany (T.M.V., A.I.,
C.H., J.A.L.); Quantitative Imaging Laboratory Bonn (QILaB), University Hospital
Bonn, Bonn, Germany (T.M.V., A.I., C.H., J.A.L.); Department of Biomedical
Imaging Science, Leeds Institute of Cardiovascular and Metabolic Medicine,
University of Leeds, Leeds, United Kingdom (M.M.B.); Northh Medical, Hamburg,
Germany (F.K.); Departments of Obstetrics and Prenatal Medicine (A.G., B.S.S.)
and Pediatric Cardiology (C.H.), University Hospital Bonn, Bonn, Germany;
Department of Radiology, University of Colorado Anschutz Medical Campus, Aurora,
Colo (A.J.B.); Department of Pediatric Radiology, Children’s Hospital
Colorado, Aurora, Colo (A.J.B.)
| | - Annegret Geipel
- From the Department of Diagnostic and Interventional Radiology,
University Hospital Bonn, Venusberg-Campus 1, 53127 Bonn, Germany (T.M.V., A.I.,
C.H., J.A.L.); Quantitative Imaging Laboratory Bonn (QILaB), University Hospital
Bonn, Bonn, Germany (T.M.V., A.I., C.H., J.A.L.); Department of Biomedical
Imaging Science, Leeds Institute of Cardiovascular and Metabolic Medicine,
University of Leeds, Leeds, United Kingdom (M.M.B.); Northh Medical, Hamburg,
Germany (F.K.); Departments of Obstetrics and Prenatal Medicine (A.G., B.S.S.)
and Pediatric Cardiology (C.H.), University Hospital Bonn, Bonn, Germany;
Department of Radiology, University of Colorado Anschutz Medical Campus, Aurora,
Colo (A.J.B.); Department of Pediatric Radiology, Children’s Hospital
Colorado, Aurora, Colo (A.J.B.)
| | - Alexander Isaak
- From the Department of Diagnostic and Interventional Radiology,
University Hospital Bonn, Venusberg-Campus 1, 53127 Bonn, Germany (T.M.V., A.I.,
C.H., J.A.L.); Quantitative Imaging Laboratory Bonn (QILaB), University Hospital
Bonn, Bonn, Germany (T.M.V., A.I., C.H., J.A.L.); Department of Biomedical
Imaging Science, Leeds Institute of Cardiovascular and Metabolic Medicine,
University of Leeds, Leeds, United Kingdom (M.M.B.); Northh Medical, Hamburg,
Germany (F.K.); Departments of Obstetrics and Prenatal Medicine (A.G., B.S.S.)
and Pediatric Cardiology (C.H.), University Hospital Bonn, Bonn, Germany;
Department of Radiology, University of Colorado Anschutz Medical Campus, Aurora,
Colo (A.J.B.); Department of Pediatric Radiology, Children’s Hospital
Colorado, Aurora, Colo (A.J.B.)
| | - Brigitte S. Strizek
- From the Department of Diagnostic and Interventional Radiology,
University Hospital Bonn, Venusberg-Campus 1, 53127 Bonn, Germany (T.M.V., A.I.,
C.H., J.A.L.); Quantitative Imaging Laboratory Bonn (QILaB), University Hospital
Bonn, Bonn, Germany (T.M.V., A.I., C.H., J.A.L.); Department of Biomedical
Imaging Science, Leeds Institute of Cardiovascular and Metabolic Medicine,
University of Leeds, Leeds, United Kingdom (M.M.B.); Northh Medical, Hamburg,
Germany (F.K.); Departments of Obstetrics and Prenatal Medicine (A.G., B.S.S.)
and Pediatric Cardiology (C.H.), University Hospital Bonn, Bonn, Germany;
Department of Radiology, University of Colorado Anschutz Medical Campus, Aurora,
Colo (A.J.B.); Department of Pediatric Radiology, Children’s Hospital
Colorado, Aurora, Colo (A.J.B.)
| | - Christopher Hart
- From the Department of Diagnostic and Interventional Radiology,
University Hospital Bonn, Venusberg-Campus 1, 53127 Bonn, Germany (T.M.V., A.I.,
C.H., J.A.L.); Quantitative Imaging Laboratory Bonn (QILaB), University Hospital
Bonn, Bonn, Germany (T.M.V., A.I., C.H., J.A.L.); Department of Biomedical
Imaging Science, Leeds Institute of Cardiovascular and Metabolic Medicine,
University of Leeds, Leeds, United Kingdom (M.M.B.); Northh Medical, Hamburg,
Germany (F.K.); Departments of Obstetrics and Prenatal Medicine (A.G., B.S.S.)
and Pediatric Cardiology (C.H.), University Hospital Bonn, Bonn, Germany;
Department of Radiology, University of Colorado Anschutz Medical Campus, Aurora,
Colo (A.J.B.); Department of Pediatric Radiology, Children’s Hospital
Colorado, Aurora, Colo (A.J.B.)
| | - Alex J. Barker
- From the Department of Diagnostic and Interventional Radiology,
University Hospital Bonn, Venusberg-Campus 1, 53127 Bonn, Germany (T.M.V., A.I.,
C.H., J.A.L.); Quantitative Imaging Laboratory Bonn (QILaB), University Hospital
Bonn, Bonn, Germany (T.M.V., A.I., C.H., J.A.L.); Department of Biomedical
Imaging Science, Leeds Institute of Cardiovascular and Metabolic Medicine,
University of Leeds, Leeds, United Kingdom (M.M.B.); Northh Medical, Hamburg,
Germany (F.K.); Departments of Obstetrics and Prenatal Medicine (A.G., B.S.S.)
and Pediatric Cardiology (C.H.), University Hospital Bonn, Bonn, Germany;
Department of Radiology, University of Colorado Anschutz Medical Campus, Aurora,
Colo (A.J.B.); Department of Pediatric Radiology, Children’s Hospital
Colorado, Aurora, Colo (A.J.B.)
| | - Julian A. Luetkens
- From the Department of Diagnostic and Interventional Radiology,
University Hospital Bonn, Venusberg-Campus 1, 53127 Bonn, Germany (T.M.V., A.I.,
C.H., J.A.L.); Quantitative Imaging Laboratory Bonn (QILaB), University Hospital
Bonn, Bonn, Germany (T.M.V., A.I., C.H., J.A.L.); Department of Biomedical
Imaging Science, Leeds Institute of Cardiovascular and Metabolic Medicine,
University of Leeds, Leeds, United Kingdom (M.M.B.); Northh Medical, Hamburg,
Germany (F.K.); Departments of Obstetrics and Prenatal Medicine (A.G., B.S.S.)
