1
|
Maggiolini FAM, Cantsilieris S, D’Addabbo P, Manganelli M, Coe BP, Dumont BL, Sanders AD, Pang AWC, Vollger MR, Palumbo O, Palumbo P, Accadia M, Carella M, Eichler EE, Antonacci F. Genomic inversions and GOLGA core duplicons underlie disease instability at the 15q25 locus. PLoS Genet 2019; 15:e1008075. [PMID: 30917130 PMCID: PMC6436712 DOI: 10.1371/journal.pgen.1008075] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Accepted: 03/07/2019] [Indexed: 11/19/2022] Open
Abstract
Human chromosome 15q25 is involved in several disease-associated structural rearrangements, including microdeletions and chromosomal markers with inverted duplications. Using comparative fluorescence in situ hybridization, strand-sequencing, single-molecule, real-time sequencing and Bionano optical mapping analyses, we investigated the organization of the 15q25 region in human and nonhuman primates. We found that two independent inversions occurred in this region after the fission event that gave rise to phylogenetic chromosomes XIV and XV in humans and great apes. One of these inversions is still polymorphic in the human population today and may confer differential susceptibility to 15q25 microdeletions and inverted duplications. The inversion breakpoints map within segmental duplications containing core duplicons of the GOLGA gene family and correspond to the site of an ancestral centromere, which became inactivated about 25 million years ago. The inactivation of this centromere likely released segmental duplications from recombination repression typical of centromeric regions. We hypothesize that this increased the frequency of ectopic recombination creating a hotspot of hominid inversions where dispersed GOLGA core elements now predispose this region to recurrent genomic rearrangements associated with disease.
Collapse
Affiliation(s)
| | - Stuart Cantsilieris
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, United States of America
| | - Pietro D’Addabbo
- Dipartimento di Biologia, Università degli Studi di Bari “Aldo Moro”, Bari, Italy
| | - Michele Manganelli
- Dipartimento di Biologia, Università degli Studi di Bari “Aldo Moro”, Bari, Italy
| | - Bradley P. Coe
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, United States of America
| | - Beth L. Dumont
- The Jackson Laboratory, Bar Harbor, ME, United States of America
| | - Ashley D. Sanders
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, Meyerhofstraße 1, Heidelberg, Germany
| | | | - Mitchell R. Vollger
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, United States of America
| | - Orazio Palumbo
- Medical Genetics Unit, IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo (FG), Italy
| | - Pietro Palumbo
- Medical Genetics Unit, IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo (FG), Italy
| | - Maria Accadia
- Medical Genetics Service, Hospital “Cardinale G. Panico”, Via San Pio X n°4, Tricase, LE, Italy
| | - Massimo Carella
- Medical Genetics Unit, IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo (FG), Italy
| | - Evan E. Eichler
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, United States of America
- Howard Hughes Medical Institute, University of Washington, Seattle, WA, United States of America
| | - Francesca Antonacci
- Dipartimento di Biologia, Università degli Studi di Bari “Aldo Moro”, Bari, Italy
| |
Collapse
|
2
|
Abstract
In 1993, Jabs et al. were the first to describe a genetic origin of craniosynostosis. Since this discovery, the genetic causes of the most common syndromes have been described. In 2015, a total of 57 human genes were reported for which there had been evidence that mutations were causally related to craniosynostosis. Facilitated by rapid technological developments, many others have been identified since then. Reviewing the literature, we characterize the most common craniosynostosis syndromes followed by a description of the novel causes that were identified between January 2015 and December 2017.
Collapse
Affiliation(s)
- Jacqueline A C Goos
- Department of Plastic and Reconstructive Surgery and Hand Surgery, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Irene M J Mathijssen
- Department of Plastic and Reconstructive Surgery and Hand Surgery, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| |
Collapse
|
3
|
Cannarella R, Mattina T, Condorelli RA, Mongioì LM, Pandini G, La Vignera S, Calogero AE. Chromosome 15 structural abnormalities: effect on IGF1R gene expression and function. Endocr Connect 2017; 6:528-539. [PMID: 28899882 PMCID: PMC5597972 DOI: 10.1530/ec-17-0158] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Accepted: 08/18/2017] [Indexed: 12/27/2022]
Abstract
Insulin-like growth factor 1 receptor (IGF1R), mapping on the 15q26.3 chromosome, is required for normal embryonic and postnatal growth. The aim of the present study was to evaluate the IGF1R gene expression and function in three unrelated patients with chromosome 15 structural abnormalities. We report two male patients with the smallest 15q26.3 chromosome duplication described so far, and a female patient with ring chromosome 15 syndrome. Patient one, with a 568 kb pure duplication, had overgrowth, developmental delay, mental and psychomotor retardation, obesity, cryptorchidism, borderline low testis volume, severe oligoasthenoteratozoospermia and gynecomastia. We found a 1.8-fold increase in the IGF1R mRNA and a 1.3-fold increase in the IGF1R protein expression (P < 0.05). Patient two, with a 650 kb impure duplication, showed overgrowth, developmental delay, mild mental retardation, precocious puberty, low testicular volume and severe oligoasthenoteratozoospermia. The IGF1R mRNA and protein expression was similar to that of the control. Patient three, with a 46,XX r(15) (p10q26.2) karyotype, displayed intrauterine growth retardation, developmental delay, mental and psychomotor retardation. We found a <0.5-fold decrease in the IGF1R mRNA expression and an undetectable IGF1R activity. After reviewing the previously 96 published cases of chromosome 15q duplication, we found that neurological disorders, congenital cardiac defects, typical facial traits and gonadal abnormalities are the prominent features in patients with chromosome 15q duplication. Interestingly, patients with 15q deletion syndrome display similar features. We speculate that both the increased and decreased IGF1R gene expression may play a role in the etiology of neurological and gonadal disorders.
