1
|
Liu C, Li H, Hu X, Yan M, Fu Z, Zhang H, Wang Y, Du N. Spermine Synthase : A Potential Prognostic Marker for Lower-Grade Gliomas. J Korean Neurosurg Soc 2025; 68:75-96. [PMID: 39492653 PMCID: PMC11725456 DOI: 10.3340/jkns.2024.0080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 06/20/2024] [Accepted: 07/01/2024] [Indexed: 11/05/2024] Open
Abstract
OBJECTIVE The objective of this study was to assess the relationship between spermine synthase (SMS) expression, tumor occurrence, and prognosis in lower-grade gliomas (LGGs). METHODS A total of 523 LGG patients and 1152 normal brain tissues were included as controls. Mann-Whitney U test was performed to evaluate SMS expression in the LGG group. Functional annotation analysis was conducted to explore the biological processes associated with high SMS expression. Immune cell infiltration analysis was performed to examine the correlation between SMS expression and immune cell types. The association between SMS expression and clinical and pathological features was assessed using Spearman correlation analysis. In vitro experiments were conducted to investigate the effects of overexpressing or downregulating SMS on cell proliferation, apoptosis, migration, invasion, and key proteins in the protein kinase B (AKT)/epithelialmesenchymal transition signaling pathway. RESULTS The study revealed a significant upregulation of SMS expression in LGGs compared to normal brain tissues. High SMS expression was associated with certain clinical and pathological features, including older age, astrocytoma, higher World Health Organization grade, poor disease-specific survival, disease progression, non-1p/19q codeletion, and wild-type isocitrate dehydrogenase. Cox regression analysis identified SMS as a risk factor for overall survival. Bioinformatics analysis showed enrichment of eosinophils, T cells, and macrophages in LGG samples, while proportions of dendritic (DC) cells, plasmacytoid DC (pDC) cells, and CD8+ T cells were decreased. CONCLUSION High SMS expression in LGGs may promote tumor occurrence through cellular proliferation and modulation of immune cell infiltration. These findings suggest the prognostic value of SMS in predicting clinical outcomes for LGG patients.
Collapse
Affiliation(s)
- Chen Liu
- Medical School of Chinese PLA, Beijing, China
- Department of Radiotherapy, Air Force Medical Center, The Fourth Military Medical University, PLA, Beijing, China
- Department of Oncology, The Fifth Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Hongqi Li
- Department of Radiotherapy, Air Force Medical Center, The Fourth Military Medical University, PLA, Beijing, China
| | - Xiaolong Hu
- Department of Radiation Oncology, Beijing Geriatric Hospital, Beijing, China
| | - Maohui Yan
- Department of Radiotherapy, Air Force Medical Center, The Fourth Military Medical University, PLA, Beijing, China
| | - Zhiguang Fu
- Department of Radiotherapy, Air Force Medical Center, The Fourth Military Medical University, PLA, Beijing, China
| | - Hengheng Zhang
- Department of Radiotherapy, Air Force Medical Center, The Fourth Military Medical University, PLA, Beijing, China
| | - Yingjie Wang
- Department of Radiotherapy, Air Force Medical Center, The Fourth Military Medical University, PLA, Beijing, China
| | - Nan Du
- Medical School of Chinese PLA, Beijing, China
- Department of Oncology, The Fifth Medical Center, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
2
|
Fleming JL, Chakravarti A. Recent Advancements and Future Perspectives on Molecular Biomarkers in Adult Lower-Grade Gliomas. Cancer J 2025; 31:e0758. [PMID: 39841423 DOI: 10.1097/ppo.0000000000000758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2025]
Abstract
ABSTRACT There has been a significant paradigm shift in the clinical management of lower-grade glioma patients given the recent updates to the 2021 World Health Organization classification along with long-term results from randomized phase III clinical trials. As a result, we are now better able to diagnose and assign patients to the most appropriate treatment course. This review provides a comprehensive summary of the most robust and reliable molecular biomarkers for adult lower-grade gliomas and discusses current challenges facing this patient population that future correlative biology studies combined with advancements in technologies could help overcome.
Collapse
Affiliation(s)
- Jessica L Fleming
- From the Department of Radiation Oncology, Ohio State University Comprehensive Cancer Center, Columbus, OH
| | | |
Collapse
|
3
|
Bhardwaj S, Sanjay, Yadav AK. Higher isoform of hnRNPA1 confer Temozolomide resistance in U87MG & LN229 glioma cells. J Neurooncol 2025; 171:47-63. [PMID: 39585598 DOI: 10.1007/s11060-024-04831-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 09/11/2024] [Indexed: 11/26/2024]
Abstract
BACKGROUND Gliblastoma is a malignant brain tumor; despite available treatment modalities, the tumor reoccurrence rate persist in the currently prescribed Temozolomide chemotherapy. Study aimed to study the inquisitive role of RNA binding splice factor protein hnRNPA1 in promoting glioma resistance against Temozolomide drug and therapeutic insights. METHODS In this study two non-expressing O6-methylguanine-DNA methyltransferase (MGMT) glioma cell lines U87MG & LN229. U87MG cells were grown in Temozolomide from 50μM upto 400μM & LN229 cells grown upto 200μM, till then both these cells acquired Temozolomide resistance. Both of these cells were grown & maintained continously in its highest dose of Temozolomide (TMZ). Splice factor protein SF2/ASF1 was functionally correlated with abundance of hnRNPA1 protein in Temozolomide (TMZ) resistant cells using its specific siRNA transfection approach, in detrmining SF2/ASF1 mediated hnRNPA1 splicing and Temozolomide resistant reversal. RESULTS U87MG TMZ resistance, results an increase in the expression of pre mRNA-splicing factor SF2/ASF1, Heterogeneous Ribonucleoprotein A1 (hnRNPA1) and O6-methylguanine-DNA methyltransferase (MGMT) protein. MGMT expression was not observed in LN229 TMZ resistant cells. Further, mRNA sequencing of hnRNPA1 confirmed the exclusive abundance of its higher isoform in TMZ- resistant cells along with increase in SF2/ASF1 expression. Knocking down of SF2/ASF1 using its specific siRNA reverted the higher isoform of hnRNPA1 isoform Var2 to its lower isoform hnRNPA1 Var1 in U87 TMZ resistant cells, reveals hnRNPA1 alternative higher isoform abundance is SF2/ASF1 splice factor dependent. Additionally, selective knock down of hnRNPA1 higher isoform Var2 in TMZ resistant U87MG & LN229 promotes apoptosis, was further specfically enhanced on Wortmannin (PI3Kinase inhibitor) treatment. CONCLUSION Targeting higher isoform Var2 of hnRNPA1 specifically induces chemosensitization in MGMT expressed Temozolomide resistant U87MG as well as in MGMT non-expressed LN229 TMZ resistant cells.
Collapse
Affiliation(s)
- Sachin Bhardwaj
- Molecular Cancer Genetics and Signal Transduction Laboratory, Dr. B.R Ambedkar Center for Biomedical Research, University of Delhi, North Campus, Gate No. 1, Vishwavidyalaya Marg, Mall Road, 44, AH2, Delhi, 110007, India
| | - Sanjay
- Molecular Cancer Genetics and Signal Transduction Laboratory, Dr. B.R Ambedkar Center for Biomedical Research, University of Delhi, North Campus, Gate No. 1, Vishwavidyalaya Marg, Mall Road, 44, AH2, Delhi, 110007, India
| | - Ajay Kumar Yadav
- Molecular Cancer Genetics and Signal Transduction Laboratory, Dr. B.R Ambedkar Center for Biomedical Research, University of Delhi, North Campus, Gate No. 1, Vishwavidyalaya Marg, Mall Road, 44, AH2, Delhi, 110007, India.
| |
Collapse
|
4
|
Kinslow CJ, Mehta MP. Future Directions in the Treatment of Low-Grade Gliomas. Cancer J 2025; 31:e0759. [PMID: 39841425 DOI: 10.1097/ppo.0000000000000759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2025]
Abstract
ABSTRACT There is major interest in deintensifying therapy for isocitrate dehydrogenase-mutant low-grade gliomas, including with single-agent cytostatic isocitrate dehydrogenase inhibitors. These efforts need head-to-head comparisons with proven modalities, such as chemoradiotherapy. Ongoing clinical trials now group tumors by intrinsic molecular subtype, rather than classic clinical risk factors. Advances in imaging, surgery, and radiotherapy have improved outcomes in low-grade gliomas. Emerging biomarkers, targeted therapies, immunotherapy, radionuclides, and novel medical devices are a promising frontier for future treatment. Diverse representation in glioma research and clinical trials will help to ensure that advancements in care are realized by all groups.