and Pediatric Cardiology (C.H.), University Hospital Bonn, Bonn, Germany;
Department of Radiology, University of Colorado Anschutz Medical Campus, Aurora,
Colo (A.J.B.); Department of Pediatric Radiology, Children’s Hospital
Colorado, Aurora, Colo (A.J.B.)
| |
Collapse
|
12
|
Vollbrecht TM, Hart C, Zhang S, Katemann C, Sprinkart AM, Isaak A, Attenberger U, Pieper CC, Kuetting D, Geipel A, Strizek B, Luetkens JA. Deep learning denoising reconstruction for improved image quality in fetal cardiac cine MRI. Front Cardiovasc Med 2024; 11:1323443. [PMID: 38410246 PMCID: PMC10894983 DOI: 10.3389/fcvm.2024.1323443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 01/10/2024] [Indexed: 02/28/2024] Open
Abstract
Purpose This study aims to evaluate deep learning (DL) denoising reconstructions for image quality improvement of Doppler ultrasound (DUS)-gated fetal cardiac MRI in congenital heart disease (CHD). Methods Twenty-five fetuses with CHD (mean gestational age: 35 ± 1 weeks) underwent fetal cardiac MRI at 3T. Cine imaging was acquired using a balanced steady-state free precession (bSSFP) sequence with Doppler ultrasound gating. Images were reconstructed using both compressed sensing (bSSFP CS) and a pre-trained convolutional neural network trained for DL denoising (bSSFP DL). Images were compared qualitatively based on a 5-point Likert scale (from 1 = non-diagnostic to 5 = excellent) and quantitatively by calculating the apparent signal-to-noise ratio (aSNR) and contrast-to-noise ratio (aCNR). Diagnostic confidence was assessed for the atria, ventricles, foramen ovale, valves, great vessels, aortic arch, and pulmonary veins. Results Fetal cardiac cine MRI was successful in 23 fetuses (92%), with two studies excluded due to extensive fetal motion. The image quality of bSSFP DL cine reconstructions was rated superior to standard bSSFP CS cine images in terms of contrast [3 (interquartile range: 2-4) vs. 5 (4-5), P < 0.001] and endocardial edge definition [3 (2-4) vs. 4 (4-5), P < 0.001], while the extent of artifacts was found to be comparable [4 (3-4.75) vs. 4 (3-4), P = 0.40]. bSSFP DL images had higher aSNR and aCNR compared with the bSSFP CS images (aSNR: 13.4 ± 6.9 vs. 8.3 ± 3.6, P < 0.001; aCNR: 26.6 ± 15.8 vs. 14.4 ± 6.8, P < 0.001). Diagnostic confidence of the bSSFP DL images was superior for the evaluation of cardiovascular structures (e.g., atria and ventricles: P = 0.003). Conclusion DL image denoising provides superior quality for DUS-gated fetal cardiac cine imaging of CHD compared to standard CS image reconstruction.
Collapse
Affiliation(s)
- Thomas M Vollbrecht
- Department of Diagnostic and Interventional Radiology, University Hospital Bonn, Bonn, Germany
- Quantitative Imaging Lab Bonn (QILaB), Bonn, Germany
| | - Christopher Hart
- Department of Diagnostic and Interventional Radiology, University Hospital Bonn, Bonn, Germany
- Quantitative Imaging Lab Bonn (QILaB), Bonn, Germany
- Department of Pediatric Cardiology, University Hospital Bonn, Bonn, Germany
| | - Shuo Zhang
- Philips GmbH Market DACH, PD Clinical Science, Hamburg, Germany
| | | | - Alois M Sprinkart
- Department of Diagnostic and Interventional Radiology, University Hospital Bonn, Bonn, Germany
- Quantitative Imaging Lab Bonn (QILaB), Bonn, Germany
| | - Alexander Isaak
- Department of Diagnostic and Interventional Radiology, University Hospital Bonn, Bonn, Germany
- Quantitative Imaging Lab Bonn (QILaB), Bonn, Germany
| | - Ulrike Attenberger
- Department of Diagnostic and Interventional Radiology, University Hospital Bonn, Bonn, Germany
| | - Claus C Pieper
- Department of Diagnostic and Interventional Radiology, University Hospital Bonn, Bonn, Germany
| | - Daniel Kuetting
- Department of Diagnostic and Interventional Radiology, University Hospital Bonn, Bonn, Germany
- Quantitative Imaging Lab Bonn (QILaB), Bonn, Germany
| | - Annegret Geipel
- Department of Obstetrics and Prenatal Medicine, University Hospital Bonn, Bonn, Germany
| | - Brigitte Strizek
- Department of Obstetrics and Prenatal Medicine, University Hospital Bonn, Bonn, Germany
| | - Julian A Luetkens
- Department of Diagnostic and Interventional Radiology, University Hospital Bonn, Bonn, Germany
- Quantitative Imaging Lab Bonn (QILaB), Bonn, Germany
| |
Collapse
|
13
|
Leo I, Sabatino J, Avesani M, Moscatelli S, Bianco F, Borrelli N, De Sarro R, Leonardi B, Calcaterra G, Surkova E, Di Salvo G. Non-Invasive Imaging Assessment in Patients with Aortic Coarctation: A Contemporary Review. J Clin Med 2023; 13:28. [PMID: 38202035 PMCID: PMC10779918 DOI: 10.3390/jcm13010028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 12/08/2023] [Accepted: 12/12/2023] [Indexed: 01/12/2024] Open
Abstract
Coarctation of the aorta (CoA) is a congenital abnormality characterized by a narrowing of the aortic lumen, which can lead to significant morbidity and mortality if left untreated. Even after repair and despite significant advances in therapeutic management, these patients have overall reduced long-term survival due to the consequences of chronic afterload increase. Cardiovascular imaging is key from the first diagnosis to serial follow-up. In recent years, novel imaging techniques have emerged, increasing accessibility to advanced imaging modalities and enabling early and non-invasive identification of complications after repair. The aim of this paper is to provide a comprehensive review of the role of different imaging techniques in the evaluation and management of patients with native or repaired CoA, highlighting their unique strengths and limitations.
Collapse
Affiliation(s)
- Isabella Leo
- Department of Experimental and Clinical Medicine, Magna Graecia University, 88100 Catanzaro, Italy; (I.L.)
- CMR Unit, Royal Brompton and Harefield Hospitals, London SW3 5NP, UK;
| | - Jolanda Sabatino
- Department of Experimental and Clinical Medicine, Magna Graecia University, 88100 Catanzaro, Italy; (I.L.)
