1
|
Hassan C, Antonelli G, Chiu PWY, Emura F, Goda K, Prasad I, Al Awadhi S, Al Lehibi A, Arantes V, Cerisoli CL, Draganov P, Fleischer D, Fluxá F, Gonzalez N, Inoue H, John S, Kashin S, Khashab M, Kim GH, Kothari S, Ngamruengphong S, Remes-Troche JM, Sharara AI, Shimamura Y, Villa-Gomez G, Wang KK, Wang WL, Yip HC, Sharma P. Position statement of the World Endoscopy Organization: Role of endoscopy in screening, diagnosis, and treatment of esophageal superficial squamous neoplasia. Dig Endosc 2024. [PMID: 39722219 DOI: 10.1111/den.14967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 11/10/2024] [Indexed: 12/28/2024]
Abstract
Esophageal squamous cell carcinoma (ESCC) remains a significant global health challenge, being the sixth leading cause of cancer mortality with pronounced geographic variability. The incidence rates range from 125 per 100,000 in northern China to 1-1.5 per 100,000 in the United States, driven by environmental and lifestyle factors such as tobacco and alcohol use, dietary habits, and pollution. Major modifiable risk factors include tobacco and alcohol consumption, with a synergistic risk increase when combined. Nonmodifiable risk factors include previous diagnoses of head and neck squamous cell carcinoma (H&N SCC), achalasia, and prior radiotherapy. Prevention strategies must be tailored to specific regional burdens to efficiently allocate medical and financial resources. Gastrointestinal endoscopy is crucial in reducing ESCC burden through early detection and characterization of neoplastic changes, such as high-grade dysplasia. Early diagnosis significantly improves survival rates, while endoscopic resection of noninvasive dysplasia can prevent ESCC onset, reducing treatment burden for advanced disease. Postresection surveillance can detect high-risk metachronous lesions. Despite these benefits, endoscopic prevention faces challenges, including the lack of high-level evidence supporting its efficacy, opportunity costs, the need for specialized training and techniques, and the requirement for advanced technology investments. This Position Statement from the World Endoscopy Organization (WEO) aims to address these challenges, supplying recommendations for the exploitation of endoscopic resources regarding the possible role of screening, quality, and training for the detection, characterization, resection, and surveillance of ESCC.
Collapse
Affiliation(s)
- Cesare Hassan
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
- IRCCS Humanitas Research Hospital, Milan, Italy
| | - Giulio Antonelli
- Gastroenterology and Digestive Endoscopy Unit, Ospedale dei Castelli Hospital, Rome, Italy
- Department of Anatomical, Histological, Forensic Medicine and Orthopedics Sciences, "Sapienza" University of Rome, Rome, Italy
| | - Philip Wai-Yan Chiu
- Division of Upper Gastrointestinal and Metabolic Surgery, Department of Surgery, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Fabian Emura
- Digestive Health and Liver Diseases, University of Miami, Miami, USA
- Interventional Endoscopy Center, Jackson Memorial Hospital, Miami, USA
| | - Kenichi Goda
- Gastrointestinal Endoscopy Center, Dokkyo Medical University Hospital, Tochigi, Japan
| | - Iyer Prasad
- Esophageal Interest Group, Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, USA
| | - Sameer Al Awadhi
- Rashid Hospital, Dubai Health Authority, Dubai, United Arab Emirates
| | - Abed Al Lehibi
