1
|
Kalavar M, Lovett EA, Nicholas MP, Ross-Hirsch A, Nirwan RS, Sridhar J, Patel S, Flynn HW, Albini TA, Kuriyan AE. Update on "Cell Therapy" Clinics Offering Treatments of Ocular Conditions Using Direct-To-Consumer Marketing Websites in the U.S. Am J Ophthalmol 2024; 267:135-141. [PMID: 38880376 DOI: 10.1016/j.ajo.2024.06.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 06/07/2024] [Accepted: 06/07/2024] [Indexed: 06/18/2024]
Abstract
PURPOSE To assess the scope of U.S.-based companies advertising and administering non-Federal Drug Administration (FDA) approved cell-based therapy (herein called NFACT) for ocular conditions based on information from companies' public websites after the FDA's legal actions against specific NFACT clinics in 2018 and 2019. Current findings are compared to previously published data from 2017. DESIGN Trend study looking at U.S.-based companies that use direct-to-consumer marketing and have websites advertising therapy for ocular conditions. METHODS A systematic and extensive keyword-based Internet search was utilized to identify, document, and analyze U.S. business websites offering NFACT for ocular conditions as of August 2022. Main outcomes measured include, clinic locations, marketed ocular conditions, types of NFACT offered, source of stem cells used, routes of administration, and treatment costs. RESULTS From the prior analysis in 2017 to the 2019 analysis, there was a decrease in the number of NFACT clinics from 76 to 62 and companies from 40 to 39. Given the concerning persistence of NFACTs in August 2019 an additional analysis was performed in 2022 which showed a drastic decrease in NFACT clinics from 62 in 2019 to 18 in 2023 and from 39 companies to 13 in 2023. In both 2019 and 2022, the most commonly referenced ocular condition was age-related macular degeneration (2019-72%, 2022-92%). The state with the most clinics was in Texas (2019-12; 2022-5). Autologous adipose-derived stem cells were the most common cell type used in both analyses. CONCLUSIONS In 2019 U.S.-based direct-to-consumer companies marketing NFACT persisted despite (1) a lack of high-quality clinical evidence supporting the efficacy of these procedures, (2) the association of some of these treatments with severe vision loss, and (3) increasing FDA oversight and recent legal action. In 2022 the number of clinics and companies decreased, but their persistence is a reminder that continued concern is necessary and ophthalmic associations need to continue advocacy efforts to protect patients from these potentially predatory organizations.
Collapse
Affiliation(s)
- Meghana Kalavar
- Havener Eye Institute, Ohio State University Wexner Medical Center (M.K.), Columbus, Ohio, USA
| | - Eric A Lovett
- Jacobs School of Medicine and Biomedical Sciences, University at Buffalo (E.A.L.), Buffalo, New York, USA
| | - Matthew P Nicholas
- Eye Disease Consultants, LLC (M.P.N.), West Hartford, Connecticut, USA; Hartford Hospital (M.P.N.), Hartford, Connecticut, USA; Flaum Eye Institute, University of Rochester Medical Center (M.P.N., R.S.N.), Rochester, New York, USA
| | - Adam Ross-Hirsch
- Department of Ophthalmology, SUNY Upstate Medical University (A.R.H.), Syracuse, New York, USA
| | - Rajinder S Nirwan
- Flaum Eye Institute, University of Rochester Medical Center (M.P.N., R.S.N.), Rochester, New York, USA
| | - Jayanth Sridhar
- Olive View Medical Center, University of California Los Angeles (J.S.), Los Angeles, California, USA
| | - Shriji Patel
- Department of Ophthalmology, Vanderbilt University Medical Center (S.P.), Nashville, Tennessee, USA
| | - Harry W Flynn
- Department of Ophthalmology, Bascom Palmer Eye Institute, The University of Miami (H.W.F., T.A.A.), Miami, Florida, USA
| | - Thomas A Albini
- Department of Ophthalmology, Bascom Palmer Eye Institute, The University of Miami (H.W.F., T.A.A.), Miami, Florida, USA
| | - Ajay E Kuriyan
- Mid Atlantic Retina/Retina Service, Wills Eye Hospital, Sidney Kimmel Medical College at Thomas Jefferson University (A.E.K.), Philadelphia, Pennsylvania, USA.
| |
Collapse
|
2
|
Yalla GR, Kuriyan AE. Cell therapy for retinal disease. Curr Opin Ophthalmol 2024; 35:178-184. [PMID: 38276971 DOI: 10.1097/icu.0000000000001034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2024]
Abstract
PURPOSE OF REVIEW This review presents an update on completed stem cell therapy trials aimed at retinal diseases. RECENT FINDINGS In recent years, several clinical trials have been conducted examining the safety and role of cell therapy in diseases, including age-related macular degeneration, Stargardt's macular dystrophy, and retinitis pigmentosa. Studies have utilized a variety of cell lines, modes of delivery, and immunosuppressive regimens. The prevalence of fraudulent cell therapy clinics poses threats to patients. SUMMARY Clinical trials have begun to characterize the safety of cell therapy in retinal disease. While studies have described the potential benefits of cell therapy, larger studies powered to evaluate this efficacy are required to continue progressing toward preventing retinal disease. Nonapproved cell therapy clinics require regulation and patient education to avoid patient complications.
