1
|
In Reply to the Letter to the Editor Regarding “Pediatric Moyamoya Presenting as a Subarachnoid Hemorrhage from a Ruptured Anterior Cerebral Artery Aneurysm”. World Neurosurg 2020; 137:492. [DOI: 10.1016/j.wneu.2020.02.175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 02/27/2020] [Indexed: 11/21/2022]
|
2
|
Pelleri MC, Cicchini E, Petersen MB, Tranebjærg L, Mattina T, Magini P, Antonaros F, Caracausi M, Vitale L, Locatelli C, Seri M, Strippoli P, Piovesan A, Cocchi G. Partial trisomy 21 map: Ten cases further supporting the highly restricted Down syndrome critical region (HR-DSCR) on human chromosome 21. Mol Genet Genomic Med 2019; 7:e797. [PMID: 31237416 PMCID: PMC6687668 DOI: 10.1002/mgg3.797] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 05/22/2019] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Down syndrome (DS) is characterized by the presence of an extra full or partial human chromosome 21 (Hsa21). An invaluable model to define genotype-phenotype correlations in DS is the study of the extremely rare cases of partial (segmental) trisomy 21 (PT21), the duplication of only a delimited region of Hsa21 associated or not to DS. A systematic retrospective reanalysis of 125 PT21 cases described up to 2015 allowed the creation of the most comprehensive PT21 map and the identification of a 34-kb highly restricted DS critical region (HR-DSCR) as the minimal region whose duplication is shared by all PT21 subjects diagnosed with DS. We reanalyzed at higher resolution three cases previously published and we accurately searched for any new PT21 reports in order to verify whether HR-DSCR limits could prospectively be confirmed and possibly refined. METHODS Hsa21 partial duplications of three PT21 subjects were refined by adding array-based comparative genomic hybridization data. Seven newly described PT21 cases fulfilling stringent cytogenetic and clinical criteria have been incorporated into the PT21 integrated map. RESULTS The PT21 map now integrates fine structure of Hsa21 sequence intervals of 132 subjects onto a common framework fully consistent with the presence of a duplicated HR-DSCR, on distal 21q22.13 sub-band, only in DS subjects and not in non-DS individuals. No documented exception to the HR-DSCR model was found. CONCLUSIONS The findings presented here further support the association of the HR-DSCR with the diagnosis of DS, representing an unbiased validation of the original model. Further studies are needed to identify and characterize genetic determinants presumably located in the HR-DSCR and functionally associated to the critical manifestations of DS.
Collapse
Affiliation(s)
- Maria Chiara Pelleri
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), Unit of Histology, Embryology and Applied BiologyUniversity of BolognaBologna (BO)Italy
| | - Elena Cicchini
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), Unit of Histology, Embryology and Applied BiologyUniversity of BolognaBologna (BO)Italy
| | - Michael B. Petersen
- Department of GeneticsAalborg University HospitalAalborgDenmark
- Department of Clinical GeneticsAalborg UniversityAalborgDenmark
| | - Lisbeth Tranebjærg
- Department of Clinical Genetics/RigshospitaletThe Kennedy CentreGlostrupDenmark
- University of Copenhagen, Institute of Clinical Medicine, The Panum InstituteCopenhagen NDenmark
| | - Teresa Mattina
- Department of PediatricsMedical Genetics University of CataniaItaly
| | - Pamela Magini
- Medical Genetics UnitSt. Orsola‐Malpighi PolyclinicBologna (BO)Italy
| | - Francesca Antonaros
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), Unit of Histology, Embryology and Applied BiologyUniversity of BolognaBologna (BO)Italy
| | - Maria Caracausi
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), Unit of Histology, Embryology and Applied BiologyUniversity of BolognaBologna (BO)Italy
| | - Lorenza Vitale
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), Unit of Histology, Embryology and Applied BiologyUniversity of BolognaBologna (BO)Italy
| | | | - Marco Seri
- Medical Genetics Unit, Department of Medical and Surgical Sciences (DIMEC)St. Orsola‐Malpighi Polyclinic, University of BolognaBologna (BO)Italy
| | - Pierluigi Strippoli
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), Unit of Histology, Embryology and Applied BiologyUniversity of BolognaBologna (BO)Italy
| | - Allison Piovesan
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), Unit of Histology, Embryology and Applied BiologyUniversity of BolognaBologna (BO)Italy
| | - Guido Cocchi
- Neonatology Unit, Department of Medical and Surgical Sciences (DIMEC)St. Orsola‐Malpighi Polyclinic, University of BolognaBologna (BO)Italy
| |
Collapse
|
3
|
Genotype-phenotype correlation for congenital heart disease in Down syndrome through analysis of partial trisomy 21 cases. Genomics 2017. [PMID: 28648597 DOI: 10.1016/j.ygeno.2017.06.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Among Down syndrome (DS) children, 40-50% have congenital heart disease (CHD). Although trisomy 21 is not sufficient to cause CHD, three copies of at least part of chromosome 21 (Hsa21) increases the risk for CHD. In order to establish a genotype-phenotype correlation for CHD in DS, we built an integrated Hsa21 map of all described partial trisomy 21 (PT21) cases with sufficient indications regarding presence or absence of CHD (n=107), focusing on DS PT21 cases. We suggest a DS CHD candidate region on 21q22.2 (0.96Mb), being shared by most PT21 cases with CHD and containing three known protein-coding genes (DSCAM, BACE2, PLAC4) and four known non-coding RNAs (DSCAM-AS1, DSCAM-IT1, LINC00323, MIR3197). The characterization of a DS CHD candidate region provides a useful approach to identify specific genes contributing to the pathology and to orient further investigations and possibly more effective therapy in relation to the multifactorial pathogenesis of CHD.
