1
|
Wang J, Zheng Z, Wu T, Li W, Wang J, Pan Y, Peng W, Hu D, Hou J, Xu L, Zhang Y, Chen M, Zhang R, Zhou Z. Hepatic Arterial Infusion Chemotherapy as a Timing Strategy for Conversion Surgery to Treat Hepatocellular Carcinoma: A Single-Center Real-World Study. J Hepatocell Carcinoma 2022; 9:999-1010. [PMID: 36132426 PMCID: PMC9483136 DOI: 10.2147/jhc.s379326] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 09/09/2022] [Indexed: 01/27/2023] Open
Abstract
Objective To evaluate whether surgery-related complications are increased after hepatic arterial infusion chemotherapy (HAIC) using oxaliplatin plus fluorouracil/leucovorin for conversion compared with primary hepatocellular carcinoma (HCC) resection and the optimal timing of conversion surgery (CS). Background HAIC has been widely used for advanced HCC, especially initially unresectable HCC, to facilitate conversion to curative-intent resection in approximately 23.8% of cases. However, the optimal timing of surgery to reduce surgical complications must be clarified. Methods Data from 320 HCC patients, including 107 initially unresectable patients in the HAIC-Surgery group and 213 patients in the Surgery group, were retrospectively collected and analyzed. Survival outcomes and the incidence of surgery-related complications were compared. Results There was no significant difference in recurrence-free survival (RFS) between the HAIC-Surgery group and the Surgery group (HR: 1.140, 95% CI: 0.8027-1.618, p=0.444). The HAIC-Surgery group had a higher incidence of surgery-related complications than the Surgery group [biliary leakage (10.3% vs 4.2%, p=0.035), abdominal bleeding (10.3% vs 3.8%, p=0.020), pleural effusion (56.1% vs 23.0%, p<0.0001) and ascites effusion (17.8% vs 5.2%, p<0.0001)]. In the HAIC-Surgery group, postoperative liver function decreased and abdominal bleeding increased with more preoperative HAIC cycles (Spearman=0.229, p=0.042, Spearman=0.198, p=0.041, respectively). The pathological complete remission (pCR) rate after 3-5 HAIC cycles was significantly higher than that after 1-2 cycles (29.4% vs 13.2%, p=0.043). Conclusion The prognosis of advanced HCC after conversion surgery is comparable to that after direct surgery. Rather than increasing pCR, more HAIC cycles can exacerbate liver dysfunction and surgery-related complications.
Collapse
Affiliation(s)
- Jiongliang Wang
- Department of Liver Surgery, Sun Yat-sen University Cancer Center, Guangzhou, People’s Republic of China
- Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine, Guangzhou, People’s Republic of China
| | - Zhikai Zheng
- Department of Liver Surgery, Sun Yat-sen University Cancer Center, Guangzhou, People’s Republic of China
- Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine, Guangzhou, People’s Republic of China
| | - Tianqing Wu
- Department of Liver Surgery, Sun Yat-sen University Cancer Center, Guangzhou, People’s Republic of China
- Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine, Guangzhou, People’s Republic of China
| | - Wenxuan Li
- Department of Liver Surgery, Sun Yat-sen University Cancer Center, Guangzhou, People’s Republic of China
- Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine, Guangzhou, People’s Republic of China
| | - Juncheng Wang
- Department of Liver Surgery, Sun Yat-sen University Cancer Center, Guangzhou, People’s Republic of China
- Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine, Guangzhou, People’s Republic of China
| | - Yangxun Pan
- Department of Liver Surgery, Sun Yat-sen University Cancer Center, Guangzhou, People’s Republic of China
- Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine, Guangzhou, People’s Republic of China
| | - Wei Peng
- Department of Liver Surgery, Sun Yat-sen University Cancer Center, Guangzhou, People’s Republic of China
- Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine, Guangzhou, People’s Republic of China
| | - Dandan Hu
- Department of Liver Surgery, Sun Yat-sen University Cancer Center, Guangzhou, People’s Republic of China
- Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine, Guangzhou, People’s Republic of China
| | - Jiajie Hou
- Department of Liver Surgery, Sun Yat-sen University Cancer Center, Guangzhou, People’s Republic of China
- Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine, Guangzhou, People’s Republic of China
| | - Li Xu
- Department of Liver Surgery, Sun Yat-sen University Cancer Center, Guangzhou, People’s Republic of China
- Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine, Guangzhou, People’s Republic of China
| | - Yaojun Zhang
- Department of Liver Surgery, Sun Yat-sen University Cancer Center, Guangzhou, People’s Republic of China
- Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine, Guangzhou, People’s Republic of China
| | - Minshan Chen