Collapse
Affiliation(s)
| | - Minesh P Mehta
- Department of Radiation Oncology, Miami Cancer Institute, Baptist Health South Florida, Miami, FL
| |
Collapse
|
5
|
Hu X, Zhang G, Xie R, Wang Y, Zhu Y, Ding H. Contrast-enhanced ultrasound can differentiate the level of glioma infiltration and correlate it with biological behavior: a study based on local pathology. J Ultrasound 2024:10.1007/s40477-024-00961-1. [PMID: 39489864 DOI: 10.1007/s40477-024-00961-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 09/12/2024] [Indexed: 11/05/2024] Open
Abstract
PURPOSE The objective of this study is to assess the diagnostic efficacy of contrast-enhanced ultrasound (CEUS) in determining the level of glioma infiltration and to investigate its correlation with pathological markers. METHODS A prospective study involving 16 adult glioma patients was conducted. Preoperative US-(Magnetic Resonance)MR fusion imaging was utilized for tumor infiltration localization, while CEUS was employed to assess hemodynamic alterations. Parameters such as peak intensity (PI), rise time (RT), time to peak (TTP), and area under the curve (AUC) were measured. Utilizing contralateral normal brain tissue as the reference standard. The Kruskal-Wallis H-test was conducted to compare CEUS and pathological parameters (significance level, p < 0.05; bonferroni correction) among tumor margins, infiltration zones, and normal tissues, as well as between low-grade glioma (LGG) and high-grade glioma (HGG) within the infiltration zone, based on whole slide pathological images analysis. Spearman correlation analysis was employed to determine the correlation coefficient between hemodynamics and pathology. Receiver operating characteristic (ROC) curves were drawn to evaluate the performance of CEUS in tumor classification. RESULTS From tumor margin to normal tissue, PI, AUC, Ki67, EGFR, and 1p/19q showed a significant decreasing trend, while TTP, IDH-1, and MGMT gradually increased. RT was lower at the tumor margin but did not show statistically significant differences. In the infiltration zones, there was a significant increase in parameters such as PI, normalized PI (Nor_PI), AUC, and Ki67 from LGG to HGG, while RT, Nor_RT, TTP, Nor_TTP, IDH-1, and MGMT significantly decreased. Nor_AUC and EGFR increased but were not significant, and 1p/19q decreased but was not significant. RT and Nor_TTP were independent risk factors for distinguishing between LGG and HGG in the infiltration zone, with a combined diagnostic efficacy ROC of 0.891. The sensitivity reached 96.64% and the specificity reached 82.35%. There was a significant correlation between hemodynamic indicators and pathological indicators. CEUS can effectively differentiate levels of infiltration zones, which correlates with their biological behavior, with RT + Nor_TTP showing particularly highest diagnostic efficacy. CONCLUSION These findings contribute to improving the accuracy of diagnosing infiltration zones and provide essential biological insights for subsequent treatments.
Collapse
Affiliation(s)
- Xing Hu
- Department of Ultrasound, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Gaobo Zhang
- Academy for Engineering and Technology, Fudan University, Shanghai, 200438, China
| | - Rong Xie
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Yong Wang
- Department of Ultrasound, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Yingfeng Zhu
- Department of Pathology, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Hong Ding
- Department of Ultrasound, Huashan Hospital, Fudan University, Shanghai, 200040, China.
- National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, 200040, China.
| |
Collapse
|
6
|
Kinslow CJ, Roy S, Iwamoto FM, Brown PD, DeStephano DM, Canoll PD, Qureshi SS, Gallito M, Sisti MB, Bruce JN, Horowitz DP, Kachnic LA, Neugut AI, Yu JB, Mehta MP, Cheng SK, Wang TJC. The IDH paradox: Meta-analysis of alkylating chemotherapy in IDH-wild type and -mutant lower grade gliomas. Neuro Oncol 2024; 26:1839-1849. [PMID: 38943513 PMCID: PMC11449043 DOI: 10.1093/neuonc/noae102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Indexed: 07/01/2024] Open
Abstract
BACKGROUND IDH-wild type (-wt) status is a prerequisite for the diagnosis of glioblastoma (GBM); however, IDH-wt gliomas with low-grade or anaplastic morphology have historically been excluded from GBM trials and may represent a distinct prognostic entity. While alkylating agent chemotherapy improves overall survival (OS) and progression-free survival (PFS) for IDH-wt GBM and also IDH-mutant gliomas, irrespective of grade, the benefit for IDH-wt diffuse histologic lower-grade gliomas is unclear. METHODS We performed a meta-analysis of randomized clinical trials for World Health Organization (WHO) grades 2-3 gliomas (2009 to present) to determine the effect of alkylating chemotherapy on IDH-wt and -mutant gliomas using a random-effects model with inverse-variance pooling. RESULTS We identified 6 trials with 1204 patients (430 IDH-wt, 774 IDH-mutant) that evaluated alkylating chemoradiotherapy versus radiotherapy alone, allowing us to perform an analysis focused on the value of adding alkylating chemotherapy to radiotherapy. For patients with IDH-wt tumors, alkylating chemotherapy added to radiotherapy was associated with improved PFS (HR:0.77 [95% CI: 0.62-0.97], P = .03) but not OS (HR:0.87 [95% CI: 0.64-1.18], P = .17). For patients with IDH-mutant tumors, alkylating chemotherapy added to radiotherapy improved both OS (HR:0.52 [95% CI: 0.42-0.64], P < .001) and PFS (HR = 0.47 [95% CI: 0.39-0.57], P < .001) compared to radiotherapy alone. The magnitude of benefit was similar for IDH-mutant gliomas with or without 1p19q-codeletion. CONCLUSIONS Alkylating chemotherapy reduces mortality by 48% and progression by 53% for patients with IDH-mutant gliomas. Optimal management of IDH-wt diffuse histologic lower-grade gliomas remains to be determined, as there is little evidence supporting an OS benefit from alkylating chemotherapy.