Collapse
Affiliation(s)
- Goutham R Yalla
- Wills Eye Hospital, Mid Atlantic Retina
- Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | | |
Collapse
|
3
|
Rasiah PK, Jha KA, Gentry J, Del Mar NA, Townsend T, Torgbe KE, Reiner A, Gangaraju R. A Long-Term Safety and Efficacy Report on Intravitreal Delivery of Adipose Stem Cells and Secretome on Visual Deficits After Traumatic Brain Injury. Transl Vis Sci Technol 2022; 11:1. [PMID: 36180031 PMCID: PMC9547363 DOI: 10.1167/tvst.11.10.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 08/30/2022] [Indexed: 11/24/2022] Open
Abstract
Purpose We compared intravitreal injection of human adipose stem cell concentrated conditioned media (ASC-CCM) to injection of live ASCs for their long-term safety and effectiveness against the visual deficits of mild traumatic brain injury (mTBI). Methods We first tested different intravitreal ASC doses for safety. Other C57BL/6 mice then received focal cranial blast mTBI and were injected with the safe ASC dose (1000 cells/eye), ASC-CCM (∼200 ng protein/eye), or saline solution. At five and 10 months after blast injury, visual, molecular, and histological assessments evaluated treatment efficacy. Histological evaluation of eyes and other organs at 10 months after blast injury assessed safety. Results Human ASCs at 1000 cells/eye were found to be safe, with >10,000 cells causing retinal damage. Blast-injured mice showed significant vision deficits compared to sham blast mice up to 10 months. Blast mice receiving ASC or ASC-CCM showed improved vision at five months but marginal effects at 10 months, correlated with changes in glial fibrillary acidic protein and proinflammatory gene expression in retina. Immunostaining for human IgG failed to detect ASCs in retina. Peripheral organs examined histologically at 10 months after blast injury were normal. Conclusions Intravitreal injection of ASCs or ASC-CCM is safe and effective against the visual deficits of mTBI. Considering the unimproved glial response and the risk of retinal damage with live cells, our studies suggest that ASC-CCM has better safety and effectiveness than live cells for the treatment of visual dysfunction in mTBI. Translational Relevance This study demonstrates the safety and efficacy of mesenchymal stem cell-based therapeutics, supporting them for phase 1 clinical studies.
Collapse
Affiliation(s)
- Pratheepa Kumari Rasiah
- Department of Ophthalmology, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Kumar Abhiram Jha
- Department of Ophthalmology, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Jordy Gentry
- Department of Ophthalmology, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Nobel A. Del Mar
- Department of Anatomy & Neurobiology, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Tanisha Townsend
- Department of Pathology, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Kwame E. Torgbe
- Department of Pathology, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Anton Reiner
- Department of Anatomy & Neurobiology, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Rajashekhar Gangaraju
- Department of Ophthalmology, University of Tennessee Health Science Center, Memphis, TN, USA
- Department of Anatomy & Neurobiology, University of Tennessee Health Science Center, Memphis, TN, USA
| |
Collapse
|
4
|
Ryu J. New Aspects on the Treatment of Retinopathy of Prematurity: Currently Available Therapies and Emerging Novel Therapeutics. Int J Mol Sci 2022; 23:8529. [PMID: 35955664 PMCID: PMC9369302 DOI: 10.3390/ijms23158529] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 07/27/2022] [Accepted: 07/29/2022] [Indexed: 02/05/2023] Open
Abstract
Retinopathy of prematurity (ROP) is a rare proliferative ocular disorder in preterm infants. Because of the advancements in neonatal care, the incidence of ROP has increased gradually. Now, ROP is one of the leading causes of blindness in children. Preterm infants with immature retinal development are exposed to supplemental oxygen inside an incubator until their cardiopulmonary system is adequately developed. Once they are returned to room air, the relatively low oxygen level stimulates various angiogenesis factors initiating retinal neovascularization. If patients with ROP are not offered adequate and timely treatment, they can experience vision loss that may ultimately lead to permanent blindness. Although laser therapy and anti-vascular endothelial growth factor agents are widely used to treat ROP, they have limitations. Thus, it is important to identify novel therapeutics with minimal adverse effects for the treatment of ROP. To date, various pharmacologic and non-pharmacologic therapies have been assessed as treatments for ROP. In this review, the major molecular factors involved in the pathogenesis of ROP, currently offered therapies, therapies under investigation, and emerging novel therapeutics of ROP are discussed.