- Gastroenterology and Hepatology Department, King Fahad Medical City, Riyad, Saudi Arabia
| | - Vitor Arantes
- Endoscopy Unit, Alfa Institute of Gastroenterology, School of Medicine, Federal University of Minas Gerais, Hospital Mater Dei Contorno, Belo Horizonte, Brazil
| | - Cecilio L Cerisoli
- Therapeutic and Diagnostic Gastroenterology (GEDYT) Center, Buenos Aires, Argentina
| | | | - David Fleischer
- Division of Gastroenterology and Hepatology, Mayo Clinic, Scottsdale, USA
| | - Fernando Fluxá
- Gastroenterology Department Clinica Meds, Santiago, Chile
| | | | - Haruhiro Inoue
- Digestive Diseases Center, Showa University Koto Toyosu Hospital, Tokyo, Japan
| | - Sneha John
- Endoscopy Unit, Gold Coast University Hospital, Southport, Australia
| | - Sergey Kashin
- Endoscopy Department, Yaroslavl State Medical University, Yaroslavl, Russia
| | - Mouen Khashab
- Therapeutic Endoscopy, Johns Hopkins Hospital, Baltimore, USA
| | - Gwang Ha Kim
- Department of Internal Medicine, Pusan National University College of Medicine, Busan, South Korea
- Biomedical Research Institute, Pusan National University Hospital, Busan, South Korea
| | - Shivangi Kothari
- Division of Gastroenterology and Hepatology, University of Rochester Medical Center, Rochester, USA
| | | | | | - Ala I Sharara
- Division of Gastroenterology, American University of Beirut Medical Center, Beirut, Lebanon
| | | | - Guido Villa-Gomez
- Gastroenterology and Digestive Endoscopy Unit, WGO La Paz Training Center, La Paz, Bolivia
| | - Kenneth K Wang
- Russ and Kathy Van Cleve Professor of Gastroenterology, Mayo Clinic, Rochester, USA
| | - Wen-Lun Wang
- Department of Internal Medicine, E-Da Hospital/I-Shou University, Kaohsiung, Taiwan
| | - Hon-Chi Yip
- Division of Upper Gastrointestinal and Metabolic Surgery, Department of Surgery, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Prateek Sharma
- University of Kansas School of Medicine and VA Medical Center, Kansas City, USA
| |
Collapse
|
2
|
Zhang WY, Chang YJ, Shi RH. Artificial intelligence enhances the management of esophageal squamous cell carcinoma in the precision oncology era. World J Gastroenterol 2024; 30:4267-4280. [PMID: 39492825 PMCID: PMC11525855 DOI: 10.3748/wjg.v30.i39.4267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 08/31/2024] [Accepted: 09/19/2024] [Indexed: 10/12/2024] Open
Abstract
Esophageal squamous cell carcinoma (ESCC) is the most common histological type of esophageal cancer with a poor prognosis. Early diagnosis and prognosis assessment are crucial for improving the survival rate of ESCC patients. With the advancement of artificial intelligence (AI) technology and the proliferation of medical digital information, AI has demonstrated promising sensitivity and accuracy in assisting precise detection, treatment decision-making, and prognosis assessment of ESCC. It has become a unique opportunity to enhance comprehensive clinical management of ESCC in the era of precision oncology. This review examines how AI is applied to the diagnosis, treatment, and prognosis assessment of ESCC in the era of precision oncology, and analyzes the challenges and potential opportunities that AI faces in clinical translation. Through insights into future prospects, it is hoped that this review will contribute to the real-world application of AI in future clinical settings, ultimately alleviating the disease burden caused by ESCC.