Collapse
Affiliation(s)
- Connor J Kinslow
- Herbert Irving Comprehensive Cancer Center, Columbia University Vagelos College of Physicians and Surgeons and NewYork-Presbyterian, New York, New York, USA
- Department of Radiation Oncology, Columbia University Vagelos College of Physicians and Surgeons and NewYork-Presbyterian, New York, New York, USA
| | - Soumyajit Roy
- Department of Radiation Oncology, Rush University Medical Center, Chicago, Illinois, USA
| | - Fabio M Iwamoto
- Department of Neurology, Columbia University Vagelos College of Physicians and Surgeons and NewYork-Presbyterian, New York, New York, USA
- Herbert Irving Comprehensive Cancer Center, Columbia University Vagelos College of Physicians and Surgeons and NewYork-Presbyterian, New York, New York, USA
| | - Paul D Brown
- Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota, USA
| | - David M DeStephano
- Herbert Irving Comprehensive Cancer Center, Columbia University Vagelos College of Physicians and Surgeons and NewYork-Presbyterian, New York, New York, USA
- Department of Radiation Oncology, Columbia University Vagelos College of Physicians and Surgeons and NewYork-Presbyterian, New York, New York, USA
| | - Peter D Canoll
- Departments of Pathology and Cell Biology, Columbia University Vagelos College of Physicians and Surgeons and NewYork-Presbyterian, New York, New York, USA
- Herbert Irving Comprehensive Cancer Center, Columbia University Vagelos College of Physicians and Surgeons and NewYork-Presbyterian, New York, New York, USA
| | - Summer S Qureshi
- Department of Radiation Oncology, Columbia University Vagelos College of Physicians and Surgeons and NewYork-Presbyterian, New York, New York, USA
| | - Matthew Gallito
- Herbert Irving Comprehensive Cancer Center, Columbia University Vagelos College of Physicians and Surgeons and NewYork-Presbyterian, New York, New York, USA
- Department of Radiation Oncology, Columbia University Vagelos College of Physicians and Surgeons and NewYork-Presbyterian, New York, New York, USA
| | - Michael B Sisti
- Department of Neurological Surgery, Columbia University Vagelos College of Physicians and Surgeons and NewYork-Presbyterian, New York, New York, USA
- Herbert Irving Comprehensive Cancer Center, Columbia University Vagelos College of Physicians and Surgeons and NewYork-Presbyterian, New York, New York, USA
| | - Jeffrey N Bruce
- Department of Neurological Surgery, Columbia University Vagelos College of Physicians and Surgeons and NewYork-Presbyterian, New York, New York, USA
- Herbert Irving Comprehensive Cancer Center, Columbia University Vagelos College of Physicians and Surgeons and NewYork-Presbyterian, New York, New York, USA
| | - David P Horowitz
- Herbert Irving Comprehensive Cancer Center, Columbia University Vagelos College of Physicians and Surgeons and NewYork-Presbyterian, New York, New York, USA
- Department of Radiation Oncology, Columbia University Vagelos College of Physicians and Surgeons and NewYork-Presbyterian, New York, New York, USA
| | - Lisa A Kachnic
- Herbert Irving Comprehensive Cancer Center, Columbia University Vagelos College of Physicians and Surgeons and NewYork-Presbyterian, New York, New York, USA
- Department of Radiation Oncology, Columbia University Vagelos College of Physicians and Surgeons and NewYork-Presbyterian, New York, New York, USA
| | - Alfred I Neugut
- Department of Medicine, Vagelos College of Physicians and Surgeons, and Department of Epidemiology, Mailman School of Public Health, Columbia University Vagelos College of Physicians and Surgeons and NewYork-Presbyterian, New York, New York, USA
- Herbert Irving Comprehensive Cancer Center, Columbia University Vagelos College of Physicians and Surgeons and NewYork-Presbyterian, New York, New York, USA
| | - James B Yu
- Department of Medical Oncology, Yale School of Medicine, New Haven, Connecticut, USA
- Department of Radiation Oncology Medical Oncology, Saint Francis Hospital, Hartford, Connecticut, USA
| | - Minesh P Mehta
- Department of Radiation Oncology, Miami Cancer Institute, Baptist Health South Florida, Miami, Florida, USA
| | - Simon K Cheng
- Department of Radiation Oncology, James J. Peters Veterans Affairs Medical Center, Bronx, New York, USA
- Herbert Irving Comprehensive Cancer Center, Columbia University Vagelos College of Physicians and Surgeons and NewYork-Presbyterian, New York, New York, USA
- Department of Radiation Oncology, Columbia University Vagelos College of Physicians and Surgeons and NewYork-Presbyterian, New York, New York, USA
| | - Tony J C Wang
- Herbert Irving Comprehensive Cancer Center, Columbia University Vagelos College of Physicians and Surgeons and NewYork-Presbyterian, New York, New York, USA
- Department of Radiation Oncology, Columbia University Vagelos College of Physicians and Surgeons and NewYork-Presbyterian, New York, New York, USA
| |
Collapse
|
7
|
Li M, Liu J, Weng J, Dong G, Chen X, Cui Y, Ren X, Shen S, Jiang H, Zhang X, Zhao X, Li M, Wang X, Ren H, Li Q, Zhang Y, Cheng Q, Yu Y, Lin S. Unveiling hierarchy and spatial distribution of O 6-methylguanine-DNA methyltransferase promoter methylation in World Health Organization grade 2-3 gliomas. Cancer Sci 2024; 115:3403-3414. [PMID: 39101880 PMCID: PMC11447971 DOI: 10.1111/cas.16268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 06/13/2024] [Accepted: 06/24/2024] [Indexed: 08/06/2024] Open
Abstract
This study investigated the role of O6-methylguanine-DNA methyltransferase promoter (MGMTp) methylation hierarchy and heterogeneity in grade 2-3 gliomas, focusing on variations in chemotherapy benefits and resection dependency. A cohort of 668 newly diagnosed grade 2-3 gliomas, with comprehensive clinical, radiological, and molecular data, formed the basis of this analysis. The extent of resection was categorized into gross total resection (GTR ≥100%), subtotal resection (STR >90%), and partial resection (PR ≤90%). MGMTp methylation levels were examined using quantitative pyrosequencing. Our findings highlighted the critical role of GTR in improving the prognosis for astrocytomas (IDH1/2-mutant and 1p/19q non-codeleted), contrasting with its lesser significance for oligodendrogliomas (IDH1/2 mutation and 1p/19q codeletion). Oligodendrogliomas demonstrated the highest average MGMTp methylation levels (median: 28%), with a predominant percentage of methylated cases (average methylation levels >20%). Astrocytomas were more common in the low-methylated group (10%-20%), while IDH wild-type gliomas were mostly unmethylated (<10%). Spatial distribution analysis revealed a decrement in frontal lobe involvement from methylated, low-methylated to unmethylated cases (72.8%, 59.3%, and 47.8%, respectively). In contrast, low-methylated and unmethylated cases were more likely to invade the temporal-insular region (19.7%, 34.3%, and 40.4%, respectively). Astrocytomas with intermediate MGMTp methylation were notably associated with temporal-insular involvement, potentially indicating a moderate response to temozolomide and underscoring the importance of aggressive resection strategies. In conclusion, our study elucidates the complex interplay of MGMTp methylation hierarchy and heterogeneity among grade 2-3 gliomas, providing insights into why astrocytomas and IDH wild-type lower-grade glioma might derive less benefit from chemotherapy.