Collapse
Affiliation(s)
- Juhee Ryu
- Vessel-Organ Interaction Research Center, College of Pharmacy, Kyungpook National University, Daegu 41566, Korea; ; Tel.: +82-539508583
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Kyungpook National University, Daegu 41566, Korea
| |
Collapse
|
5
|
Administration of Melatonin in Diabetic Retinopathy Is Effective and Improves the Efficacy of Mesenchymal Stem Cell Treatment. Stem Cells Int 2022; 2022:6342594. [PMID: 35450343 PMCID: PMC9017455 DOI: 10.1155/2022/6342594] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Accepted: 03/26/2022] [Indexed: 11/29/2022] Open
Abstract
Stem cell transplantation is a promising therapeutic technique for the treatment of a variety of diseases; nevertheless, stem cell therapy may not always work as well as it could. The goal of this study was to test the hypothesis that employing a powerful antioxidant like melatonin improves stem cell transplantation success and potentiates stem cell function in the therapy of diabetic retinopathy. For this purpose, 50 adult male rats were divided into the following: control group: this group received 0.5 ml of 0.1 M of sodium citrate buffer (pH = 4.5) (intraperitoneal (I.P.)). The confirmed diabetic rats were divided into 4 groups: diabetic group: confirmed diabetic rats received no treatments with a regular follow of the blood glucose profile for 8 weeks; melatonin group: confirmed diabetic rats received melatonin (5 mg/kg/day); stem cell group: the confirmed diabetic rats were given intravitreal injection of stem cells (2 μl cell suspension of stem cells (3 × 104 cells/μl)); and melatonin+stem cell group: confirmed diabetic rats received melatonin (5 mg/kg/day), orally once daily for 8 weeks, and 2 μl cell suspension of stem cells (3 × 104 cells/μl) was carefully injected into the vitreous cavity. Our results showed that administration of melatonin and/or stem cell restored the retinal oxidative/antioxidant redox and reduced retinal inflammatory mediators. Coadministration of melatonin and stem cells enhanced the number of transplanted stem cells in the retinal tissue and significantly reduced retinal BDEF, VEGF, APOA1, and RBP4 levels as compared to melatonin and/or stem alone. We may conclude that rats treated with melatonin and stem cells had their retinal oxidative/antioxidant redox values restored to normal and their histological abnormalities reduced. These findings support the hypothesis that interactions with the BDEF, VEGF, APOA1, and RBP4 signaling pathways are responsible for these effects.
Collapse
|
6
|
Intravitreal Administration Effect of Adipose-Derived Mesenchymal Stromal Cells Combined with Anti-VEGF Nanocarriers, in a Pharmaceutically Induced Animal Model of Retinal Vein Occlusion. Stem Cells Int 2022; 2022:2760147. [PMID: 35251186 PMCID: PMC8890865 DOI: 10.1155/2022/2760147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 11/24/2021] [Accepted: 01/19/2022] [Indexed: 11/17/2022] Open
Abstract
Antiangiogenic therapeutic agents (anti-VEGF) have contributed to the treatment of retinal vein occlusion (RVO) while mesenchymal stromal cell- (MSCs-) mediated therapies limit eye degeneration. The aim of the present study is to determine the effect of adipose-derived MSCs (ASCs) combination with nanocarriers of anti-VEGF in a pharmaceutically induced animal model of RVO. Nanoparticles (NPs) of thiolated chitosan (ThioCHI) with encapsulated anti-VEGF antibody were prepared. ASCs were isolated and genetically modified to secrete the green fluorescence GFP. Twenty-four New Zealand rabbits were divided into the I-IV equal following groups: ASCs, ASCs + nanoThioCHI-anti-VEGF, RVO, and control. For the RVO induction, groups I-III received intravitreal (iv) injections of MEK kinase inhibitor, PD0325901. Twelve days later, therapeutic regiments were administered at groups I-II while groups III-IV received BSS. Two weeks later, the retinal damage evaluated via detailed ophthalmic examinations, histological analysis of fixed retinal sections, ELISA for secreted cytokines in peripheral blood or vitreous fluid, and Q-PCR for the expression of related to the occlusion and inflammatory genes. Mild retinal edema and hemorrhages, limited retinal detachment, and vasculature attenuation were observed in groups I and II compared with the pathological symptoms of group III which presented a totally disorganized retinal structure, following of positive immunostaining for neovascularization and related to RVO markers. Important reduction of the high secreted levels of inflammatory cytokines was quantified in groups I and II vitreous fluid, while the expression of the RVO-related and inflammatory genes has been significantly decreased especially in group II. GFP+ ASCs, capable of being differentiated towards neural progenitors, detected in dissociated retina tissues of group II presenting their attachment to damaged area. Conclusively, a stem cell-based therapy for RVO is proposed, accompanied by sustained release of anti-VEGF, in order to combine the paracrine action of ASCs and the progressive reduction of neovascularization.
Collapse
|
7
|
Ohayon A, Schwartz S, Loewenstein A, Seknazi D, Souied EH, Barak A. A Modified Surgical Technique for Submacular Injection. Ophthalmic Surg Lasers Imaging Retina 2021; 52:551-555. [PMID: 34661461 DOI: 10.3928/23258160-20210927-01] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND AND OBJECTIVE To describe a modified simple surgical technique for submacular injection. PATIENTS AND METHODS The technique involves pars plana vitrectomy, a viscous fluid control (VFC) system for semi-automatic subretinal injection of tissue plasminogen activator (tPA), bevacizumab, and air and intravitreal gas injection for submacular hemorrhage (SMH), or subretinal balanced salt solution (BSS) for submacular perfluorocarbon (PFC) bubbles or persistent macular holes. RESULTS This technique was successfully performed for SMH (five patients), a subfoveal PFC bubble (two patients), and persistent full-thickness macular hole (FTMH) (one patient). The single surgical complication was an FTMH in a PFC bubble. Four SMH patients had postoperative displacement of the hemorrhage. The FTMH was partially closed. CONCLUSIONS Semi-automatic subretinal injection of tPA, bevacizumab, and air with the VFC system promoted displacement and clearance of SMH without complications. A subretinal BSS injection is effective for removing subfoveal PFC bubbles and for closing persistent FTMH. [Ophthalmic Surg Lasers Imaging Retina. 2021;52:551-555.].