Collapse
Affiliation(s)
- Rossella Cannarella
- Department of Clinical and Experimental MedicineUniversity of Catania, Catania, Italy
| | | | - Rosita A Condorelli
- Department of Clinical and Experimental MedicineUniversity of Catania, Catania, Italy
| | - Laura M Mongioì
- Department of Clinical and Experimental MedicineUniversity of Catania, Catania, Italy
| | - Giuseppe Pandini
- Department of Clinical and Experimental MedicineUniversity of Catania, Catania, Italy
| | - Sandro La Vignera
- Department of Clinical and Experimental MedicineUniversity of Catania, Catania, Italy
| | - Aldo E Calogero
- Department of Clinical and Experimental MedicineUniversity of Catania, Catania, Italy
| |
Collapse
|
4
|
Xu H, Xiao B, Ji X, Hu Q, Chen Y, Qiu W. Nonmosaic tetrasomy 15q25.2 → qter identified with SNP microarray in a patient with characteristic facial appearance and review of the literature. Eur J Med Genet 2014; 57:329-33. [DOI: 10.1016/j.ejmg.2014.04.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Accepted: 04/18/2014] [Indexed: 10/25/2022]
|
5
|
Lattanzi W, Bukvic N, Barba M, Tamburrini G, Bernardini C, Michetti F, Di Rocco C. Genetic basis of single-suture synostoses: genes, chromosomes and clinical implications. Childs Nerv Syst 2012; 28:1301-10. [PMID: 22872241 DOI: 10.1007/s00381-012-1781-1] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2012] [Accepted: 04/16/2012] [Indexed: 12/22/2022]
Abstract
BACKGROUND Non syndromic craniosynostoses are the most frequent craniofacial malformations worldwide. They represent a wide and heterogeneous group of entities, in which the dysmorphism may occur in a single (simple forms) or in multiple sutures (complex forms). Simple forms present a higher birth prevalence and are classified according to the involved suture and to the corresponding abnormal cranial shape: scaphocephaly (SC; sagittal suture), trigonocephaly (TC; metopic suture), anterior plagiocephaly (unilateral coronal suture), posterior plagiocephaly (unilateral lambdoid suture). They occur commonly as sporadic forms, although a familiar recurrence is sometimes observed, suggesting a mendelian inheritance. The genetic causes of simple craniosynostosis are still largely unknown, as mutations in common craniosynostosis-associated genes and structural chromosomal aberrations have been rarely found in these cases. AIMS This review is intended to dissect comprehensively the state-of-the art on the genetic etiology of single suture craniosynostoses, in the attempt to categorize all known disease-associated genes and chromosomal aberrations. Possible genotype/phenotype correlations are discussed as useful clues towards the definition of optimized clinical management flowcharts.
Collapse
|
6
|
George-Abraham JK, Zimmerman SL, Hinton RB, Marino BS, Witte DP, Hopkin RJ. Tetrasomy 15q25.2 → qter identified with SNP microarray in a patient with multiple anomalies including complex cardiovascular malformation. Am J Med Genet A 2012; 158A:1971-6. [DOI: 10.1002/ajmg.a.35428] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2011] [Accepted: 03/28/2012] [Indexed: 11/08/2022]
|
7
|
Abstract
PURPOSE The aim of this study was to characterize the clinical phenotype of patients with tetrasomy of the distal 15q chromosome in the form of a neocentric marker chromosome and to evaluate whether the phenotype represents a new clinical syndrome or is a phenocopy of Shprintzen-Goldberg syndrome. METHODS We carried out comprehensive clinical evaluation of four patients who were identified with a supernumerary marker chromosome. The marker chromosome was characterized by G-banding, fluorescence in situ hybridization, single nucleotide polymorphism oligonucleotide microarray analysis, and immunofluorescence with antibodies to centromere protein C. RESULTS The marker chromosomes were categorized as being neocentric with all showing tetrasomy for regions distal to 15q25 and the common region of overlap being 15q26→qter. CONCLUSION Tetrasomy of 15q26 likely results in a distinct syndrome as the patients with tetrasomy 15q26 share a strikingly more consistent phenotype than do the patients with Shprintzen-Goldberg syndrome, who show remarkable clinical variation.