- Department of Liver Surgery, Sun Yat-sen University Cancer Center, Guangzhou, People’s Republic of China
- Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine, Guangzhou, People’s Republic of China
| | - Rongxin Zhang
- Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine, Guangzhou, People’s Republic of China
- Department of Colorectal Surgery, Sun Yat-sen University Cancer Center, Guangzhou, People’s Republic of China
| | - Zhongguo Zhou
- Department of Liver Surgery, Sun Yat-sen University Cancer Center, Guangzhou, People’s Republic of China
- Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine, Guangzhou, People’s Republic of China
| |
Collapse
|
2
|
Shi Y, Lin G, Zheng H, Mu D, Chen H, Lu Z, He P, Zhang Y, Liu C, Lin Z, Liu G. Biomimetic nanoparticles blocking autophagy for enhanced chemotherapy and metastasis inhibition via reversing focal adhesion disassembly. J Nanobiotechnology 2021; 19:447. [PMID: 34952594 PMCID: PMC8710033 DOI: 10.1186/s12951-021-01189-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 12/07/2021] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Autophagy is a conserved catabolic process, which plays an important role in regulating tumor cell motility and degrading protein aggregates. Chemotherapy-induced autophagy may lead to tumor distant metastasis and even chemo-insensitivity in the therapy of hepatocellular carcinoma (HCC). Therefore, a vast majority of HCC cases do not produce a significant response to monotherapy with autophagy inhibitors. RESULTS In this work, we developed a biomimetic nanoformulation (TH-NP) co-encapsulating Oxaliplatin (OXA)/hydroxychloroquine (HCQ, an autophagy inhibitor) to execute targeted autophagy inhibition, reduce tumor cell migration and invasion in vitro and attenuate metastasis in vivo. The tumor cell-specific ligand TRAIL was bioengineered to be stably expressed on HUVECs and the resultant membrane vesicles were wrapped on OXA/HCQ-loaded PLGA nanocores. Especially, TH-NPs could significantly improve OXA and HCQ effective concentration by approximately 21 and 13 times in tumor tissues compared to the free mixture of HCQ/OXA. Moreover, the tumor-targeting TH-NPs released HCQ alkalized the acidic lysosomes and inhibited the fusion of autophagosomes and lysosomes, leading to effective blockade of autophagic flux. In short, the system largely improved chemotherapeutic performance of OXA on subcutaneous and orthotopic HCC mice models. Importantly, TH-NPs also exhibited the most effective inhibition of tumor metastasis in orthotopic HCCLM3 models, and in the HepG2, Huh-7 or HCCLM3 metastatic mice models. Finally, we illustrated the enhanced metastasis inhibition was attributed to the blockade or reverse of the autophagy-mediated degradation of focal adhesions (FAs) including E-cadherin and paxillin. CONCLUSIONS TH-NPs can perform an enhanced chemotherapy and antimetastatic effect, and may represent a promising strategy for HCC therapy in clinics.
Collapse
Affiliation(s)
- Yesi Shi
- State Key Laboratory of Molecular Vaccinology and Molecular, Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China.,State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Biology, School of Life Sciences, Xiamen University, Xiamen, 361004, China
| | - Gan Lin
- State Key Laboratory of Molecular Vaccinology and Molecular, Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Huili Zheng
- Department of Anesthesiology, Zhongshan Hospital of Xiamen University, Xiamen, 361004, China
| | - Dan Mu
- State Key Laboratory of Molecular Vaccinology and Molecular, Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China.,Amoy Hopeful Biotechnology Co., Ltd., Xiamen, 361027, China
| | - Hu Chen
- State Key Laboratory of Molecular Vaccinology and Molecular, Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China.,Amoy Hopeful Biotechnology Co., Ltd., Xiamen, 361027, China
| | - Zhixiang Lu
- State Key Laboratory of Molecular Vaccinology and Molecular, Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Pan He
- State Key Laboratory of Molecular Vaccinology and Molecular, Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Yang Zhang
- State Key Laboratory of Molecular Vaccinology and Molecular, Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Chao Liu
- State Key Laboratory of Molecular Vaccinology and Molecular, Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China.
| | - Zhongning Lin
- State Key Laboratory of Molecular Vaccinology and Molecular, Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China.
| | - Gang Liu
- State Key Laboratory of Molecular Vaccinology and Molecular, Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China. .,State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Biology, School of Life Sciences, Xiamen University, Xiamen, 361004, China.