Collapse
|
8
|
Hinkle JW, Mahmoudzadeh R, Kuriyan AE. Cell-based therapies for retinal diseases: a review of clinical trials and direct to consumer "cell therapy" clinics. Stem Cell Res Ther 2021; 12:538. [PMID: 34635174 PMCID: PMC8504041 DOI: 10.1186/s13287-021-02546-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Accepted: 08/04/2021] [Indexed: 02/02/2023] Open
Abstract
Background The retinal pigment epithelium (RPE) is implicated in the pathophysiology of many retinal degenerative diseases. This cell layer is also an ideal target for cell-based therapies. Several early phase clinical trials evaluating cell therapy approaches for diseases involving the RPE, such as age-related macular degeneration and Stargardt's macular dystrophy have been published. However, there have also been numerous reports of complications from unproven “cell therapy” treatments marketed by “cell therapy” clinics. This review aims to outline the particular approaches in the different published clinical trials for cell-based therapies for retinal diseases. Additionally, the controversies surrounding experimental treatments offered outside of legitimate studies are presented.
Main body Cell-based therapies can be applied to disorders that involve the RPE via a variety of techniques. A defining characteristic of any cell therapy treatment is the cell source used: human embryonic stem cells, induced pluripotent stem cells, and human umbilical tissue-derived cells have all been studied in published trials. In addition to the cell source, various trials have evaluated particular immunosuppression regiments, surgical approaches, and outcome measures. Data from early phase studies investigating cell-based therapies in non-neovascular age-related macular degeneration (70 patients, five trials), neovascular age-related macular degeneration (12 patients, four trials), and Stargardt’s macular dystrophy (23 patients, three trials) have demonstrated safety related to the cell therapies, though evidence of significant efficacy has not been reported. This is in contrast to the multiple reports of serious complications and permanent vision loss in patients treated at “cell therapy” clinics. These interventions are marketed directly to patients, funded by the patient, lack Food and Drug Administration approval, and lack significant oversight. Conclusion Currently, there are no proven effective cell-based treatments for retinal diseases, although several trials have investigated potential therapies. These studies reported favorable safety profiles with multiple surgical approaches, with cells derived from multiple sources, and with utilized different immunosuppressive regiments. However, data demonstrating the efficacy and long-term safety are still pending. Nevertheless, “cell therapy” clinics continue to conduct direct-to consumer marketing for non-FDA-approved treatments with potentially blinding complications.
Collapse
Affiliation(s)
- John W Hinkle
- Wills Eye Hospital, Mid Atlantic Retina, Thomas Jefferson University, Philadelphia, PA, USA
| | - Raziyeh Mahmoudzadeh
- Wills Eye Hospital, Mid Atlantic Retina, Thomas Jefferson University, Philadelphia, PA, USA
| | - Ajay E Kuriyan
- Wills Eye Hospital, Mid Atlantic Retina, Thomas Jefferson University, Philadelphia, PA, USA.
| |
Collapse
|
9
|
Sharma A, Jaganathan BG. Stem Cell Therapy for Retinal Degeneration: The Evidence to Date. Biologics 2021; 15:299-306. [PMID: 34349498 PMCID: PMC8327474 DOI: 10.2147/btt.s290331] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Accepted: 07/16/2021] [Indexed: 12/28/2022]
Abstract
There is a rise in the number of people who have vision loss due to retinal diseases, and conventional therapies for treating retinal degeneration fail to repair and regenerate the damaged retina. Several studies in animal models and human trials have explored the use of stem cells to repair the retinal tissue to improve visual acuity. In addition to the treatment of age-related macular degeneration (AMD) and diabetic retinopathy (DR), stem cell therapies were used to treat genetic diseases such as retinitis pigmentosa (RP) and Stargardt’s disease, characterized by gradual loss of photoreceptor cells in the retina. Transplantation of retinal pigment epithelial (RPE) cells derived from embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs) have shown promising results in improving retinal function in various preclinical models of retinal degeneration and clinical studies without any severe side effects. Mesenchymal stem cells (MSCs) were utilized to treat optic neuropathy, RP, DR, and glaucoma with positive clinical outcomes. This review summarizes the preclinical and clinical evidence of stem cell therapy and current limitations in utilizing stem cells for retinal degeneration.