Collapse
|
8
|
Shanske AL, Goodrich JT, Ala-Kokko L, Baker S, Frederick B, Levy B. Germline mosacism in Shprintzen-Goldberg syndrome. Am J Med Genet A 2012; 158A:1574-8. [DOI: 10.1002/ajmg.a.35388] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2011] [Accepted: 03/04/2012] [Indexed: 01/20/2023]
|
9
|
Chen CP, Lin YH, Au HK, Su YN, Hsu CY, Liu YP, Wu PC, Chern SR, Chen YT, Chen LF, Hsieh AHM, Wang W. Chromosome 15q overgrowth syndrome: Prenatal diagnosis, molecular cytogenetic characterization, and perinatal findings in a fetus with dup(15)(q26.2q26.3). Taiwan J Obstet Gynecol 2011; 50:359-65. [DOI: 10.1016/j.tjog.2011.07.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/30/2011] [Indexed: 12/11/2022] Open
|
10
|
Cunningham ML, Horst JA, Rieder MJ, Hing AV, Stanaway IB, Park SS, Samudrala R, Speltz ML. IGF1R variants associated with isolated single suture craniosynostosis. Am J Med Genet A 2011; 155A:91-7. [PMID: 21204214 DOI: 10.1002/ajmg.a.33781] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The genetic contribution to the pathogenesis of isolated single suture craniosynostosis is poorly understood. The role of mutations in genes known to be associated with syndromic synostosis appears to be limited. We present our findings of a candidate gene resequencing approach to identify rare variants associated with the most common forms of isolated craniosynostosis. Resequencing of the coding regions, splice junction sites, and 5' and 3' untranslated regions of 27 candidate genes in 186 cases of isolated non-syndromic single suture synostosis revealed three novel and two rare sequence variants (R406H, R595H, N857S, P190S, M446V) in insulin-like growth factor I receptor (IGF1R) that are enriched relative to control samples. Mapping the resultant amino acid changes to the modeled homodimer protein structure suggests a structural basis for segregation between these and other disease-associated mutations found in IGF1R. These data suggest that IGF1R mutations may contribute to the risk and in some cases cause single suture craniosynostosis.
Collapse
Affiliation(s)
- Michael L Cunningham
- Seattle Children's Hospital Craniofacial Center, University of Washington, 98195, USA.
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Tatton-Brown K, Pilz DT, Örstavik KH, Patton M, Barber JC, Collinson MN, Maloney VK, Huang S, Crolla JA, Marks K, Ormerod E, Thompson P, Nawaz Z, Lese-Martin C, Tomkins S, Waits P, Rahman N, McEntagart M. 15q overgrowth syndrome: A newly recognized phenotype associated with overgrowth, learning difficulties, characteristic facial appearance, renal anomalies and increased dosage of distal chromosome 15q. Am J Med Genet A 2009; 149A:147-54. [DOI: 10.1002/ajmg.a.32534] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
12
|
Marshall OJ, Chueh AC, Wong LH, Choo KA. Neocentromeres: new insights into centromere structure, disease development, and karyotype evolution. Am J Hum Genet 2008; 82:261-82. [PMID: 18252209 PMCID: PMC2427194 DOI: 10.1016/j.ajhg.2007.11.009] [Citation(s) in RCA: 287] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2007] [Revised: 10/26/2007] [Accepted: 11/05/2007] [Indexed: 11/30/2022] Open
Abstract
Since the discovery of the first human neocentromere in 1993, these spontaneous, ectopic centromeres have been shown to be an astonishing example of epigenetic change within the genome. Recent research has focused on the role of neocentromeres in evolution and speciation, as well as in disease development and the understanding of the organization and epigenetic maintenance of the centromere. Here, we review recent progress in these areas of research and the significant insights gained.
