1
|
Taniguchi T, Ando M, Okamoto Y, Yoshimura A, Higuchi Y, Hashiguchi A, Shiga K, Hayashida A, Hatano T, Ishiura H, Mitsui J, Hattori N, Mizuno T, Nakagawa M, Tsuji S, Takashima H. Genetic spectrum of Charcot-Marie-Tooth disease associated with myelin protein zero gene variants in Japan. Clin Genet 2020; 99:359-375. [PMID: 33179255 PMCID: PMC7898366 DOI: 10.1111/cge.13881] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 11/04/2020] [Accepted: 11/04/2020] [Indexed: 12/24/2022]
Abstract
We aimed to reveal the genetic features associated with MPZ variants in Japan. From April 2007 to August 2017, 64 patients with 23 reported MPZ variants and 21 patients with 17 novel MPZ variants were investigated retrospectively. Variation in MPZ variants and the pathogenicity of novel variants was examined according to the American College of Medical Genetics standards and guidelines. Age of onset, cranial nerve involvement, serum creatine kinase (CK), and cerebrospinal fluid (CSF) protein were also analyzed. We identified 64 CMT patients with reported MPZ variants. The common variants observed in Japan were different from those observed in other countries. We identified 11 novel pathogenic variants from 13 patients. Six novel MPZ variants in eight patients were classified as likely benign or uncertain significance. Cranial nerve involvement was confirmed in 20 patients. Of 30 patients in whom serum CK levels were evaluated, eight had elevated levels. Most of the patients had age of onset >20 years. In another subset of 30 patients, 18 had elevated CSF protein levels; four of these patients had spinal diseases and two had enlarged nerve root or cauda equina. Our results suggest genetic diversity across patients with MPZ variants.
Collapse
Affiliation(s)
- Takaki Taniguchi
- Department of Neurology and Geriatrics, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Masahiro Ando
- Department of Neurology and Geriatrics, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Yuji Okamoto
- Department of Neurology and Geriatrics, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan.,Department of Physical Therapy, School of Health Sciences, Faculty of Medicine, Kagoshima University, Kagoshima, Japan
| | - Akiko Yoshimura
- Department of Neurology and Geriatrics, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Yujiro Higuchi
- Department of Neurology and Geriatrics, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Akihiro Hashiguchi
- Department of Neurology and Geriatrics, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Kensuke Shiga
- Department of Neurology, Matsushita Memorial Hospital, Osaka, Japan.,Department of Neurology, Kyoto prefectural University of Medicine, Kyoto, Japan
| | - Arisa Hayashida
- Department of Neurology, Juntendo University School of Medicine, Tokyo, Japan
| | - Taku Hatano
- Department of Neurology, Juntendo University School of Medicine, Tokyo, Japan
| | - Hiroyuki Ishiura
- Department of Molecular Neurology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Jun Mitsui
- Department of Molecular Neurology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Nobutaka Hattori
- Department of Neurology, Juntendo University School of Medicine, Tokyo, Japan
| | - Toshiki Mizuno
- Department of Neurology, Kyoto prefectural University of Medicine, Kyoto, Japan
| | - Masanori Nakagawa
- Department of Neurology, Kyoto prefectural University of Medicine, Kyoto, Japan.,North Medical Center, Kyoto prefectural University of Medicine, Kyoto, Japan
| | - Shoji Tsuji
- Department of Molecular Neurology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.,Institute of Medical Genomics, International University of Health and Welfare, Chiba, Japan
| | - Hiroshi Takashima
- Department of Neurology and Geriatrics, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| |
Collapse
|
3
|
Molecular analysis of the genes causing recessive demyelinating Charcot-Marie-Tooth disease in Japan. J Hum Genet 2013; 58:273-8. [PMID: 23466821 DOI: 10.1038/jhg.2013.15] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Charcot-Marie-Tooth disease (CMT), the most common hereditary neuropathy, has been classified into two types, demyelinating and axonal types. We previously analyzed the genes causing dominant demyelinating CMT in 227 Japanese patients to identify the genetic background, but could not find any mutations in 110 patients. To investigate the frequency of patients with autosomal recessive demyelinating CMT (CMT4) mutations, we analyzed the coding sequence of known causative genes of CMT4 in 103 demyelinating CMT patients, excluding seven patients owing to lack of specimens. We found one patient with a GDAP1 mutation, one patient with an MTMR2 mutation, two patients with SH3TC2/KIAA1985 mutations and three patients with FGD4 mutations. Twelve patients, including five previously detected patients with PRX mutations, were diagnosed as CMT4, accounting for 5.5% of demyelinating CMT. In the patient with GDAP1 mutation, only one mutation inherited from his mother was detected by genomic sequencing. Analysis by reverse transcription polymerase chain reaction using messenger RNA (mRNA) from the patient's leukocytes revealed the absence of transcription from the allele inherited from his father, suggesting the existence of one more mutation leading to a lack or destabilization of mRNA. Most patients carrying CMT4 gene mutations present with early-onset and slowly progressive symptoms, which may be associated with the function of mutants. We could not identify the disease-causing gene in 96 patients (about 45%). Further studies including studies with next-generation sequencers will be required to identify the causative gene in Japanese CMT.