Collapse
Affiliation(s)
- Wan-Yue Zhang
- School of Medicine, Southeast University, Nanjing 221000, Jiangsu Province, China
| | - Yong-Jian Chang
- School of Cyber Science and Engineering, Southeast University, Nanjing 210009, Jiangsu Province, China
| | - Rui-Hua Shi
- Department of Gastroenterology, Zhongda Hospital, Southeast University, Nanjing 210009, Jiangsu Province, China
| |
Collapse
|
3
|
Li J, Tian J, Ma M, Qin Z, Cao B, Yang J, Wang X, Yang X. FAM83D promotes the progression of 4NQO-induced esophageal carcinoma via inhibiting FBWX7. Exp Cell Res 2024; 442:114252. [PMID: 39260674 DOI: 10.1016/j.yexcr.2024.114252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 09/05/2024] [Accepted: 09/08/2024] [Indexed: 09/13/2024]
Abstract
The present study aimed to explore the expression and regulatory role of FAM83D in the different developmental stages of esophageal squamous cell carcinoma (ESCC) to determine the effect of FAM83D on the proliferation, migration, and invasion of ESCC cells and to elucidate its underlying molecular mechanism. Immunohistochemistry (IHC) analysis revealed that the expression of FAM83D was obviously elevated in ESCC tissues compared to adjacent normal tissues. Furthermore, the FAM83D levels was positively correlated with tumor size, TNM stage, T stage, and N stage, while it was negatively correlated with FBXW7 expression, Karnofsky Performance Status (KPS) score, and survival rate. Subsequently, ESCC cell lines with low FAM83D expression were constructed using RNA interference technology to investigate the impact of FAM83D on the biological behavior of ESCC cells. Silencing of FAM83D inhibited the proliferation and migration of ESCC cells but promoted apoptosis. Furthermore, a reduction in FAM83D expression may also induce cell cycle arrest at the G0/G1 phase and regulate the expression of proteins related to epithelial-mesenchymal transition (EMT), the cell cycle, and apoptosis. Further research indicated that silencing FAM83D led to the upregulation of FBXW7 expression. These results suggested that FAM83D may exert its effects on ESCC by downregulating FBXW7. Additionally, using a 4NQO solution in the drinking water to establish an ESCC mouse model, IHC analysis revealed that FAM83D expression levels were positively correlated with the pathological grade of esophageal lesions in the mice and negatively correlated with the expression levels of FBXW7 and E-cadherin. The above results demonstrated that FAM83D may facilitate the progression of ESCC by negatively regulating FBXW7 expression and that FAM83D could represent a promising therapeutic target for ESCC.
Collapse
Affiliation(s)
- Jinjin Li
- Department of Infection Management, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050011, PR China
| | - Jianbing Tian
- Department of Infection Management, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050011, PR China
| | - Ming Ma
- Clinical Laboratory, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050011, PR China
| | - Zhiruo Qin
- Department of Infection Management, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050011, PR China
| | - Bingji Cao
- Department of Thoracic Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050011, PR China
| | - Jiangshuo Yang
- Department of General Surgery, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050011, PR China
| | - Xuexiao Wang
- Department of Biotherapy, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050011, PR China
| | - Xingxiao Yang
- Department of Infection Management, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050011, PR China.
| |
Collapse
|
4
|
Deboever N, Jones CM, Yamashita K, Ajani JA, Hofstetter WL. Advances in diagnosis and management of cancer of the esophagus. BMJ 2024; 385:e074962. [PMID: 38830686 DOI: 10.1136/bmj-2023-074962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
Esophageal cancer is the seventh most common malignancy worldwide, with over 470 000 new cases diagnosed each year. Two distinct histological subtypes predominate, and should be considered biologically separate disease entities.1 These subtypes are esophageal adenocarcinoma (EAC) and esophageal squamous cell carcinoma (ESCC). Outcomes remain poor regardless of subtype, with most patients presenting with late stage disease.2 Novel strategies to improve early detection of the respective precursor lesions, squamous dysplasia, and Barrett's esophagus offer the potential to improve outcomes. The introduction of a limited number of biologic agents, as well as immune checkpoint inhibitors, is resulting in improvements in the systemic treatment of locally advanced and metastatic esophageal cancer. These developments, coupled with improvements in minimally invasive surgical and endoscopic treatment approaches, as well as adaptive and precision radiotherapy technologies, offer the potential to improve outcomes still further. This review summarizes the latest advances in the diagnosis and management of esophageal cancer, and the developments in understanding of the biology of this disease.