Collapse
Affiliation(s)
- Amit Sharma
- Stem Cells and Cancer Biology Research Group, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India
| | - Bithiah Grace Jaganathan
- Stem Cells and Cancer Biology Research Group, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India
| |
Collapse
|
10
|
Lin Y, Ren X, Chen Y, Chen D. Interaction Between Mesenchymal Stem Cells and Retinal Degenerative Microenvironment. Front Neurosci 2021; 14:617377. [PMID: 33551729 PMCID: PMC7859517 DOI: 10.3389/fnins.2020.617377] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 12/17/2020] [Indexed: 02/06/2023] Open
Abstract
Retinal degenerative diseases (RDDs) are a group of diseases contributing to irreversible vision loss with yet limited therapies. Stem cell-based therapy is a promising novel therapeutic approach in RDD treatment. Mesenchymal stromal/stem cells (MSCs) have emerged as a leading cell source due to their neurotrophic and immunomodulatory capabilities, limited ethical concerns, and low risk of tumor formation. Several pre-clinical studies have shown that MSCs have the potential to delay retinal degeneration, and recent clinical trials have demonstrated promising safety profiles for the application of MSCs in retinal disease. However, some of the clinical-stage MSC therapies have been unable to meet primary efficacy end points, and severe side effects were reported in some retinal “stem cell” clinics. In this review, we provide an update of the interaction between MSCs and the RDD microenvironment and discuss how to balance the therapeutic potential and safety concerns of MSCs' ocular application.
Collapse
Affiliation(s)
- Yu Lin
- The Research Laboratory of Ophthalmology and Vision Sciences, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China.,The Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, China
| | - Xiang Ren
- The Research Laboratory of Ophthalmology and Vision Sciences, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China.,The Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, China
| | - Yongjiang Chen
- The School of Optometry and Vision Science, University of Waterloo, Waterloo, ON, Canada
| | - Danian Chen
- The Research Laboratory of Ophthalmology and Vision Sciences, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China.,The Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
11
|
Thompson DA, Iannaccone A, Ali RR, Arshavsky VY, Audo I, Bainbridge JWB, Besirli CG, Birch DG, Branham KE, Cideciyan AV, Daiger SP, Dalkara D, Duncan JL, Fahim AT, Flannery JG, Gattegna R, Heckenlively JR, Heon E, Jayasundera KT, Khan NW, Klassen H, Leroy BP, Molday RS, Musch DC, Pennesi ME, Petersen-Jones SM, Pierce EA, Rao RC, Reh TA, Sahel JA, Sharon D, Sieving PA, Strettoi E, Yang P, Zacks DN. Advancing Clinical Trials for Inherited Retinal Diseases: Recommendations from the Second Monaciano Symposium. Transl Vis Sci Technol 2020; 9:2. [PMID: 32832209 PMCID: PMC7414644 DOI: 10.1167/tvst.9.7.2] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Accepted: 03/12/2020] [Indexed: 12/18/2022] Open
Abstract
Major advances in the study of inherited retinal diseases (IRDs) have placed efforts to develop treatments for these blinding conditions at the forefront of the emerging field of precision medicine. As a result, the growth of clinical trials for IRDs has increased rapidly over the past decade and is expected to further accelerate as more therapeutic possibilities emerge and qualified participants are identified. Although guided by established principles, these specialized trials, requiring analysis of novel outcome measures and endpoints in small patient populations, present multiple challenges relative to study design and ethical considerations. This position paper reviews recent accomplishments and existing challenges in clinical trials for IRDs and presents a set of recommendations aimed at rapidly advancing future progress. The goal is to stimulate discussions among researchers, funding agencies, industry, and policy makers that will further the design, conduct, and analysis of clinical trials needed to accelerate the approval of effective treatments for IRDs, while promoting advocacy and ensuring patient safety.
Collapse
Affiliation(s)
- Debra A Thompson
- Department of Ophthalmology and Visual Sciences, Kellogg Eye Center, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Alessandro Iannaccone
- Department of Ophthalmology, Duke Eye Center, Duke University Medical Center, Durham, NC, USA
| | - Robin R Ali
- Department of Ophthalmology and Visual Sciences, Kellogg Eye Center, University of Michigan Medical School, Ann Arbor, MI, USA.,Institute of Ophthalmology, University College London, London, UK
| | - Vadim Y Arshavsky
- Department of Ophthalmology, Duke Eye Center, Duke University Medical Center, Durham, NC, USA
| | - Isabelle Audo
- Sorbonne Université, Institut de la Vision, INSERM, CNRS, Paris, France.,CHNO des Quinze-Vingts, INSERM-DGOS CIC 1423, Paris, France
| | | | - Cagri G Besirli
- Department of Ophthalmology and Visual Sciences, Kellogg Eye Center, University of Michigan Medical School, Ann Arbor, MI, USA
| | | | - Kari E Branham
- Department of Ophthalmology and Visual Sciences, Kellogg Eye Center, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Artur V Cideciyan
- Department of Ophthalmology, Scheie Eye Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Steven P Daiger
- Human Genetics Center, School of Public Health, University of Texas Health Science Center Houston, Houston, TX, USA
| | - Deniz Dalkara
- Sorbonne Université, Institut de la Vision, INSERM, CNRS, Paris, France
| | - Jacque L Duncan
- Department of Ophthalmology, University of California-San Francisco, San Francisco, CA, USA
| | - Abigail T Fahim
- Department of Ophthalmology and Visual Sciences, Kellogg Eye Center, University of Michigan Medical School, Ann Arbor, MI, USA
