1
|
Jiraanont P, Kumar M, Tang HT, Espinal G, Hagerman PJ, Hagerman RJ, Chutabhakdikul N, Tassone F. Size and methylation mosaicism in males with Fragile X syndrome. Expert Rev Mol Diagn 2018; 17:1023-1032. [PMID: 28929824 DOI: 10.1080/14737159.2017.1377612] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND Size and methylation mosaicism are a common phenomenon in Fragile X syndrome (FXS). Here, the authors report a study on twelve fragile X males with atypical mosaicism, seven of whom presented with autism spectrum disorder. METHODS A combination of Southern Blot and PCR analysis was used for CGG allele sizing and methylation. FMR1 mRNA and FMRP expression were measured by qRT-PCR and by Homogeneous Time Resolved Fluorescence methodology, respectively. RESULTS DNA analysis showed atypical size- or methylation-mosaicism with both, full mutation and smaller (normal to premutation) alleles, as well as a combination of methylated and unmethylated alleles. Four individuals carried a deletion of the CGG repeat and portions of the flanking regions. The extent of methylation among the participants was reflected in the lower FMR1 mRNA and FMRP expression levels detected in these subjects. CONCLUSION Decreased gene expression is likely the main contributor to the cognitive impairment observed in these subjects; although the presence of a normal allele did not appear to compensate for the presence of the full mutation, it correlated with better cognitive function in some but not all of the reported cases emphasizing the complexity of the molecular and clinical profile in FXS.
Collapse
Affiliation(s)
- Poonnada Jiraanont
- a Department of Biochemistry and Molecular Medicine , University of California, School of Medicine , Davis , CA , USA.,b Research Center for Neuroscience, Institute of Molecular Biosciences , Mahidol University , Nakornpathom , Thailand
| | - Madhur Kumar
- a Department of Biochemistry and Molecular Medicine , University of California, School of Medicine , Davis , CA , USA
| | - Hiu-Tung Tang
- a Department of Biochemistry and Molecular Medicine , University of California, School of Medicine , Davis , CA , USA
| | - Glenda Espinal
- a Department of Biochemistry and Molecular Medicine , University of California, School of Medicine , Davis , CA , USA
| | - Paul J Hagerman
- a Department of Biochemistry and Molecular Medicine , University of California, School of Medicine , Davis , CA , USA.,c M.I.N.D. Institute , University of California Davis Medical Center , Sacramento , CA , USA
| | - Randi J Hagerman
- c M.I.N.D. Institute , University of California Davis Medical Center , Sacramento , CA , USA.,d Department of Pediatrics , University of California, Davis Medical Center , Sacramento , CA , USA
| | - Nuanchan Chutabhakdikul
- b Research Center for Neuroscience, Institute of Molecular Biosciences , Mahidol University , Nakornpathom , Thailand
| | - Flora Tassone
- a Department of Biochemistry and Molecular Medicine , University of California, School of Medicine , Davis , CA , USA.,c M.I.N.D. Institute , University of California Davis Medical Center , Sacramento , CA , USA
| |
Collapse
|
2
|
Manor E, Jabareen A, Magal N, Kofman A, Hagerman RJ, Tassone F. Prenatal Diagnosis of Fragile X: Can a Full Mutation Allele in the FMR1 Gene Contract to a Normal Size? Front Genet 2017; 8:158. [PMID: 29163631 PMCID: PMC5675867 DOI: 10.3389/fgene.2017.00158] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Accepted: 10/09/2017] [Indexed: 01/29/2023] Open
Abstract
Here we describe a case of a prenatal diagnosis of a male fetus that inherited the unstable allele from his full mutation mosaic mother (29, 160, >200 CGG repeats) reduced to a normal size range (19 CGG repeats). Haplotype analysis showed that the fetus 19 CGG repeats allele derived from the maternal unstable allele which was inherited from his maternal grandmother. No size mosaicism was detected by testing the DNA from in vitro cultured samples, including seventh passage culture as well as from two amniocentesis samples. Sequence analysis confirmed that the allele was 19 CGG repeats long. Methylation assay showed no methylation. Although none of the techniques used in this study can provide with absolute certainty the diagnosis, the results strongly indicate the presence in the fetus of an allele with a CGG repeat number in the normal range. Because this is a prenatal diagnosis case, the crucial question is whether the 19 CGG allele derived from the maternal unstable expanded allele, which contracted to the normal range, became a normal stable allele or a normal unstable allele which could expand in the next generation. It is also possible that allele size mosaicism of the FMR1 gene that went undetected exists. Because this is a prenatal diagnosis case, we cannot with certainty exclude the presence of an undetected expanded allele of the FMR1 gene, in addition to the 19 CGG allele derived from an unstable expanded allele, which contracted to the normal range.