Collapse
Affiliation(s)
- Nathaniel Deboever
- Department of Thoracic and Cardiovascular Surgery, MD Anderson Cancer Center, Houston, TX, USA
| | - Christopher M Jones
- Early Cancer Institute, Department of Oncology, University of Cambridge, Cambridge, UK
- Addenbrooke's Hospital, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Kohei Yamashita
- Department of Gastrointestinal Medical Oncology, MD Anderson Cancer Center, Houston, TX, USA
| | - Jaffer A Ajani
- Department of Gastrointestinal Medical Oncology, MD Anderson Cancer Center, Houston, TX, USA
| | - Wayne L Hofstetter
- Department of Thoracic and Cardiovascular Surgery, MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
5
|
Li WT, Jin X, Song SJ, Wang C, Fu C, Jiang W, Bai J, Shi ZZ. Blocking SLC7A11 attenuates the proliferation of esophageal squamous cell carcinoma cells. Anim Cells Syst (Seoul) 2024; 28:237-250. [PMID: 38741950 PMCID: PMC11089935 DOI: 10.1080/19768354.2024.2346981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Accepted: 04/18/2024] [Indexed: 05/16/2024] Open
Abstract
The role of ferroptosis-associated gene SLC7A11 in esophageal cancer progression is largely unknown, therefore, the effects of blocking SLC7A11 on esophageal squamous cell carcinoma (ESCC) cells are evaluated. Results showed that SLC7A11 was overexpressed in ESCC tissues both in mRNA and protein levels. Blocking SLC7A11 using Erastin suppressed the proliferation and colony formation of ESCC cells, decreased cellular ATP levels, and improved ROS production. Sixty-three SLC7A11-binding proteins were identified using the IP-MS method, and these proteins were enriched in four signaling pathways, including spliceosome, ribosome, huntington disease, and diabetic cardiomyopathy. The deubiquitinase inhibitors PR-619, GRL0617, and P 22077 could reduce at least 40% protein expression level of SLC7A11 in ESCC cells, and PR-619 and GRL0617 exhibited suppressive effects on the cell viability and colony formation ability of KYSE30 cells, respectively. Erastin downregulated GPX4 and DHODH and also reduced the levels of β-catenin, p-STAT3, and IL-6 in ESCC cells. In conclusion, SLC7A11 was overexpressed in ESCC, and blocking SLC7A11 using Erastin mitigated malignant phenotypes of ESCC cells and downregulated key ferroptosis-associated molecules GPX4 and DHODH. The therapeutic potential of targeting SLC7A11 should be further evaluated in the future.
Collapse
Affiliation(s)
- Wen-Ting Li
- Medical School, Kunming University of Science and Technology, Kunming, People’s Republic of China
| | - Xin Jin
- Medical School, Kunming University of Science and Technology, Kunming, People’s Republic of China
| | - Sheng-Jie Song
- Medical School, Kunming University of Science and Technology, Kunming, People’s Republic of China
| | - Chong Wang
- Medical School, Kunming University of Science and Technology, Kunming, People’s Republic of China
| | - Chuang Fu
- Medical School, Kunming University of Science and Technology, Kunming, People’s Republic of China
| | - Wen Jiang
- Department of Thoracic Surgery, The First People's Hospital of Yunnan Province & The Affiliated Hospital of Kunming University of Science and Technology, Kunming, People’s Republic of China
| | - Jie Bai
- Medical School, Kunming University of Science and Technology, Kunming, People’s Republic of China
| | - Zhi-Zhou Shi
- Medical School, Kunming University of Science and Technology, Kunming, People’s Republic of China
| |
Collapse
|
6
|
Jiang H, Chen R, Li Y, Hao C, Song G, Hua Z, Li J, Wang Y, Wei W. Performance of Prediction Models for Esophageal Squamous Cell Carcinoma in General Population: A Systematic Review and External Validation Study. Am J Gastroenterol 2024; 119:814-822. [PMID: 38088388 PMCID: PMC11062607 DOI: 10.14309/ajg.0000000000002629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 11/30/2023] [Indexed: 02/02/2024]
Abstract
INTRODUCTION Prediction models for esophageal squamous cell carcinoma (ESCC) need to be proven effective in the target population before they can be applied to population-based endoscopic screening to improve cost-effectiveness. We have systematically reviewed ESCC prediction models applicable to the general population and performed external validation and head-to-head comparisons in a large multicenter prospective cohort including 5 high-risk areas of China (Fei Cheng, Lin Zhou, Ci Xian, Yang Zhong, and Yan Ting). METHODS Models were identified through a systematic review and validated in a large population-based multicenter prospective cohort that included 89,753 participants aged 40-69 years who underwent their first endoscopic examination between April 2017 and March 2021 