1
|
Li HP, Huang CY, Lui KW, Chao YK, Yeh CN, Lee LY, Huang Y, Lin TL, Kuo YC, Huang MY, Fan HC, Lin AC, Hsieh CH, Chang KP, Lin CY, Wang HM, Chao M, Liu JS, Chang YS, Hsu CL. Nasopharyngeal carcinoma patient-derived xenograft mouse models reveal potential drugs targeting cell cycle, mTOR, and autophagy pathways. Transl Oncol 2023; 38:101785. [PMID: 37713975 PMCID: PMC10509698 DOI: 10.1016/j.tranon.2023.101785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 09/05/2023] [Accepted: 09/08/2023] [Indexed: 09/17/2023] Open
Abstract
BACKGROUND Nasopharyngeal carcinoma (NPC) is associated with Epstein-Barr virus (EBV) infection. To test preclinical NPC drugs, we established two patient-derived xenograft (PDX) mouse models, EBV-positive PDX-B13 and EBV-negative PDX-Li41, for drug screening. METHODS Based on next generation sequencing (NGS) studies, PDX-B13 had CCND1 copy number (CN) gain but CDKN2A CN loss, whereas PDX-Li41 had CDKN2A and RB1 CN loss, TSC1 (negative regulator of mTOR) frameshift deletion mutation, and increased activation of mTOR, a serine/threonine kinase that governs metabolism, autophagy, and apoptosis. Increased mTOR was also associated with poor NPC prognosis. RESULTS Everolimus, an mTOR inhibitor, suppressed tumor growth in the two PDX NPC models and had an additive antitumor effect with palbociclib, a CDK4/6 inhibitor. PDX tumors treated with various drugs or untreated were subjected to RNA sequencing, transcriptome profile analysis, and selective Western blotting to understand the interactions between these drugs and gene expression profiles. Palbociclib also suppressed EB viral nuclear antigen (EBNA1) expression in PDX-B13. Everolimus together with autophagy inhibitor, hydroxychloroquine, had additive anti-tumor effect on PDX-B13 tumor. Immunohistochemistry revealed that high mTOR levels were correlated with poor overall survival in patients with metastatic NPC (N = 90). CONCLUSIONS High mTOR levels are a poor prognostic factor in NPC, and cell cycle, mTOR and autophagy pathways may serve as therapeutic targets in NPC. In addition, PDX models can be used for efficiently testing potential NPC drugs.
Collapse
Affiliation(s)
- Hsin-Pai Li
- Department of Microbiology and Immunology, Chang Gung University, Taoyuan 33305, Taiwan; Graduate Institute of Biomedical Sciences, Chang Gung University, Taoyuan 33305, Taiwan; Molecular Medicine Research Center, Chang Gung University, Taoyuan 33305, Taiwan; Division of Hematology-Oncology, Department of Internal Medicine, Chang Gung Memorial Hospital, Chang Gung University, Taoyuan 33305, Taiwan
| | - Chen-Yang Huang
- Division of Hematology-Oncology, Department of Internal Medicine, Chang Gung Memorial Hospital, Chang Gung University, Taoyuan 33305, Taiwan
| | - Kar-Wai Lui
- Department of Medical Imaging and Intervention, Chang Gung Memorial Hospital, Chang Gung University, Taoyuan 33305, Taiwan
| | - Yin-Kai Chao
- Division of Thoracic and Cardiovascular Surgery, Department of Surgery, Chang Gung Memorial Hospital, Chang Gung University, Taoyuan 33305, Taiwan
| | - Chun-Nan Yeh
- Department of General Surgery, Liver Research Center, Chang Gung Memorial Hospital, Chang Gung University, Taoyuan 33305, Taiwan
| | - Li-Yu Lee
- Department of Pathology, Chang Gung Memorial Hospital, Chang Gung University, Taoyuan 33305, Taiwan
| | - Yenlin Huang
- Department of Pathology, Chang Gung Memorial Hospital, Chang Gung University, Taoyuan 33305, Taiwan
| | - Tung-Liang Lin
- Division of Hematology-Oncology, Department of Internal Medicine, Chang Gung Memorial Hospital, Chang Gung University, Taoyuan 33305, Taiwan
| | - Yung-Chia Kuo
- Division of Hematology-Oncology, Department of Internal Medicine, Chang Gung Memorial Hospital, Chang Gung University, Taoyuan 33305, Taiwan
| | - Mei-Yuan Huang
- Department of Microbiology and Immunology, Chang Gung University, Taoyuan 33305, Taiwan
| | - Hsien-Chi Fan