- Pediatric Cardiology Unit, Department of Woman’s and Child’s Health, University Hospital of Padova, 35128 Padova, Italy;
| | - Martina Avesani
- Pediatric Cardiology Unit, Department of Woman’s and Child’s Health, University Hospital of Padova, 35128 Padova, Italy;
| | - Sara Moscatelli
- Centre for Inherited Cardiovascular Disease, Great Ormond Street Hospital, London WC1N 3JH, UK;
- Institute of Cardiovascular Sciences, University College London, London WC1E 6BT, UK
| | - Francesco Bianco
- Cardiovascular Sciences Department, AOU “Ospedali Riuniti”, 60126 Ancona, Italy;
| | - Nunzia Borrelli
- Adult Congenital Heart Disease Unit, AO dei Colli, Monaldi Hospital, 80131 Naples, Italy
| | - Rosalba De Sarro
- Department of Experimental and Clinical Medicine, University of Messina, 98166 Messina, Italy;
| | - Benedetta Leonardi
- Department of Pediatric Cardiology, Cardiac Surgery and Heart Lung Transplantation, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy;
| | | | - Elena Surkova
- CMR Unit, Royal Brompton and Harefield Hospitals, London SW3 5NP, UK;
| | - Giovanni Di Salvo
- Pediatric Cardiology Unit, Department of Woman’s and Child’s Health, University Hospital of Padova, 35128 Padova, Italy;
- Paediatric Research Institute (IRP), Città Della Speranza, 35127 Padua, Italy
| | | |
Collapse
|
14
|
Fricke K, Ryd D, Weismann CG, Hanséus K, Hedström E, Liuba P. Fetal cardiac magnetic resonance imaging of the descending aorta in suspected left-sided cardiac obstructions. Front Cardiovasc Med 2023; 10:1285391. [PMID: 38107261 PMCID: PMC10725198 DOI: 10.3389/fcvm.2023.1285391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 11/06/2023] [Indexed: 12/19/2023] Open
Abstract
Background Severe left-sided cardiac obstructions are associated with high morbidity and mortality if not detected in time. The correct prenatal diagnosis of coarctation of the aorta (CoA) is difficult. Fetal cardiac magnetic resonance imaging (CMR) may improve the prenatal diagnosis of complex congenital heart defects. Flow measurements in the ascending aorta could aid in predicting postnatal CoA, but its accurate visualization is challenging. Objectives To compare the flow in the descending aorta (DAo) and umbilical vein (UV) in fetuses with suspected left-sided cardiac obstructions with and without the need for postnatal intervention and healthy controls by fetal phase-contrast CMR flow. A second objective was to determine if adding fetal CMR to echocardiography (echo) improves the fetal CoA diagnosis. Methods Prospective fetal CMR phase-contrast flow in the DAo and UV and echo studies were conducted between 2017 and 2022. Results A total of 46 fetuses with suspected left-sided cardiac obstructions [11 hypoplastic left heart syndrome (HLHS), five critical aortic stenosis (cAS), and 30 CoA] and five controls were included. Neonatal interventions for left-sided cardiac obstructions (n = 23) or comfort care (n = 1 with HLHS) were pursued in all 16 fetuses with suspected HLHS or cAS and in eight (27%) fetuses with true CoA. DAo or UV flow was not different in fetuses with and without need of intervention. However, DAo and UV flows were lower in fetuses with either retrograde isthmic systolic flow [DAo flow 253 (72) vs. 261 (97) ml/kg/min, p = 0.035; UV flow 113 (75) vs. 161 (81) ml/kg/min, p = 0.04] or with suspected CoA and restrictive atrial septum [DAo flow 200 (71) vs. 268 (94) ml/kg/min, p = 0.04; UV flow 89 vs. 159 (76) ml/kg/min, p = 0.04] as well as in those without these changes. Adding fetal CMR to fetal echo predictors for postnatal CoA did not improve the diagnosis of CoA. Conclusion Fetal CMR-derived DAo and UV flow measurements do not improve the prenatal diagnosis of left-sided cardiac obstructions, but they could be important in identifying fetuses with a more severe decrease in blood flow across the left side of the heart. The physiological explanation may be a markedly decreased left ventricular cardiac output with subsequent retrograde systolic isthmic flow and decreased total DAo flow.
Collapse
Affiliation(s)
- Katrin Fricke
- Cardiology, Pediatric Heart Center, Skåne University Hospital, Lund, Sweden
- Pediatrics, Department of Clinical Sciences Lund, Lund University, Lund, Sweden
| | - Daniel Ryd
- Clinical Physiology, Department of Clinical Sciences Lund, Lund University, Lund, Sweden
- Department of Clinical Physiology and Nuclear Medicine, Skåne University Hospital, Lund, Sweden
| | - Constance G. Weismann
- Cardiology, Pediatric Heart Center, Skåne University Hospital, Lund, Sweden
- Pediatrics, Department of Clinical Sciences Lund, Lund University, Lund, Sweden
- Department of Pediatric Cardiology and Pediatric Intensive Care, Ludwig-Maximilian University, Munich, Germany
| | - Katarina Hanséus
- Cardiology, Pediatric Heart Center, Skåne University Hospital, Lund, Sweden
| | - Erik Hedström
- Clinical Physiology, Department of Clinical Sciences Lund, Lund University, Lund, Sweden
- Department of Clinical Physiology and Nuclear Medicine, Skåne University Hospital, Lund, Sweden
- Diagnostic Radiology, Department of Clinical Sciences Lund, Lund University, Lund, Sweden
- Department of Diagnostic Radiology, Skåne University Hospital, Lund, Sweden
| | - Petru Liuba
- Cardiology, Pediatric Heart Center, Skåne University Hospital, Lund, Sweden
- Pediatrics, Department of Clinical Sciences Lund, Lund University, Lund, Sweden
| |
Collapse
|
15
|
Desmond A, Nguyen K, Watterson CT, Sklansky M, Satou GM, Prosper AE, Garg M, Van Arsdell GS, Finn JP, Afshar Y. Integration of Prenatal Cardiovascular Magnetic Resonance Imaging in Congenital Heart Disease. J Am Heart Assoc 2023; 12:e030640. [PMID: 37982254 PMCID: PMC10727279 DOI: 10.1161/jaha.123.030640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/21/2023]
Abstract
Standard of care echocardiography can have limited diagnostic accuracy in certain cases of fetal congenital heart disease. Prenatal cardiovascular magnetic resonance (CMR) imaging has potential to provide additional anatomic imaging information, including excellent soft tissue images in multiple planes, improving prenatal diagnostics and in utero hemodynamic assessment. We conducted a literature review of fetal CMR, including its development and implementation into clinical practice, and compiled and analyzed the results. Our findings included the fact that technological and innovative approaches are required to overcome some of the challenges in fetal CMR, in part due to the dynamic nature of the fetal heart. A number of reconstruction algorithms and cardiac gating strategies have been developed over time to improve fetal CMR image quality, allowing unique investigations into fetal hemodynamics, oxygenation, and growth. Studies demonstrate that incorporating CMR in the prenatal arena influences postnatal clinical management. With further refinement and experience, fetal CMR in congenital heart disease continues to evolve and demonstrate ongoing potential as a complementary imaging modality to fetal echocardiography in the care of these patients.