| |
Collapse
|
3
|
Hsu SJ, Xu X, Chen MP, Zhao ZY, Wang Y, Yin X, Zhang L, Ge NL, Chen Y, Wang YH, Luo JF, Ren ZG, Chen RX. Hepatic Arterial Infusion Chemotherapy with Modified FOLFOX as an Alternative Treatment Option in Advanced Hepatocellular Carcinoma Patients with Failed or Unsuitability for Transarterial Chemoembolization. Acad Radiol 2021; 28 Suppl 1:S157-S166. [PMID: 33653656 DOI: 10.1016/j.acra.2021.01.024] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 01/09/2021] [Accepted: 01/15/2021] [Indexed: 02/07/2023]
Abstract
OBJECTIVE This study aimed to assess the efficacy and safety of hepatic arterial infusion chemotherapy (HAIC) with modified FOLFOX (5-fluorouracil, leucovorin, and oxaliplatin) as an alternative treatment option in advanced hepatocellular carcinoma (HCC) patients with failed or unsuitability for transarterial chemoembolization (TACE). MATERIALS AND METHODS: From September 2018 to January 2020, 87 advanced HCC patients who progressed on TACE or were not eligible for TACE received HAIC treatment with modified FOLFOX. The primary endpoint was overall survival (OS) and secondary endpoints included progression-free survival (PFS), tumor response assessed by Response Evaluation Criteria in Solid Tumors 1.1, and adverse events graded according to CTCAE 5.0. Based on prognostic factors determined by multivariate analysis, a nomogram was developed to predict patient survival. RESULTS The median OS and PFS were 9.0 months (95%CI 7.6-10.4) and 3.7 months (95%CI 3.1-4.3), respectively. The objective response rate was 13.8%, with a disease control rate of 48.3%. Grade 3 adverse events were observed, such as infection (9.2%), thrombocytopenia (5.7%), hyperbilirubinemia (3.4%), abdominal pain (2.3%) and alanine aminotransferase increase (2.3%). Albumin, AST, and extrahepatic metastasis were incorporated to construct a new nomogram that could stratify patients into three prognostic subgroups, including low-, intermediate-, and high-risk groups, with significant differences in 9-month OS rates (71%, 42% and 6%, respectively; p< 0.001). The nomogram was better than the Okuda, AJCC, and CLIP staging systems for OS prediction. CONCLUSION These findings support the feasibility of HAIC with modified FOLFOX as an alternative treatment strategy for advanced HCC when TACE is ineffective or unsuitable.
Collapse
|
4
|
Gou Q, Wu L, Cui W, Mo Z, Zeng D, Gan L, He J, Mai Q, Shi F, Chen M, Sun Z, Liu Y, Wu J, Chen X, Zhuang W, Xu R, Li W, Cai Q, Zhang J, Chen X, Li J, Zhou Z. Stent placement combined with intraluminal radiofrequency ablation and hepatic arterial infusion chemotherapy for advanced biliary tract cancers with biliary obstruction: a multicentre, retrospective, controlled study. Eur Radiol 2021; 31:5851-5862. [PMID: 33585991 PMCID: PMC8270826 DOI: 10.1007/s00330-021-07716-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 11/23/2020] [Accepted: 01/26/2021] [Indexed: 12/23/2022]
Abstract
OBJECTIVE To evaluate the efficacy and safety of stent placement combined with intraluminal radiofrequency ablation (intra-RFA) and hepatic arterial infusion chemotherapy (HAIC) for patients with advanced biliary tract cancers (Ad-BTCs) and biliary obstruction (BO). METHODS We retrospectively reviewed data for patients with Ad-BTCs and BO who underwent stent placement with or without intra-RFA and HAIC in three centres between November 2013 and November 2018. The stent patency time (SPT), overall survival (OS), and adverse events (AEs) were analysed. RESULTS Of the 135 enrolled patients, 64 underwent stent placement combined with intra-RFA and HAIC, while 71 underwent only stent placement. The median SPT was significantly longer in the combination group (8.2 months, 95% confidence interval [CI]: 7.1-9.3) than in the control group (4.3 months, 95% CI: 3.6-5.0; p < 0.001). A similar result was observed for OS (combination: 13.2 months, 95% CI: 11.1-16.5; control: 8.5 months, 95% CI: 7.6-9.6; p < 0.001). The incidence of AEs related to biliary tract operation was not significantly different between the two groups (p > 0.05). The most common AE and serious AE related to HAIC were alanine aminotransferase elevation (24/64; 37.5%) and thrombocytopenia (8/64; 12.5%), respectively. All AEs were tolerable, and there was no death from AEs. CONCLUSIONS Stent placement combined with intra-RFA and HAIC may be a safe, potential treatment strategy for patients with Ad-BTCs and BO. KEY POINTS • Advanced biliary cancers (Ad-BTCs) with biliary obstruction (BO) can rapidly result in liver failure and cachexia with an extremely poor prognosis. • Stent placement combined with intraluminal radiofrequency ablation and hepatic arterial infusion chemotherapy may be safe and effective for patients with Ad-BTCs and BO. • The long-term efficacy and safety of the combined treatment is promising.