Collapse
Affiliation(s)
- Esther Manor
- Faculty of Health Sciences, Ben-Gurion University of the Negev, Beersheba, Israel.,Genetics Institute, Soroka Medical Center, Beersheba, Israel
| | - Azhar Jabareen
- Faculty of Health Sciences, Ben-Gurion University of the Negev, Beersheba, Israel.,Genetics Institute, Soroka Medical Center, Beersheba, Israel
| | - Nurit Magal
- Department of Medical Genetics, Rabin Medical Center, Petah Tikva, Israel.,Felsenstein Medical Research Center, Rabin Medical Center, Petah Tikva, Israel
| | - Arei Kofman
- Faculty of Health Sciences, Ben-Gurion University of the Negev, Beersheba, Israel.,Genetics Institute, Soroka Medical Center, Beersheba, Israel
| | - Randi J Hagerman
- Department of Pediatrics, MIND Institute, UC Davis Medical Center, Sacramento, CA, United States
| | - Flora Tassone
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California, Davis, Davis, CA, United States.,MIND Institute, UC Davis Medical Center, Sacramento, CA, United States
| |
Collapse
|
3
|
Extra alleles in FMR1 triple-primed PCR: artifact, aneuploidy, or somatic mosaicism? J Mol Diagn 2015; 16:689-96. [PMID: 25307758 DOI: 10.1016/j.jmoldx.2014.06.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Revised: 05/06/2014] [Accepted: 06/06/2014] [Indexed: 12/13/2022] Open
Abstract
Triple-primed PCR assays have become the preferred fragile X syndrome testing method. Using a commercially available assay, we detected a reproducible extra peak(s) in 0.5% of 13,161 clinical samples. The objectives of this study were to determine the cause of these extra peaks; to identify whether these peaks represent an assay specific artifact, an underlying chromosome aneuploidy, or somatic mosaicism; and to ascertain their clinical relevance. The presence of an extra allele(s) was confirmed by a laboratory-developed PCR, with sequencing of the FMR1 5' UTR or Southern blot for some samples. The laboratory-developed procedure detected the extra allele(s) in 57 of 64 samples. Thus, we confirmed an extra peak, typically of lower abundance, in approximately 0.4% of all samples. Of these samples, 5 were from males and 52 were from heterozygous or homozygous females. Six patients likely had X chromosome aneuploidies. In 82.3% of samples, the extra allele had fewer repeats than the predominant allele(s). Additional alleles detected by FMR1 triple-primed PCR are not an assay-specific artifact and are likely due to X chromosome aneuploidies or somatic repeat instability. Additional normal alleles likely have no clinical significance for fragile X syndrome carrier or affected status. Extra alleles in individuals with normal karyotypes probably represent FMR1 somatic variation.
Collapse
|
4
|
Bonarrigo FA, Russo S, Vizziello P, Menni F, Cogliati F, Giorgini V, Monti F, Milani D. Think about it: FMR1 gene mosaicism. J Child Neurol 2014; 29:NP74-7. [PMID: 24065579 DOI: 10.1177/0883073813503187] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Fragile X syndrome (FXS) is one of the most frequent causes of mental retardation, intellectual disability, and autism. Most cases are the result of an expansion of the CGG trinucleotide repeat in the 5' untranslated region of the FMR1 gene and the subsequent functional loss of the related protein. We describe the case of a 4-year-old boy who clinically presents mild psychomotor delay without any major clinical dysmorphisms. Molecular analysis of the FMR1 gene showed mosaicism in terms of size and methylation, with one normal and 1 fully mutated allele, which is very rare in this syndrome. Physicians should therefore consider a diagnosis of FXS even if the patient's phenotype is mild. Although rare, diagnosing this condition has important consequences for the patient's rehabilitation and the family planning of parents and relatives.