and were followed up until December 31, 2022. Model performance in external validation was estimated based on discrimination and calibration. Discrimination was assessed by C-statistic (concordance statistic), and calibration was assessed by calibration plot and Hosmer-Lemeshow test. RESULTS The systematic review identified 15 prediction models that predicted severe dysplasia and above lesion (SDA) or ESCC in the general population, of which 11 models (4 SDA and 7 ESCC) were externally validated. The C-statistics ranged from 0.67 (95% confidence interval 0.66-0.69) to 0.70 (0.68-0.71) of the SDA models, and the highest was achieved by Liu et al (2020) and Liu et al (2022). The C-statistics ranged from 0.51 (0.48-0.54) to 0.74 (0.71-0.77), and Han et al (2023) had the best discrimination of the ESCC models. Most models were well calibrated after recalibration because the calibration plots coincided with the x = y line. DISCUSSION Several prediction models showed moderate performance in external validation, and the prediction models may be useful in screening for ESCC. Further research is needed on model optimization, generalization, implementation, and health economic evaluation.
Collapse
Affiliation(s)
- Hao Jiang
- School of Population Medicine and Public Health, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Ru Chen
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
| | - Yanyan Li
- Cancer Center, Feicheng People's Hospital, Feicheng, China
| | - Changqing Hao
- Department of Endoscopy, Linzhou Cancer Hospital, Linzhou, China
| | - Guohui Song
- Department of Epidemiology, Cancer Institute/Hospital of Ci County, Handan, China
| | - Zhaolai Hua
- Cancer Institute of Yangzhong City/People's Hospital of Yangzhong City, Yangzhong, China
| | - Jun Li
- Cancer Prevention and Treatment Office, Yanting Cancer Hospital, Mianyang, China
| | - Yuping Wang
- School of Population Medicine and Public Health, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Wenqiang Wei
- School of Population Medicine and Public Health, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
| |
Collapse
|
7
|
Cui Y, Wu Y, Zhu Y, Liu W, Huang L, Hong Z, Zhang M, Zheng X, Sun G. The possible molecular mechanism underlying the involvement of the variable shear factor QKI in the epithelial-mesenchymal transformation of oesophageal cancer. PLoS One 2023; 18:e0288403. [PMID: 37428781 DOI: 10.1371/journal.pone.0288403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Accepted: 06/26/2023] [Indexed: 07/12/2023] Open
Abstract
OBJECTIVE Based on the GEO, TCGA and GTEx databases, we reveal the possible molecular mechanism of the variable shear factor QKI in epithelial mesenchymal transformation (EMT) of oesophageal cancer. METHODS Based on the TCGA and GTEx databases, the differential expression of the variable shear factor QKI in oesophageal cancer samples was analysed, and functional enrichment analysis of QKI was performed based on the TCGA-ESCA dataset. The percent-spliced in (PSI) data of oesophageal cancer samples were downloaded from the TCGASpliceSeq database, and the genes and variable splicing types that were significantly related to the expression of the variable splicing factor QKI were screened out. We further identified the significantly upregulated circRNAs and their corresponding coding genes in oesophageal cancer, screened the EMT-related genes that were significantly positively correlated with QKI expression, predicted the circRNA-miRNA binding relationship through the circBank database, predicted the miRNA-mRNA binding relationship through the TargetScan database, and finally obtained the circRNA-miRNA-mRNA network through which QKI promoted the EMT process. RESULTS Compared with normal control tissue, QKI expression was significantly upregulated in tumour tissue samples of oesophageal cancer patients. High expression of QKI may promote the EMT process in oesophageal cancer. QKI promotes hsa_circ_0006646 and hsa_circ_0061395 generation by regulating the variable shear of BACH1 and PTK2. In oesophageal cancer, QKI may promote the production of the above two circRNAs by regulating variable splicing, and these circRNAs further competitively bind miRNAs to relieve the targeted inhibition of IL-11, MFAP2, MMP10, and MMP1 and finally promote the EMT process. CONCLUSION Variable shear factor QKI promotes hsa_circ_0006646 and hsa_circ_0061395 generation, and downstream related miRNAs can relieve the targeted inhibition of EMT-related genes (IL11, MFAP2, MMP10, MMP1) and promote the occurrence and development of oesophageal cancer, providing a new theoretical basis for screening prognostic markers of oesophageal cancer patients.