Collapse
Affiliation(s)
- Owen J. Marshall
- Chromosome and Chromatin Research, Murdoch Children's Research Institute, Parkville, VIC 3052, Australia
- Department of Paediatrics, University of Melbourne, Parkville, VIC 3052, Australia
| | - Anderly C. Chueh
- Chromosome and Chromatin Research, Murdoch Children's Research Institute, Parkville, VIC 3052, Australia
- Department of Paediatrics, University of Melbourne, Parkville, VIC 3052, Australia
| | - Lee H. Wong
- Chromosome and Chromatin Research, Murdoch Children's Research Institute, Parkville, VIC 3052, Australia
- Department of Paediatrics, University of Melbourne, Parkville, VIC 3052, Australia
| | - K.H. Andy Choo
- Chromosome and Chromatin Research, Murdoch Children's Research Institute, Parkville, VIC 3052, Australia
- Department of Paediatrics, University of Melbourne, Parkville, VIC 3052, Australia
| |
Collapse
|
13
|
Constantinou M, Płowás I, Kałuzewski B. Trisomy of medial 15q as result of an analphoid supernumerary ring chromosome detected by CGH and FISH. Cytogenet Genome Res 2007; 119:165-9. [PMID: 18160798 DOI: 10.1159/000109635] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2006] [Accepted: 05/31/2007] [Indexed: 11/19/2022] Open
Abstract
We report a 21-year-old patient with a de novo mosaic, analphoid ring of chromosome 15q22.2-->q24.1. The clinical features of this patient are mild and include tall stature, obesity, striae distensae in the hypogastrium, malocclusion and bilateral gynecomastia with scarce glandular tissue. M-FISH and FISH using a chromosome 15 painting probe indicated that the ring is of chromosome 15 origin. Further CGH analysis and FISH with the PML locus-specific probe demonstrated that the extra material derived from the medial part of the long arm of chromosome 15, including two bands, q22 and q23. Additionally, FISH with BAC probes specific for 15q allowed for a localization of the breakpoints at 15q22.2 and 15q24.1, distal to clones RP11-30M4 and RP11-500O23 respectively. We discuss the relationship between the patient's genotype and phenotype comparing it to reported cases of trisomy of medial 15q.
Collapse
Affiliation(s)
- M Constantinou
- Department of Medical Genetics, Medical University of Łódź, Poland.
| | | | | |
Collapse
|
14
|
Huang XL, de Michelena MI, Mark HFL, Harston R, Benke PJ, Price SJ, Milunsky A. Characterization of an analphoid supernumerary marker chromosome derived from 15q25-->qter using high-resolution CGH and multiplex FISH analyses. Clin Genet 2006; 68:513-9. [PMID: 16283881 DOI: 10.1111/j.1399-0004.2005.00523.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Supernumerary marker chromosomes (SMCs) without detectable alphoid DNA are predicted to have a neocentromere and have been referred to as mitotically stable neocentromere marker chromosomes (NMCs). We report the molecular cytogenetic characterization of a new case with analphoid NMC derived from 15q25-->qter using high-resolution comparative genomic hybridization (HR-CGH) and multiplex fluorescence in situ hybridization analyses with various alpha-satellite DNA probes, all-human-centromere probe (AHC), whole chromosome painting probes, and a subtelomere probe. The propositus is a dysmorphic infant who, at age 3 months, showed accelerated growth, partial deafness, and a phenotype similar to that of the eight previously reported cases of distal 15q tetrasomy. Chromosome studies showed that he had a de novo extra SMC in 80% of cells examined. HR-CGH revealed rev ish enh(15)(q25qter). Molecular cytogenetic analysis and molecular DNA polymorphism study demonstrated that this extra SMC is an NMC containing an inverted duplication of the distal long arm of chromosome 15 (tetrasomy 15q25-->qter) which originated paternally, i.e. ish der(15)(qte-->q25::q25[neocen]-->qter)(AHC-, CEP15-, WCP15+, PCP15q++). This case further elucidates the phenotype related to tetrasomy of this specific chromosome segment and represents a new report of a neocentromere on distal chromosome 15q suggesting that this region appears to be susceptible to the formation of neocentromeres.