Collapse
Affiliation(s)
- Qing Gou
- Department of Interventional Therapy, Cancer Center, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, School of Medicine, South China University of Technology, 106 Zhongshan Second Road, Guangzhou, 510080, Guangdong, China
| | - Lingeng Wu
- Department of Interventional Therapy, Cancer Center, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, School of Medicine, South China University of Technology, 106 Zhongshan Second Road, Guangzhou, 510080, Guangdong, China
| | - Wei Cui
- Department of Interventional Therapy, Cancer Center, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, School of Medicine, South China University of Technology, 106 Zhongshan Second Road, Guangzhou, 510080, Guangdong, China
| | - Zhiqiang Mo
- Department of Interventional Therapy, Cancer Center, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, School of Medicine, South China University of Technology, 106 Zhongshan Second Road, Guangzhou, 510080, Guangdong, China
| | - Dejin Zeng
- Department of Gastroenterology, Zhongshan Hospital of traditional Chinese Medicine, Zhongshan, 528400, Guangdong, China
| | - Liming Gan
- Department of Gastroenterology, Zhongshan Hospital of traditional Chinese Medicine, Zhongshan, 528400, Guangdong, China
| | - Jian He
- Department of Interventional Therapy, Cancer Center, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, School of Medicine, South China University of Technology, 106 Zhongshan Second Road, Guangzhou, 510080, Guangdong, China
| | - Qicong Mai
- Department of Interventional Therapy, Cancer Center, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, School of Medicine, South China University of Technology, 106 Zhongshan Second Road, Guangzhou, 510080, Guangdong, China
| | - Feng Shi
- Department of Interventional Therapy, Cancer Center, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, School of Medicine, South China University of Technology, 106 Zhongshan Second Road, Guangzhou, 510080, Guangdong, China
| | - Meng Chen
- Department of Interventional Therapy, Cancer Center, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, School of Medicine, South China University of Technology, 106 Zhongshan Second Road, Guangzhou, 510080, Guangdong, China
| | - Zhonghai Sun
- Department of General Surgery, Guangdong Provincial Peoples Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, Guangdong, China
| | - Yongdong Liu
- Department of Catheterization Lab, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, Guangdong, China
| | - Jingjing Wu
- Department of Interventional Therapy, Cancer Center, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, School of Medicine, South China University of Technology, 106 Zhongshan Second Road, Guangzhou, 510080, Guangdong, China
| | - Xiumei Chen
- Cancer Center, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, School of Medicine, South China University of Technology, Guangzhou, 510080, Guangdong, China
| | - Wenhang Zhuang
- Department of Interventional Therapy, Cancer Center, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, School of Medicine, South China University of Technology, 106 Zhongshan Second Road, Guangzhou, 510080, Guangdong, China
| | - Rongde Xu
- Department of Interventional Therapy, Cancer Center, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, School of Medicine, South China University of Technology, 106 Zhongshan Second Road, Guangzhou, 510080, Guangdong, China
| | - Weike Li
- Department of Interventional Therapy, Cancer Center, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, School of Medicine, South China University of Technology, 106 Zhongshan Second Road, Guangzhou, 510080, Guangdong, China
| | - Qichun Cai
- Department of Oncology, Cancer Center, Guangdong Clifford Hospital, Guangzhou, 511400, Guangdong, China
| | - Jing Zhang
- Department of Interventional Therapy, Cancer Center, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, School of Medicine, South China University of Technology, 106 Zhongshan Second Road, Guangzhou, 510080, Guangdong, China
| | - Xiaoming Chen
- Department of Interventional Therapy, Cancer Center, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, School of Medicine, South China University of Technology, 106 Zhongshan Second Road, Guangzhou, 510080, Guangdong, China
| | - Jiaping Li
- Department of Interventional Oncology, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, Guangdong, China.
| | - Zejian Zhou
- Department of Interventional Therapy, Cancer Center, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, School of Medicine, South China University of Technology, 106 Zhongshan Second Road, Guangzhou, 510080, Guangdong, China.
| |
Collapse
|