1
|
Wu Y, Zhang H, Liu X, Shi Z, Li H, Wang Z, Jie X, Huang S, Zhang F, Li J, Zhang K, Gao X. Mutations of ARX and non-syndromic intellectual disability in Chinese population. Genes Genomics 2018; 41:125-131. [PMID: 30255221 DOI: 10.1007/s13258-018-0745-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Accepted: 09/15/2018] [Indexed: 02/08/2023]
Abstract
Mutations of Aristaless-related homeobox (ARX) gene were looked as the third cause of non-syndromic intellectual disability (NSID), while the boundary between true disease-causing mutations and non-disease-causing variants within this gene remains elusive. To investigate the relationship between ARX mutations and NSID, a panel comprising six reported causal mutations of the ARX was detected in 369 sporadic NSID patients and 550 random participants in Chinese. Two mutations, c.428_451 dup and p.G286S, may be disease-causing mutations for NSID, while p.Q163R and p.P353L showed a great predictive value in female NSID diagnosis with significant associations (X2 = 19.60, p = 9.54e-6 for p.Q163R; X2 = 25.70, p = 4.00e-07 for p.P353L), carriers of these mutations had an increased risk of NSID of more than fourfold. Detection of this panel also predicted significant associations between genetic variants of the ARX gene and NSID (p = 3.73e-4). The present study emphasized the higher genetic burden of the ARX gene on NSID in the Chinese population, molecular analysis of this gene should be considered for patients presenting NSID of unknown etiology.
Collapse
Affiliation(s)
- Yufei Wu
- Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), Institute of Population and Health, Northwest University, Xi'an, 710069, China
| | - Huan Zhang
- The 2nd Affiliated Hospital, Xi'an Jiaotong University, Xi'an, 710004, China
| | - Xiaofen Liu
- Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), Institute of Population and Health, Northwest University, Xi'an, 710069, China
| | - Zhangyan Shi
- Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), Institute of Population and Health, Northwest University, Xi'an, 710069, China
| | - Hongling Li
- Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), Institute of Population and Health, Northwest University, Xi'an, 710069, China
| | - Zhibin Wang
- Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), Institute of Population and Health, Northwest University, Xi'an, 710069, China
| | - Xiaoyong Jie
- Xi'an Cangning Psychiatric Hospital, Xi'an, 710114, China
| | - Shaoping Huang
- The 2nd Affiliated Hospital, Xi'an Jiaotong University, Xi'an, 710004, China
| | - Fuchang Zhang
- Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), Institute of Population and Health, Northwest University, Xi'an, 710069, China.,College of Public Management, Institute of Application Psychology, Northwest University, Xi'an, 710127, China
| | - Junlin Li
- Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), Institute of Population and Health, Northwest University, Xi'an, 710069, China
| | - Kejin Zhang
- Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), Institute of Population and Health, Northwest University, Xi'an, 710069, China.
| | - Xiaocai Gao
- Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), Institute of Population and Health, Northwest University, Xi'an, 710069, China. .,College of Public Management, Institute of Application Psychology, Northwest University, Xi'an, 710127, China.
| |
Collapse
|
3
|
Martínez F, Martínez-Garay I, Millán JM, Pérez-Aytes A, Moltó MD, Orellana C, Prieto F. Localization of non-specific X-linked mental retardation gene (MRX73) to Xp22.2. AMERICAN JOURNAL OF MEDICAL GENETICS 2001; 102:200-4. [PMID: 11477616 DOI: 10.1002/ajmg.1416] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Clinical and molecular studies are reported on a family (MRX73) of five males with non-specific X-linked mental retardation (XLMR). A total of 33 microsatellite and RFLP markers was typed. The gene for this XLMR condition was been linked to DXS1195, with a lod score of 2.36 at theta = 0. The haplotype and multipoint linkage analyses suggest localization of the MRX73 locus to an interval of 2 cM defined by markers DXS8019 and DXS365, in Xp22.2. This interval contains the gene of Coffin-Lowry syndrome (RSK2), where a missense mutation has been associated with a form of non-specific mental retardation. Therefore, a search for RSK2 mutations was performed in the MRX73 family, but no causal mutation was found. We hypothesize that another unidentified XLMR gene is located near RSK2.
Collapse
Affiliation(s)
- F Martínez
- Unidad de Genética, Hospital La Fe, Valencia, Spain.
| | | | | | | | | | | | | |
Collapse
|
4
|
Perry J, Short KM, Romer JT, Swift S, Cox TC, Ashworth A. FXY2/MID2, a gene related to the X-linked Opitz syndrome gene FXY/MID1, maps to Xq22 and encodes a FNIII domain-containing protein that associates with microtubules. Genomics 1999; 62:385-94. [PMID: 10644436 DOI: 10.1006/geno.1999.6043] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Opitz G/BBB syndrome (OS) is a genetically heterogeneous disorder with an X-linked locus and an autosomal locus linked to 22q11.2. OS affects multiple organ systems with often variable severity even between siblings. The clinical features, which include hypertelorism, cleft lip and palate, defects of cardiac septation, hypospadias, and anorectal anomalies, indicate an underlying disturbance of the developing ventral midline of the embryo. The gene responsible for X-linked OS, FXY/MID1, is located on the short arm of the human X chromosome within Xp22.3 and encodes a protein with both an RBCC (RING finger, B-box, coiled coil) and a B30.2 domain. The Fxy gene in mice is also located on the X chromosome but spans the pseudoautosomal boundary in this species. Here we describe a gene closely related to FXY/MID1, called FXY2, which also maps to the X chromosome within Xq22. The mouse Fxy2 gene is located on the distal part of the mouse X chromosome within a region syntenic to Xq22. Analysis of genes flanking both FXY/MID1 and FXY2 (as well as their counterparts in mouse) suggests that these regions may have arisen as a result of an intrachromosomal duplication on an ancestral X chromosome. We have also identified in both FXY2 and FXY/MID1 proteins a conserved fibronectin type III domain located between the RBCC and B30.2 domains that has implications for understanding protein function. The FXY/MID1 protein has previously been shown to colocalize with microtubules, and here we show that the FXY2 protein similarly associates with microtubules in a manner that is dependent on the carboxy-terminal B30.2 domain.
Collapse
Affiliation(s)
- J Perry
- Section of Gene Function and Regulation, Chester Beatty Laboratories, The Institute of Cancer Research, Fulham Road, London, SW3 6JB, United Kingdom
| | | | | | | | | | | |
Collapse
|