| | - John G Flannery
- Helen Wills Neuroscience Institute, University of California-Berkeley, Berkeley, CA, USA
| | | | - John R Heckenlively
- Department of Ophthalmology and Visual Sciences, Kellogg Eye Center, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Elise Heon
- Department of Ophthalmology and Vision Sciences, Hospital for Sick Children, Toronto, Ontario, Canada
| | - K Thiran Jayasundera
- Department of Ophthalmology and Visual Sciences, Kellogg Eye Center, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Naheed W Khan
- Department of Ophthalmology and Visual Sciences, Kellogg Eye Center, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Henry Klassen
- Gavin Herbert Eye Institute, Stem Cell Research Center, University of California-Irvine, Irvine, CA, USA
| | - Bart P Leroy
- Department of Ophthalmology and Center Medical Genetics, Ghent University Hospital and University, Ghent, Belgium.,Division of Ophthalmology and Center for Cellular and Molecular Therapeutics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Robert S Molday
- Department of Biochemistry/Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada
| | - David C Musch
- Department of Ophthalmology and Visual Sciences, Kellogg Eye Center, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Mark E Pennesi
- Department of Ophthalmology, Casey Eye Institute, Oregon Health and Science Center, Portland, OR, USA
| | - Simon M Petersen-Jones
- Small Animal Clinical Sciences, Michigan State University, College of Veterinary Medicine, East Lansing, MI, USA
| | - Eric A Pierce
- Ocular Genomics Institute, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA, USA
| | - Rajesh C Rao
- Department of Ophthalmology and Visual Sciences, Kellogg Eye Center, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Thomas A Reh
- Department of Biological Structure, University of Washington, Seattle, WA, USA
| | - Jose A Sahel
- Sorbonne Université, Institut de la Vision, INSERM, CNRS, Paris, France.,CHNO des Quinze-Vingts, INSERM-DGOS CIC 1423, Paris, France.,Fondation Ophtalmologique Rothschild, Paris, France.,Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Dror Sharon
- Department of Ophthalmology, Hadassah Medical Center, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Paul A Sieving
- Department of Ophthalmology and Center for Ocular Regenerative Therapy, University of California-Davis School of Medicine, Sacramento, CA, USA.,National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| | - Enrica Strettoi
- Institute of Neuroscience, National Research Council (CNR), Pisa, Italy
| | - Paul Yang
- Department of Ophthalmology, Casey Eye Institute, Oregon Health and Science Center, Portland, OR, USA
| | - David N Zacks
- Department of Ophthalmology and Visual Sciences, Kellogg Eye Center, University of Michigan Medical School, Ann Arbor, MI, USA
| | | |
Collapse
|
12
|
Khine KT, Albini TA, Lee RK. Chronic retinal detachment and neovascular glaucoma after intravitreal stem cell injection for Usher Syndrome. Am J Ophthalmol Case Rep 2020; 18:100647. [PMID: 32211560 PMCID: PMC7082495 DOI: 10.1016/j.ajoc.2020.100647] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 03/30/2019] [Accepted: 03/02/2020] [Indexed: 10/28/2022] Open
Abstract
A 42-year-old Hispanic female underwent intravitreal autologous adipose-tissue derived stem cell injection to her left eye in the Dominican Republic for treatment of retinitis pigmentosa associated with Usher Syndrome. Prior to intravitreal injection, the patient's best-corrected-visual-acuity (BCVA) was 1/200. The patient experienced decreased vision gradually over a 3-month period. The patient presented with no light perception (NLP) vision with a total funnel retinal detachment, as well as hyphema, iris neovascularization, and nearly 360 posterior synechiae of the iris to the lens capsule. The patient suffered from ocular pain with an intraocular pressure (IOP) of 37 mm Hg. Transcleral cyclophotocoagulation was performed. The IOP was 6 mm Hg six weeks after treatment and the patient was pain free.
Collapse
Affiliation(s)
- Kay T Khine
- Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Thomas A Albini
- Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Richard K Lee
- Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL, USA
| |
Collapse
|
13
|
Singh MS, Park SS, Albini TA, Canto-Soler MV, Klassen H, MacLaren RE, Takahashi M, Nagiel A, Schwartz SD, Bharti K. Retinal stem cell transplantation: Balancing safety and potential. Prog Retin Eye Res 2020; 75:100779. [PMID: 31494256 PMCID: PMC7056514 DOI: 10.1016/j.preteyeres.2019.100779] [Citation(s) in RCA: 127] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 08/29/2019] [Accepted: 09/02/2019] [Indexed: 12/14/2022]
Abstract
Stem cell transplantation holds great promise as a potential treatment for currently incurable retinal degenerative diseases that cause poor vision and blindness. Recently, safety data have emerged from several Phase I/II clinical trials of retinal stem cell transplantation. These clinical trials, usually run in partnership with academic institutions, are based on sound preclinical studies and are focused on patient safety. However, reports of serious adverse events arising from cell therapy in other poorly regulated centers have now emerged in the lay and scientific press. While progress in stem cell research for blindness has been greeted with great enthusiasm by patients, scientists, doctors and industry alike, these adverse events have raised concerns about the safety of retinal stem cell transplantation and whether patients are truly protected from undue harm. The aim of this review is to summarize and appraise the safety of human retinal stem cell transplantation in the context of its potential to be developed into an effective treatment for retinal degenerative diseases.