Collapse
Affiliation(s)
- Mingxiao Li
- Department of Neurosurgery, China-Japan Friendship Hospital, Beijing, China
- Department of Neurosurgical Oncology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Jiang Liu
- Department of Neurosurgery, China-Japan Friendship Hospital, Beijing, China
| | - Jiancong Weng
- Department of Neurosurgery, China-Japan Friendship Hospital, Beijing, China
| | - Gehong Dong
- Department of Pathology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Xuzhu Chen
- Department of Radiology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yong Cui
- Department of Neurosurgical Oncology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Department of Neurosurgery, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Xiaohui Ren
- Department of Neurosurgical Oncology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Department of Neurosurgery, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Shaoping Shen
- Department of Neurosurgical Oncology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Department of Neurosurgery, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Haihui Jiang
- Department of Neurosurgery, Peking University Third Hospital, Beijing, China
| | - Xiaokang Zhang
- Department of Neurosurgical Oncology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Department of Neurosurgery, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Xuzhe Zhao
- Department of Neurosurgical Oncology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Department of Neurosurgery, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Ming Li
- Department of Neurosurgical Oncology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Department of Neurosurgery, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Xijie Wang
- Department of Neurosurgical Oncology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Department of Neurosurgery, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Hongxiang Ren
- Department of Neurosurgery, China-Japan Friendship Hospital, Beijing, China
| | - Qiang Li
- Department of Neurosurgery, China-Japan Friendship Hospital, Beijing, China
| | - Yulian Zhang
- Department of Neurosurgery, China-Japan Friendship Hospital, Beijing, China
| | - Quan Cheng
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yanbing Yu
- Department of Neurosurgery, China-Japan Friendship Hospital, Beijing, China
| | - Song Lin
- Department of Neurosurgical Oncology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Department of Neurosurgery, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| |
Collapse
|
8
|
Zhuang Z, Lin J, Wan Z, Weng J, Yuan Z, Xie Y, Liu Z, Xie P, Mao S, Wang Z, Wang X, Huang M, Luo Y, Yu H. Radiogenomic profiling of global DNA methylation associated with molecular phenotypes and immune features in glioma. BMC Med 2024; 22:352. [PMID: 39218882 PMCID: PMC11367996 DOI: 10.1186/s12916-024-03573-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 08/20/2024] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND The radiogenomic analysis has provided valuable imaging biomarkers with biological insights for gliomas. The radiogenomic markers for molecular profile such as DNA methylation remain to be uncovered to assist the molecular diagnosis and tumor treatment. METHODS We apply the machine learning approaches to identify the magnetic resonance imaging (MRI) features that are associated with molecular profiles in 146 patients with gliomas, and the fitting models for each molecular feature (MoRad) are developed and validated. To provide radiological annotations for the molecular profiles, we devise two novel approaches called radiomic oncology (RO) and radiomic set enrichment analysis (RSEA). RESULTS The generated MoRad models perform well for profiling each molecular feature with radiomic features, including mutational, methylation, transcriptional, and protein profiles. Among them, the MoRad models have a remarkable performance in quantitatively mapping global DNA methylation. With RO and RSEA approaches, we find that global DNA methylation could be reflected by the heterogeneity in volumetric and textural features of enhanced regions in T2-weighted MRI. Finally, we demonstrate the associations of global DNA methylation with clinicopathological, molecular, and immunological features, including histological grade, mutations of IDH and ATRX, MGMT methylation, multiple methylation-high subtypes, tumor-infiltrating lymphocytes, and long-term survival outcomes. CONCLUSIONS Global DNA methylation is highly associated with radiological profiles in glioma. Radiogenomic global methylation is an imaging-based quantitative molecular biomarker that is associated with specific consensus molecular subtypes and immune features.
Collapse
Affiliation(s)
- Zhuokai Zhuang
- Department of General Surgery (Colorectal Surgery), The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
- Guangdong Institute of Gastroenterology, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, 510655, China
- Ministry of Education, Key Laboratory of Human Microbiome and Chronic Diseases (Sun Yat-Sen University), Guangzhou, Guangdong, China
| | - Jinxin Lin
- Department of General Surgery (Colorectal Surgery), The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
- Guangdong Institute of Gastroenterology, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, 510655, China
- Ministry of Education, Key Laboratory of Human Microbiome and Chronic Diseases (Sun Yat-Sen University), Guangzhou, Guangdong, China
| | - Zixiao Wan
- Guangdong Institute of Gastroenterology, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, 510655, China
- Ministry of Education, Key Laboratory of Human Microbiome and Chronic Diseases (Sun Yat-Sen University), Guangzhou, Guangdong, China
| | - Jingrong Weng
- Department of General Surgery (Colorectal Surgery), The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
- Guangdong Institute of Gastroenterology, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, 510655, China
| | - Ze Yuan
- Guangdong Institute of Gastroenterology, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, 510655, China
- Ministry of Education, Key Laboratory of Human Microbiome and Chronic Diseases (Sun Yat-Sen University), Guangzhou, Guangdong, China
| | - Yumo Xie
- Department of General Surgery (Colorectal Surgery), The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
- Guangdong Institute of Gastroenterology, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, 510655, China
| | - Zongchao Liu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Cancer Epidemiology, Peking University Cancer Institute, Beijing, 100142, China
| | - Peiyi Xie
- Department of Radiology, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, 510655, China
| | - Siyue Mao
- Image and Minimally Invasive Intervention Center, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, and Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Zongming Wang
- Department of Neurosurgery and Pituitary Tumor Center, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Xiaolin Wang
- Guangdong Institute of Gastroenterology, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, 510655, China
- Ministry of Education, Key Laboratory of Human Microbiome and Chronic Diseases (Sun Yat-Sen University), Guangzhou, Guangdong, China
| | - Meijin Huang
- Department of General Surgery (Colorectal Surgery), The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
- Guangdong Institute of Gastroenterology, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, 510655, China
- Ministry of Education, Key Laboratory of Human Microbiome and Chronic Diseases (Sun Yat-Sen University), Guangzhou, Guangdong, China
| | - Yanxin Luo
- Department of General Surgery (Colorectal Surgery), The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
- Guangdong Institute of Gastroenterology, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, 510655, China
- Ministry of Education, Key Laboratory of Human Microbiome and Chronic Diseases (Sun Yat-Sen University), Guangzhou, Guangdong, China
| | - Huichuan Yu
- Guangdong Institute of Gastroenterology, Guangzhou, Guangdong, China.
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China.
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, 510655, China.
- Ministry of Education, Key Laboratory of Human Microbiome and Chronic Diseases (Sun Yat-Sen University), Guangzhou, Guangdong, China.
| |
Collapse
|
9
|
Hajimohammadebrahim-Ketabforoush M, Zali A, Shahmohammadi M, Hamidieh AA. Metformin and its potential influence on cell fate decision between apoptosis and senescence in cancer, with a special emphasis on glioblastoma. Front Oncol 2024; 14:1455492. [PMID: 39267853 PMCID: PMC11390356 DOI: 10.3389/fonc.2024.1455492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 08/12/2024] [Indexed: 09/15/2024] Open
Abstract
Despite reaching enormous achievements in therapeutic approaches worldwide, GBM still remains the most incurable malignancy among various cancers. It emphasizes the necessity of adjuvant therapies from the perspectives of both patients and healthcare providers. Therefore, most emerging studies have focused on various complementary and adjuvant therapies. Among them, metabolic therapy has received special attention, and metformin has been considered as a treatment in various types of cancer, including GBM. It is clearly evident that reaching efficient approaches without a comprehensive evaluation of the key mechanisms is not possible. Among the studied mechanisms, one of the more challenging ones is the effect of metformin on apoptosis and senescence. Moreover, metformin is well known as an insulin sensitizer. However, if insulin signaling is facilitated in the tumor microenvironment, it may result in tumor growth. Therefore, to partially resolve some paradoxical issues, we conducted a narrative review of related studies to address the following questions as comprehensively as possible: 1) Does the improvement of cellular insulin function resulting from metformin have detrimental or beneficial effects on GBM cells? 2) If these effects are detrimental to GBM cells, which is more important: apoptosis or senescence? 3) What determines the cellular decision between apoptosis and senescence?
Collapse
Affiliation(s)
- Melika Hajimohammadebrahim-Ketabforoush
- Student Research Committee, Department of Clinical Nutrition and Dietetics, Faculty of Nutrition Sciences and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Alireza Zali
- Functional Neurosurgery Research Center, Shohada Tajrish Comprehensive Neurosurgical Center of Excellence, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammadreza Shahmohammadi
- Functional Neurosurgery Research Center, Shohada Tajrish Comprehensive Neurosurgical Center of Excellence, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amir Ali Hamidieh
- Pediatric Cell and Gene Therapy Research Center, Gene, Cell & Tissue Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
10
|
Nguyen TTT, Greene LA, Mnatsakanyan H, Badr CE. Revolutionizing Brain Tumor Care: Emerging Technologies and Strategies. Biomedicines 2024; 12:1376. [PMID: 38927583 PMCID: PMC11202201 DOI: 10.3390/biomedicines12061376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 06/16/2024] [Accepted: 06/17/2024] [Indexed: 06/28/2024] Open
Abstract
Glioblastoma multiforme (GBM) is one of the most aggressive forms of brain tumor, characterized by a daunting prognosis with a life expectancy hovering around 12-16 months. Despite a century of relentless research, only a select few drugs have received approval for brain tumor treatment, largely due to the formidable barrier posed by the blood-brain barrier. The current standard of care involves a multifaceted approach combining surgery, irradiation, and chemotherapy. However, recurrence often occurs within months despite these interventions. The formidable challenges of drug delivery to the brain and overcoming therapeutic resistance have become focal points in the treatment of brain tumors and are deemed essential to overcoming tumor recurrence. In recent years, a promising wave of advanced treatments has emerged, offering a glimpse of hope to overcome the limitations of existing therapies. This review aims to highlight cutting-edge technologies in the current and ongoing stages of development, providing patients with valuable insights to guide their choices in brain tumor treatment.