Collapse
Affiliation(s)
- X-L Huang
- Center for Human Genetics, Boston University School of Medicine, MA 02118, USA
| | | | | | | | | | | | | |
Collapse
|
15
|
Schluth C, Mattei MG, Mignon-Ravix C, Salman S, Alembik Y, Willig J, Ginglinger E, Jeandidier E. Intrachromosomal triplication for the distal part of chromosome 15q. Am J Med Genet A 2005; 136:179-84. [PMID: 15940678 DOI: 10.1002/ajmg.a.30745] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
We report the case of a boy whose karyotype at birth showed additional material on one chromosome 15. He underwent treatment for unilateral nephroblastoma at 6 years old. At 23 years old, he presented with body asymmetry, facial dysmorphism, arachnodactyly, severe scoliosis, and mental retardation. Molecular cytogenetic analyses of peripheral lymphocytes demonstrated a complex mosaic with three clones. A major cell lineage (68%) showed a chromosome 15 with additional material fused to its telomere long arm that was constituted by an inverted duplicated 15q24.3-qter segment. Therefore, the resulting add(15)(q) harbored an intrachromosomal triplication with the middle segment being inverted in orientation. A minor cell lineage (7%) showed an abnormal chromosome 3 resulting from a telomeric fusion between its short arm and an inverted duplicated 15q24.3-qter segment. The third cell lineage (25%) showed a normal 46,XY constitution. Finally, this resulted in tetrasomy for the distal 15q24.3-qter region in 75% of the patient's lymphocytes. To our knowledge, distal 15q tetrasomy is rare and only eight cases have been reported in the literature, all due to a supernumerary analphoid marker consisting of an inverted duplication. We report here the first observation of distal 15q tetrasomy associated with a 46 chromosomes constitution. We compare the phenotype of our patient to previous cases of distal tetrasomy 15q and discuss the mechanisms underlying this chromosomal rearrangement.
Collapse
Affiliation(s)
- C Schluth
- Laboratoire de Génétique, Hôpital Emile Muller, Mulhouse, France
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Mahjoubi F, Peters GB, Malafiej P, Shalhoub C, Turner A, Daniel A, Hill RJ. An analphoid marker chromosome inv dup(15)(q26.1qter), detected during prenatal diagnosis and characterized via chromosome microdissection. Cytogenet Genome Res 2005; 109:485-90. [PMID: 15905642 DOI: 10.1159/000084207] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2004] [Accepted: 09/13/2004] [Indexed: 11/19/2022] Open
Abstract
A small, mosaic, C-band negative marker chromosome was detected in amniocyte cultures during prenatal diagnosis due to advanced maternal age. Following spontaneous premature labor at 29 weeks gestation, a dysmorphic infant was delivered, with flat nasal bridge, short palpebral fissures, micrognathia, high forehead, low-set ears, telecanthus and corneal dystrophy. Additional folds of skin were present behind the neck, and feet, fingers and toes were abnormally long. The child died at age five days, after two days of renal failure. The origin of the marker chromosome was subsequently identified from a cord blood sample, via chromosome microdissection. Through reverse FISH, we found the marker to be an inverted duplication of the region 15q26.1-->qter. FISH with alphoid satellite probe was negative, while whole chromosome 15 paint was positive. Both ends of the marker chromosome were positive for the telomeric TTAGGG probe. These data, plus the G-banding pattern, identified the marker as an analphoid, inverted duplicated chromosome, lacking any conventional centromere. We discuss the etiology and clinical effects of this marker chromosome, comparing it to the few reported cases of "tetrasomy 15q" syndrome. We also discuss the possible mechanisms that are likely responsible for this neocentromere formation.
Collapse
Affiliation(s)
- F Mahjoubi
- Clinical Genetic Department, National Research Institute of Genetic Engineering and Biotechnology, Tehran, Iran.
| | | | | | | | | | | | | |
Collapse
|
17
|
Miller MS, Rao PN, Dudovitz RN, Falk RE. Ebstein anomaly and duplication of the distal arm of chromosome 15: Report of two patients. Am J Med Genet A 2005; 139A:141-5. [PMID: 16278886 DOI: 10.1002/ajmg.a.30921] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Ebstein anomaly of the tricuspid valve is an uncommon congenital heart defect. We report two unrelated patients with Ebstein anomaly and duplication of the distal long arm of chromosome 15 (15q22 --> qter and 15q24 --> qter). Duplication of 15q is a well-described phenotype that includes congenital heart defects, and these are the first cases with Ebstein anomaly. Duplication of 15q likely affects the early morphogenesis of cardiac structures, including the normal formation of the tricuspid valve.
Collapse
Affiliation(s)
- Michelle S Miller
- Division of Pediatric Cardiology, Cedars-Sinai Medical Center, Los Angeles, California 90048, USA.