Collapse
|
5
|
Abstract
Charcot-Marie-Tooth disease type 1B (CMT1B) is caused by mutations in the major PNS myelin protein myelin protein zero (MPZ). MPZ is a member of the immunoglobulin supergene family and functions as an adhesion molecule helping to mediate compaction of PNS myelin. Mutations in MPZ appear to either disrupt myelination during development, leading to severe early onset neuropathies, or to disrupt axo-glial interactions leading to late onset neuropathies in adulthood. Identifying molecular pathways involved in early and late onset CMT1B will be crucial to understand how MPZ mutations cause CMT1B so that rational therapies for both early and late onset neuropathies can be developed.
Collapse
Affiliation(s)
- Michael E Shy
- Wayne State University, Department of Neurology, 421 Ea Canfield, Elliman Bldg 3206, Detroit, MI 48201, USA.
| |
Collapse
|
6
|
Stevens FJ, Pokkuluri PR, Schiffer M. Protein conformation and disease: pathological consequences of analogous mutations in homologous proteins. Biochemistry 2000; 39:15291-6. [PMID: 11112514 DOI: 10.1021/bi001017x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The antibody light chain variable domain (V(L))(1) and myelin protein zero (MPZ) are representatives of the functionally diverse immunoglobulin superfamily. The V(L) is a subunit of the antigen-binding component of antibodies, while MPZ is the major membrane-linked constituent of the myelin sheaths that coat peripheral nerves. Despite limited amino acid sequence homology, the conformations of the core structures of the two proteins are largely superimposable. Amino acid variations in V(L) account for various conformational disease outcomes, including amyloidosis. However, the specific amino acid changes in V(L) that are responsible for disease have been obscured by multiple concurrent primary structure alterations. Recently, certain demyelination disorders have been linked to point mutations and single amino acid polymorphisms in MPZ. We demonstrate here that some pathogenic variations in MPZ correspond to changes suspected of determining amyloidosis in V(L). This unanticipated observation suggests that studies of the biophysical origin of conformational disease in one member of a superfamily of homologous proteins may have implications throughout the superfamily. In some cases, findings may account for overt disease; in other cases, due to the natural repertoire of inherited polymorphisms, variations in a representative protein may predict subclinical impairment of homologous proteins.
Collapse
Affiliation(s)
- F J Stevens
- Biosciences Division, Argonne National Laboratory, Argonne, Illinois 60439, USA.
| | | | | |
Collapse
|
7
|
Nelis E, Haites N, Van Broeckhoven C. Mutations in the peripheral myelin genes and associated genes in inherited peripheral neuropathies. Hum Mutat 1999; 13:11-28. [PMID: 9888385 DOI: 10.1002/(sici)1098-1004(1999)13:1<11::aid-humu2>3.0.co;2-a] [Citation(s) in RCA: 149] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The peripheral myelin protein 22 gene (PMP22), the myelin protein zero gene (MPZ, P0), and the connexin 32 gene (Cx32, GJB1) code for membrane proteins expressed in Schwann cells of the peripheral nervous system (PNS). The early growth response 2 gene (EGR2) encodes a transcription factor that may control myelination in the PNS. Mutations in the respective genes, located on human chromosomes 17p11.2, 1q22-q23, Xq13.1, and 10q21.1-q22.1, are associated with several inherited peripheral neuropathies. To date, a genetic defect in one of these genes has been identified in over 1,000 unrelated patients manifesting a wide range of phenotypes, i.e., Charcot-Marie-Tooth disease type 1 (CMT1) and type 2 (CMT2), Dejerine-Sottas syndrome (DSS), hereditary neuropathy with liability to pressure palsies (HNPP), and congenital hypomyelination (CH). This large number of genetically defined patients provides an exceptional opportunity to examine the correlation between phenotype and genotype.
Collapse
Affiliation(s)
- E Nelis
- Flanders Interuniversity Institute for Biotechnology (VIB), Born-Bunge Foundation, University of Antwerp, Department of Biochemistry, Belgium
| | | | | |
Collapse
|
8
|
Abstract
Hereditary peripheral neuropathies have traditionally been classified by the clinical disease pattern and mode of inheritance. It only recently became possible to provide a more precise subdivision of the diseases by the discovery of distinct genetic defects. Most inherited peripheral neuropathies are caused by distinct mutations in the genes of three well known myelin components, peripheral myelin protein 22, P0 and the gap junction protein connexin 32. The present review addresses the expression and functional roles of these myelin components, as well as the putative pathomechanisms caused by distinct mutations in the corresponding genes. Moreover, the suitability of mutant animals, such as knock-out mice and transgenic rodents, as artificial models for these diseases and their use in the study of possible treatment strategies are discussed.
Collapse
Affiliation(s)
- R Martini
- Department of Neurology, University of Würzburg, Germany.
| | | | | |
Collapse
|