Collapse
Affiliation(s)
- Angela Desmond
- Division of Neonatology, Department of PediatricsUCLA Mattel Children’s HospitalLos AngelesCAUSA
| | - Kim‐Lien Nguyen
- Diagnostic Cardiovascular Imaging Laboratory, Department of Radiological SciencesDavid Geffen School of Medicine, UCLALos AngelesCAUSA
- Division of CardiologyDavid Geffen School of Medicine at UCLA, VA Greater Los Angeles Healthcare SystemLos AngelesCAUSA
- Department of Radiological SciencesDavid Geffen School of Medicine, UCLALos AngelesCAUSA
| | | | - Mark Sklansky
- Division of Pediatric Cardiology, Department of PediatricsDavid Geffen School of Medicine, UCLA Mattel Children’s HospitalLos AngelesCAUSA
| | - Gary M. Satou
- Division of Pediatric Cardiology, Department of PediatricsDavid Geffen School of Medicine, UCLA Mattel Children’s HospitalLos AngelesCAUSA
| | - Ashley E. Prosper
- Diagnostic Cardiovascular Imaging Laboratory, Department of Radiological SciencesDavid Geffen School of Medicine, UCLALos AngelesCAUSA
- Department of Radiological SciencesDavid Geffen School of Medicine, UCLALos AngelesCAUSA
| | - Meena Garg
- Division of Neonatology, Department of PediatricsUCLA Mattel Children’s HospitalLos AngelesCAUSA
| | - Glen S. Van Arsdell
- Division of Cardiac Surgery, Department of SurgeryDavid Geffen School of Medicine, UCLALos AngelesCAUSA
| | - J. Paul Finn
- Diagnostic Cardiovascular Imaging Laboratory, Department of Radiological SciencesDavid Geffen School of Medicine, UCLALos AngelesCAUSA
- Division of CardiologyDavid Geffen School of Medicine at UCLA, VA Greater Los Angeles Healthcare SystemLos AngelesCAUSA
- Department of Radiological SciencesDavid Geffen School of Medicine, UCLALos AngelesCAUSA
| | - Yalda Afshar
- Division of Maternal Fetal Medicine, Department of Obstetrics and GynecologyDavid Geffen School of Medicine, UCLALos AngelesCAUSA
- Molecular Biology InstituteUniversity of CaliforniaLos AngelesCAUSA
| |
Collapse
|
16
|
Udine M, Loke YH, Goudar S, Donofrio MT, Truong U, Krishnan A. The current state and potential innovation of fetal cardiac MRI. Front Pediatr 2023; 11:1219091. [PMID: 37520049 PMCID: PMC10375913 DOI: 10.3389/fped.2023.1219091] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 07/03/2023] [Indexed: 08/01/2023] Open
Abstract
Fetal cardiac MRI is a rapidly evolving form of diagnostic testing with utility as a complementary imaging modality for the diagnosis of congenital heart disease and assessment of the fetal cardiovascular system. Previous technical limitations without cardiac gating for the fetal heart rate has been overcome with recent technology. There is potential utility of fetal electrocardiography for direct cardiac gating. In addition to anatomic assessment, innovative technology has allowed for assessment of blood flow, 3D datasets, and 4D flow, providing important insight into fetal cardiovascular physiology. Despite remaining technical barriers, with increased use of fCMR worldwide, it will become an important clinical tool to improve the prenatal care of fetuses with CHD.
Collapse
Affiliation(s)
- Michelle Udine
- Division of Cardiology, Children’s National Hospital, Washington, DC, United States
| | | | | | | | | | | |
Collapse
|
17
|
Vollbrecht TM, Hart C, Zhang S, Katemann C, Isaak A, Pieper CC, Kuetting D, Faridi B, Strizek B, Attenberger U, Kipfmueller F, Herberg U, Geipel A, Luetkens JA. Fetal Cardiac Cine MRI with Doppler US Gating in Complex Congenital Heart Disease. Radiol Cardiothorac Imaging 2023; 5:e220129. [PMID: 36860838 PMCID: PMC9969216 DOI: 10.1148/ryct.220129] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 11/23/2022] [Accepted: 12/16/2022] [Indexed: 02/25/2023]
Abstract
Purpose To apply Doppler US (DUS)-gated fetal cardiac cine MRI in clinical routine and investigate diagnostic performance in complex congenital heart disease (CHD) compared with that of fetal echocardiography. Materials and Methods In this prospective study (May 2021 to March 2022), women with fetuses with CHD underwent fetal echocardiography and DUS-gated fetal cardiac MRI on the same day. For MRI, balanced steady-state free precession cine images were acquired in the axial and optional sagittal and/or coronal orientations. Overall image quality was assessed on a four-point Likert scale (from 1 = nondiagnostic to 4 = good image quality). The presence of abnormalities in 20 fetal cardiovascular features was independently assessed by using both modalities. The reference standard was postnatal examination results. Differences in sensitivities and specificities were determined by using a random-effects model. Results The study included 23 participants (mean age, 32 years ± 5 [SD]; mean gestational age, 36 weeks ± 1). Fetal cardiac MRI was completed in all participants. The median overall image quality of DUS-gated cine images was 3 (IQR, 2.5-4). In 21 of 23 participants (91%), underlying CHD was correctly assessed by using fetal cardiac MRI. In one case, the correct diagnosis was made by using MRI only (situs inversus and congenitally corrected transposition of the great arteries). Sensitivities (91.8% [95% CI: 85.7, 95.1] vs 93.6% [95% CI: 88.8, 96.2]; P = .53) and specificities (99.9% [95% CI: 99.2, 100] vs 99.9% [95% CI: 99.5, 100]; P > .99) for the detection of abnormal cardiovascular features were comparable between MRI and echocardiography, respectively. Conclusion Using DUS-gated fetal cine cardiac MRI resulted in performance comparable with that of using fetal echocardiography for diagnosing complex fetal CHD.Keywords: Pediatrics, MR-Fetal (Fetal MRI), Cardiac, Heart, Congenital, Fetal Imaging, Cardiac MRI, Prenatal, Congenital Heart DiseaseClinical trial registration no. NCT05066399 Supplemental material is available for this article. © RSNA, 2023See also the commentary by Biko and Fogel in this issue.