Collapse
Affiliation(s)
- Yishuang Cui
- School of Public Health, North China University of Science and Technology, Tangshan, Hebei Province, China
- Department of Hebei Key Laboratory of Medical-Industrial Integration Precision Medicine, Tangshan, Hebei Province, China
| | - Yanan Wu
- School of Public Health, North China University of Science and Technology, Tangshan, Hebei Province, China
- Department of Hebei Key Laboratory of Medical-Industrial Integration Precision Medicine, Tangshan, Hebei Province, China
| | - Yingze Zhu
- Department of Hebei Key Laboratory of Medical-Industrial Integration Precision Medicine, Tangshan, Hebei Province, China
- School of Clinical Medicine, North China University of Science and Technology, Tangshan, Hebei Province, China
- Affiliated Hospital, North China University of Science and Technology, Tangshan, Hebei Province, China
| | - Wei Liu
- Department of Hebei Key Laboratory of Medical-Industrial Integration Precision Medicine, Tangshan, Hebei Province, China
- School of Clinical Medicine, North China University of Science and Technology, Tangshan, Hebei Province, China
- Affiliated Hospital, North China University of Science and Technology, Tangshan, Hebei Province, China
| | - Lanxiang Huang
- Department of Hebei Key Laboratory of Medical-Industrial Integration Precision Medicine, Tangshan, Hebei Province, China
- School of Clinical Medicine, North China University of Science and Technology, Tangshan, Hebei Province, China
- Affiliated Hospital, North China University of Science and Technology, Tangshan, Hebei Province, China
| | - Ziqian Hong
- School of Public Health, North China University of Science and Technology, Tangshan, Hebei Province, China
- Department of Hebei Key Laboratory of Medical-Industrial Integration Precision Medicine, Tangshan, Hebei Province, China
| | - Mengshi Zhang
- School of Public Health, North China University of Science and Technology, Tangshan, Hebei Province, China
- Department of Hebei Key Laboratory of Medical-Industrial Integration Precision Medicine, Tangshan, Hebei Province, China
| | - Xuan Zheng
- School of Public Health, North China University of Science and Technology, Tangshan, Hebei Province, China
- Department of Hebei Key Laboratory of Medical-Industrial Integration Precision Medicine, Tangshan, Hebei Province, China
| | - Guogui Sun
- School of Public Health, North China University of Science and Technology, Tangshan, Hebei Province, China
- Department of Hebei Key Laboratory of Medical-Industrial Integration Precision Medicine, Tangshan, Hebei Province, China
- School of Clinical Medicine, North China University of Science and Technology, Tangshan, Hebei Province, China
- Affiliated Hospital, North China University of Science and Technology, Tangshan, Hebei Province, China
| |
Collapse
|