Collapse
Affiliation(s)
- Trang T. T. Nguyen
- Ronald O. Perelman Department of Dermatology, Perlmutter Cancer Center, NYU Grossman School of Medicine, NYU Langone Health, New York, NY 10016, USA
| | - Lloyd A. Greene
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY 10032, USA;
| | - Hayk Mnatsakanyan
- Department of Neurology, Massachusetts General Hospital, Neuroscience Program, Harvard Medical School, Boston, MA 02129, USA; (H.M.); (C.E.B.)
| | - Christian E. Badr
- Department of Neurology, Massachusetts General Hospital, Neuroscience Program, Harvard Medical School, Boston, MA 02129, USA; (H.M.); (C.E.B.)
| |
Collapse
|
11
|
Luce A, Abate M, Scognamiglio G, Montella M, Iervolino D, Campione S, Di Mauro A, Sepe O, Gigantino V, Tathode MS, Ferrara G, Monaco R, De Dominicis G, Misso G, Gentile V, Franco R, Zappavigna S, Caraglia M. Immune cell infiltration and inflammatory landscape in primary brain tumours. J Transl Med 2024; 22:521. [PMID: 38816839 PMCID: PMC11140972 DOI: 10.1186/s12967-024-05309-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 05/14/2024] [Indexed: 06/01/2024] Open
Abstract
BACKGROUND Primary malignant brain tumours are more than one-third of all brain tumours and despite the molecular investigation to identify cancer driver mutations, the current therapeutic options available are challenging due to high intratumour heterogeneity. In addition, an immunosuppressive and inflammatory tumour microenvironment strengthens cancer progression. Therefore, we defined an immune and inflammatory profiling of meningioma and glial tumours to elucidate the role of the immune infiltration in these cancer types. METHODS Using tissue microarrays of 158 brain tumour samples, we assessed CD3, CD4, CD8, CD20, CD138, Granzyme B (GzmB), 5-Lipoxygenase (5-LOX), Programmed Death-Ligand 1 (PD-L1), O-6-Methylguanine-DNA Methyltransferase (MGMT) and Transglutaminase 2 (TG2) expression by immunohistochemistry (IHC). IHC results were correlated using a Spearman correlation matrix. Transcript expression, correlation, and overall survival (OS) analyses were evaluated using public datasets available on GEPIA2 in Glioblastoma (GBM) and Lower Grade Glioma (LGG) cohorts. RESULTS Seven out of ten markers showed a significantly different IHC expression in at least one of the evaluated cohorts whereas CD3, CD4 and 5-LOX were differentially expressed between GBMs and astrocytomas. Correlation matrix analysis revealed that 5-LOX and GzmB expression were associated in both meningiomas and GBMs, whereas 5-LOX expression was significantly and positively correlated to TG2 in both meningioma and astrocytoma cohorts. These findings were confirmed with the correlation analysis of TCGA-GBM and LGG datasets. Profiling of mRNA levels indicated a significant increase in CD3 (CD3D, CD3E), and CD138 (SDC1) expression in GBM compared to control tissues. CD4 and 5-LOX (ALOX5) mRNA levels were significantly more expressed in tumour samples than in normal tissues in both GBM and LGG. In GBM cohort, GzmB (GZMB), SDC1 and MGMT gene expression predicted a poor overall survival (OS). Moreover, in LGG cohort, an increased expression of CD3 (CD3D, CD3E, CD3G), CD8 (CD8A), GZMB, CD20 (MS4A1), SDC1, PD-L1, ALOX5, and TG2 (TGM2) genes was associated with worse OS. CONCLUSIONS Our data have revealed that there is a positive and significant correlation between the expression of 5-LOX and GzmB, both at RNA and protein level. Further evaluation is needed to understand the interplay of 5-LOX and immune infiltration in glioma progression.
Collapse
Affiliation(s)
- Amalia Luce
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Via L. De Crecchio, 7, 80138, Naples, Italy
| | - Marianna Abate
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Via L. De Crecchio, 7, 80138, Naples, Italy
- Laboratory of Precision and Molecular Oncology, Biogem Scarl, Institute of Genetic Research, 83031, Ariano Irpino, Italy
| | - Giosuè Scognamiglio
- Pathological Anatomy and Cytopathology Unit, Istituto Nazionale Tumori, IRCCS Fondazione G. Pascale, 80131, Naples, Italy
| | - Marco Montella
- Department of Mental and Physical Health and Preventive Medicine, Pathology Unit, University of Campania "Luigi Vanvitelli", 80138, Naples, Italy
| | - Domenico Iervolino
- Pathological Anatomy and Cytopathology Unit, Istituto Nazionale Tumori, IRCCS Fondazione G. Pascale, 80131, Naples, Italy
| | - Severo Campione
- Department of Advanced Technology, Pathology Unit, Cardarelli Hospital, 80131, Naples, Italy
| | - Annabella Di Mauro
- Pathological Anatomy and Cytopathology Unit, Istituto Nazionale Tumori, IRCCS Fondazione G. Pascale, 80131, Naples, Italy
| | - Orlando Sepe
- Pathological Anatomy and Cytopathology Unit, Istituto Nazionale Tumori, IRCCS Fondazione G. Pascale, 80131, Naples, Italy
| | - Vincenzo Gigantino
- Pathological Anatomy and Cytopathology Unit, Istituto Nazionale Tumori, IRCCS Fondazione G. Pascale, 80131, Naples, Italy
| | - Madhura S Tathode
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Via L. De Crecchio, 7, 80138, Naples, Italy
| | - Gerardo Ferrara
- Pathological Anatomy and Cytopathology Unit, Istituto Nazionale Tumori, IRCCS Fondazione G. Pascale, 80131, Naples, Italy
| | - Roberto Monaco
- Department of Advanced Technology, Pathology Unit, Cardarelli Hospital, 80131, Naples, Italy
| | - Gianfranco De Dominicis
- Department of Advanced Technology, Pathology Unit, Cardarelli Hospital, 80131, Naples, Italy
| | - Gabriella Misso
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Via L. De Crecchio, 7, 80138, Naples, Italy
| | - Vittorio Gentile
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Via L. De Crecchio, 7, 80138, Naples, Italy
| | - Renato Franco
- Department of Mental and Physical Health and Preventive Medicine, Pathology Unit, University of Campania "Luigi Vanvitelli", 80138, Naples, Italy
| | - Silvia Zappavigna
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Via L. De Crecchio, 7, 80138, Naples, Italy.