Collapse
Affiliation(s)
- Francesca Andrea Bonarrigo
- Pediatric Clinic 1, Department of Pathophysiology and Transplantation, University of Milan Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Silvia Russo
- Cytogenetic and Molecular Genetic Laboratory, Istituto Auxologico Italiano, Milan, Italy
| | - Paola Vizziello
- Child and Adolescent Neuropsychiatry (UONPIA), Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Francesca Menni
- Pediatric Clinic 1, Department of Pathophysiology and Transplantation, University of Milan Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Francesca Cogliati
- Cytogenetic and Molecular Genetic Laboratory, Istituto Auxologico Italiano, Milan, Italy
| | - Valentina Giorgini
- Cytogenetic and Molecular Genetic Laboratory, Istituto Auxologico Italiano, Milan, Italy
| | - Federico Monti
- Child and Adolescent Neuropsychiatry (UONPIA), Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Donatella Milani
- Pediatric Clinic 1, Department of Pathophysiology and Transplantation, University of Milan Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| |
Collapse
|
5
|
Curtis-Cioffi KMC, Rodrigueiro DA, Rodrigues VC, Cicarelli RMB, Scarel-Caminaga RM. Comparison between the polymerase chain reaction-based screening and the Southern blot methods for identification of fragile X syndrome. Genet Test Mol Biomarkers 2013; 16:1303-8. [PMID: 23101592 DOI: 10.1089/gtmb.2012.0158] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The fragile X syndrome (FXS), the most common cause of hereditary mental retardation, is caused by expansions of CGG repeats in the FMR1 gene. The gold-standard method to diagnose FXS is the Southern blot (SB). Because SB is laborious and costly, some adaptations in the polymerase chain reaction (PCR) method have been utilized for FXS screening. A previous PCR-based screening method for FXS identification utilizing small amounts of DNA was reported as simple and efficient. The aim of this study was to reproduce the mentioned PCR-based screening method for identification of expanded alleles of the FMR1 gene in Brazilian individuals and to investigate the efficiency of this method in comparison with SB. Utilizing the enzyme Expand Long Template PCR System, 78 individuals were investigated by that PCR-based screening method for FXS identification. Conclusive results were obtained for 75 samples. Considering all the allelic forms of FXS (normal [NL], premutation [PM], and full-mutation [FM]), the comparison of the PCR-based screening method with SB demonstrated 100% of accuracy, sensitivity, and specificity. However, when the PM and the FM were analyzed separately from each other, but together with the NL allele, the accuracy, sensitivity, and specificity decreased (to 42.9%-97.4%). We concluded that the PCR-based screening method was reproducible and capable of identifying all different FXS alleles, but because the differentiation between the PM and the FM alleles was not accurate, SB is still the gold-standard method for the molecular diagnosis of FXS.
Collapse
|
6
|
Christofolini DM, Abbud EM, Lipay MVN, Costa SS, Vianna-Morgante AM, Bellucco FTS, Nogueira SI, Kulikowski LD, Brunoni D, Juliano Y, Ramos MAP, Melaragno MI. Evaluation of clinical checklists for fragile X syndrome screening in Brazilian intellectually disabled males: proposal for a new screening tool. JOURNAL OF INTELLECTUAL DISABILITIES : JOID 2009; 13:239-248. [PMID: 19786505 DOI: 10.1177/1744629509348429] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Patients with fragile X syndrome present a variable phenotype, which contributes to the underdiagnosing of this condition. The use of clinical checklists in individuals with intellectual disability can help in selecting patients to be given priority in the molecular investigation of the fragile X mutation in the FMR1 gene. Some features included in checklists are better predictors than others, but they can vary among different populations and with patient age. In the present study, we evaluated 20 features listed in four clinical checklists from the literature, using a sample of 192 Brazilian male patients presenting with intellectual disability (30 positive and 162 negative for fragile X mutation). After statistical analysis, 12 out of the 20 items analyzed showed significant differences in their distributions between the two groups. These features were grouped in a new checklist that can help clinicians in their referral for fragile X testing in patients with developmental delay.
Collapse
|
7
|
Todorov T, Todorova A, Kirov A, Dimitrov B, Carvalho R, Nygren AOH, Boneva I, Mitev V. Fragile X mosaic male full mutation/normal allele detected by PCR/MS-MLPA. BMJ Case Rep 2009; 2009:bcr06.2008.0139. [PMID: 21686918 DOI: 10.1136/bcr.06.2008.0139] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
We report on a fragile X mosaic male full mutation/normal allele detected by PCR and methylation-specific multiplex ligation-dependent probe amplification (MS-MLPA). This combined analysis provides a diagnostic approach for fragile X syndrome (FXS). The method assesses the presence of expansion (full mutation), the CpG methylation status and could determine copy number changes (large deletions/duplications) along the FMR1 and FMR2 (fragile X mental retardation) genes. The method avoids detection of premutations, which makes it applicable for newborn screening. It can also be used in clarification of mosaic cases. The PCR results in our patient showed one normal allele; three repeats larger than his mother's one. The MS-MLPA showed hypermethylated full mutation pattern in the proband. Both results are compatible with FXS mosaic case full mutation/normal allele. The patient demonstrates atypical mild clinical manifestation of the disease, which correlates to the presence of a normal size allele in the patient's cells.