Collapse
|
18
|
Liu K, Zhu M, Zhang YQ, Chen LJ, Dong SZ. Utility of fetal cardiac magnetic resonance imaging in assessing the cardiac axis in fetuses with congenital heart disease. Pediatr Radiol 2023; 53:910-919. [PMID: 36602571 DOI: 10.1007/s00247-022-05582-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 12/05/2022] [Accepted: 12/23/2022] [Indexed: 01/06/2023]
Abstract
BACKGROUND Fetal dedicated echocardiography is the standard to measure the fetal cardiac axis. However, fetal screening ultrasound (US) or fetal dedicated echocardiography may be technically limited. OBJECTIVE The purpose of this study was to explore the accuracy of fetal cardiac magnetic resonance imaging (MRI) to measure the cardiac axis in fetuses with congenital heart disease as an adjunct to fetal dedicated echocardiography and to assess the predictive value of fetal cardiac MRI measurements in distinguishing healthy fetuses from fetuses with congenital heart disease. MATERIALS AND METHODS This is a retrospective study of fetuses referred to our hospital for a fetal cardiac MRI from November 2019 to December 2021. Cardiac axes were measured in the 4-chamber view of the fetal heart using fetal cardiac MRI and dedicated echocardiography, or only using fetal cardiac MRI when screening US was technically limited. The fetuses were divided into a congenital heart disease group and a healthy control group. We used Bland-Altman analysis and the intraclass correlation coefficient (ICC) to assess the agreement of cardiac axis measurements in fetuses with congenital heart disease obtained by cardiac MRI and by fetal dedicated echocardiography. Receiver operating characteristic (ROC) curve analysis of the fetal cardiac axes in the congenital heart disease and healthy fetus groups assessed the predictive value of the cardiac axis measurements. RESULTS This retrospective study included 431 women (162 carrying fetuses with congenital heart disease, 269 carrying healthy fetuses). Cardiac axes were measured in the 162 fetuses with congenital heart disease using fetal cardiac MRI and dedicated echocardiography. Cardiac axes were measured in the 269 healthy control fetuses using fetal cardiac MRI when fetal screening US was technically limited. The interobserver analysis and intraobserver analysis showed that the cardiac axis measured by fetal cardiac MRI and fetal dedicated echocardiography was repeatable (ICC>0.90). In 162 fetuses with congenital heart disease, Bland-Altman analysis showed a strong agreement between cardiac MRI and fetal dedicated echocardiography measurements for the cardiac axis. The ICC for the cardiac axis values between cardiac MRI and fetal dedicated echocardiography measurements was 0.99. In fetuses with congenital heart disease, 64.2% (104/162) had an abnormal cardiac axis. For the fetal cardiac axis in both the 162 fetuses with congenital heart disease and the 269 healthy fetuses, the area under the ROC curve reached 0.85 (95% confidence interval: 0.80-0.89; P<0.0001). CONCLUSION The cardiac axis can be accurately measured using fetal cardiac MRI when fetal dedicated echocardiography/fetal screening US is technically limited. The cardiac axis measurements by fetal cardiac MRI are consistent with known cardiac axis measurements by fetal dedicated echocardiography. The frequency of abnormal cardiac axis depends on the type of congenital heart disease.
Collapse
Affiliation(s)
- Ke Liu
- Department of Radiology, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, 1678 Dongfang Road, Shanghai, 200127, People's Republic of China
| | - Ming Zhu
- Department of Radiology, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, 1678 Dongfang Road, Shanghai, 200127, People's Republic of China
| | - Yu-Qi Zhang
- Department of Cardiology, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Li-Jun Chen
- Department of Cardiology, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Su-Zhen Dong
- Department of Radiology, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, 1678 Dongfang Road, Shanghai, 200127, People's Republic of China.
| |
Collapse
|
19
|
The Impact of Prenatal Diagnosis in the Evolution of Newborns with Congenital Heart Disease. J Crit Care Med (Targu Mures) 2023; 9:6-11. [PMID: 36890976 PMCID: PMC9987268 DOI: 10.2478/jccm-2023-0007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 01/25/2023] [Indexed: 02/11/2023] Open
Abstract
Congenital heart malformations are cardiac and/or vascular structural abnormalities that appear before birth, the majority of which can be detected prenatally. The latest data from the literature were reviewed, with reference to the degree of prenatal diagnosis regarding congenital heart malformations, as well as its impact on the preoperative evolution and implicitly on mortality. Studies with a significant number of enrolled patients were included in the research. Prenatal congenital heart malformations detection rates were different, depending on the period in which the study took place, the level of the medical center, as well as on the size of enrolled groups. Prenatal diagnosis in critical malformations such as hypoplastic left heart syndrome, transposition of great arteries and totally aberrant pulmonary venous drainage has proven its usefulness, allowing an early surgical intervention, thus ensuring improved neurological development, increasing the survival rate and decreasing the rate of subsequent complications. Sharing the experience and results obtained by each individual therapeutic center will definitely lead to drawing clear conclusions regarding the clinical contribution of congenital heart malformations prenatal detection.
Collapse
|
20
|
Moerdijk AS, Claessens NH, van Ooijen IM, van Ooij P, Alderliesten T, Grotenhuis HB, Benders MJNL, Bohte AE, Breur JMPJ, Charisopoulou D, Clur SA, Cornette JMJ, Fejzic Z, Franssen MTM, Frerich S, Geerdink LM, Go ATJI, Gommers S, Helbing WA, Hirsch A, Holtackers RJ, Klein WM, Krings GJ, Lamb HJ, Nijman M, Pajkrt E, Planken RN, Schrauben EM, Steenhuis TJ, ter Heide H, Vanagt WYR, van Beynum IM, van Gaalen MD, van Iperen GG, van Schuppen J, Willems TP, Witters I. Fetal MRI of the heart and brain in congenital heart disease. THE LANCET. CHILD & ADOLESCENT HEALTH 2023; 7:59-68. [PMID: 36343660 DOI: 10.1016/s2352-4642(22)00249-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 08/12/2022] [Accepted: 08/22/2022] [Indexed: 11/06/2022]
Abstract
Antenatal assessment of congenital heart disease and associated anomalies by ultrasound has improved perinatal care. Fetal cardiovascular MRI and fetal brain MRI are rapidly evolving for fetal diagnostic testing of congenital heart disease. We give an overview on the use of fetal cardiovascular MRI and fetal brain MRI in congenital heart disease, focusing on the current applications and diagnostic yield of structural and functional imaging during pregnancy. Fetal cardiovascular MRI in congenital heart disease is a promising supplementary imaging method to echocardiography for the diagnosis of antenatal congenital heart disease in weeks 30-40 of pregnancy. Concomitant fetal brain MRI is superior to brain ultrasound to show the complex relationship between fetal haemodynamics in congenital heart disease and brain development.