Collapse
Affiliation(s)
- Mandeep S Singh
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA.
| | - Susanna S Park
- Department of Ophthalmology & Vision Science, University of California-Davis Eye Center, Sacramento, CA, 95817, USA
| | - Thomas A Albini
- Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL, 33136, USA
| | - M Valeria Canto-Soler
- CellSight Ocular Stem Cell and Regeneration Research Program, Department of Ophthalmology, Sue Anschutz-Rodgers Eye Center, University of Colorado School of Medicine, Aurora, CO, 80045, USA
| | - Henry Klassen
- Gavin Herbert Eye Institute and Stem Cell Research Center, Irvine, CA, 92697, USA
| | - Robert E MacLaren
- Nuffield Laboratory of Ophthalmology, Department of Clinical Neurosciences, University of Oxford and Oxford University Eye Hospital, NHS Foundation Trust, NIHR Biomedical Research Centre, Oxford, OX3 9DU, UK
| | - Masayo Takahashi
- Laboratory for Retinal Regeneration, Center for Biosystems Dynamics Research, RIKEN, Kobe, Hyogo, 650-0047, Japan
| | - Aaron Nagiel
- The Vision Center, Department of Surgery, Children's Hospital Los Angeles, Los Angeles, CA, 90027, USA; USC Roski Eye Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90007, USA
| | - Steven D Schwartz
- Stein Eye Institute, University of California Los Angeles Geffen School of Medicine, Los Angeles, CA, 90095, USA; Edythe and Eli Broad Stem Cell Institute, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Kapil Bharti
- National Eye Institute, National Institutes of Health, Bethesda, MD, 90892, USA
| |
Collapse
|
14
|
Taliaferro J, Shapiro SA, Montero DP, Shi GG, Wilke BK. Cash-Based Stem-Cell Clinics: The Modern Day Snake Oil Salesman? A Report of Two Cases of Patients Harmed by Intra-articular Stem Cell Injections. JBJS Case Connect 2019; 9:e0363. [PMID: 31815806 DOI: 10.2106/jbjs.cc.19.00363] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
CASE The use of biologics is rapidly expanding. Over the past decade, there has been a significant increase in the number of cash-based "stem cell"/regenerative medicine clinics in the United States. These clinics provide cash-based services touting stem cell injections to cure a myriad of conditions. Largely, these clinics are unregulated and using injections in a non-Food and Drug Administration-approved manner. We report on 2 patients who presented with symptoms suggestive of septic arthritis following stem cell injections by cash-based local stem cell clinics. Case 1 involved a patient who developed septic arthritis following an injection of umbilical cord blood-derived cellular products (Genentech) and required an antibiotic spacer followed by a total hip arthroplasty. Case 2 involved a patient who developed a likely immune-mediated reaction following an injection of morselized human placental allograft tissue by a local chiropractic office at a cost of approximately $8,000. CONCLUSIONS We present these cases to bring increased awareness to the issue and call for increased regulation of this practice.
Collapse
Affiliation(s)
- John Taliaferro
- Department of Orthopedic Surgery, Mayo Clinic, Jacksonville, Florida
| | - Shane A Shapiro
- Department of Orthopedic Surgery, Mayo Clinic, Jacksonville, Florida
| | - Daniel P Montero
- Department of Orthopedic Surgery, Mayo Clinic, Jacksonville, Florida
| | - Glenn G Shi
- Department of Orthopedic Surgery, Mayo Clinic, Jacksonville, Florida
| | - Benjamin K Wilke
- Department of Orthopedic Surgery, Mayo Clinic, Jacksonville, Florida
| |
Collapse
|
15
|
Nirwan RS, Albini TA, Sridhar J, Flynn HW, Kuriyan AE. Assessing "Cell Therapy" Clinics Offering Treatments of Ocular Conditions using Direct-to-Consumer Marketing Websites in the United States. Ophthalmology 2019; 126:1350-1355. [PMID: 30904542 DOI: 10.1016/j.ophtha.2019.03.019] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 03/04/2019] [Accepted: 03/08/2019] [Indexed: 12/14/2022] Open
Abstract
PURPOSE "Cell therapy" is becoming increasingly available to the public via online direct-to-consumer advertisement within the United States (U.S.). The current study investigates the scope of "cell therapy" clinics across the U.S. that advertise and offer "cell therapy" for ocular conditions based on information provided on their websites. DESIGN Cross-sectional study. PARTICIPANTS The study included companies that are U.S.-based, participate in direct-to-consumer online marketing, have websites that can be data-mined with content analysis, and advertise therapy for ocular conditions. METHODS Using a systematic, extensive keyword-based Internet search, content analysis of company websites was utilized to identify, document, and analyze U.S. businesses marketing "cell therapy" for ocular conditions as of September 16, 2017. MAIN OUTCOME MEASURES Clinic locations, source of stem cells used, route of administration, marketed ocular conditions, and cost of treatment. RESULTS Forty companies with 76 clinics use "cell therapy" to treat ocular conditions. California (23), Florida (12), and Illinois (10) contain the most clinics. All 40 companies specified sources of cells, which included autologous adipose-derived stem cells (35; 67%), autologous bone marrow-derived stem cells (8; 15%), amniotic stem cells (2; 4%), peripheral blood-derived stem cells (2; 4%), umbilical cord blood stem cells (2; 4%), allogenic bone marrow-derived stem cells (1; 2%), placental stem cells (1; 2%), and xenocells (1; 2%). The most commonly marketed ocular conditions included macular degeneration (35), optic neuritis (18), retinitis pigmentosa (17), and diabetic retinopathy (16). The most common routes of administration were intravenous (22) and "unspecified" (12); however, other companies listed more ocular-specific routes such as intravitreal injections (2), retrobulbar injections (2), eye injections (2), retrofundal injection (1), sub-Tenon injection (1), intraocular injection with vitrectomy (1), and eye drops (1). The cost of advertised "cell therapy" ranged from $4000 to $10 500. CONCLUSIONS "Cell therapy" for ocular conditions is readily available via direct-to-consumer marketing strategies across the United States. The "cells" are harvested from numerous sources and administered through different methods for multiple ocular conditions at these "cell therapy" clinics. Limited data for these treatments necessitates advocating caution to physicians and patients about treatments offered at commercial "cell therapy" clinics.