- Division of Hematology-Oncology, Department of Internal Medicine, Chang Gung Memorial Hospital, Chang Gung University, Taoyuan 33305, Taiwan
| | - An-Chi Lin
- Division of Hematology-Oncology, Department of Internal Medicine, Chang Gung Memorial Hospital, Chang Gung University, Taoyuan 33305, Taiwan
| | - Chia-Hsun Hsieh
- Division of Hematology-Oncology, Department of Internal Medicine, Chang Gung Memorial Hospital, Chang Gung University, Taoyuan 33305, Taiwan
| | - Kai-Ping Chang
- Department of Otolaryngology-Head and Neck Surgery, Chang Gung Memorial Hospital, Chang Gung University, Taoyuan 33305, Taiwan
| | - Chien-Yu Lin
- Department of Radiation, Chang Gung Memorial Hospital, Chang Gung University, Taoyuan 33305, Taiwan
| | - Hung-Ming Wang
- Division of Hematology-Oncology, Department of Internal Medicine, Chang Gung Memorial Hospital, Chang Gung University, Taoyuan 33305, Taiwan
| | - Mei Chao
- Department of Microbiology and Immunology, Chang Gung University, Taoyuan 33305, Taiwan; Graduate Institute of Biomedical Sciences, Chang Gung University, Taoyuan 33305, Taiwan; Department of Hepato-Gastroenterology, Chang Gung Memorial Hospital, Chang Gung University, Taoyuan 33305, Taiwan
| | - Jai-Shin Liu
- Department of Biotechnology and Pharmaceutical Technology, Yuanpei University of Medical Technology, Hsinchu City 30015, Taiwan
| | - Yu-Sun Chang
- Department of Microbiology and Immunology, Chang Gung University, Taoyuan 33305, Taiwan; Molecular Medicine Research Center, Chang Gung University, Taoyuan 33305, Taiwan; Department of Otolaryngology-Head and Neck Surgery, Chang Gung Memorial Hospital, Chang Gung University, Taoyuan 33305, Taiwan
| | - Cheng-Lung Hsu
- Division of Hematology-Oncology, Department of Internal Medicine, Chang Gung Memorial Hospital, Chang Gung University, Taoyuan 33305, Taiwan; School of Medicine, Chang Gung University, Taoyuan 33305, Taiwan.
| |
Collapse
|
4
|
Rendtorff ND, Bjerregaard B, Frödin M, Kjaergaard S, Hove H, Skovby F, Brøndum-Nielsen K, Schwartz M. Analysis of 65 tuberous sclerosis complex (TSC) patients by TSC2 DGGE, TSC1/TSC2 MLPA, and TSC1 long-range PCR sequencing, and report of 28 novel mutations. Hum Mutat 2006; 26:374-83. [PMID: 16114042 DOI: 10.1002/humu.20227] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Tuberous sclerosis complex (TSC) is a severe autosomal-dominant disorder characterized by the development of benign tumors (hamartomas) in many organs. It can lead to intellectual handicap, epilepsy, autism, and renal or heart failure. An inactivating mutation in either of two tumor-suppressor genes-TSC1 and TSC2-is the cause of this syndrome, with TSC2 mutations accounting for 80-90% of all mutations. Molecular diagnosis of TSC is challenging, since TSC1 and TSC2 consist of 21 and 41 coding exons, respectively, and the mutation spectrum is very heterogeneous. Here we report a new approach for detecting mutations in TSC: a denaturing gradient gel electrophoresis (DGGE) analysis for small TSC2 mutations, a multiplex ligation-dependent probe amplification (MLPA) analysis for large deletions and duplications in TSC1 or TSC2, and a long-range PCR/sequencing-based analysis for small TSC1 mutations. When applied in this order, the three methods provide a new sensitive and time- and cost-efficient strategy for the molecular diagnosis of TSC. We analyzed 65 Danish patients who had been clinically diagnosed with TSC, and identified pathogenic mutations in 51 patients (78%). These included 36 small TSC2 mutations, four large deletions involving TSC2, and 11 small TSC1 mutations. Twenty-eight of the small mutations are novel. For the missense mutations, we established a functional assay to demonstrate that the mutations impair TSC2 protein function. In conclusion, the strategy presented may greatly help small- and medium-sized laboratories in the pre- and postnatal molecular diagnosis of TSC.