| | | | | | | |
Collapse
|
18
|
Chen CP, Lin CC, Li YC, Chern SR, Lee CC, Chen WL, Lee MS, Wang W, Tzen CY. Clinical, cytogenetic, and molecular analyses of prenatally diagnosed mosaic tetrasomy for distal chromosome 15q and review of the literature. Prenat Diagn 2004; 24:767-73. [PMID: 15503270 DOI: 10.1002/pd.977] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
OBJECTIVES To present prenatally detected mosaic tetrasomy for distal chromosome 15q and a review of the literature. CLINICAL SUBJECT AND METHODS Amniocentesis was performed at 17 weeks' gestation because of advanced maternal age. Cytogenetic analysis revealed mosaicism for an analphoid supernumerary marker chromosome (SMC). The parental karyotypes were normal. Fluorescence in situ hybridization (FISH) and polymorphic DNA marker analysis were applied to study the origin of the SMC. Level II ultrasound revealed gastric dilation. The pregnancy was terminated, and a malformed fetus was delivered with characteristic dysmorphism. Multiple samplings of fetal and extraembryonic tissues were performed to investigate the mosaicism. RESULTS Initial amniocentesis revealed mos 47,XY,+ mar[20]/46,XY[1], and repeat amniocentesis revealed 47,XY,+ mar[28]/46,XY[8]. FISH and polymorphic DNA marker analysis determined an origin from the distal 15q and an inverted duplication of 15q25.3 --> qter for the SMC. Karyotype of the fetus was designated as 47,XY,+ ace i(15) (qter --> q25.3::q25.3 --> qter)/46,XY de novo. The levels of tetrasomy for distal 15q were 28/40 in cord blood, 13/40 in liver, 14/40 in lungs, 27/40 in skin, 0/40 in placenta, and 40/40 in umbilical cord. The placenta showed an equal biparental inheritance (1:1). The umbilical cord inherited one copy of a paternal allele and three copies of a maternal allele (1:3) at distal 15q. Diallelic patterns with dosage ratios (paternal allele: maternal allele) of 1:2.5 in amniocytes, 1:2.3 in amnion, 1:2.2 in cord blood, 1:2.1 in skin, 1:1.4 in liver, and 1:1.4 in lungs. A maternal origin of the mosaic SMC(15) was determined. CONCLUSIONS A diagnosis of mosaic analphoid SMCs in amniocytes should alert mosaic mirror-image duplication of euchromatin from some distal chromosomal segment such as distal 15q or distal 13q, and a risk for fetal abnormalities. Fetuses with mosaic tetrasomy for distal 15q may be associated with fetoplacental chromosomal discrepancy. Postnatal samplings of umbilical cord, placenta and amniotic membrane may provide additional clues to the cytogenetic discrepancy between fetal and extraembryonic tissues in prenatally detected mosaic analphoid SMCs.
Collapse
Affiliation(s)
- Chih-Ping Chen
- Department of Obstetrics and Gynecology, Mackay Memorial Hospital, Taipei, Taiwan, Republic of China.
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Roggenbuck JA, Mendelsohn NJ, Tenenholz B, Ladda RL, Fink JM. Duplication of the distal long arm of chromosome 15: Report of three new patients and review of the literature. ACTA ACUST UNITED AC 2004; 126A:398-402. [PMID: 15098238 DOI: 10.1002/ajmg.a.20617] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Patients with trisomies or duplications of distal 15q have rarely been reported in the literature. Previous authors [Zollino et al., 1999: Am J Med Genet 87:391-394] have described a distal 15q trisomy syndrome, including the unusual features of prenatal overgrowth, tall stature, macrocephaly, and craniosynostosis. We report three new patients with a duplication of 15q24-q26.3; features common to the two surviving patients include ptosis, small size, and developmental delay. None of these patients had craniosynostosis or overgrowth. We propose that the previously described distal 15q trisomy syndrome [Zollino et al., 1999: Am J Med Genet 87:391-394] may result from specific disruption of a gene linked to 15q25, rather than partial trisomy for the region.
Collapse
Affiliation(s)
- Jennifer A Roggenbuck
- Division of Genetics, Children's Hospitals and Clinics, Minneapolis, Minnesota 55404, USA.
| | | | | | | | | |
Collapse
|
20
|
James PA, Aftimos S, Oei P. Partial tetrasomy 15 due to a unique inverted triplication of chromosome15q24-q26. ACTA ACUST UNITED AC 2004; 130A:208-10. [PMID: 15372521 DOI: 10.1002/ajmg.a.30238] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
21
|
Spiegel M, Hickmann G, Senger G, Kozlowski P, Bartsch O. Two new cases of analphoid marker chromosomes. Am J Med Genet A 2003; 116A:284-9. [PMID: 12503108 DOI: 10.1002/ajmg.a.10916] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Supernumerary marker chromosomes (SMCs) without detectable alphoid DNA represent a rare and interesting class of rearranged marker chromosomes. These SMCs are predicted to have a neocentromere and have been referred to as neocentric marker chromosomes (NMCs). We report the molecular cytogenetic characterization of two new cases of neocentromere-containing chromosomes, one on 1q43-44 and one on 15q26. Both cases were examined using fluorescence in situ hybridization (FISH) with various alpha-satellite DNA probes, and no alphoid DNA was detected. In case 1, the NMC originated from the distal long arm of chromosome 1 by chromosomal microdissection and reverse painting. This marker lacked detectable chromosome 1q subtelomeric sequences, and therefore appeared to be a small ring chromosome. After genetic counseling with a high risk for a MCA/MR syndrome (trisomy 1q43 --> q44), the family continued the pregnancy. At age 6 months, the infant demonstrated no congenital or developmental anomalies. This is the first published example of a NMC derived from chromosome 1q. The marker may be one of the smallest, if not the smallest, human NMC reported to date. In case 2, fetal ultrasonography indicated a complex heart defect (abnormal return of lower vena cava, atrial septum malformation) and bilateral hydronephrosis. Molecular cytogenetic analysis showed an inverted duplication of the distal long arm of chromosome 15 (tetrasomy 15q24 --> qter). The pregnancy was terminated. Autopsy demonstrated polycystic left kidney and dysplastic right kidney. Case 2 represents the ninth report of a neocentromere on distal chromosome 15q, suggesting that this region may possibly especially support the formation of neocentromeres.