Collapse
Affiliation(s)
- Anouk S Moerdijk
- Department of Pediatric Cardiology, Division of Pediatrics, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht, Netherlands
| | - Nathalie Hp Claessens
- Department of Pediatric Cardiology, Division of Pediatrics, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht, Netherlands; Department of Neonatology, Division of Woman and Baby, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht, Netherlands
| | - Inge M van Ooijen
- Department of Neonatology, Division of Woman and Baby, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht, Netherlands
| | - Pim van Ooij
- Department of Pediatric Cardiology, Division of Pediatrics, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht, Netherlands
| | - Thomas Alderliesten
- Department of Pediatric Cardiology, Division of Pediatrics, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht, Netherlands; Department of Neonatology, Division of Woman and Baby, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht, Netherlands
| | - Heynric B Grotenhuis
- Department of Pediatric Cardiology, Division of Pediatrics, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht, Netherlands.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Szabo A, Sun L, Seed M. Fetal Cardiovascular Magnetic Resonance. MAGNETIC RESONANCE IMAGING OF CONGENITAL HEART DISEASE 2023:361-382. [DOI: 10.1007/978-3-031-29235-4_21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
22
|
The Evolution and Developing Importance of Fetal Magnetic Resonance Imaging in the Diagnosis of Congenital Cardiac Anomalies: A Systematic Review. J Clin Med 2022; 11:jcm11237027. [PMID: 36498602 PMCID: PMC9738414 DOI: 10.3390/jcm11237027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/21/2022] [Accepted: 11/24/2022] [Indexed: 11/29/2022] Open
Abstract
Magnetic Resonance Imaging (MRI) is a reliable method, with a complementary role to Ultrasound (US) Echocardiography, that can be used to fully comprehend and precisely diagnose congenital cardiac malformations. Besides the anatomical study of the fetal cardiovascular system, it allows us to study the function of the fetal heart, remaining, at the same time, a safe adjunct to the classic fetal echocardiography. MRI also allows for the investigation of cardiac and placental diseases by providing information about hematocrit, oxygen saturation, and blood flow in fetal vessels. It is crucial for fetal medicine specialists and pediatric cardiologists to closely follow the advances of fetal cardiac MRI in order to provide the best possible care. In this review, we summarize the advance in techniques and their practical utility to date.
Collapse
|
23
|
Costantini P, Perone F, Siani A, Groenhoff L, Muscogiuri G, Sironi S, Marra P, Carriero S, Pavon AG, Guglielmo M. Multimodality Imaging of the Neglected Valve: Role of Echocardiography, Cardiac Magnetic Resonance and Cardiac Computed Tomography in Pulmonary Stenosis and Regurgitation. J Imaging 2022; 8:278. [PMID: 36286372 PMCID: PMC9605303 DOI: 10.3390/jimaging8100278] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 09/25/2022] [Accepted: 10/05/2022] [Indexed: 11/17/2022] Open
Abstract
The pulmonary valve (PV) is the least imaged among the heart valves. However, pulmonary regurgitation (PR) and pulmonary stenosis (PS) can occur in a variety of patients ranging from fetuses, newborns (e.g., tetralogy of Fallot) to adults (e.g., endocarditis, carcinoid syndrome, complications of operated tetralogy of Fallot). Due to their complexity, PR and PS are studied using multimodality imaging to assess their mechanism, severity, and hemodynamic consequences. Multimodality imaging is crucial to plan the correct management and to follow up patients with pulmonary valvulopathy. Echocardiography remains the first line methodology to assess patients with PR and PS, but the information obtained with this technique are often integrated with cardiac magnetic resonance (CMR) and computed tomography (CT). This state-of-the-art review aims to provide an updated overview of the usefulness, strengths, and limits of multimodality imaging in patients with PR and PS.
Collapse
Affiliation(s)
- Pietro Costantini
- Radiology Department, Ospedale Maggiore della Carità University Hospital, 28100 Novara, Italy
| | - Francesco Perone
- Cardiac Rehabilitation Unit, Rehabilitation Clinic “Villa delle Magnolie”, 81020 Castel Morrone, Italy
| | - Agnese Siani
- Radiology Department, Ospedale Maggiore della Carità University Hospital, 28100 Novara, Italy
| | - Léon Groenhoff
- Radiology Department, Ospedale Maggiore della Carità University Hospital, 28100 Novara, Italy
| | - Giuseppe Muscogiuri
- School of Medicine and Surgery, University of Milano-Bicocca, 20126 Milan, Italy
- Department of Radiology, Istituto Auxologico Italiano, IRCCS (Istituto di Ricovero e Cura a Carattere Scientifico), San Luca Hospital, 20149 Milan, Italy
| | - Sandro Sironi
- School of Medicine and Surgery, University of Milano-Bicocca, 20126 Milan, Italy
- Department of Radiology, ASST Papa Giovanni XXIII Hospital, 24129 Bergamo, Italy
| | - Paolo Marra
- School of Medicine and Surgery, University of Milano-Bicocca, 20126 Milan, Italy
- Department of Radiology, ASST Papa Giovanni XXIII Hospital, 24129 Bergamo, Italy
| | - Serena Carriero
- Postgraduate School in Radiodiagnostics, Università degli Studi di Milano, 20133 Milan, Italy
| | - Anna Giulia Pavon
- Cardiocentro Ticino Institute, Ente Ospedaliero Cantonale, 6900 Lugano, Switzerland
| | - Marco Guglielmo
- Department of Cardiology, Division of Heart and Lungs, Utrecht University Medical Center, Utrecht University, 3584CX Utrecht, The Netherlands
| |
Collapse
|
24
|
Voges I, Krupickova S. Biventricular Repair or Single-Ventricle Palliation: Can Cardiovascular Magnetic Resonance Flow Imaging Help in Decision-Making? JACC. ADVANCES 2022; 1:100067. [PMID: 38938407 PMCID: PMC11198503 DOI: 10.1016/j.jacadv.2022.100067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/29/2024]
Affiliation(s)
- Inga Voges
- Department of Congenital Heart Disease and Pediatric Cardiology, University Hospital Schleswig-Holstein, Kiel, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck, Kiel, Germany
| | - Sylvia Krupickova
- Department of Pediatric Cardiology, Royal Brompton Hospital, London, UK
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| |
Collapse
|
25
|
Knapp J, Tavares de Sousa M, Schönnagel BP. Fetal Cardiovascular MRI - A Systemic Review of the Literature: Challenges, New Technical Developments, and Perspectives. ROFO-FORTSCHR RONTG 2022; 194:841-851. [PMID: 35905903 DOI: 10.1055/a-1761-3500] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
BACKGROUND Fetal magnetic resonance imaging (MRI) has become a valuable adjunct to ultrasound in the prenatal diagnosis of congenital pathologies of the central nervous system, thorax, and abdomen. Fetal cardiovascular magnetic resonance (CMR) was limited, mainly by the lack of cardiac gating, and has only recently evolved due to technical developments. METHOD A literature search was performed on PubMed, focusing on technical advancements to perform fetal CMR. In total, 20 publications on cardiac gating techniques in the human fetus were analyzed. RESULTS Fetal MRI is a safe imaging method with no developmental impairments found to be associated with in utero exposure to MRI. Fetal CMR is challenging due to general drawbacks (e. g., fetal motion) and specific limitations such as the difficulty to generate a cardiac gating signal to achieve high spatiotemporal resolution. Promising technical advancements include new methods for fetal cardiac gating, based on novel post-processing approaches and an external hardware device, as well as motion compensation and acceleration techniques. CONCLUSION Newly developed direct and indirect gating approaches were successfully applied to achieve high-quality morphologic and functional imaging as well as quantitative assessment of fetal hemodynamics in research settings. In cases when prenatal echocardiography is limited, e. g., by an unfavorable fetal position in utero, or when its results are inconclusive, fetal CMR could potentially serve as a valuable adjunct in the prenatal assessment of congenital cardiovascular malformations. However, sufficient data on the diagnostic performance and clinical benefit of new fetal CMR techniques is still lacking. KEY POINTS · New fetal cardiac gating methods allow high-quality fetal CMR.. · Motion compensation and acceleration techniques allow for improvement of image quality.. · Fetal CMR could potentially serve as an adjunct to fetal echocardiography in the future.. CITATION FORMAT · Knapp J, Tavares de Sousa M, Schönnagel BP. Fetal Cardiovascular MRI - A Systemic Review of the Literature: Challenges, New Technical Developments, and Perspectives. Fortschr Röntgenstr 2022; 194: 841 - 851.