Collapse
Affiliation(s)
- Nanna D Rendtorff
- Department of Medical Genetics, John F. Kennedy Institute, Glostrup, Denmark.
| | | | | | | | | | | | | | | |
Collapse
|
5
|
Chen JM, Chuzhanova N, Stenson PD, Férec C, Cooper DN. Meta-analysis of gross insertions causing human genetic disease: novel mutational mechanisms and the role of replication slippage. Hum Mutat 2006; 25:207-21. [PMID: 15643617 DOI: 10.1002/humu.20133] [Citation(s) in RCA: 116] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Although gross insertions (>20 bp) comprise <1% of disease-causing mutations, they nevertheless represent an important category of pathological lesion. In an attempt to study these insertions in a systematic way, 158 gross insertions ranging in size between 21 bp and approximately 10 kb were identified using the Human Gene Mutation Database (www.hgmd.org). A careful meta-analytical study revealed extensive diversity in terms of the nature of the inserted DNA sequence and has provided new insights into the underlying mutational mechanisms. Some 70% of gross insertions were found to represent sequence duplications of different types (tandem, partial tandem, or complex). Although most of the tandem duplications were explicable by simple replication slippage, the three complex duplications appear to result from multiple slippage events. Some 11% of gross insertions were attributable to nonpolyglutamine repeat expansions (including octapeptide repeat expansions in the prion protein gene [PRNP] and polyalanine tract expansions) and evidence is presented to support the contention that these mutations are also caused by replication slippage rather than by unequal crossing over. Some 17% of gross insertions, all >or=276 bp in length, were found to be due to LINE-1 (L1) retrotransposition involving different types of element (L1 trans-driven Alu, L1 direct, and L1 trans-driven SVA). A second example of pathological mitochondrial-nuclear sequence transfer was identified in the USH1C gene but appears to arise via a novel mechanism, trans-replication slippage. Finally, evidence for another novel mechanism of human genetic disease, involving the possible capture of DNA oligonucleotides, is presented in the context of a 26-bp insertion into the ERCC6 gene.
Collapse
Affiliation(s)
- Jian-Min Chen
- INSERM (Institut National de la Santé et de la Recherche Médicale) U613-Génétique Moléculaire et Génétique Epidémiologique, Université de Bretagne Occidentale, Centre Hospitalier Universitaire, Brest, France.
| | | | | | | | | |
Collapse
|
6
|
Gamzu R, Achiron R, Hegesh J, Weiner E, Tepper R, Nir A, Rabinowitz R, Auslander R, Yagel S, Zalel Y, Zimmer E. Evaluating the risk of tuberous sclerosis in cases with prenatal diagnosis of cardiac rhabdomyoma. Prenat Diagn 2002; 22:1044-7. [PMID: 12424773 DOI: 10.1002/pd.464] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
OBJECTIVE To evaluate the prenatal parameters that increase the risk of tuberous sclerosis in prenatal management of fetal cardiac tumors suspected as rhabdomyoma. METHODS The study was a retrospective survey of 18 documented cases in which cardiac rhabdomyoma was suspected during pregnancy. The following parameters were evaluated as possible risk factors associated with tuberous sclerosis: tumor size, isolated or multiple, and family history of tuberous sclerosis. RESULTS Eighteen documented cases in which cardiac rhabdomyoma was found during pregnancy were evaluated. Of these cases, seven (39%) had proven tuberous sclerosis and 11 were found to be non-associated tuberous sclerosis tumors. When combining the present data with previous series, cases with diagnosis of tuberous sclerosis had equal mean tumor size to those with normal outcome. Family history of tuberous sclerosis in the presence of cardiac rhabdomyoma almost invariably ended with tuberous sclerosis (86%). All other cases with diagnosis of tuberous sclerosis and no family history had all multiple cardiac tumors. CONCLUSION The present data suggest that 39% of in utero suspected cardiac rhabdomyoma would have tuberous sclerosis. Family history and multifocality remain the strongest predictors of tuberous sclerosis, whereas size of the cardiac tumor can not reliably be used to predict tuberous sclerosis in prenatal counseling.
Collapse
Affiliation(s)
- Ronni Gamzu
- Department of Obstetrics and Gynecology, The Chaim Sheba Medical Center, Sackler School of Medicine, Tel-Aviv University, Tel Hashomer, Israel
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|