Collapse
Affiliation(s)
- Miriam Spiegel
- Institut für Klinische Genetik, Technische Universität, Dresden, Germany
| | | | | | | | | |
Collapse
|
22
|
Hu J, McPherson E, Surti U, Hasegawa SL, Gunawardena S, Gollin SM. Tetrasomy 15q25.3 --> qter resulting from an analphoid supernumerary marker chromosome in a patient with multiple anomalies and bilateral Wilms tumors. AMERICAN JOURNAL OF MEDICAL GENETICS 2002; 113:82-8. [PMID: 12400070 DOI: 10.1002/ajmg.10708] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
We describe a girl who had been followed since birth for apparent Shprintzen-Goldberg syndrome (SGS), with macrosomia, long fingers and toes, and craniosynostosis, and presented at 4 years of age with bilateral Wilms tumors (also called nephroblastoma). Cytogenetic analysis of her peripheral blood revealed a de novo supernumerary marker chromosome. This stable marker chromosome is present in 19 of 20 lymphocytes analyzed, as well as in all 40 tumor cells (20 from each tumor) studied. Classical and molecular cytogenetic studies indicate that the marker is derived from an inverted duplication of chromosome 15q25.3 --> qter and contains a neocentromere. The presence of this marker chromosome in our patient results in tetrasomy 15q25.3 --> qter. The relationship between her genotype and phenotype are discussed in light of genes, including IGF1R and FES, mapped to the aneusomic segment.
Collapse
Affiliation(s)
- J Hu
- Pittsburgh Cytogenetics Laboratory, University of Pittsburgh Center for Human Genetics and Integrative Biology, UPMC Magee-Womens Hospital, Pittsburgh, Pennsylvania 15261, USA
| | | | | | | | | | | |
Collapse
|
23
|
Amor DJ, Choo KHA. Neocentromeres: role in human disease, evolution, and centromere study. Am J Hum Genet 2002; 71:695-714. [PMID: 12196915 PMCID: PMC378529 DOI: 10.1086/342730] [Citation(s) in RCA: 194] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2002] [Accepted: 07/03/2002] [Indexed: 01/03/2023] Open
Abstract
The centromere is essential for the proper segregation and inheritance of genetic information. Neocentromeres are ectopic centromeres that originate occasionally from noncentromeric regions of chromosomes. Despite the complete absence of normal centromeric alpha-satellite DNA, human neocentromeres are able to form a primary constriction and assemble a functional kinetochore. Since the discovery and characterization of the first case of a human neocentromere in our laboratory a decade ago, 60 examples of constitutional human neocentromeres distributed widely across the genome have been described. Typically, these are located on marker chromosomes that have been detected in children with developmental delay or congenital abnormalities. Neocentromeres have also been detected in at least two types of human cancer and have been experimentally induced in Drosophila. Current evidence from human and fly studies indicates that neocentromere activity is acquired epigenetically rather than by any alteration to the DNA sequence. Since human neocentromere formation is generally detrimental to the individual, its biological value must lie beyond the individual level, such as in karyotype evolution and speciation.