| | - Michele Caraglia
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Via L. De Crecchio, 7, 80138, Naples, Italy
- Laboratory of Precision and Molecular Oncology, Biogem Scarl, Institute of Genetic Research, 83031, Ariano Irpino, Italy
| |
Collapse
|
12
|
Kinslow CJ, Brown PD, Iwamoto FM, Wu CC, Yu JB, Cheng SK, Wang TJC. Where Do We (INDI)GO From Here? Int J Radiat Oncol Biol Phys 2024; 118:330-333. [PMID: 38220255 DOI: 10.1016/j.ijrobp.2023.09.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 09/09/2023] [Indexed: 01/16/2024]
Affiliation(s)
- Connor J Kinslow
- Department of Radiation Oncology, Columbia University Vagelos College of Physicians and Surgeons and NewYork-Presbyterian, New York, New York; Herbert Irving Comprehensive Cancer Center, Columbia University Vagelos College of Physicians and Surgeons and NewYork-Presbyterian, New York, New York
| | - Paul D Brown
- Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota
| | - Fabio M Iwamoto
- Herbert Irving Comprehensive Cancer Center, Columbia University Vagelos College of Physicians and Surgeons and NewYork-Presbyterian, New York, New York; Department of Neurology, Columbia University Vagelos College of Physicians and Surgeons and NewYork-Presbyterian, New York, New York
| | - Cheng-Chia Wu
- Department of Radiation Oncology, Columbia University Vagelos College of Physicians and Surgeons and NewYork-Presbyterian, New York, New York; Herbert Irving Comprehensive Cancer Center, Columbia University Vagelos College of Physicians and Surgeons and NewYork-Presbyterian, New York, New York
| | - James B Yu
- Department of Neurology, Columbia University Vagelos College of Physicians and Surgeons and NewYork-Presbyterian, New York, New York
| | - Simon K Cheng
- Department of Radiation Oncology, Columbia University Vagelos College of Physicians and Surgeons and NewYork-Presbyterian, New York, New York; Herbert Irving Comprehensive Cancer Center, Columbia University Vagelos College of Physicians and Surgeons and NewYork-Presbyterian, New York, New York; Department of Radiation Oncology, James J. Peters Veterans Affairs Medical Center, Bronx, New York
| | - Tony J C Wang
- Department of Radiation Oncology, Columbia University Vagelos College of Physicians and Surgeons and NewYork-Presbyterian, New York, New York; Herbert Irving Comprehensive Cancer Center, Columbia University Vagelos College of Physicians and Surgeons and NewYork-Presbyterian, New York, New York.
| |
Collapse
|
13
|
Weller M, Felsberg J, Hentschel B, Gramatzki D, Kubon N, Wolter M, Reusche M, Roth P, Krex D, Herrlinger U, Westphal M, Tonn JC, Regli L, Maurage CA, von Deimling A, Pietsch T, Le Rhun E, Reifenberger G. Improved prognostic stratification of patients with isocitrate dehydrogenase-mutant astrocytoma. Acta Neuropathol 2024; 147:11. [PMID: 38183430 PMCID: PMC10771615 DOI: 10.1007/s00401-023-02662-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 11/19/2023] [Accepted: 11/20/2023] [Indexed: 01/08/2024]
Abstract
Prognostic factors and standards of care for astrocytoma, isocitrate dehydrogenase (IDH)-mutant, CNS WHO grade 4, remain poorly defined. Here we sought to explore disease characteristics, prognostic markers, and outcome in patients with this newly defined tumor type. We determined molecular biomarkers and assembled clinical and outcome data in patients with IDH-mutant astrocytomas confirmed by central pathology review. Patients were identified in the German Glioma Network cohort study; additional cohorts of patients with CNS WHO grade 4 tumors were identified retrospectively at two sites. In total, 258 patients with IDH-mutant astrocytomas (114 CNS WHO grade 2, 73 CNS WHO grade 3, 71 CNS WHO grade 4) were studied. The median age at diagnosis was similar for all grades. Karnofsky performance status at diagnosis inversely correlated with CNS WHO grade (p < 0.001). Despite more intensive treatment upfront with higher grade, CNS WHO grade was strongly prognostic: median overall survival was not reached for grade 2 (median follow-up 10.4 years), 8.1 years (95% CI 5.4-10.8) for grade 3, and 4.7 years (95% CI 3.4-6.0) for grade 4. Among patients with CNS WHO grade 4 astrocytoma, median overall survival was 5.5 years (95% CI 4.3-6.7) without (n = 58) versus 1.8 years (95% CI 0-4.1) with (n = 12) homozygous CDKN2A deletion. Lower levels of global DNA methylation as detected by LINE-1 methylation analysis were strongly associated with CNS WHO grade 4 (p < 0.001) and poor outcome. MGMT promoter methylation status was not prognostic for overall survival. Histomolecular stratification based on CNS WHO grade, LINE-1 methylation level, and CDKN2A status revealed four subgroups of patients with significantly different outcomes. In conclusion, CNS WHO grade, global DNA methylation status, and CDKN2A homozygous deletion are prognostic in patients with IDH-mutant astrocytoma. Combination of these parameters allows for improved prediction of outcome. These data aid in designing upcoming trials using IDH inhibitors.
Collapse
Affiliation(s)
- Michael Weller
- Department of Neurology, University Hospital Zurich, Frauenklinikstrasse 26, 8091, Zurich, Switzerland.
- Department of Neurology, University of Zurich, Zurich, Switzerland.
| | - Jörg Felsberg
- Institute of Neuropathology, Heinrich Heine University, Medical Faculty, and University Hospital Düsseldorf, Düsseldorf, Germany
| | - Bettina Hentschel
- Institute for Medical Informatics, Statistics and Epidemiology, University Leipzig, Leipzig, Germany
| | - Dorothee Gramatzki
- Department of Neurology, University Hospital Zurich, Frauenklinikstrasse 26, 8091, Zurich, Switzerland
| | - Nadezhda Kubon
- Institute of Neuropathology, Heinrich Heine University, Medical Faculty, and University Hospital Düsseldorf, Düsseldorf, Germany
| | - Marietta Wolter
- Institute of Neuropathology, Heinrich Heine University, Medical Faculty, and University Hospital Düsseldorf, Düsseldorf, Germany
| | - Matthias Reusche
- Institute for Medical Informatics, Statistics and Epidemiology, University Leipzig, Leipzig, Germany
| | - Patrick Roth
- Department of Neurology, University Hospital Zurich, Frauenklinikstrasse 26, 8091, Zurich, Switzerland
- Department of Neurology, University of Zurich, Zurich, Switzerland
| | - Dietmar Krex
- Faculty of Medicine, Department of Neurosurgery, Technische Universität Dresden, University Hospital Carl Gustav Carus, Dresden, Germany
| | | | - Manfred Westphal
- Department of Neurosurgery, University of Hamburg, Hamburg, Germany
| | - Joerg C Tonn
- Department of Neurosurgery, Ludwig-Maximilians-University Munich, Munich, Germany
- German Cancer Consortium (DKTK), Partner Site Munich, Munich, Germany
| | - Luca Regli
- Department of Neurosurgery, University Hospital Zurich, Zurich, Switzerland
- Department of Neurosurgery, University of Zurich, Zurich, Switzerland
| | - Claude-Alain Maurage
- Department of Pathology, Centre Biologie Pathologie, Lille University Hospital, Hopital Nord, Lille, France
| | - Andreas von Deimling
- Department of Neuropathology, University Hospital Heidelberg, Heidelberg, Germany
- Clinical Cooperation Unit Neuropathology, German Cancer Center (DKFZ), and German Cancer Consortium (DKTK), Partner Site Heidelberg, Heidelberg, Germany
| | - Torsten Pietsch
- Department of Neuropathology, University of Bonn Medical Center, DGNN Brain Tumor Reference Center, Bonn, Germany
| | - Emilie Le Rhun
- Department of Neurology, University Hospital Zurich, Frauenklinikstrasse 26, 8091, Zurich, Switzerland
- Department of Neurology, University of Zurich, Zurich, Switzerland
- Department of Neurosurgery, University Hospital Zurich, Zurich, Switzerland
- Department of Neurosurgery, University of Zurich, Zurich, Switzerland
- Department of Neurosurgery, Lille University Hospital, Lille, France
| | - Guido Reifenberger
- Institute of Neuropathology, Heinrich Heine University, Medical Faculty, and University Hospital Düsseldorf, Düsseldorf, Germany
- German Cancer Consortium (DKTK), Partner Site Essen/Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
14
|
Kinslow CJ, Siegelin MD, Iwamoto FM, Gallitto M, Neugut AI, Yu JB, Cheng SK, Wang TJC. MGMT promoter methylation in 1p19q-intact gliomas. J Neurooncol 2024; 166:73-78. [PMID: 38114801 DOI: 10.1007/s11060-023-04515-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 11/16/2023] [Indexed: 12/21/2023]
Abstract
OBJECTIVE Standard-of-care for 1p19q-intact anaplastic gliomas is defined by the international randomized phase III CATNON trial, which found an overall survival (OS) benefit for adjuvant temozolomide (TMZ) when added to radiotherapy. Paradoxically, TMZ did not appear to benefit patients with IDH-wildtype gliomas, regardless of MGMT promoter status. The authors concluded that well-powered prospective study on the clinical efficacy of TMZ for patients with IDH-wildtype anaplastic gliomas (meeting criteria for glioblastoma) is warranted. Given that the prognostic and predictive role of MGMT status for grade 2-3 gliomas is unresolved, we determined the effect of MGMT status on OS in patients with 1p19q-intact gliomas in the National Cancer Database (NCDB). METHODS We queried the NCDB from 2018 to 2019 for patients with diffuse (grade 2) and anaplastic (grade 3) IDH-wildtype or -mutant astrocytomas who received chemotherapy with follow-up through 2022. The Kaplan-Meier method and Cox proportional hazards regressions models were used to determine the association of MGMT with OS. RESULTS We identified 1514 patients who were newly diagnosed with IDH-wildtype (n = 802, 33% methylated) or -mutant astrocytomas (n = 712, 48% methylated) and received chemotherapy during initial management. An unmethylated promoter was associated with poorer survival in patients with IDH-wildtype (3-year OS 34% [95%CI 29-39%] vs. 46% [95%CI 39-54%], p < .001, adjusted HR 1.53 [95%CI 1.24-1.89]) but not IDH-mutant astrocytomas (3-year OS 79% [95%CI 74-84%] vs. 80% [95%CI 75-86%], p =0 .81, HR 1.04 [95%CI 0.73-1.50]). CONCLUSIONS This ancillary analysis supports conclusions from the CATNON trial for adjuvant TMZ as standard-of-care for anaplastic astrocytomas (IDH-mutant and 1p19q-intact), irrespective of MGMT status. Determining the optimal strategy for diffuse gliomas that are IDH-wildtype will be particularly important. MGMT promoter methylation should be considered as a stratification factor in future clinical trials for these patients.