Collapse
Affiliation(s)
| | - Thomas A Albini
- Bascom Palmer Eye Institute, University of Miami, Miami, Florida
| | - Jayanth Sridhar
- Bascom Palmer Eye Institute, University of Miami, Miami, Florida
| | - Harry W Flynn
- Bascom Palmer Eye Institute, University of Miami, Miami, Florida
| | - Ajay E Kuriyan
- Flaum Eye Institute, University of Rochester, Rochester, New York.
| |
Collapse
|
16
|
Hussain RM, Dubovy SR, Kuriyan AE, Zhou XY, Flynn HW, Albini TA. Clinicopathologic Correlations of Retinal Membranes Associated With Intravitreal 'Stem Cell' Injections. Ophthalmic Surg Lasers Imaging Retina 2019; 50:125-131. [PMID: 30768222 DOI: 10.3928/23258160-20190129-11] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 11/05/2018] [Indexed: 11/20/2022]
Abstract
The histologic findings of a subretinal band and epiretinal membrane (ERM) excised from two patients who developed retinal detachments (RDs) after non-U.S. Food and Drug Administration-regulated intravitreal "stem cell" injections are reported. Both membranes were composed of fibrocellular tissue that stained positively with Smooth Muscle Actin and Masson's trichrome, consistent with collagenous and smooth muscle composition. CD34 immunostain (for hematopoietic cells) was negative for the subretinal band and minimally positive for the ERM. The authors speculate that the "stem cells" may cause RDs by differentiation into myofibroblasts that cause tractional membranes, though further studies are warranted. [Ophthalmic Surg Lasers Imaging Retina. 2019;50:125-131.].
Collapse
|
17
|
Abstract
The stem cell and regenerative medicine arena has become increasingly complicated in recent years with thousands of people involved. There are as many as a dozen or more main groups of stakeholders, who together may be viewed as one ecosystem that is now rapidly evolving. The nature of the ecosystem and its evolution have major implications for not just those within it, but also for medicine and society at large. Here, I describe this ecosystem and its evolution, as well as the negative impacts within the ecosystem of a constellation of hundreds of unproven for-profit clinics and related businesses. Finally, I propose approaches for how to positively influence and drive the future of the global stem cell ecosystem.
Collapse
Affiliation(s)
- Paul S Knoepfler
- Department of Cell Biology & Human Anatomy, University of California, Davis, 1 Shields Ave, Davis, CA 95616, USA
- Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children Northern California, Sacramento, CA 95817, USA
| |
Collapse
|
18
|
Turner L. Direct-to-consumer marketing of stem cell interventions by Canadian businesses. Regen Med 2018; 13:643-658. [DOI: 10.2217/rme-2018-0033] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Aim: This study examines marketing claims of Canadian businesses engaged in direct-to-consumer advertising of putative stem cell treatments. Methods: Internet searches were used to locate Canadian businesses selling stem cell interventions. Company websites were subjected to detailed analysis. Results: In total, 30 Canadian businesses sell stem cell interventions provided at 43 clinics. Autologous stem cells are the most common types of products promoted by such businesses. Company websites minimize risks while making strong claims about benefits of stem cell interventions. Discussion: Businesses’ representations could result in patients making health-related decisions informed by marketing claims rather than best available scientific evidence. Conclusion: Although there is absent development of new regulations and guidance, the Canadian direct-to-consumer marketplace for stem cell interventions appears poised for expansion.
Collapse
Affiliation(s)
- Leigh Turner
- Center for Bioethics, School of Public Health, College of Pharmacy, University of Minnesota, N520 Boynton, 410 Church Street SE, Minneapolis, MN 55455, USA
| |
Collapse
|
19
|
Knoepfler PS. Too Much Carrot and Not Enough Stick in New Stem Cell Oversight Trends. Cell Stem Cell 2018; 23:18-20. [DOI: 10.1016/j.stem.2018.06.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|