Collapse
Affiliation(s)
- David J Amor
- Murdoch Childrens Research Institute, Royal Children's Hospital, Parkville, Victoria, Australia
| | | |
Collapse
|
24
|
Warburton PE, Dolled M, Mahmood R, Alonso A, Li S, Naritomi K, Tohma T, Nagai T, Hasegawa T, Ohashi H, Govaerts LC, Eussen BH, Van Hemel JO, Lozzio C, Schwartz S, Dowhanick-Morrissette JJ, Spinner NB, Rivera H, Crolla JA, Yu C, Warburton D. Molecular cytogenetic analysis of eight inversion duplications of human chromosome 13q that each contain a neocentromere. Am J Hum Genet 2000; 66:1794-806. [PMID: 10777715 PMCID: PMC1378043 DOI: 10.1086/302924] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2000] [Accepted: 03/13/2000] [Indexed: 11/03/2022] Open
Abstract
Neocentromeres are fully functional centromeres that have arisen in previously noncentromeric chromosomal locations on rearranged chromosomes. The formation of neocentromeres results in the mitotic stability of chromosomal fragments that do not contain endogenous centromeres and that would normally be lost. Here we describe a unique collection of eight independent patient-derived cell lines, each of which contains a neocentromere on a supernumerary inversion duplication of a portion of human chromosome 13q. Findings in these patients reveal insight into the clinical manifestations associated with polysomy for portions of chromosome 13q. The results of FISH and immunofluorescent analysis of the neocentromeres in these chromosomes confirm the lack of alpha-satellite DNA and the presence of CENtromere proteins (CENP)-C, -E, and hMAD2. The positions of the inversion breakpoints in these chromosomes have been placed onto the physical map of chromosome 13, by means of FISH mapping with cosmid probes. These cell lines define, within chromosome 13q, at least three distinct locations where neocentromeres have formed, with five independent neocentromeres in band 13q32, two in band 13q21, and one in band 13q31. The results of examination of the set of 40 neocentromere-containing chromosomes that have thus far been described, including the 8 neocentromere-containing chromosomes from chromosome 13q that are described in the present study, suggest that chromosome 13q has an increased propensity for neocentromere formation, relative to some other human chromosomes. These neocentromeres will provide the means for testing hypotheses about sequence requirements for human centromere formation.
Collapse
Affiliation(s)
- P E Warburton
- Department of Human Genetics, Mount Sinai School of Medicine, New York, NY, 10029, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Reddy KS, Sulcova V, Schwartz S, Noble JE, Phillips J, Brasel JA, Huff K, Lin HJ. Mosaic tetrasomy 8q: Inverted duplication of 8q23.3qter in an analphoid marker. ACTA ACUST UNITED AC 2000. [DOI: 10.1002/(sici)1096-8628(20000501)92:1<69::aid-ajmg12>3.0.co;2-o] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
26
|
Rowe AG, Abrams L, Qu Y, Chen E, Cotter PD. Tetrasomy 15q25?qter: Cytogenetic and molecular characterization of an analphoid supernumerary marker chromosome. ACTA ACUST UNITED AC 2000. [DOI: 10.1002/1096-8628(20000828)93:5<393::aid-ajmg9>3.0.co;2-z] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
27
|
Rivera H, Vasquez AI, García-Cruz D, Crolla JA. Neocentromere at 13q32 in one of two stable markers derived from a 13q21 break. AMERICAN JOURNAL OF MEDICAL GENETICS 1999; 85:385-8. [PMID: 10398265 DOI: 10.1002/(sici)1096-8628(19990806)85:4<385::aid-ajmg15>3.0.co;2-p] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
A 10-month-old girl with psychomotor retardation, microcephaly, bilateral microphthalmia, and postaxial polydactyly of the feet was karyotyped using banding techniques and (single or dual color) fluorescent in situ hybridization (FISH) with four probes: D13Z1/D21Z1, pancentromeric, pantelomeric, and a mix of 13q subtelomeric and 13/21 alphoid repeats. She was found to have a 47-chromosome karyotype in which a normal 13 was replaced by two stable markers derived from a breakpoint at 13q21.1, namely a del(13)(q21.1) and an isofragment(13) (qter-->q21.1::q21.1-->qter). The latter had a single C-negative but Cd-positive primary constriction at 13q32 which, however, was not obvious in about 12% of the cells. FISH studies showed that the small 13q- had the 13-centromere and a 13q telomere (as shown for a specific 13q subtelomeric signal) onto the broken end whereas the isofragment lacked alphoid signals but had 13q subtelomeric sequences on both ends. Parental karyotypes were normal. The patient's rearrangement represents the eighth chromosome-13-derived marker with a nonalphoid neocentromere located at 13q. All in all, such neocentromeres have been described in 29 markers derived from chromosomes 2, 3, 8-11, 13-15, 20, and Y, and plausibly result from the epigenetic activation of a latent centromere, which may even be a telomere with neocentric activity. The 13q telomere found in the del(13q) was probably captured from the homologous chromosome.
Collapse
Affiliation(s)
- H Rivera
- División de Genética, Instituto Mexicano del Seguro Social, Guadalajara, Jalisco, Mexico.
| | | | | | | |
Collapse
|
28
|
Huang B, Ning Y, Lamb AN, Sandlin CJ, Jamehdor M, Ried T, Bartley J. Identification of an unusual marker chromosome by spectral karyotyping. ACTA ACUST UNITED AC 1998. [DOI: 10.1002/(sici)1096-8628(19981204)80:4<368::aid-ajmg12>3.0.co;2-b] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|