Collapse
Affiliation(s)
- Connor J Kinslow
- Department of Radiation Oncology, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, 622 West 168th Street, BNH B011, New York, NY, 10032, USA
- Herbert Irving Comprehensive Cancer Center, Vagelos College of Physicians and Surgeons, Columbia University, 1130 St Nicholas Ave, New York, NY, 10032, USA
| | - Markus D Siegelin
- Herbert Irving Comprehensive Cancer Center, Vagelos College of Physicians and Surgeons, Columbia University, 1130 St Nicholas Ave, New York, NY, 10032, USA
- Departments of Pathology and Cell Biology, Vagelos College of Physicians and Surgeons, Columbia University, 1130 St. Nicholas Ave Rm. 1001, New York, NY, 10032, USA
| | - Fabio M Iwamoto
- Herbert Irving Comprehensive Cancer Center, Vagelos College of Physicians and Surgeons, Columbia University, 1130 St Nicholas Ave, New York, NY, 10032, USA
- Department of Neurology, Vagelos College of Physicians and Surgeons, Columbia University, 710 West 168th Street, New York, NY, 10032, USA
| | - Matthew Gallitto
- Department of Radiation Oncology, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, 622 West 168th Street, BNH B011, New York, NY, 10032, USA
- Herbert Irving Comprehensive Cancer Center, Vagelos College of Physicians and Surgeons, Columbia University, 1130 St Nicholas Ave, New York, NY, 10032, USA
| | - Alfred I Neugut
- Herbert Irving Comprehensive Cancer Center, Vagelos College of Physicians and Surgeons, Columbia University, 1130 St Nicholas Ave, New York, NY, 10032, USA
- Department of Medicine, Vagelos College of Physicians and Surgeons, and Department of Epidemiology, Mailman School of Public Health, Columbia University, 722 West 168th St, New York, NY, 10032, USA
| | - James B Yu
- Department of Radiation Oncology, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, 622 West 168th Street, BNH B011, New York, NY, 10032, USA
- Herbert Irving Comprehensive Cancer Center, Vagelos College of Physicians and Surgeons, Columbia University, 1130 St Nicholas Ave, New York, NY, 10032, USA
| | - Simon K Cheng
- Department of Radiation Oncology, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, 622 West 168th Street, BNH B011, New York, NY, 10032, USA.
- Herbert Irving Comprehensive Cancer Center, Vagelos College of Physicians and Surgeons, Columbia University, 1130 St Nicholas Ave, New York, NY, 10032, USA.
- Department of Radiation Oncology, James J. Peters Veterans Affairs Medical Center, 130 West Kingsbridge Road, Bronx, NY, 10468, USA.
| | - Tony J C Wang
- Department of Radiation Oncology, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, 622 West 168th Street, BNH B011, New York, NY, 10032, USA.
- Herbert Irving Comprehensive Cancer Center, Vagelos College of Physicians and Surgeons, Columbia University, 1130 St Nicholas Ave, New York, NY, 10032, USA.
| |
Collapse
|
15
|
Zhao B, Qi H, Ma W. MGMT Promoter Methylation and Chemotherapy Outcomes in Low-Grade and Anaplastic Gliomas. JAMA Oncol 2023; 9:1734-1735. [PMID: 37856142 DOI: 10.1001/jamaoncol.2023.4736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2023]
Affiliation(s)
- Binghao Zhao
- DKTK Clinical Cooperation Unit (CCU) Neuroimmunology and Brain Tumor Immunology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, PR China
- State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, PR China
| | - Hao Qi
- DKTK Clinical Cooperation Unit (CCU) Neuroimmunology and Brain Tumor Immunology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Wenbin Ma
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, PR China
- State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, PR China
| |
Collapse
|
16
|
Kinslow CJ, Cheng SK, Wang TJC. MGMT Promoter Methylation and Chemotherapy Outcomes in Low-Grade and Anaplastic Gliomas-Reply. JAMA Oncol 2023; 9:1735-1736. [PMID: 37856114 DOI: 10.1001/jamaoncol.2023.4754] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2023]
Affiliation(s)
- Connor J Kinslow
- Department of Radiation Oncology, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, New York
- Herbert Irving Comprehensive Cancer Center, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, New York
| | - Simon K Cheng
- Department of Radiation Oncology, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, New York
- Herbert Irving Comprehensive Cancer Center, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, New York
| | - Tony J C Wang
- Department of Radiation Oncology, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, New York
- Herbert Irving Comprehensive Cancer Center, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, New York
| |
Collapse
|
17
|
Kinslow CJ, Rae AI, Taparra K, Kumar P, Siegelin MD, Grinband J, Gill BJA, McKhann GM, Sisti MB, Bruce JN, Canoll PD, Iwamoto FM, Horowitz DP, Kachnic LA, Neugut AI, Yu JB, Cheng SK, Wang TJC. MGMT Promoter Methylation Predicts Overall Survival after Chemotherapy for 1p/19q-Codeleted Gliomas. Clin Cancer Res 2023; 29:4399-4407. [PMID: 37611077 PMCID: PMC10872921 DOI: 10.1158/1078-0432.ccr-23-1295] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 06/12/2023] [Accepted: 08/22/2023] [Indexed: 08/25/2023]
Abstract
PURPOSE While MGMT promoter methylation (mMGMT) is predictive of response to alkylating chemotherapy and guides treatment decisions in glioblastoma, its role in grade 2 and 3 glioma remains unclear. Recent data suggest that mMGMT is prognostic of progression-free survival in 1p/19q-codeleted oligodendrogliomas, but an effect on overall survival (OS) has not been demonstrated. EXPERIMENTAL DESIGN We identified patients with newly diagnosed 1p/19q-codeleted gliomas and known MGMT promoter status in the National Cancer Database from 2010 to 2019. Multivariable Cox proportional hazards regression modeling was used to assess the effect of mMGMT on OS after adjusting for age, sex, race, comorbidity, grade, extent of resection, chemotherapy, and radiotherapy. RESULTS We identified 1,297 eligible patients, 938 (72.3%) of whom received chemotherapy in their initial course of treatment. The MGMT promoter was methylated in 1,009 (77.8%) patients. Unmethylated MGMT (uMGMT) was associated with worse survival compared with mMGMT [70% {95% confidence interval (CI), 64%-77%} vs. 81% (95% CI, 78%-85%); P < 0.001; adjusted HR (aHR), 2.35 (95% CI, 1.77-3.14)]. uMGMT was associated with worse survival in patients who received chemotherapy [63% (95% CI, 55-73%) vs. 80% (95% CI, 76%-84%); P < 0.001; aHR, 2.61 (95% CI, 1.89-3.60)] but not in patients who did not receive chemotherapy [P = 0.38; HR, 1.31 (95% CI, 0.71-2.42)]. Similar results were observed regardless of World Health Organization grade and after single- or multiagent chemotherapy. CONCLUSIONS Our study demonstrates an association between mMGMT and OS in 1p/19q-codeleted gliomas. MGMT promoter status should be considered as a stratification factor in future clinical trials of 1p/19q-codeleted gliomas that use OS as an endpoint.