Collapse
Affiliation(s)
- Tihomir Todorov
- Medical University, Department of Chemistry and Biochemistry, 2 Zdrave Street, Sofia 1431, Bulgaria
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Christofolini DM, Lipay MV, Ramos MAP, Costa SS, Bellucco FT, Nogueira SI, Kulikowski LD, Brunoni D, Melaragno MI. Clinical checklists in the selection of mentally retarded males for molecular screening of fragile X syndrome. Genet Mol Biol 2007. [DOI: 10.1590/s1415-47572007000600002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
9
|
Abstract
Hereditary unstable DNA is composed of strings of trinucleotide repeats, in which three nucleotides are repeated over and over (ie CAGCAGCAGCAG). These repeats are found in several sites within genes; depending on their location, the number of triplet repeats in a string can change as it is passed on to offspring. When the number of repeats increases to a critical size, it can have a variety of affects on gene function. The repeats may cause a loss in gene function (as in Fragile X) or may result in the gain of a new, abnormal protein and thus a new function (as in myotonic dystrophy and Huntington disease). Although a variety of trinucleotide repeat diseases have been reported and merit consideration, this discussion will focus primarily on Fragile X syndrome, myotonic dystrophy, and Huntington disease.
Collapse
Affiliation(s)
- Katharine D Wenstrom
- The University of Alabama at Birmingham, Department of Obstetrics and Gynecology, 35249-7333, USA.
| |
Collapse
|
10
|
Burman RW, Anoe KS, Popovich BW. Fragile X full mutations are more similar in siblings than in unrelated patients: further evidence for a familial factor in CGG repeat dynamics. Genet Med 2000; 2:242-8. [PMID: 11252709 DOI: 10.1097/00125817-200007000-00007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
PURPOSE We sought to compare patterns of full mutation repeat-length variability in the peripheral blood DNA of patients with fragile X syndrome to determine whether siblings possess mutation patterns more similar than those of unrelated patients. METHODS Mutation patterns were visualized by Southern blot analysis and captured digitally with a phosphor imager. Novel comparison strategies based on overlapping profile plots and calculation of weighted mean CGG repeat values were used to assess mutation pattern similarity. RESULTS Within the population that we analyzed of 56 patients with full mutation, mutation patterns were found to be more similar in siblings than in unrelated patients. CONCLUSION These results indicate that repeat-length variability may be generated in a nonrandom manner and that familial factors influence this process.
Collapse
Affiliation(s)
- R W Burman
- Department of Molecular and Medical Genetics, Oregon Health Sciences University, Portland 97201, USA
| | | | | |
Collapse
|
11
|
|
12
|
|
13
|
Haddad LA, Mingroni-Netto RC, Vianna-Morgante AM, Pena SD. A PCR-based test suitable for screening for fragile X syndrome among mentally retarded males. Hum Genet 1996; 97:808-12. [PMID: 8641701 DOI: 10.1007/bf02346194] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Ever since the identification of the genetic cause of fragile X syndrome as the expansion of an unstable trinucleotide sequence, several diagnostic strategies have evolved from molecular studies. However, we still lack a simple test suitable for population screening. We have therefore developed a nonisotopic polymerase chain reaction (PCR)-based technique for the identification of fragile X full mutations among men, with easy visualization of the PCR products on silver-stained polyacrylamide gels. The technique consists of PCR amplification with primers that flank the trinucleotide repeats, with a product of 557 bp for the (CGG)29 allele. Conditions were established such that full mutations failed to amplify and were thus identified with 98% sensitivity compared with Southern blot analysis. To produce an indispensable internal control we added to the reaction a third primer, internal to this fragment, allowing the multiplex amplification of a monomorphic band corresponding to a CG-rich stretch 147 bp upstream of the polymorphic region. In trials involving 41 patients and 74 controls, the PCR-based test here described showed specificity of more than 98.6%, accuracy of 99% and a sensitivity of 98%. Thus, although not suitable for medical diagnosis, it constitutes a useful tool for screening for the fragile X syndrome in populations of mentally retarded males.
Collapse
Affiliation(s)
- L A Haddad
- Departamento de Bioquímica, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | | | | | | |
Collapse
|