Collapse
Affiliation(s)
- Janine Knapp
- Diagnostic and Interventional Radiology and Nuclear Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | | | - Björn P Schönnagel
- Diagnostic and Interventional Radiology and Nuclear Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
26
|
Schulz A, Lloyd DFA, van Poppel MPM, Roberts TA, Steinweg JK, Pushparajah K, Hajnal JV, Razavi R. Structured analysis of the impact of fetal motion on phase-contrast MRI flow measurements with metric optimized gating. Sci Rep 2022; 12:5395. [PMID: 35354868 PMCID: PMC8967860 DOI: 10.1038/s41598-022-09327-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Accepted: 03/21/2022] [Indexed: 01/19/2023] Open
Abstract
The impact of fetal motion on phase contrast magnetic resonance imaging (PC-MRI) with metric optimized gating (MOG) remains unknown, despite being a known limitation to prenatal MRI. This study aims to describe the effect of motion on fetal flow-measurements using PC-MRI with MOG and to generate a scoring-system that could be used to predict motion-corrupted datasets at the time of acquisition. Ten adult volunteers underwent PC-MRI with MOG using a motion-device to simulate reproducible in-plane motion encountered in fetuses. PC-MRI data were acquired on ten fetuses. All ungated images were rated on their quality from 0 (no motion) to 2 (severe motion). There was no significant difference in measured flows with in-plane motion during the first and last third of sequence acquisition. Movement in the middle section of acquisition produced a significant difference while all referring ungated images were rated with a score of 2. Intra-Class-Correlation (ICC) for flow-measurements in adult and fetal datasets was lower for datasets with scores of 2. For fetal applications, the use of a simple three-point scoring system reliably identifies motion-corrupted sequences from unprocessed data at the time of acquisition, with a high score corresponding to significant underestimation of flow values and increased interobserver variability.
Collapse
Affiliation(s)
- Alexander Schulz
- School of Biomedical Engineering and Imaging Sciences, King's College London, St. Thomas' Hospital, London, UK. .,Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, Berlin, 10117, Germany.
| | - David F A Lloyd
- School of Biomedical Engineering and Imaging Sciences, King's College London, St. Thomas' Hospital, London, UK.,Department of Congenital Heart Disease, Evelina London Children's Hospital, Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - Milou P M van Poppel
- School of Biomedical Engineering and Imaging Sciences, King's College London, St. Thomas' Hospital, London, UK
| | - Thomas A Roberts
- School of Biomedical Engineering and Imaging Sciences, King's College London, St. Thomas' Hospital, London, UK
| | - Johannes K Steinweg
- School of Biomedical Engineering and Imaging Sciences, King's College London, St. Thomas' Hospital, London, UK
| | - Kuberan Pushparajah
- School of Biomedical Engineering and Imaging Sciences, King's College London, St. Thomas' Hospital, London, UK.,Department of Congenital Heart Disease, Evelina London Children's Hospital, Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - Joseph V Hajnal
- School of Biomedical Engineering and Imaging Sciences, King's College London, St. Thomas' Hospital, London, UK
| | - Reza Razavi
- School of Biomedical Engineering and Imaging Sciences, King's College London, St. Thomas' Hospital, London, UK.,Department of Congenital Heart Disease, Evelina London Children's Hospital, Guy's and St Thomas' NHS Foundation Trust, London, UK
| |
Collapse
|
27
|
Author Name Change. JAMA Netw Open 2022; 5:e225825. [PMID: 35289868 PMCID: PMC8924713 DOI: 10.1001/jamanetworkopen.2022.5825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
28
|
Bohiltea RE, Pariza PC, Stavarache I, Munteanu O, Dima V, Mihai BM, Georgescu TA, Cinteza E. Prenatal Ultrasound Diagnosis of Double Aortic Arch versus Right Aortic Arch Variant in Vascular Ring Formation - Case Report and Review of the Literature. MAEDICA 2021; 16:717-722. [PMID: 35261677 PMCID: PMC8897798 DOI: 10.26574/maedica.2020.16.4.717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Double aortic arch represents a congenital vascular malformation that is characterized by the development of a complete vascular ring around the esophagus and trachea due to an anomaly in the development of branchial arteries. We present the case of a 31-year-old gravida that was referred for fetal ultrasound anomalies screening at 22 weeks and six days of gestation. Routine ultrasound scanning of the fetus revealed a structural aortic arch anomaly consistent with a double aortic arch, with no other cardiac and diextracardiac congenital structural malformations. Knowledge of embryology and imaging spectrum of aortic arch anomalies that are able to form vascular rings around the trachea and esophagus are essential for an accurate antenatal diagnosis and therefore, for a correct clinical management.