Collapse
Affiliation(s)
- Connor J. Kinslow
- Department of Radiation Oncology, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, 622 West 168th Street, BNH B011, New York, NY 10032
- Herbert Irving Comprehensive Cancer Center, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, 1130 St Nicholas Ave, New York, NY 10032
| | - Ali I. Rae
- Department of Neurological Surgery, Oregon Health & Sciences University, 3181 SW Sam Jackson Pkwy, Portland, OR 97239
| | - Kekoa Taparra
- Department of Radiation Oncology, Stanford University, 875 Blake Wilbur Drive, Stanford, CA 94305
| | - Prashanth Kumar
- Department of Radiation Oncology, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, 622 West 168th Street, BNH B011, New York, NY 10032
| | - Markus D. Siegelin
- Herbert Irving Comprehensive Cancer Center, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, 1130 St Nicholas Ave, New York, NY 10032
- Departments of Pathology and Cell Biology, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, 1130 St. Nicholas Ave Rm. 1001 New York, NY 10032
| | - Jack Grinband
- Program in Imaging and Cognitive Sciences, Columbia University, New York, New York 10032, USA
- David Mahoney Center for Brain and Behavior Research, Columbia University, New York, New York 10032, USA
| | - Brian J. A. Gill
- Herbert Irving Comprehensive Cancer Center, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, 1130 St Nicholas Ave, New York, NY 10032
- Department of Neurological Surgery, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, 710 West 168th Street, New York, NY 10032
| | - Guy M. McKhann
- Herbert Irving Comprehensive Cancer Center, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, 1130 St Nicholas Ave, New York, NY 10032
- Department of Neurological Surgery, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, 710 West 168th Street, New York, NY 10032
| | - Michael B. Sisti
- Herbert Irving Comprehensive Cancer Center, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, 1130 St Nicholas Ave, New York, NY 10032
- Department of Neurological Surgery, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, 710 West 168th Street, New York, NY 10032
| | - Jeffrey N. Bruce
- Herbert Irving Comprehensive Cancer Center, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, 1130 St Nicholas Ave, New York, NY 10032
- Department of Neurological Surgery, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, 710 West 168th Street, New York, NY 10032
| | - Peter D. Canoll
- Herbert Irving Comprehensive Cancer Center, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, 1130 St Nicholas Ave, New York, NY 10032
- Department of Radiation Oncology, Stanford University, 875 Blake Wilbur Drive, Stanford, CA 94305
| | - Fabio M. Iwamoto
- Herbert Irving Comprehensive Cancer Center, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, 1130 St Nicholas Ave, New York, NY 10032
- Department of Neurology, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, 710 West 168th Street, New York, NY 10032
| | - David P. Horowitz
- Department of Radiation Oncology, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, 622 West 168th Street, BNH B011, New York, NY 10032
- Herbert Irving Comprehensive Cancer Center, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, 1130 St Nicholas Ave, New York, NY 10032
| | - Lisa A. Kachnic
- Department of Radiation Oncology, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, 622 West 168th Street, BNH B011, New York, NY 10032
- Herbert Irving Comprehensive Cancer Center, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, 1130 St Nicholas Ave, New York, NY 10032
| | - Alfred I. Neugut
- Herbert Irving Comprehensive Cancer Center, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, 1130 St Nicholas Ave, New York, NY 10032
- Department of Medicine, Vagelos College of Physicians and Surgeons, and Department of Epidemiology, Mailman School of Public Health, Columbia University, 722 West 168th St, New York, NY 10032
| | - James B. Yu
- Department of Radiation Oncology, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, 622 West 168th Street, BNH B011, New York, NY 10032
- Herbert Irving Comprehensive Cancer Center, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, 1130 St Nicholas Ave, New York, NY 10032
| | - Simon K. Cheng
- Department of Radiation Oncology, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, 622 West 168th Street, BNH B011, New York, NY 10032
- Herbert Irving Comprehensive Cancer Center, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, 1130 St Nicholas Ave, New York, NY 10032
| | - Tony J. C. Wang
- Department of Radiation Oncology, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, 622 West 168th Street, BNH B011, New York, NY 10032
- Herbert Irving Comprehensive Cancer Center, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, 1130 St Nicholas Ave, New York, NY 10032
| |
Collapse
|
18
|
Kinslow C, Siegelin MD, Iwamoto FM, Gallitto M, Neugut AI, Yu JB, Cheng SK, Wang TJC. MGMT promoter methylation in 1p19q-intact gliomas. RESEARCH SQUARE 2023:rs.3.rs-3393238. [PMID: 37886555 PMCID: PMC10602117 DOI: 10.21203/rs.3.rs-3393238/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2023]
Abstract
Objective Standard-of-care for 1p19q-intact anaplastic gliomas is defined by the international randomized phase III CATNON trial, which found an overall survival (OS) benefit for adjuvant temozolomide (TMZ) when added to radiotherapy. Paradoxically, TMZ did not appear to benefit patients with IDH-wildtype gliomas, regardless of MGMT promoter status. The authors concluded that well-powered prospective study on the clinical efficacy of TMZ for patients with IDH-wildtype anaplastic gliomas (meeting criteria for glioblastoma) is warranted. Given that the prognostic and predictive role of MGMT status for grade 2-3 gliomas is unresolved, we determined the effect of MGMT status on OS in patients with 1p19q-intact gliomas in the National Cancer Database (NCDB). Methods We queried the NCDB from 2018-2019 for patients with IDH-wildtype or -mutant astrocytomas who received chemotherapy with follow-up through 2022. The Kaplan-Meier method and Cox proportional hazards regressions models were used to determine the association of MGMT with OS. Results We identified 1,514 patients who were newly diagnosed with IDH-wildtype (n = 802, 33% methylated) or - mutant astrocytomas (n = 712, 48% methylated) and received chemotherapy during initial management. An unmethylated promoter was associated with poorer survival in patients with IDH-wildtype (3-year OS 34% [95%CI 29-39%] vs. 46% [95%CI 39-54%], p < .001, adjusted HR 1.53 [95%CI 1.24-1.89]) but not IDH-mutant astrocytomas (3-year OS 79% [95%CI 74-84%] vs. 80% [95%CI 75-86%], p = .81, HR 1.04 [95%CI 0.73-1.50]). Conclusions This ancillary analysis supports adjuvant TMZ as standard-of-care for anaplastic astrocytomas (IDH-mutant and 1p19q-intact), irrespective of MGMT status. Determining the optimal strategy for diffuse gliomas that are IDH-wildtype will be particularly important. MGMT promoter methylation should be considered as a stratification factor in future clinical trials for these patients.
Collapse
|
19
|
Errors in Figure 3. JAMA Oncol 2023; 9:1009. [PMID: 37470838 PMCID: PMC10359959 DOI: 10.1001/jamaoncol.2023.2581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/21/2023]
|