Collapse
|
4
|
Pelleri MC, Cicchini E, Locatelli C, Vitale L, Caracausi M, Piovesan A, Rocca A, Poletti G, Seri M, Strippoli P, Cocchi G. Systematic reanalysis of partial trisomy 21 cases with or without Down syndrome suggests a small region on 21q22.13 as critical to the phenotype. Hum Mol Genet 2016; 25:2525-2538. [PMID: 27106104 PMCID: PMC5181629 DOI: 10.1093/hmg/ddw116] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Revised: 04/12/2016] [Accepted: 04/12/2016] [Indexed: 01/13/2023] Open
Abstract
A 'Down Syndrome critical region' (DSCR) sufficient to induce the most constant phenotypes of Down syndrome (DS) had been identified by studying partial (segmental) trisomy 21 (PT21) as an interval of 0.6-8.3 Mb within human chromosome 21 (Hsa21), although its existence was later questioned. We propose an innovative, systematic reanalysis of all described PT21 cases (from 1973 to 2015). In particular, we built an integrated, comparative map from 125 cases with or without DS fulfilling stringent cytogenetic and clinical criteria. The map allowed to define or exclude as candidates for DS fine Hsa21 sequence intervals, also integrating duplication copy number variants (CNVs) data. A highly restricted DSCR (HR-DSCR) of only 34 kb on distal 21q22.13 has been identified as the minimal region whose duplication is shared by all DS subjects and is absent in all non-DS subjects. Also being spared by any duplication CNV in healthy subjects, HR-DSCR is proposed as a candidate for the typical DS features, the intellectual disability and some facial phenotypes. HR-DSCR contains no known gene and has relevant homology only to the chimpanzee genome. Searching for HR-DSCR functional loci might become a priority for understanding the fundamental genotype-phenotype relationships in DS.
Collapse
Affiliation(s)
- Maria Chiara Pelleri
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), Unit of Histology, Embryology and Applied Biology, University of Bologna, Via Belmeloro 8, 40126 Bologna, BO, Italy
| | - Elena Cicchini
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), Unit of Histology, Embryology and Applied Biology, University of Bologna, Via Belmeloro 8, 40126 Bologna, BO, Italy
| | - Chiara Locatelli
- Neonatology Unit, St. Orsola-Malpighi Polyclinic, Via Massarenti 9, 40138 Bologna, BO, Italy
| | - Lorenza Vitale
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), Unit of Histology, Embryology and Applied Biology, University of Bologna, Via Belmeloro 8, 40126 Bologna, BO, Italy
| | - Maria Caracausi
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), Unit of Histology, Embryology and Applied Biology, University of Bologna, Via Belmeloro 8, 40126 Bologna, BO, Italy
| | - Allison Piovesan
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), Unit of Histology, Embryology and Applied Biology, University of Bologna, Via Belmeloro 8, 40126 Bologna, BO, Italy
| | - Alessandro Rocca
- Neonatology Unit, St. Orsola-Malpighi Polyclinic, Via Massarenti 9, 40138 Bologna, BO, Italy
| | - Giulia Poletti
- Neonatology Unit, St. Orsola-Malpighi Polyclinic, Via Massarenti 9, 40138 Bologna, BO, Italy
| | | | - Pierluigi Strippoli
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), Unit of Histology, Embryology and Applied Biology, University of Bologna, Via Belmeloro 8, 40126 Bologna, BO, Italy
| | - Guido Cocchi
- Neonatology Unit, St. Orsola-Malpighi Polyclinic, Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Via Massarenti 9, 40138 Bologna, BO, Italy
| |
Collapse
|
5
|
Toiber D, Azkona G, Ben-Ari S, Torán N, Soreq H, Dierssen M. Engineering DYRK1A overdosage yields Down syndrome-characteristic cortical splicing aberrations. Neurobiol Dis 2010; 40:348-59. [PMID: 20600907 DOI: 10.1016/j.nbd.2010.06.011] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2009] [Revised: 05/31/2010] [Accepted: 06/22/2010] [Indexed: 01/07/2023] Open
Abstract
Down syndrome (DS) associates with impaired brain functions, but the underlying mechanism(s) are yet unclear. The "gene dosage" hypothesis predicts that in DS, overexpression of a single gene can impair multiple brain functions through a signal amplification effect due to impaired regulatory mechanism(s). Here, we report findings attributing to impairments in the splicing process such a regulatory role. We have used DS fetal brain samples in search for initial evidence and employed engineered mice with MMU16 partial trisomy (Ts65Dn) or direct excess of the splicing-associated nuclear kinase Dyrk1A, overdosed in DS for further analyses. We present specific albeit modest changes in the DS brain's