Collapse
Affiliation(s)
- Roxana Elena Bohiltea
- Department of Obstetrics and Gynecology, "Carol Davila" University of Medicine and Pharmacy Bucharest, Romania
| | - Paul Costin Pariza
- Department of Obstetrics and Gynecology, "Carol Davila" University of Medicine and Pharmacy Bucharest, Romania
| | - Irina Stavarache
- Department of Radiology, Fundeni Clinical Institute, Bucharest, Romania
| | - Octavian Munteanu
- Department of Anatomy, "Carol Davila" University of Medicine and Pharmacy, Bucharest, Romania
| | - Vlad Dima
- Department of Obstetrics, Gynecology and Neonatology, Filantropia Clinical Hospital, Bucharest, Romania
| | - Bianca Margareta Mihai
- Department of Obstetrics, Gynecology and Neonatology, Filantropia Clinical Hospital, Bucharest, Romania
| | | | - Eliza Cinteza
- Department of Pediatric Cardiology, "Carol Davila" University of Medicine and Pharmacy Bucharest, "MS Curie" Emergency Clinical Hospital, Bucharest, Romania
| |
Collapse
|
29
|
Berggren K, Ryd D, Heiberg E, Aletras AH, Hedström E. Super-Resolution Cine Image Enhancement for Fetal Cardiac Magnetic Resonance Imaging. J Magn Reson Imaging 2021; 56:223-231. [PMID: 34652860 DOI: 10.1002/jmri.27956] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/29/2021] [Accepted: 10/01/2021] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Fetal cardiac magnetic resonance imaging (MRI) improves the diagnosis of congenital heart defects, but is sensitive to fetal motion due to long image acquisition time. This may be overcome with faster image acquisition with low resolution, followed by image enhancement to provide clinically useful images. PURPOSE To combine phase-encoding undersampling with super-resolution neural networks to achieve high-resolution fetal cine cardiac MR images with short acquisition time. STUDY TYPE Prospective. SUBJECTS Twenty-eight fetuses (gestational week 36 [interquartile range 33-38 weeks]). FIELD STRENGTH/SEQUENCE 1.5 T, balanced steady-state free precession (bSSFP) cine sequence. ASSESSMENT Images were acquired using fully sampled Doppler ultrasound-gated clinical bSSFP cine as reference, with equivalent cine sequences with decreased phase-encoding resolution (25%, 33%, and 50% of clinical standard). Two super-resolution methods based on convolutional neural networks were proposed and evaluated (phasrGAN and phasrresnet). Data were partitioned into training (36 cine slices), validation (3 cine slices), and test sets (67 cine slices) without overlap. Conventional reconstruction methods using bicubic interpolation and k-space zeropadding were used for comparison. Three blinded observers scored image quality between 1 and 10. STATISTICAL TESTS Image scores are reported as median [interquartile range] and were compared using Mann-Whitney's nonparametric test with P < 0.05 showing statistically significant differences. RESULTS Both proposed methods showed no significant difference in image quality compared to clinical images (8 [7-8.5]) down to 33% (phasrGAN 8 [6.5-8]; phasrresnet 8 [7-8], all P ≥ 0.19) phase-encoding resolution, i.e., up to three times faster image acquisition, whereas bicubic interpolation and k-space zeropadding showed significantly lower quality for 33% phase-encoding resolution (both 7 [6-8]). DATA CONCLUSION Super-resolution enhancement can be used for fetal cine cardiac MRI to reduce image acquisition time while maintaining image quality. This may lead to an improved success rate for fetal cine MR imaging, as the impact of fetal motion is lessened by shortened acquisitions. LEVEL OF EVIDENCE 1 TECHNICAL EFFICACY: Stage 2.
Collapse
Affiliation(s)
- Klas Berggren
- Clinical Physiology, Department of Clinical Sciences Lund, Lund University, Skane University Hospital, Lund, Sweden
| | - Daniel Ryd
- Clinical Physiology, Department of Clinical Sciences Lund, Lund University, Skane University Hospital, Lund, Sweden
| | - Einar Heiberg
- Clinical Physiology, Department of Clinical Sciences Lund, Lund University, Skane University Hospital, Lund, Sweden.,Wallenberg Centre for Molecular Medicine, Lund University, Lund, Sweden
| | - Anthony H Aletras
- Clinical Physiology, Department of Clinical Sciences Lund, Lund University, Skane University Hospital, Lund, Sweden.,Laboratory of Computing, Medical Informatics and Biomedical-Imaging Technologies, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Erik Hedström
- Clinical Physiology, Department of Clinical Sciences Lund, Lund University, Skane University Hospital, Lund, Sweden.,Diagnostic Radiology, Department of Clinical Sciences Lund, Lund University, Skane University Hospital, Lund, Sweden
| |
Collapse
|
30
|
Steele JM, Moore RA, Lang SM. Use of advanced cardiac imaging in congenital heart disease: growth, indications and innovations. Curr Opin Pediatr 2021; 33:495-502. [PMID: 34374664 DOI: 10.1097/mop.0000000000001051] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE OF REVIEW Significant improvements in the diagnosis and management of patients with congenital heart disease (CHD) have led to improved survival. These patients require life-long noninvasive evaluation. The use of advanced imaging such as cardiac magnetic resonance imaging (CMR) and cardiac computed tomography (CCT) has increased to support this need. The purpose of this review is to discuss the basics of advanced cardiac imaging, indications and review the recent innovations. RECENT FINDINGS Recent literature has demonstrated the increasing reliance of advanced imaging for CHD patients. In addition, research is focusing on CMR techniques to shorten scan time and address previous limitations that made imaging younger and sicker patients more challenging. CCT research has involved demonstrating high-quality images with low radiation exposure. Advances in digital technology have impacted the interactivity of 3D imaging through the use of virtual and augmented reality platforms. With the increased reliance of advanced imaging, appropriate use criteria have been developed to address possible under or over utilization. SUMMARY The utilization of advanced cardiac imaging continues to increase. As CMR and CCT continue to grow, increased knowledge of these modalities and their usage will be necessary for clinicians caring for CHD patients.
Collapse
Affiliation(s)
- Jeremy M Steele
- Department of Pediatrics, Section of Pediatric Cardiology, Yale University School of Medicine, New Haven, Connecticut
| | - Ryan A Moore
- Heart Institute, Cincinnati Children's Hospital Medical Center
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Sean M Lang
- Heart Institute, Cincinnati Children's Hospital Medical Center
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| |
Collapse
|
31
|
Errors in Figure Titles and Article Information. JAMA Netw Open 2021; 4:e2111261. [PMID: 33890998 PMCID: PMC8065377 DOI: 10.1001/jamanetworkopen.2021.11261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
32
|
Affiliation(s)
- Bhawna Arya
- Seattle Children's Hospital, Seattle, Washington
- University of Washington School of Medicine, Seattle
| |
Collapse
|