splicing machinery with subsequently amplified effects in target transcripts; and we demonstrate that engineered excess of Dyrk1A can largely recapitulate these changes. Specifically, in both the fetal DS brains and the Dyrk1A overdose models, we found ample modestly modified splicing-associated transcripts which apparently induced secondary enhancement in exon inclusion of key synaptic transcripts. Thus, DS-reduced levels of the dominant-negative TRKBT1 transcript, but not other TRKB mRNA transcripts, were accompanied by corresponding decreases in BDNF. In addition, the DS brains and Dyrk1A overdosage models showed selective changes in the transcripts composition of neuroligin mRNAs as well as reductions in the "synaptic" acetylcholinesterase variant AChE-S mRNA and corresponding increases in the stress-inducible AChE-R mRNA variant, yielding key synaptic proteins with unusual features. In cotransfected cells, Dyrk1A overdosage caused parallel changes in the splicing pattern of an AChE mini-gene, suggesting that Dyrk1A overdosage is both essential and sufficient to induce the observed change in the composition of AChE mRNA variants. Furthermore, the Dyrk1A overdosage animal models showed pronounced changes in the structure of neuronal nuclear speckles, where splicing events take place and in SR proteins phosphorylation known to be required for the splicing process. Together, our findings demonstrate DS-like brain splicing machinery malfunctioning in Dyrk1A overexpressing mice. Since individual splicing choices may alter cell fate determination, axon guidance, and synaptogenesis, these findings suggest the retrieval of balanced splicing as a goal for DS therapeutic manipulations early in DS development.
Collapse
Affiliation(s)
- Debra Toiber
- Department of Biological Chemistry and Interdisciplinary Center for Neuronal Computation (ICNC), The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | | | | | | | | | | |
Collapse
|
6
|
de A Moreira LM, San Juan A, Pereira PS, de Souza CS. A case of mosaic trisomy 21 with Down's syndrome signs and normal intellectual development. JOURNAL OF INTELLECTUAL DISABILITY RESEARCH : JIDR 2000; 44 ( Pt 1):91-96. [PMID: 10711655 DOI: 10.1046/j.1365-2788.2000.00246.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The present case study describes an adult male with clinical signs of mild Down's syndrome (DS), who performed well at school and reached university level. A karyotype was done on a lymphocyte culture and mosaic trisomy 21 was found in 3% of the 437 cells analysed. Eleven signs from Jackson's checklist were found in the clinical evaluation, which along with the analysis of the subject's dermatoglyphic traits, confirmed the DS diagnosis. Cognitive evaluation was done with several psychological tests and the results were within the average range. This rare phenotypic association shows that normal intellectual development may be possible in DS. This finding could be explained by the low trisomic cell frequency, which may have little effect on the critical tissues for intellectual development, and it might also reflect the wide phenotypic variation in mosaic trisomy 21. Other factors, such as strong family support, early and continued intervention programmes for both physical and speech therapy, and a thorough educational process, also provided opportunities for the development of the cognitive potential of the subject.
Collapse
Affiliation(s)
- L M de A Moreira
- Genetics Service, Biology Institute, Federal University of Bahia (UFBA), Brazil
| | | | | | | |
Collapse
|
8
|
Garcia-Heras J, Rao PN. A brief review of cryptic duplications of 21q as an emerging cause of Down syndrome: practical considerations for accurate detection. Clin Genet 1999; 55:207-11. [PMID: 10334476 DOI: 10.1034/j.1399-0004.1999.550310.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
We review five cryptic duplications of 21q in patients with Down syndrome (DS) that were inherited from parental balanced translocations. All cases were identified by fluorescence in situ hybridization (FISH) and or DNA diagnosis because the phenotype was inconsistent with the initial cytogenetic studies. These rearrangements seem to escape detection without expanded testing and are probably more frequent than expected. For this reason we propose a series of steps combining objective clinical diagnostic criteria, FISH and DNA methods to achieve an accurate ascertainment.
Collapse
Affiliation(s)
- J Garcia-Heras
- Genetic Testing Center, Bureau of Laboratories, Texas Department of Health, Denton 76201, USA.
| | | |
Collapse
|